2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
27 #include "kvm_cache_regs.h"
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
59 #include <trace/events/kvm.h>
61 #include <asm/debugreg.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
71 #define CREATE_TRACE_POINTS
74 #define MAX_IO_MSRS 256
75 #define KVM_MAX_MCE_BANKS 32
76 u64 __read_mostly kvm_mce_cap_supported
= MCG_CTL_P
| MCG_SER_P
;
77 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported
);
79 #define emul_to_vcpu(ctxt) \
80 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
83 * - enable syscall per default because its emulated by KVM
84 * - enable LME and LMA per default on 64 bit KVM
88 u64 __read_mostly efer_reserved_bits
= ~((u64
)(EFER_SCE
| EFER_LME
| EFER_LMA
));
90 static u64 __read_mostly efer_reserved_bits
= ~((u64
)EFER_SCE
);
93 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
94 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
96 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
97 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
99 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
);
100 static void process_nmi(struct kvm_vcpu
*vcpu
);
101 static void enter_smm(struct kvm_vcpu
*vcpu
);
102 static void __kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
);
104 struct kvm_x86_ops
*kvm_x86_ops __read_mostly
;
105 EXPORT_SYMBOL_GPL(kvm_x86_ops
);
107 static bool __read_mostly ignore_msrs
= 0;
108 module_param(ignore_msrs
, bool, S_IRUGO
| S_IWUSR
);
110 static bool __read_mostly report_ignored_msrs
= true;
111 module_param(report_ignored_msrs
, bool, S_IRUGO
| S_IWUSR
);
113 unsigned int min_timer_period_us
= 500;
114 module_param(min_timer_period_us
, uint
, S_IRUGO
| S_IWUSR
);
116 static bool __read_mostly kvmclock_periodic_sync
= true;
117 module_param(kvmclock_periodic_sync
, bool, S_IRUGO
);
119 bool __read_mostly kvm_has_tsc_control
;
120 EXPORT_SYMBOL_GPL(kvm_has_tsc_control
);
121 u32 __read_mostly kvm_max_guest_tsc_khz
;
122 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz
);
123 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits
;
124 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits
);
125 u64 __read_mostly kvm_max_tsc_scaling_ratio
;
126 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio
);
127 u64 __read_mostly kvm_default_tsc_scaling_ratio
;
128 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio
);
130 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
131 static u32 __read_mostly tsc_tolerance_ppm
= 250;
132 module_param(tsc_tolerance_ppm
, uint
, S_IRUGO
| S_IWUSR
);
134 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
135 unsigned int __read_mostly lapic_timer_advance_ns
= 0;
136 module_param(lapic_timer_advance_ns
, uint
, S_IRUGO
| S_IWUSR
);
138 static bool __read_mostly vector_hashing
= true;
139 module_param(vector_hashing
, bool, S_IRUGO
);
141 #define KVM_NR_SHARED_MSRS 16
143 struct kvm_shared_msrs_global
{
145 u32 msrs
[KVM_NR_SHARED_MSRS
];
148 struct kvm_shared_msrs
{
149 struct user_return_notifier urn
;
151 struct kvm_shared_msr_values
{
154 } values
[KVM_NR_SHARED_MSRS
];
157 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global
;
158 static struct kvm_shared_msrs __percpu
*shared_msrs
;
160 struct kvm_stats_debugfs_item debugfs_entries
[] = {
161 { "pf_fixed", VCPU_STAT(pf_fixed
) },
162 { "pf_guest", VCPU_STAT(pf_guest
) },
163 { "tlb_flush", VCPU_STAT(tlb_flush
) },
164 { "invlpg", VCPU_STAT(invlpg
) },
165 { "exits", VCPU_STAT(exits
) },
166 { "io_exits", VCPU_STAT(io_exits
) },
167 { "mmio_exits", VCPU_STAT(mmio_exits
) },
168 { "signal_exits", VCPU_STAT(signal_exits
) },
169 { "irq_window", VCPU_STAT(irq_window_exits
) },
170 { "nmi_window", VCPU_STAT(nmi_window_exits
) },
171 { "halt_exits", VCPU_STAT(halt_exits
) },
172 { "halt_successful_poll", VCPU_STAT(halt_successful_poll
) },
173 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll
) },
174 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid
) },
175 { "halt_wakeup", VCPU_STAT(halt_wakeup
) },
176 { "hypercalls", VCPU_STAT(hypercalls
) },
177 { "request_irq", VCPU_STAT(request_irq_exits
) },
178 { "irq_exits", VCPU_STAT(irq_exits
) },
179 { "host_state_reload", VCPU_STAT(host_state_reload
) },
180 { "efer_reload", VCPU_STAT(efer_reload
) },
181 { "fpu_reload", VCPU_STAT(fpu_reload
) },
182 { "insn_emulation", VCPU_STAT(insn_emulation
) },
183 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail
) },
184 { "irq_injections", VCPU_STAT(irq_injections
) },
185 { "nmi_injections", VCPU_STAT(nmi_injections
) },
186 { "req_event", VCPU_STAT(req_event
) },
187 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped
) },
188 { "mmu_pte_write", VM_STAT(mmu_pte_write
) },
189 { "mmu_pte_updated", VM_STAT(mmu_pte_updated
) },
190 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped
) },
191 { "mmu_flooded", VM_STAT(mmu_flooded
) },
192 { "mmu_recycled", VM_STAT(mmu_recycled
) },
193 { "mmu_cache_miss", VM_STAT(mmu_cache_miss
) },
194 { "mmu_unsync", VM_STAT(mmu_unsync
) },
195 { "remote_tlb_flush", VM_STAT(remote_tlb_flush
) },
196 { "largepages", VM_STAT(lpages
) },
197 { "max_mmu_page_hash_collisions",
198 VM_STAT(max_mmu_page_hash_collisions
) },
202 u64 __read_mostly host_xcr0
;
204 static int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
);
206 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu
*vcpu
)
209 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
); i
++)
210 vcpu
->arch
.apf
.gfns
[i
] = ~0;
213 static void kvm_on_user_return(struct user_return_notifier
*urn
)
216 struct kvm_shared_msrs
*locals
217 = container_of(urn
, struct kvm_shared_msrs
, urn
);
218 struct kvm_shared_msr_values
*values
;
222 * Disabling irqs at this point since the following code could be
223 * interrupted and executed through kvm_arch_hardware_disable()
225 local_irq_save(flags
);
226 if (locals
->registered
) {
227 locals
->registered
= false;
228 user_return_notifier_unregister(urn
);
230 local_irq_restore(flags
);
231 for (slot
= 0; slot
< shared_msrs_global
.nr
; ++slot
) {
232 values
= &locals
->values
[slot
];
233 if (values
->host
!= values
->curr
) {
234 wrmsrl(shared_msrs_global
.msrs
[slot
], values
->host
);
235 values
->curr
= values
->host
;
240 static void shared_msr_update(unsigned slot
, u32 msr
)
243 unsigned int cpu
= smp_processor_id();
244 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
246 /* only read, and nobody should modify it at this time,
247 * so don't need lock */
248 if (slot
>= shared_msrs_global
.nr
) {
249 printk(KERN_ERR
"kvm: invalid MSR slot!");
252 rdmsrl_safe(msr
, &value
);
253 smsr
->values
[slot
].host
= value
;
254 smsr
->values
[slot
].curr
= value
;
257 void kvm_define_shared_msr(unsigned slot
, u32 msr
)
259 BUG_ON(slot
>= KVM_NR_SHARED_MSRS
);
260 shared_msrs_global
.msrs
[slot
] = msr
;
261 if (slot
>= shared_msrs_global
.nr
)
262 shared_msrs_global
.nr
= slot
+ 1;
264 EXPORT_SYMBOL_GPL(kvm_define_shared_msr
);
266 static void kvm_shared_msr_cpu_online(void)
270 for (i
= 0; i
< shared_msrs_global
.nr
; ++i
)
271 shared_msr_update(i
, shared_msrs_global
.msrs
[i
]);
274 int kvm_set_shared_msr(unsigned slot
, u64 value
, u64 mask
)
276 unsigned int cpu
= smp_processor_id();
277 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
280 if (((value
^ smsr
->values
[slot
].curr
) & mask
) == 0)
282 smsr
->values
[slot
].curr
= value
;
283 err
= wrmsrl_safe(shared_msrs_global
.msrs
[slot
], value
);
287 if (!smsr
->registered
) {
288 smsr
->urn
.on_user_return
= kvm_on_user_return
;
289 user_return_notifier_register(&smsr
->urn
);
290 smsr
->registered
= true;
294 EXPORT_SYMBOL_GPL(kvm_set_shared_msr
);
296 static void drop_user_return_notifiers(void)
298 unsigned int cpu
= smp_processor_id();
299 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
301 if (smsr
->registered
)
302 kvm_on_user_return(&smsr
->urn
);
305 u64
kvm_get_apic_base(struct kvm_vcpu
*vcpu
)
307 return vcpu
->arch
.apic_base
;
309 EXPORT_SYMBOL_GPL(kvm_get_apic_base
);
311 int kvm_set_apic_base(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
313 u64 old_state
= vcpu
->arch
.apic_base
&
314 (MSR_IA32_APICBASE_ENABLE
| X2APIC_ENABLE
);
315 u64 new_state
= msr_info
->data
&
316 (MSR_IA32_APICBASE_ENABLE
| X2APIC_ENABLE
);
317 u64 reserved_bits
= ((~0ULL) << cpuid_maxphyaddr(vcpu
)) | 0x2ff |
318 (guest_cpuid_has(vcpu
, X86_FEATURE_X2APIC
) ? 0 : X2APIC_ENABLE
);
320 if ((msr_info
->data
& reserved_bits
) || new_state
== X2APIC_ENABLE
)
322 if (!msr_info
->host_initiated
&&
323 ((new_state
== MSR_IA32_APICBASE_ENABLE
&&
324 old_state
== (MSR_IA32_APICBASE_ENABLE
| X2APIC_ENABLE
)) ||
325 (new_state
== (MSR_IA32_APICBASE_ENABLE
| X2APIC_ENABLE
) &&
329 kvm_lapic_set_base(vcpu
, msr_info
->data
);
332 EXPORT_SYMBOL_GPL(kvm_set_apic_base
);
334 asmlinkage __visible
void kvm_spurious_fault(void)
336 /* Fault while not rebooting. We want the trace. */
339 EXPORT_SYMBOL_GPL(kvm_spurious_fault
);
341 #define EXCPT_BENIGN 0
342 #define EXCPT_CONTRIBUTORY 1
345 static int exception_class(int vector
)
355 return EXCPT_CONTRIBUTORY
;
362 #define EXCPT_FAULT 0
364 #define EXCPT_ABORT 2
365 #define EXCPT_INTERRUPT 3
367 static int exception_type(int vector
)
371 if (WARN_ON(vector
> 31 || vector
== NMI_VECTOR
))
372 return EXCPT_INTERRUPT
;
376 /* #DB is trap, as instruction watchpoints are handled elsewhere */
377 if (mask
& ((1 << DB_VECTOR
) | (1 << BP_VECTOR
) | (1 << OF_VECTOR
)))
380 if (mask
& ((1 << DF_VECTOR
) | (1 << MC_VECTOR
)))
383 /* Reserved exceptions will result in fault */
387 static void kvm_multiple_exception(struct kvm_vcpu
*vcpu
,
388 unsigned nr
, bool has_error
, u32 error_code
,
394 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
396 if (!vcpu
->arch
.exception
.pending
&& !vcpu
->arch
.exception
.injected
) {
398 if (has_error
&& !is_protmode(vcpu
))
402 * On vmentry, vcpu->arch.exception.pending is only
403 * true if an event injection was blocked by
404 * nested_run_pending. In that case, however,
405 * vcpu_enter_guest requests an immediate exit,
406 * and the guest shouldn't proceed far enough to
409 WARN_ON_ONCE(vcpu
->arch
.exception
.pending
);
410 vcpu
->arch
.exception
.injected
= true;
412 vcpu
->arch
.exception
.pending
= true;
413 vcpu
->arch
.exception
.injected
= false;
415 vcpu
->arch
.exception
.has_error_code
= has_error
;
416 vcpu
->arch
.exception
.nr
= nr
;
417 vcpu
->arch
.exception
.error_code
= error_code
;
421 /* to check exception */
422 prev_nr
= vcpu
->arch
.exception
.nr
;
423 if (prev_nr
== DF_VECTOR
) {
424 /* triple fault -> shutdown */
425 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
428 class1
= exception_class(prev_nr
);
429 class2
= exception_class(nr
);
430 if ((class1
== EXCPT_CONTRIBUTORY
&& class2
== EXCPT_CONTRIBUTORY
)
431 || (class1
== EXCPT_PF
&& class2
!= EXCPT_BENIGN
)) {
433 * Generate double fault per SDM Table 5-5. Set
434 * exception.pending = true so that the double fault
435 * can trigger a nested vmexit.
437 vcpu
->arch
.exception
.pending
= true;
438 vcpu
->arch
.exception
.injected
= false;
439 vcpu
->arch
.exception
.has_error_code
= true;
440 vcpu
->arch
.exception
.nr
= DF_VECTOR
;
441 vcpu
->arch
.exception
.error_code
= 0;
443 /* replace previous exception with a new one in a hope
444 that instruction re-execution will regenerate lost
449 void kvm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
451 kvm_multiple_exception(vcpu
, nr
, false, 0, false);
453 EXPORT_SYMBOL_GPL(kvm_queue_exception
);
455 void kvm_requeue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
457 kvm_multiple_exception(vcpu
, nr
, false, 0, true);
459 EXPORT_SYMBOL_GPL(kvm_requeue_exception
);
461 int kvm_complete_insn_gp(struct kvm_vcpu
*vcpu
, int err
)
464 kvm_inject_gp(vcpu
, 0);
466 return kvm_skip_emulated_instruction(vcpu
);
470 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp
);
472 void kvm_inject_page_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
474 ++vcpu
->stat
.pf_guest
;
475 vcpu
->arch
.exception
.nested_apf
=
476 is_guest_mode(vcpu
) && fault
->async_page_fault
;
477 if (vcpu
->arch
.exception
.nested_apf
)
478 vcpu
->arch
.apf
.nested_apf_token
= fault
->address
;
480 vcpu
->arch
.cr2
= fault
->address
;
481 kvm_queue_exception_e(vcpu
, PF_VECTOR
, fault
->error_code
);
483 EXPORT_SYMBOL_GPL(kvm_inject_page_fault
);
485 static bool kvm_propagate_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
487 if (mmu_is_nested(vcpu
) && !fault
->nested_page_fault
)
488 vcpu
->arch
.nested_mmu
.inject_page_fault(vcpu
, fault
);
490 vcpu
->arch
.mmu
.inject_page_fault(vcpu
, fault
);
492 return fault
->nested_page_fault
;
495 void kvm_inject_nmi(struct kvm_vcpu
*vcpu
)
497 atomic_inc(&vcpu
->arch
.nmi_queued
);
498 kvm_make_request(KVM_REQ_NMI
, vcpu
);
500 EXPORT_SYMBOL_GPL(kvm_inject_nmi
);
502 void kvm_queue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
504 kvm_multiple_exception(vcpu
, nr
, true, error_code
, false);
506 EXPORT_SYMBOL_GPL(kvm_queue_exception_e
);
508 void kvm_requeue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
510 kvm_multiple_exception(vcpu
, nr
, true, error_code
, true);
512 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e
);
515 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
516 * a #GP and return false.
518 bool kvm_require_cpl(struct kvm_vcpu
*vcpu
, int required_cpl
)
520 if (kvm_x86_ops
->get_cpl(vcpu
) <= required_cpl
)
522 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
525 EXPORT_SYMBOL_GPL(kvm_require_cpl
);
527 bool kvm_require_dr(struct kvm_vcpu
*vcpu
, int dr
)
529 if ((dr
!= 4 && dr
!= 5) || !kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
532 kvm_queue_exception(vcpu
, UD_VECTOR
);
535 EXPORT_SYMBOL_GPL(kvm_require_dr
);
538 * This function will be used to read from the physical memory of the currently
539 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
540 * can read from guest physical or from the guest's guest physical memory.
542 int kvm_read_guest_page_mmu(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
,
543 gfn_t ngfn
, void *data
, int offset
, int len
,
546 struct x86_exception exception
;
550 ngpa
= gfn_to_gpa(ngfn
);
551 real_gfn
= mmu
->translate_gpa(vcpu
, ngpa
, access
, &exception
);
552 if (real_gfn
== UNMAPPED_GVA
)
555 real_gfn
= gpa_to_gfn(real_gfn
);
557 return kvm_vcpu_read_guest_page(vcpu
, real_gfn
, data
, offset
, len
);
559 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu
);
561 static int kvm_read_nested_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
562 void *data
, int offset
, int len
, u32 access
)
564 return kvm_read_guest_page_mmu(vcpu
, vcpu
->arch
.walk_mmu
, gfn
,
565 data
, offset
, len
, access
);
569 * Load the pae pdptrs. Return true is they are all valid.
571 int load_pdptrs(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
, unsigned long cr3
)
573 gfn_t pdpt_gfn
= cr3
>> PAGE_SHIFT
;
574 unsigned offset
= ((cr3
& (PAGE_SIZE
-1)) >> 5) << 2;
577 u64 pdpte
[ARRAY_SIZE(mmu
->pdptrs
)];
579 ret
= kvm_read_guest_page_mmu(vcpu
, mmu
, pdpt_gfn
, pdpte
,
580 offset
* sizeof(u64
), sizeof(pdpte
),
581 PFERR_USER_MASK
|PFERR_WRITE_MASK
);
586 for (i
= 0; i
< ARRAY_SIZE(pdpte
); ++i
) {
587 if ((pdpte
[i
] & PT_PRESENT_MASK
) &&
589 vcpu
->arch
.mmu
.guest_rsvd_check
.rsvd_bits_mask
[0][2])) {
596 memcpy(mmu
->pdptrs
, pdpte
, sizeof(mmu
->pdptrs
));
597 __set_bit(VCPU_EXREG_PDPTR
,
598 (unsigned long *)&vcpu
->arch
.regs_avail
);
599 __set_bit(VCPU_EXREG_PDPTR
,
600 (unsigned long *)&vcpu
->arch
.regs_dirty
);
605 EXPORT_SYMBOL_GPL(load_pdptrs
);
607 bool pdptrs_changed(struct kvm_vcpu
*vcpu
)
609 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.walk_mmu
->pdptrs
)];
615 if (is_long_mode(vcpu
) || !is_pae(vcpu
))
618 if (!test_bit(VCPU_EXREG_PDPTR
,
619 (unsigned long *)&vcpu
->arch
.regs_avail
))
622 gfn
= (kvm_read_cr3(vcpu
) & 0xffffffe0ul
) >> PAGE_SHIFT
;
623 offset
= (kvm_read_cr3(vcpu
) & 0xffffffe0ul
) & (PAGE_SIZE
- 1);
624 r
= kvm_read_nested_guest_page(vcpu
, gfn
, pdpte
, offset
, sizeof(pdpte
),
625 PFERR_USER_MASK
| PFERR_WRITE_MASK
);
628 changed
= memcmp(pdpte
, vcpu
->arch
.walk_mmu
->pdptrs
, sizeof(pdpte
)) != 0;
633 EXPORT_SYMBOL_GPL(pdptrs_changed
);
635 int kvm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
637 unsigned long old_cr0
= kvm_read_cr0(vcpu
);
638 unsigned long update_bits
= X86_CR0_PG
| X86_CR0_WP
;
643 if (cr0
& 0xffffffff00000000UL
)
647 cr0
&= ~CR0_RESERVED_BITS
;
649 if ((cr0
& X86_CR0_NW
) && !(cr0
& X86_CR0_CD
))
652 if ((cr0
& X86_CR0_PG
) && !(cr0
& X86_CR0_PE
))
655 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
657 if ((vcpu
->arch
.efer
& EFER_LME
)) {
662 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
667 if (is_pae(vcpu
) && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
672 if (!(cr0
& X86_CR0_PG
) && kvm_read_cr4_bits(vcpu
, X86_CR4_PCIDE
))
675 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
677 if ((cr0
^ old_cr0
) & X86_CR0_PG
) {
678 kvm_clear_async_pf_completion_queue(vcpu
);
679 kvm_async_pf_hash_reset(vcpu
);
682 if ((cr0
^ old_cr0
) & update_bits
)
683 kvm_mmu_reset_context(vcpu
);
685 if (((cr0
^ old_cr0
) & X86_CR0_CD
) &&
686 kvm_arch_has_noncoherent_dma(vcpu
->kvm
) &&
687 !kvm_check_has_quirk(vcpu
->kvm
, KVM_X86_QUIRK_CD_NW_CLEARED
))
688 kvm_zap_gfn_range(vcpu
->kvm
, 0, ~0ULL);
692 EXPORT_SYMBOL_GPL(kvm_set_cr0
);
694 void kvm_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
)
696 (void)kvm_set_cr0(vcpu
, kvm_read_cr0_bits(vcpu
, ~0x0eul
) | (msw
& 0x0f));
698 EXPORT_SYMBOL_GPL(kvm_lmsw
);
700 static void kvm_load_guest_xcr0(struct kvm_vcpu
*vcpu
)
702 if (kvm_read_cr4_bits(vcpu
, X86_CR4_OSXSAVE
) &&
703 !vcpu
->guest_xcr0_loaded
) {
704 /* kvm_set_xcr() also depends on this */
705 xsetbv(XCR_XFEATURE_ENABLED_MASK
, vcpu
->arch
.xcr0
);
706 vcpu
->guest_xcr0_loaded
= 1;
710 static void kvm_put_guest_xcr0(struct kvm_vcpu
*vcpu
)
712 if (vcpu
->guest_xcr0_loaded
) {
713 if (vcpu
->arch
.xcr0
!= host_xcr0
)
714 xsetbv(XCR_XFEATURE_ENABLED_MASK
, host_xcr0
);
715 vcpu
->guest_xcr0_loaded
= 0;
719 static int __kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
722 u64 old_xcr0
= vcpu
->arch
.xcr0
;
725 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
726 if (index
!= XCR_XFEATURE_ENABLED_MASK
)
728 if (!(xcr0
& XFEATURE_MASK_FP
))
730 if ((xcr0
& XFEATURE_MASK_YMM
) && !(xcr0
& XFEATURE_MASK_SSE
))
734 * Do not allow the guest to set bits that we do not support
735 * saving. However, xcr0 bit 0 is always set, even if the
736 * emulated CPU does not support XSAVE (see fx_init).
738 valid_bits
= vcpu
->arch
.guest_supported_xcr0
| XFEATURE_MASK_FP
;
739 if (xcr0
& ~valid_bits
)
742 if ((!(xcr0
& XFEATURE_MASK_BNDREGS
)) !=
743 (!(xcr0
& XFEATURE_MASK_BNDCSR
)))
746 if (xcr0
& XFEATURE_MASK_AVX512
) {
747 if (!(xcr0
& XFEATURE_MASK_YMM
))
749 if ((xcr0
& XFEATURE_MASK_AVX512
) != XFEATURE_MASK_AVX512
)
752 vcpu
->arch
.xcr0
= xcr0
;
754 if ((xcr0
^ old_xcr0
) & XFEATURE_MASK_EXTEND
)
755 kvm_update_cpuid(vcpu
);
759 int kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
761 if (kvm_x86_ops
->get_cpl(vcpu
) != 0 ||
762 __kvm_set_xcr(vcpu
, index
, xcr
)) {
763 kvm_inject_gp(vcpu
, 0);
768 EXPORT_SYMBOL_GPL(kvm_set_xcr
);
770 int kvm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
772 unsigned long old_cr4
= kvm_read_cr4(vcpu
);
773 unsigned long pdptr_bits
= X86_CR4_PGE
| X86_CR4_PSE
| X86_CR4_PAE
|
774 X86_CR4_SMEP
| X86_CR4_SMAP
| X86_CR4_PKE
;
776 if (cr4
& CR4_RESERVED_BITS
)
779 if (!guest_cpuid_has(vcpu
, X86_FEATURE_XSAVE
) && (cr4
& X86_CR4_OSXSAVE
))
782 if (!guest_cpuid_has(vcpu
, X86_FEATURE_SMEP
) && (cr4
& X86_CR4_SMEP
))
785 if (!guest_cpuid_has(vcpu
, X86_FEATURE_SMAP
) && (cr4
& X86_CR4_SMAP
))
788 if (!guest_cpuid_has(vcpu
, X86_FEATURE_FSGSBASE
) && (cr4
& X86_CR4_FSGSBASE
))
791 if (!guest_cpuid_has(vcpu
, X86_FEATURE_PKU
) && (cr4
& X86_CR4_PKE
))
794 if (!guest_cpuid_has(vcpu
, X86_FEATURE_LA57
) && (cr4
& X86_CR4_LA57
))
797 if (is_long_mode(vcpu
)) {
798 if (!(cr4
& X86_CR4_PAE
))
800 } else if (is_paging(vcpu
) && (cr4
& X86_CR4_PAE
)
801 && ((cr4
^ old_cr4
) & pdptr_bits
)
802 && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
806 if ((cr4
& X86_CR4_PCIDE
) && !(old_cr4
& X86_CR4_PCIDE
)) {
807 if (!guest_cpuid_has(vcpu
, X86_FEATURE_PCID
))
810 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
811 if ((kvm_read_cr3(vcpu
) & X86_CR3_PCID_MASK
) || !is_long_mode(vcpu
))
815 if (kvm_x86_ops
->set_cr4(vcpu
, cr4
))
818 if (((cr4
^ old_cr4
) & pdptr_bits
) ||
819 (!(cr4
& X86_CR4_PCIDE
) && (old_cr4
& X86_CR4_PCIDE
)))
820 kvm_mmu_reset_context(vcpu
);
822 if ((cr4
^ old_cr4
) & (X86_CR4_OSXSAVE
| X86_CR4_PKE
))
823 kvm_update_cpuid(vcpu
);
827 EXPORT_SYMBOL_GPL(kvm_set_cr4
);
829 int kvm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
832 cr3
&= ~CR3_PCID_INVD
;
835 if (cr3
== kvm_read_cr3(vcpu
) && !pdptrs_changed(vcpu
)) {
836 kvm_mmu_sync_roots(vcpu
);
837 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
841 if (is_long_mode(vcpu
) &&
842 (cr3
& rsvd_bits(cpuid_maxphyaddr(vcpu
), 62)))
844 else if (is_pae(vcpu
) && is_paging(vcpu
) &&
845 !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, cr3
))
848 vcpu
->arch
.cr3
= cr3
;
849 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
850 kvm_mmu_new_cr3(vcpu
);
853 EXPORT_SYMBOL_GPL(kvm_set_cr3
);
855 int kvm_set_cr8(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
857 if (cr8
& CR8_RESERVED_BITS
)
859 if (lapic_in_kernel(vcpu
))
860 kvm_lapic_set_tpr(vcpu
, cr8
);
862 vcpu
->arch
.cr8
= cr8
;
865 EXPORT_SYMBOL_GPL(kvm_set_cr8
);
867 unsigned long kvm_get_cr8(struct kvm_vcpu
*vcpu
)
869 if (lapic_in_kernel(vcpu
))
870 return kvm_lapic_get_cr8(vcpu
);
872 return vcpu
->arch
.cr8
;
874 EXPORT_SYMBOL_GPL(kvm_get_cr8
);
876 static void kvm_update_dr0123(struct kvm_vcpu
*vcpu
)
880 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)) {
881 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
882 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
883 vcpu
->arch
.switch_db_regs
|= KVM_DEBUGREG_RELOAD
;
887 static void kvm_update_dr6(struct kvm_vcpu
*vcpu
)
889 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
890 kvm_x86_ops
->set_dr6(vcpu
, vcpu
->arch
.dr6
);
893 static void kvm_update_dr7(struct kvm_vcpu
*vcpu
)
897 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
898 dr7
= vcpu
->arch
.guest_debug_dr7
;
900 dr7
= vcpu
->arch
.dr7
;
901 kvm_x86_ops
->set_dr7(vcpu
, dr7
);
902 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_BP_ENABLED
;
903 if (dr7
& DR7_BP_EN_MASK
)
904 vcpu
->arch
.switch_db_regs
|= KVM_DEBUGREG_BP_ENABLED
;
907 static u64
kvm_dr6_fixed(struct kvm_vcpu
*vcpu
)
909 u64 fixed
= DR6_FIXED_1
;
911 if (!guest_cpuid_has(vcpu
, X86_FEATURE_RTM
))
916 static int __kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
920 vcpu
->arch
.db
[dr
] = val
;
921 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
922 vcpu
->arch
.eff_db
[dr
] = val
;
927 if (val
& 0xffffffff00000000ULL
)
929 vcpu
->arch
.dr6
= (val
& DR6_VOLATILE
) | kvm_dr6_fixed(vcpu
);
930 kvm_update_dr6(vcpu
);
935 if (val
& 0xffffffff00000000ULL
)
937 vcpu
->arch
.dr7
= (val
& DR7_VOLATILE
) | DR7_FIXED_1
;
938 kvm_update_dr7(vcpu
);
945 int kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
947 if (__kvm_set_dr(vcpu
, dr
, val
)) {
948 kvm_inject_gp(vcpu
, 0);
953 EXPORT_SYMBOL_GPL(kvm_set_dr
);
955 int kvm_get_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long *val
)
959 *val
= vcpu
->arch
.db
[dr
];
964 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
965 *val
= vcpu
->arch
.dr6
;
967 *val
= kvm_x86_ops
->get_dr6(vcpu
);
972 *val
= vcpu
->arch
.dr7
;
977 EXPORT_SYMBOL_GPL(kvm_get_dr
);
979 bool kvm_rdpmc(struct kvm_vcpu
*vcpu
)
981 u32 ecx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
985 err
= kvm_pmu_rdpmc(vcpu
, ecx
, &data
);
988 kvm_register_write(vcpu
, VCPU_REGS_RAX
, (u32
)data
);
989 kvm_register_write(vcpu
, VCPU_REGS_RDX
, data
>> 32);
992 EXPORT_SYMBOL_GPL(kvm_rdpmc
);
995 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
996 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
998 * This list is modified at module load time to reflect the
999 * capabilities of the host cpu. This capabilities test skips MSRs that are
1000 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1001 * may depend on host virtualization features rather than host cpu features.
1004 static u32 msrs_to_save
[] = {
1005 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
1007 #ifdef CONFIG_X86_64
1008 MSR_CSTAR
, MSR_KERNEL_GS_BASE
, MSR_SYSCALL_MASK
, MSR_LSTAR
,
1010 MSR_IA32_TSC
, MSR_IA32_CR_PAT
, MSR_VM_HSAVE_PA
,
1011 MSR_IA32_FEATURE_CONTROL
, MSR_IA32_BNDCFGS
, MSR_TSC_AUX
,
1014 static unsigned num_msrs_to_save
;
1016 static u32 emulated_msrs
[] = {
1017 MSR_KVM_SYSTEM_TIME
, MSR_KVM_WALL_CLOCK
,
1018 MSR_KVM_SYSTEM_TIME_NEW
, MSR_KVM_WALL_CLOCK_NEW
,
1019 HV_X64_MSR_GUEST_OS_ID
, HV_X64_MSR_HYPERCALL
,
1020 HV_X64_MSR_TIME_REF_COUNT
, HV_X64_MSR_REFERENCE_TSC
,
1021 HV_X64_MSR_TSC_FREQUENCY
, HV_X64_MSR_APIC_FREQUENCY
,
1022 HV_X64_MSR_CRASH_P0
, HV_X64_MSR_CRASH_P1
, HV_X64_MSR_CRASH_P2
,
1023 HV_X64_MSR_CRASH_P3
, HV_X64_MSR_CRASH_P4
, HV_X64_MSR_CRASH_CTL
,
1025 HV_X64_MSR_VP_INDEX
,
1026 HV_X64_MSR_VP_RUNTIME
,
1027 HV_X64_MSR_SCONTROL
,
1028 HV_X64_MSR_STIMER0_CONFIG
,
1029 HV_X64_MSR_APIC_ASSIST_PAGE
, MSR_KVM_ASYNC_PF_EN
, MSR_KVM_STEAL_TIME
,
1032 MSR_IA32_TSC_ADJUST
,
1033 MSR_IA32_TSCDEADLINE
,
1034 MSR_IA32_MISC_ENABLE
,
1035 MSR_IA32_MCG_STATUS
,
1037 MSR_IA32_MCG_EXT_CTL
,
1040 MSR_MISC_FEATURES_ENABLES
,
1043 static unsigned num_emulated_msrs
;
1045 bool kvm_valid_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
1047 if (efer
& efer_reserved_bits
)
1050 if (efer
& EFER_FFXSR
&& !guest_cpuid_has(vcpu
, X86_FEATURE_FXSR_OPT
))
1053 if (efer
& EFER_SVME
&& !guest_cpuid_has(vcpu
, X86_FEATURE_SVM
))
1058 EXPORT_SYMBOL_GPL(kvm_valid_efer
);
1060 static int set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
1062 u64 old_efer
= vcpu
->arch
.efer
;
1064 if (!kvm_valid_efer(vcpu
, efer
))
1068 && (vcpu
->arch
.efer
& EFER_LME
) != (efer
& EFER_LME
))
1072 efer
|= vcpu
->arch
.efer
& EFER_LMA
;
1074 kvm_x86_ops
->set_efer(vcpu
, efer
);
1076 /* Update reserved bits */
1077 if ((efer
^ old_efer
) & EFER_NX
)
1078 kvm_mmu_reset_context(vcpu
);
1083 void kvm_enable_efer_bits(u64 mask
)
1085 efer_reserved_bits
&= ~mask
;
1087 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits
);
1090 * Writes msr value into into the appropriate "register".
1091 * Returns 0 on success, non-0 otherwise.
1092 * Assumes vcpu_load() was already called.
1094 int kvm_set_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
1096 switch (msr
->index
) {
1099 case MSR_KERNEL_GS_BASE
:
1102 if (is_noncanonical_address(msr
->data
, vcpu
))
1105 case MSR_IA32_SYSENTER_EIP
:
1106 case MSR_IA32_SYSENTER_ESP
:
1108 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1109 * non-canonical address is written on Intel but not on
1110 * AMD (which ignores the top 32-bits, because it does
1111 * not implement 64-bit SYSENTER).
1113 * 64-bit code should hence be able to write a non-canonical
1114 * value on AMD. Making the address canonical ensures that
1115 * vmentry does not fail on Intel after writing a non-canonical
1116 * value, and that something deterministic happens if the guest
1117 * invokes 64-bit SYSENTER.
1119 msr
->data
= get_canonical(msr
->data
, vcpu_virt_addr_bits(vcpu
));
1121 return kvm_x86_ops
->set_msr(vcpu
, msr
);
1123 EXPORT_SYMBOL_GPL(kvm_set_msr
);
1126 * Adapt set_msr() to msr_io()'s calling convention
1128 static int do_get_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
1130 struct msr_data msr
;
1134 msr
.host_initiated
= true;
1135 r
= kvm_get_msr(vcpu
, &msr
);
1143 static int do_set_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
1145 struct msr_data msr
;
1149 msr
.host_initiated
= true;
1150 return kvm_set_msr(vcpu
, &msr
);
1153 #ifdef CONFIG_X86_64
1154 struct pvclock_gtod_data
{
1157 struct { /* extract of a clocksource struct */
1170 static struct pvclock_gtod_data pvclock_gtod_data
;
1172 static void update_pvclock_gtod(struct timekeeper
*tk
)
1174 struct pvclock_gtod_data
*vdata
= &pvclock_gtod_data
;
1177 boot_ns
= ktime_to_ns(ktime_add(tk
->tkr_mono
.base
, tk
->offs_boot
));
1179 write_seqcount_begin(&vdata
->seq
);
1181 /* copy pvclock gtod data */
1182 vdata
->clock
.vclock_mode
= tk
->tkr_mono
.clock
->archdata
.vclock_mode
;
1183 vdata
->clock
.cycle_last
= tk
->tkr_mono
.cycle_last
;
1184 vdata
->clock
.mask
= tk
->tkr_mono
.mask
;
1185 vdata
->clock
.mult
= tk
->tkr_mono
.mult
;
1186 vdata
->clock
.shift
= tk
->tkr_mono
.shift
;
1188 vdata
->boot_ns
= boot_ns
;
1189 vdata
->nsec_base
= tk
->tkr_mono
.xtime_nsec
;
1191 vdata
->wall_time_sec
= tk
->xtime_sec
;
1193 write_seqcount_end(&vdata
->seq
);
1197 void kvm_set_pending_timer(struct kvm_vcpu
*vcpu
)
1200 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1201 * vcpu_enter_guest. This function is only called from
1202 * the physical CPU that is running vcpu.
1204 kvm_make_request(KVM_REQ_PENDING_TIMER
, vcpu
);
1207 static void kvm_write_wall_clock(struct kvm
*kvm
, gpa_t wall_clock
)
1211 struct pvclock_wall_clock wc
;
1212 struct timespec64 boot
;
1217 r
= kvm_read_guest(kvm
, wall_clock
, &version
, sizeof(version
));
1222 ++version
; /* first time write, random junk */
1226 if (kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
)))
1230 * The guest calculates current wall clock time by adding
1231 * system time (updated by kvm_guest_time_update below) to the
1232 * wall clock specified here. guest system time equals host
1233 * system time for us, thus we must fill in host boot time here.
1235 getboottime64(&boot
);
1237 if (kvm
->arch
.kvmclock_offset
) {
1238 struct timespec64 ts
= ns_to_timespec64(kvm
->arch
.kvmclock_offset
);
1239 boot
= timespec64_sub(boot
, ts
);
1241 wc
.sec
= (u32
)boot
.tv_sec
; /* overflow in 2106 guest time */
1242 wc
.nsec
= boot
.tv_nsec
;
1243 wc
.version
= version
;
1245 kvm_write_guest(kvm
, wall_clock
, &wc
, sizeof(wc
));
1248 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
1251 static uint32_t div_frac(uint32_t dividend
, uint32_t divisor
)
1253 do_shl32_div32(dividend
, divisor
);
1257 static void kvm_get_time_scale(uint64_t scaled_hz
, uint64_t base_hz
,
1258 s8
*pshift
, u32
*pmultiplier
)
1266 scaled64
= scaled_hz
;
1267 while (tps64
> scaled64
*2 || tps64
& 0xffffffff00000000ULL
) {
1272 tps32
= (uint32_t)tps64
;
1273 while (tps32
<= scaled64
|| scaled64
& 0xffffffff00000000ULL
) {
1274 if (scaled64
& 0xffffffff00000000ULL
|| tps32
& 0x80000000)
1282 *pmultiplier
= div_frac(scaled64
, tps32
);
1284 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1285 __func__
, base_hz
, scaled_hz
, shift
, *pmultiplier
);
1288 #ifdef CONFIG_X86_64
1289 static atomic_t kvm_guest_has_master_clock
= ATOMIC_INIT(0);
1292 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz
);
1293 static unsigned long max_tsc_khz
;
1295 static u32
adjust_tsc_khz(u32 khz
, s32 ppm
)
1297 u64 v
= (u64
)khz
* (1000000 + ppm
);
1302 static int set_tsc_khz(struct kvm_vcpu
*vcpu
, u32 user_tsc_khz
, bool scale
)
1306 /* Guest TSC same frequency as host TSC? */
1308 vcpu
->arch
.tsc_scaling_ratio
= kvm_default_tsc_scaling_ratio
;
1312 /* TSC scaling supported? */
1313 if (!kvm_has_tsc_control
) {
1314 if (user_tsc_khz
> tsc_khz
) {
1315 vcpu
->arch
.tsc_catchup
= 1;
1316 vcpu
->arch
.tsc_always_catchup
= 1;
1319 WARN(1, "user requested TSC rate below hardware speed\n");
1324 /* TSC scaling required - calculate ratio */
1325 ratio
= mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits
,
1326 user_tsc_khz
, tsc_khz
);
1328 if (ratio
== 0 || ratio
>= kvm_max_tsc_scaling_ratio
) {
1329 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1334 vcpu
->arch
.tsc_scaling_ratio
= ratio
;
1338 static int kvm_set_tsc_khz(struct kvm_vcpu
*vcpu
, u32 user_tsc_khz
)
1340 u32 thresh_lo
, thresh_hi
;
1341 int use_scaling
= 0;
1343 /* tsc_khz can be zero if TSC calibration fails */
1344 if (user_tsc_khz
== 0) {
1345 /* set tsc_scaling_ratio to a safe value */
1346 vcpu
->arch
.tsc_scaling_ratio
= kvm_default_tsc_scaling_ratio
;
1350 /* Compute a scale to convert nanoseconds in TSC cycles */
1351 kvm_get_time_scale(user_tsc_khz
* 1000LL, NSEC_PER_SEC
,
1352 &vcpu
->arch
.virtual_tsc_shift
,
1353 &vcpu
->arch
.virtual_tsc_mult
);
1354 vcpu
->arch
.virtual_tsc_khz
= user_tsc_khz
;
1357 * Compute the variation in TSC rate which is acceptable
1358 * within the range of tolerance and decide if the
1359 * rate being applied is within that bounds of the hardware
1360 * rate. If so, no scaling or compensation need be done.
1362 thresh_lo
= adjust_tsc_khz(tsc_khz
, -tsc_tolerance_ppm
);
1363 thresh_hi
= adjust_tsc_khz(tsc_khz
, tsc_tolerance_ppm
);
1364 if (user_tsc_khz
< thresh_lo
|| user_tsc_khz
> thresh_hi
) {
1365 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz
, thresh_lo
, thresh_hi
);
1368 return set_tsc_khz(vcpu
, user_tsc_khz
, use_scaling
);
1371 static u64
compute_guest_tsc(struct kvm_vcpu
*vcpu
, s64 kernel_ns
)
1373 u64 tsc
= pvclock_scale_delta(kernel_ns
-vcpu
->arch
.this_tsc_nsec
,
1374 vcpu
->arch
.virtual_tsc_mult
,
1375 vcpu
->arch
.virtual_tsc_shift
);
1376 tsc
+= vcpu
->arch
.this_tsc_write
;
1380 static void kvm_track_tsc_matching(struct kvm_vcpu
*vcpu
)
1382 #ifdef CONFIG_X86_64
1384 struct kvm_arch
*ka
= &vcpu
->kvm
->arch
;
1385 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1387 vcpus_matched
= (ka
->nr_vcpus_matched_tsc
+ 1 ==
1388 atomic_read(&vcpu
->kvm
->online_vcpus
));
1391 * Once the masterclock is enabled, always perform request in
1392 * order to update it.
1394 * In order to enable masterclock, the host clocksource must be TSC
1395 * and the vcpus need to have matched TSCs. When that happens,
1396 * perform request to enable masterclock.
1398 if (ka
->use_master_clock
||
1399 (gtod
->clock
.vclock_mode
== VCLOCK_TSC
&& vcpus_matched
))
1400 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
1402 trace_kvm_track_tsc(vcpu
->vcpu_id
, ka
->nr_vcpus_matched_tsc
,
1403 atomic_read(&vcpu
->kvm
->online_vcpus
),
1404 ka
->use_master_clock
, gtod
->clock
.vclock_mode
);
1408 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu
*vcpu
, s64 offset
)
1410 u64 curr_offset
= vcpu
->arch
.tsc_offset
;
1411 vcpu
->arch
.ia32_tsc_adjust_msr
+= offset
- curr_offset
;
1415 * Multiply tsc by a fixed point number represented by ratio.
1417 * The most significant 64-N bits (mult) of ratio represent the
1418 * integral part of the fixed point number; the remaining N bits
1419 * (frac) represent the fractional part, ie. ratio represents a fixed
1420 * point number (mult + frac * 2^(-N)).
1422 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1424 static inline u64
__scale_tsc(u64 ratio
, u64 tsc
)
1426 return mul_u64_u64_shr(tsc
, ratio
, kvm_tsc_scaling_ratio_frac_bits
);
1429 u64
kvm_scale_tsc(struct kvm_vcpu
*vcpu
, u64 tsc
)
1432 u64 ratio
= vcpu
->arch
.tsc_scaling_ratio
;
1434 if (ratio
!= kvm_default_tsc_scaling_ratio
)
1435 _tsc
= __scale_tsc(ratio
, tsc
);
1439 EXPORT_SYMBOL_GPL(kvm_scale_tsc
);
1441 static u64
kvm_compute_tsc_offset(struct kvm_vcpu
*vcpu
, u64 target_tsc
)
1445 tsc
= kvm_scale_tsc(vcpu
, rdtsc());
1447 return target_tsc
- tsc
;
1450 u64
kvm_read_l1_tsc(struct kvm_vcpu
*vcpu
, u64 host_tsc
)
1452 return vcpu
->arch
.tsc_offset
+ kvm_scale_tsc(vcpu
, host_tsc
);
1454 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc
);
1456 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu
*vcpu
, u64 offset
)
1458 kvm_x86_ops
->write_tsc_offset(vcpu
, offset
);
1459 vcpu
->arch
.tsc_offset
= offset
;
1462 void kvm_write_tsc(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
1464 struct kvm
*kvm
= vcpu
->kvm
;
1465 u64 offset
, ns
, elapsed
;
1466 unsigned long flags
;
1468 bool already_matched
;
1469 u64 data
= msr
->data
;
1470 bool synchronizing
= false;
1472 raw_spin_lock_irqsave(&kvm
->arch
.tsc_write_lock
, flags
);
1473 offset
= kvm_compute_tsc_offset(vcpu
, data
);
1474 ns
= ktime_get_boot_ns();
1475 elapsed
= ns
- kvm
->arch
.last_tsc_nsec
;
1477 if (vcpu
->arch
.virtual_tsc_khz
) {
1478 if (data
== 0 && msr
->host_initiated
) {
1480 * detection of vcpu initialization -- need to sync
1481 * with other vCPUs. This particularly helps to keep
1482 * kvm_clock stable after CPU hotplug
1484 synchronizing
= true;
1486 u64 tsc_exp
= kvm
->arch
.last_tsc_write
+
1487 nsec_to_cycles(vcpu
, elapsed
);
1488 u64 tsc_hz
= vcpu
->arch
.virtual_tsc_khz
* 1000LL;
1490 * Special case: TSC write with a small delta (1 second)
1491 * of virtual cycle time against real time is
1492 * interpreted as an attempt to synchronize the CPU.
1494 synchronizing
= data
< tsc_exp
+ tsc_hz
&&
1495 data
+ tsc_hz
> tsc_exp
;
1500 * For a reliable TSC, we can match TSC offsets, and for an unstable
1501 * TSC, we add elapsed time in this computation. We could let the
1502 * compensation code attempt to catch up if we fall behind, but
1503 * it's better to try to match offsets from the beginning.
1505 if (synchronizing
&&
1506 vcpu
->arch
.virtual_tsc_khz
== kvm
->arch
.last_tsc_khz
) {
1507 if (!check_tsc_unstable()) {
1508 offset
= kvm
->arch
.cur_tsc_offset
;
1509 pr_debug("kvm: matched tsc offset for %llu\n", data
);
1511 u64 delta
= nsec_to_cycles(vcpu
, elapsed
);
1513 offset
= kvm_compute_tsc_offset(vcpu
, data
);
1514 pr_debug("kvm: adjusted tsc offset by %llu\n", delta
);
1517 already_matched
= (vcpu
->arch
.this_tsc_generation
== kvm
->arch
.cur_tsc_generation
);
1520 * We split periods of matched TSC writes into generations.
1521 * For each generation, we track the original measured
1522 * nanosecond time, offset, and write, so if TSCs are in
1523 * sync, we can match exact offset, and if not, we can match
1524 * exact software computation in compute_guest_tsc()
1526 * These values are tracked in kvm->arch.cur_xxx variables.
1528 kvm
->arch
.cur_tsc_generation
++;
1529 kvm
->arch
.cur_tsc_nsec
= ns
;
1530 kvm
->arch
.cur_tsc_write
= data
;
1531 kvm
->arch
.cur_tsc_offset
= offset
;
1533 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1534 kvm
->arch
.cur_tsc_generation
, data
);
1538 * We also track th most recent recorded KHZ, write and time to
1539 * allow the matching interval to be extended at each write.
1541 kvm
->arch
.last_tsc_nsec
= ns
;
1542 kvm
->arch
.last_tsc_write
= data
;
1543 kvm
->arch
.last_tsc_khz
= vcpu
->arch
.virtual_tsc_khz
;
1545 vcpu
->arch
.last_guest_tsc
= data
;
1547 /* Keep track of which generation this VCPU has synchronized to */
1548 vcpu
->arch
.this_tsc_generation
= kvm
->arch
.cur_tsc_generation
;
1549 vcpu
->arch
.this_tsc_nsec
= kvm
->arch
.cur_tsc_nsec
;
1550 vcpu
->arch
.this_tsc_write
= kvm
->arch
.cur_tsc_write
;
1552 if (!msr
->host_initiated
&& guest_cpuid_has(vcpu
, X86_FEATURE_TSC_ADJUST
))
1553 update_ia32_tsc_adjust_msr(vcpu
, offset
);
1555 kvm_vcpu_write_tsc_offset(vcpu
, offset
);
1556 raw_spin_unlock_irqrestore(&kvm
->arch
.tsc_write_lock
, flags
);
1558 spin_lock(&kvm
->arch
.pvclock_gtod_sync_lock
);
1560 kvm
->arch
.nr_vcpus_matched_tsc
= 0;
1561 } else if (!already_matched
) {
1562 kvm
->arch
.nr_vcpus_matched_tsc
++;
1565 kvm_track_tsc_matching(vcpu
);
1566 spin_unlock(&kvm
->arch
.pvclock_gtod_sync_lock
);
1569 EXPORT_SYMBOL_GPL(kvm_write_tsc
);
1571 static inline void adjust_tsc_offset_guest(struct kvm_vcpu
*vcpu
,
1574 kvm_vcpu_write_tsc_offset(vcpu
, vcpu
->arch
.tsc_offset
+ adjustment
);
1577 static inline void adjust_tsc_offset_host(struct kvm_vcpu
*vcpu
, s64 adjustment
)
1579 if (vcpu
->arch
.tsc_scaling_ratio
!= kvm_default_tsc_scaling_ratio
)
1580 WARN_ON(adjustment
< 0);
1581 adjustment
= kvm_scale_tsc(vcpu
, (u64
) adjustment
);
1582 adjust_tsc_offset_guest(vcpu
, adjustment
);
1585 #ifdef CONFIG_X86_64
1587 static u64
read_tsc(void)
1589 u64 ret
= (u64
)rdtsc_ordered();
1590 u64 last
= pvclock_gtod_data
.clock
.cycle_last
;
1592 if (likely(ret
>= last
))
1596 * GCC likes to generate cmov here, but this branch is extremely
1597 * predictable (it's just a function of time and the likely is
1598 * very likely) and there's a data dependence, so force GCC
1599 * to generate a branch instead. I don't barrier() because
1600 * we don't actually need a barrier, and if this function
1601 * ever gets inlined it will generate worse code.
1607 static inline u64
vgettsc(u64
*cycle_now
)
1610 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1612 *cycle_now
= read_tsc();
1614 v
= (*cycle_now
- gtod
->clock
.cycle_last
) & gtod
->clock
.mask
;
1615 return v
* gtod
->clock
.mult
;
1618 static int do_monotonic_boot(s64
*t
, u64
*cycle_now
)
1620 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1626 seq
= read_seqcount_begin(>od
->seq
);
1627 mode
= gtod
->clock
.vclock_mode
;
1628 ns
= gtod
->nsec_base
;
1629 ns
+= vgettsc(cycle_now
);
1630 ns
>>= gtod
->clock
.shift
;
1631 ns
+= gtod
->boot_ns
;
1632 } while (unlikely(read_seqcount_retry(>od
->seq
, seq
)));
1638 static int do_realtime(struct timespec
*ts
, u64
*cycle_now
)
1640 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1646 seq
= read_seqcount_begin(>od
->seq
);
1647 mode
= gtod
->clock
.vclock_mode
;
1648 ts
->tv_sec
= gtod
->wall_time_sec
;
1649 ns
= gtod
->nsec_base
;
1650 ns
+= vgettsc(cycle_now
);
1651 ns
>>= gtod
->clock
.shift
;
1652 } while (unlikely(read_seqcount_retry(>od
->seq
, seq
)));
1654 ts
->tv_sec
+= __iter_div_u64_rem(ns
, NSEC_PER_SEC
, &ns
);
1660 /* returns true if host is using tsc clocksource */
1661 static bool kvm_get_time_and_clockread(s64
*kernel_ns
, u64
*cycle_now
)
1663 /* checked again under seqlock below */
1664 if (pvclock_gtod_data
.clock
.vclock_mode
!= VCLOCK_TSC
)
1667 return do_monotonic_boot(kernel_ns
, cycle_now
) == VCLOCK_TSC
;
1670 /* returns true if host is using tsc clocksource */
1671 static bool kvm_get_walltime_and_clockread(struct timespec
*ts
,
1674 /* checked again under seqlock below */
1675 if (pvclock_gtod_data
.clock
.vclock_mode
!= VCLOCK_TSC
)
1678 return do_realtime(ts
, cycle_now
) == VCLOCK_TSC
;
1684 * Assuming a stable TSC across physical CPUS, and a stable TSC
1685 * across virtual CPUs, the following condition is possible.
1686 * Each numbered line represents an event visible to both
1687 * CPUs at the next numbered event.
1689 * "timespecX" represents host monotonic time. "tscX" represents
1692 * VCPU0 on CPU0 | VCPU1 on CPU1
1694 * 1. read timespec0,tsc0
1695 * 2. | timespec1 = timespec0 + N
1697 * 3. transition to guest | transition to guest
1698 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1699 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1700 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1702 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1705 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1707 * - 0 < N - M => M < N
1709 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1710 * always the case (the difference between two distinct xtime instances
1711 * might be smaller then the difference between corresponding TSC reads,
1712 * when updating guest vcpus pvclock areas).
1714 * To avoid that problem, do not allow visibility of distinct
1715 * system_timestamp/tsc_timestamp values simultaneously: use a master
1716 * copy of host monotonic time values. Update that master copy
1719 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1723 static void pvclock_update_vm_gtod_copy(struct kvm
*kvm
)
1725 #ifdef CONFIG_X86_64
1726 struct kvm_arch
*ka
= &kvm
->arch
;
1728 bool host_tsc_clocksource
, vcpus_matched
;
1730 vcpus_matched
= (ka
->nr_vcpus_matched_tsc
+ 1 ==
1731 atomic_read(&kvm
->online_vcpus
));
1734 * If the host uses TSC clock, then passthrough TSC as stable
1737 host_tsc_clocksource
= kvm_get_time_and_clockread(
1738 &ka
->master_kernel_ns
,
1739 &ka
->master_cycle_now
);
1741 ka
->use_master_clock
= host_tsc_clocksource
&& vcpus_matched
1742 && !ka
->backwards_tsc_observed
1743 && !ka
->boot_vcpu_runs_old_kvmclock
;
1745 if (ka
->use_master_clock
)
1746 atomic_set(&kvm_guest_has_master_clock
, 1);
1748 vclock_mode
= pvclock_gtod_data
.clock
.vclock_mode
;
1749 trace_kvm_update_master_clock(ka
->use_master_clock
, vclock_mode
,
1754 void kvm_make_mclock_inprogress_request(struct kvm
*kvm
)
1756 kvm_make_all_cpus_request(kvm
, KVM_REQ_MCLOCK_INPROGRESS
);
1759 static void kvm_gen_update_masterclock(struct kvm
*kvm
)
1761 #ifdef CONFIG_X86_64
1763 struct kvm_vcpu
*vcpu
;
1764 struct kvm_arch
*ka
= &kvm
->arch
;
1766 spin_lock(&ka
->pvclock_gtod_sync_lock
);
1767 kvm_make_mclock_inprogress_request(kvm
);
1768 /* no guest entries from this point */
1769 pvclock_update_vm_gtod_copy(kvm
);
1771 kvm_for_each_vcpu(i
, vcpu
, kvm
)
1772 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
1774 /* guest entries allowed */
1775 kvm_for_each_vcpu(i
, vcpu
, kvm
)
1776 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS
, vcpu
);
1778 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
1782 u64
get_kvmclock_ns(struct kvm
*kvm
)
1784 struct kvm_arch
*ka
= &kvm
->arch
;
1785 struct pvclock_vcpu_time_info hv_clock
;
1788 spin_lock(&ka
->pvclock_gtod_sync_lock
);
1789 if (!ka
->use_master_clock
) {
1790 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
1791 return ktime_get_boot_ns() + ka
->kvmclock_offset
;
1794 hv_clock
.tsc_timestamp
= ka
->master_cycle_now
;
1795 hv_clock
.system_time
= ka
->master_kernel_ns
+ ka
->kvmclock_offset
;
1796 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
1798 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
1801 if (__this_cpu_read(cpu_tsc_khz
)) {
1802 kvm_get_time_scale(NSEC_PER_SEC
, __this_cpu_read(cpu_tsc_khz
) * 1000LL,
1803 &hv_clock
.tsc_shift
,
1804 &hv_clock
.tsc_to_system_mul
);
1805 ret
= __pvclock_read_cycles(&hv_clock
, rdtsc());
1807 ret
= ktime_get_boot_ns() + ka
->kvmclock_offset
;
1814 static void kvm_setup_pvclock_page(struct kvm_vcpu
*v
)
1816 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
1817 struct pvclock_vcpu_time_info guest_hv_clock
;
1819 if (unlikely(kvm_read_guest_cached(v
->kvm
, &vcpu
->pv_time
,
1820 &guest_hv_clock
, sizeof(guest_hv_clock
))))
1823 /* This VCPU is paused, but it's legal for a guest to read another
1824 * VCPU's kvmclock, so we really have to follow the specification where
1825 * it says that version is odd if data is being modified, and even after
1828 * Version field updates must be kept separate. This is because
1829 * kvm_write_guest_cached might use a "rep movs" instruction, and
1830 * writes within a string instruction are weakly ordered. So there
1831 * are three writes overall.
1833 * As a small optimization, only write the version field in the first
1834 * and third write. The vcpu->pv_time cache is still valid, because the
1835 * version field is the first in the struct.
1837 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info
, version
) != 0);
1839 if (guest_hv_clock
.version
& 1)
1840 ++guest_hv_clock
.version
; /* first time write, random junk */
1842 vcpu
->hv_clock
.version
= guest_hv_clock
.version
+ 1;
1843 kvm_write_guest_cached(v
->kvm
, &vcpu
->pv_time
,
1845 sizeof(vcpu
->hv_clock
.version
));
1849 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1850 vcpu
->hv_clock
.flags
|= (guest_hv_clock
.flags
& PVCLOCK_GUEST_STOPPED
);
1852 if (vcpu
->pvclock_set_guest_stopped_request
) {
1853 vcpu
->hv_clock
.flags
|= PVCLOCK_GUEST_STOPPED
;
1854 vcpu
->pvclock_set_guest_stopped_request
= false;
1857 trace_kvm_pvclock_update(v
->vcpu_id
, &vcpu
->hv_clock
);
1859 kvm_write_guest_cached(v
->kvm
, &vcpu
->pv_time
,
1861 sizeof(vcpu
->hv_clock
));
1865 vcpu
->hv_clock
.version
++;
1866 kvm_write_guest_cached(v
->kvm
, &vcpu
->pv_time
,
1868 sizeof(vcpu
->hv_clock
.version
));
1871 static int kvm_guest_time_update(struct kvm_vcpu
*v
)
1873 unsigned long flags
, tgt_tsc_khz
;
1874 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
1875 struct kvm_arch
*ka
= &v
->kvm
->arch
;
1877 u64 tsc_timestamp
, host_tsc
;
1879 bool use_master_clock
;
1885 * If the host uses TSC clock, then passthrough TSC as stable
1888 spin_lock(&ka
->pvclock_gtod_sync_lock
);
1889 use_master_clock
= ka
->use_master_clock
;
1890 if (use_master_clock
) {
1891 host_tsc
= ka
->master_cycle_now
;
1892 kernel_ns
= ka
->master_kernel_ns
;
1894 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
1896 /* Keep irq disabled to prevent changes to the clock */
1897 local_irq_save(flags
);
1898 tgt_tsc_khz
= __this_cpu_read(cpu_tsc_khz
);
1899 if (unlikely(tgt_tsc_khz
== 0)) {
1900 local_irq_restore(flags
);
1901 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, v
);
1904 if (!use_master_clock
) {
1906 kernel_ns
= ktime_get_boot_ns();
1909 tsc_timestamp
= kvm_read_l1_tsc(v
, host_tsc
);
1912 * We may have to catch up the TSC to match elapsed wall clock
1913 * time for two reasons, even if kvmclock is used.
1914 * 1) CPU could have been running below the maximum TSC rate
1915 * 2) Broken TSC compensation resets the base at each VCPU
1916 * entry to avoid unknown leaps of TSC even when running
1917 * again on the same CPU. This may cause apparent elapsed
1918 * time to disappear, and the guest to stand still or run
1921 if (vcpu
->tsc_catchup
) {
1922 u64 tsc
= compute_guest_tsc(v
, kernel_ns
);
1923 if (tsc
> tsc_timestamp
) {
1924 adjust_tsc_offset_guest(v
, tsc
- tsc_timestamp
);
1925 tsc_timestamp
= tsc
;
1929 local_irq_restore(flags
);
1931 /* With all the info we got, fill in the values */
1933 if (kvm_has_tsc_control
)
1934 tgt_tsc_khz
= kvm_scale_tsc(v
, tgt_tsc_khz
);
1936 if (unlikely(vcpu
->hw_tsc_khz
!= tgt_tsc_khz
)) {
1937 kvm_get_time_scale(NSEC_PER_SEC
, tgt_tsc_khz
* 1000LL,
1938 &vcpu
->hv_clock
.tsc_shift
,
1939 &vcpu
->hv_clock
.tsc_to_system_mul
);
1940 vcpu
->hw_tsc_khz
= tgt_tsc_khz
;
1943 vcpu
->hv_clock
.tsc_timestamp
= tsc_timestamp
;
1944 vcpu
->hv_clock
.system_time
= kernel_ns
+ v
->kvm
->arch
.kvmclock_offset
;
1945 vcpu
->last_guest_tsc
= tsc_timestamp
;
1947 /* If the host uses TSC clocksource, then it is stable */
1949 if (use_master_clock
)
1950 pvclock_flags
|= PVCLOCK_TSC_STABLE_BIT
;
1952 vcpu
->hv_clock
.flags
= pvclock_flags
;
1954 if (vcpu
->pv_time_enabled
)
1955 kvm_setup_pvclock_page(v
);
1956 if (v
== kvm_get_vcpu(v
->kvm
, 0))
1957 kvm_hv_setup_tsc_page(v
->kvm
, &vcpu
->hv_clock
);
1962 * kvmclock updates which are isolated to a given vcpu, such as
1963 * vcpu->cpu migration, should not allow system_timestamp from
1964 * the rest of the vcpus to remain static. Otherwise ntp frequency
1965 * correction applies to one vcpu's system_timestamp but not
1968 * So in those cases, request a kvmclock update for all vcpus.
1969 * We need to rate-limit these requests though, as they can
1970 * considerably slow guests that have a large number of vcpus.
1971 * The time for a remote vcpu to update its kvmclock is bound
1972 * by the delay we use to rate-limit the updates.
1975 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1977 static void kvmclock_update_fn(struct work_struct
*work
)
1980 struct delayed_work
*dwork
= to_delayed_work(work
);
1981 struct kvm_arch
*ka
= container_of(dwork
, struct kvm_arch
,
1982 kvmclock_update_work
);
1983 struct kvm
*kvm
= container_of(ka
, struct kvm
, arch
);
1984 struct kvm_vcpu
*vcpu
;
1986 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
1987 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
1988 kvm_vcpu_kick(vcpu
);
1992 static void kvm_gen_kvmclock_update(struct kvm_vcpu
*v
)
1994 struct kvm
*kvm
= v
->kvm
;
1996 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, v
);
1997 schedule_delayed_work(&kvm
->arch
.kvmclock_update_work
,
1998 KVMCLOCK_UPDATE_DELAY
);
2001 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2003 static void kvmclock_sync_fn(struct work_struct
*work
)
2005 struct delayed_work
*dwork
= to_delayed_work(work
);
2006 struct kvm_arch
*ka
= container_of(dwork
, struct kvm_arch
,
2007 kvmclock_sync_work
);
2008 struct kvm
*kvm
= container_of(ka
, struct kvm
, arch
);
2010 if (!kvmclock_periodic_sync
)
2013 schedule_delayed_work(&kvm
->arch
.kvmclock_update_work
, 0);
2014 schedule_delayed_work(&kvm
->arch
.kvmclock_sync_work
,
2015 KVMCLOCK_SYNC_PERIOD
);
2018 static int set_msr_mce(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
2020 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
2021 unsigned bank_num
= mcg_cap
& 0xff;
2022 u32 msr
= msr_info
->index
;
2023 u64 data
= msr_info
->data
;
2026 case MSR_IA32_MCG_STATUS
:
2027 vcpu
->arch
.mcg_status
= data
;
2029 case MSR_IA32_MCG_CTL
:
2030 if (!(mcg_cap
& MCG_CTL_P
))
2032 if (data
!= 0 && data
!= ~(u64
)0)
2034 vcpu
->arch
.mcg_ctl
= data
;
2037 if (msr
>= MSR_IA32_MC0_CTL
&&
2038 msr
< MSR_IA32_MCx_CTL(bank_num
)) {
2039 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
2040 /* only 0 or all 1s can be written to IA32_MCi_CTL
2041 * some Linux kernels though clear bit 10 in bank 4 to
2042 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2043 * this to avoid an uncatched #GP in the guest
2045 if ((offset
& 0x3) == 0 &&
2046 data
!= 0 && (data
| (1 << 10)) != ~(u64
)0)
2048 if (!msr_info
->host_initiated
&&
2049 (offset
& 0x3) == 1 && data
!= 0)
2051 vcpu
->arch
.mce_banks
[offset
] = data
;
2059 static int xen_hvm_config(struct kvm_vcpu
*vcpu
, u64 data
)
2061 struct kvm
*kvm
= vcpu
->kvm
;
2062 int lm
= is_long_mode(vcpu
);
2063 u8
*blob_addr
= lm
? (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_64
2064 : (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_32
;
2065 u8 blob_size
= lm
? kvm
->arch
.xen_hvm_config
.blob_size_64
2066 : kvm
->arch
.xen_hvm_config
.blob_size_32
;
2067 u32 page_num
= data
& ~PAGE_MASK
;
2068 u64 page_addr
= data
& PAGE_MASK
;
2073 if (page_num
>= blob_size
)
2076 page
= memdup_user(blob_addr
+ (page_num
* PAGE_SIZE
), PAGE_SIZE
);
2081 if (kvm_vcpu_write_guest(vcpu
, page_addr
, page
, PAGE_SIZE
))
2090 static int kvm_pv_enable_async_pf(struct kvm_vcpu
*vcpu
, u64 data
)
2092 gpa_t gpa
= data
& ~0x3f;
2094 /* Bits 3:5 are reserved, Should be zero */
2098 vcpu
->arch
.apf
.msr_val
= data
;
2100 if (!(data
& KVM_ASYNC_PF_ENABLED
)) {
2101 kvm_clear_async_pf_completion_queue(vcpu
);
2102 kvm_async_pf_hash_reset(vcpu
);
2106 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, gpa
,
2110 vcpu
->arch
.apf
.send_user_only
= !(data
& KVM_ASYNC_PF_SEND_ALWAYS
);
2111 vcpu
->arch
.apf
.delivery_as_pf_vmexit
= data
& KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT
;
2112 kvm_async_pf_wakeup_all(vcpu
);
2116 static void kvmclock_reset(struct kvm_vcpu
*vcpu
)
2118 vcpu
->arch
.pv_time_enabled
= false;
2121 static void record_steal_time(struct kvm_vcpu
*vcpu
)
2123 if (!(vcpu
->arch
.st
.msr_val
& KVM_MSR_ENABLED
))
2126 if (unlikely(kvm_read_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2127 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
))))
2130 vcpu
->arch
.st
.steal
.preempted
= 0;
2132 if (vcpu
->arch
.st
.steal
.version
& 1)
2133 vcpu
->arch
.st
.steal
.version
+= 1; /* first time write, random junk */
2135 vcpu
->arch
.st
.steal
.version
+= 1;
2137 kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2138 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
));
2142 vcpu
->arch
.st
.steal
.steal
+= current
->sched_info
.run_delay
-
2143 vcpu
->arch
.st
.last_steal
;
2144 vcpu
->arch
.st
.last_steal
= current
->sched_info
.run_delay
;
2146 kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2147 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
));
2151 vcpu
->arch
.st
.steal
.version
+= 1;
2153 kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2154 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
));
2157 int kvm_set_msr_common(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
2160 u32 msr
= msr_info
->index
;
2161 u64 data
= msr_info
->data
;
2164 case MSR_AMD64_NB_CFG
:
2165 case MSR_IA32_UCODE_REV
:
2166 case MSR_IA32_UCODE_WRITE
:
2167 case MSR_VM_HSAVE_PA
:
2168 case MSR_AMD64_PATCH_LOADER
:
2169 case MSR_AMD64_BU_CFG2
:
2170 case MSR_AMD64_DC_CFG
:
2174 return set_efer(vcpu
, data
);
2176 data
&= ~(u64
)0x40; /* ignore flush filter disable */
2177 data
&= ~(u64
)0x100; /* ignore ignne emulation enable */
2178 data
&= ~(u64
)0x8; /* ignore TLB cache disable */
2179 data
&= ~(u64
)0x40000; /* ignore Mc status write enable */
2181 vcpu_unimpl(vcpu
, "unimplemented HWCR wrmsr: 0x%llx\n",
2186 case MSR_FAM10H_MMIO_CONF_BASE
:
2188 vcpu_unimpl(vcpu
, "unimplemented MMIO_CONF_BASE wrmsr: "
2193 case MSR_IA32_DEBUGCTLMSR
:
2195 /* We support the non-activated case already */
2197 } else if (data
& ~(DEBUGCTLMSR_LBR
| DEBUGCTLMSR_BTF
)) {
2198 /* Values other than LBR and BTF are vendor-specific,
2199 thus reserved and should throw a #GP */
2202 vcpu_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2205 case 0x200 ... 0x2ff:
2206 return kvm_mtrr_set_msr(vcpu
, msr
, data
);
2207 case MSR_IA32_APICBASE
:
2208 return kvm_set_apic_base(vcpu
, msr_info
);
2209 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
2210 return kvm_x2apic_msr_write(vcpu
, msr
, data
);
2211 case MSR_IA32_TSCDEADLINE
:
2212 kvm_set_lapic_tscdeadline_msr(vcpu
, data
);
2214 case MSR_IA32_TSC_ADJUST
:
2215 if (guest_cpuid_has(vcpu
, X86_FEATURE_TSC_ADJUST
)) {
2216 if (!msr_info
->host_initiated
) {
2217 s64 adj
= data
- vcpu
->arch
.ia32_tsc_adjust_msr
;
2218 adjust_tsc_offset_guest(vcpu
, adj
);
2220 vcpu
->arch
.ia32_tsc_adjust_msr
= data
;
2223 case MSR_IA32_MISC_ENABLE
:
2224 vcpu
->arch
.ia32_misc_enable_msr
= data
;
2226 case MSR_IA32_SMBASE
:
2227 if (!msr_info
->host_initiated
)
2229 vcpu
->arch
.smbase
= data
;
2231 case MSR_KVM_WALL_CLOCK_NEW
:
2232 case MSR_KVM_WALL_CLOCK
:
2233 vcpu
->kvm
->arch
.wall_clock
= data
;
2234 kvm_write_wall_clock(vcpu
->kvm
, data
);
2236 case MSR_KVM_SYSTEM_TIME_NEW
:
2237 case MSR_KVM_SYSTEM_TIME
: {
2238 struct kvm_arch
*ka
= &vcpu
->kvm
->arch
;
2240 kvmclock_reset(vcpu
);
2242 if (vcpu
->vcpu_id
== 0 && !msr_info
->host_initiated
) {
2243 bool tmp
= (msr
== MSR_KVM_SYSTEM_TIME
);
2245 if (ka
->boot_vcpu_runs_old_kvmclock
!= tmp
)
2246 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
2248 ka
->boot_vcpu_runs_old_kvmclock
= tmp
;
2251 vcpu
->arch
.time
= data
;
2252 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
);
2254 /* we verify if the enable bit is set... */
2258 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
,
2259 &vcpu
->arch
.pv_time
, data
& ~1ULL,
2260 sizeof(struct pvclock_vcpu_time_info
)))
2261 vcpu
->arch
.pv_time_enabled
= false;
2263 vcpu
->arch
.pv_time_enabled
= true;
2267 case MSR_KVM_ASYNC_PF_EN
:
2268 if (kvm_pv_enable_async_pf(vcpu
, data
))
2271 case MSR_KVM_STEAL_TIME
:
2273 if (unlikely(!sched_info_on()))
2276 if (data
& KVM_STEAL_RESERVED_MASK
)
2279 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2280 data
& KVM_STEAL_VALID_BITS
,
2281 sizeof(struct kvm_steal_time
)))
2284 vcpu
->arch
.st
.msr_val
= data
;
2286 if (!(data
& KVM_MSR_ENABLED
))
2289 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
2292 case MSR_KVM_PV_EOI_EN
:
2293 if (kvm_lapic_enable_pv_eoi(vcpu
, data
))
2297 case MSR_IA32_MCG_CTL
:
2298 case MSR_IA32_MCG_STATUS
:
2299 case MSR_IA32_MC0_CTL
... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS
) - 1:
2300 return set_msr_mce(vcpu
, msr_info
);
2302 case MSR_K7_PERFCTR0
... MSR_K7_PERFCTR3
:
2303 case MSR_P6_PERFCTR0
... MSR_P6_PERFCTR1
:
2304 pr
= true; /* fall through */
2305 case MSR_K7_EVNTSEL0
... MSR_K7_EVNTSEL3
:
2306 case MSR_P6_EVNTSEL0
... MSR_P6_EVNTSEL1
:
2307 if (kvm_pmu_is_valid_msr(vcpu
, msr
))
2308 return kvm_pmu_set_msr(vcpu
, msr_info
);
2310 if (pr
|| data
!= 0)
2311 vcpu_unimpl(vcpu
, "disabled perfctr wrmsr: "
2312 "0x%x data 0x%llx\n", msr
, data
);
2314 case MSR_K7_CLK_CTL
:
2316 * Ignore all writes to this no longer documented MSR.
2317 * Writes are only relevant for old K7 processors,
2318 * all pre-dating SVM, but a recommended workaround from
2319 * AMD for these chips. It is possible to specify the
2320 * affected processor models on the command line, hence
2321 * the need to ignore the workaround.
2324 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
2325 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
2326 case HV_X64_MSR_CRASH_CTL
:
2327 case HV_X64_MSR_STIMER0_CONFIG
... HV_X64_MSR_STIMER3_COUNT
:
2328 return kvm_hv_set_msr_common(vcpu
, msr
, data
,
2329 msr_info
->host_initiated
);
2330 case MSR_IA32_BBL_CR_CTL3
:
2331 /* Drop writes to this legacy MSR -- see rdmsr
2332 * counterpart for further detail.
2334 if (report_ignored_msrs
)
2335 vcpu_unimpl(vcpu
, "ignored wrmsr: 0x%x data 0x%llx\n",
2338 case MSR_AMD64_OSVW_ID_LENGTH
:
2339 if (!guest_cpuid_has(vcpu
, X86_FEATURE_OSVW
))
2341 vcpu
->arch
.osvw
.length
= data
;
2343 case MSR_AMD64_OSVW_STATUS
:
2344 if (!guest_cpuid_has(vcpu
, X86_FEATURE_OSVW
))
2346 vcpu
->arch
.osvw
.status
= data
;
2348 case MSR_PLATFORM_INFO
:
2349 if (!msr_info
->host_initiated
||
2350 data
& ~MSR_PLATFORM_INFO_CPUID_FAULT
||
2351 (!(data
& MSR_PLATFORM_INFO_CPUID_FAULT
) &&
2352 cpuid_fault_enabled(vcpu
)))
2354 vcpu
->arch
.msr_platform_info
= data
;
2356 case MSR_MISC_FEATURES_ENABLES
:
2357 if (data
& ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT
||
2358 (data
& MSR_MISC_FEATURES_ENABLES_CPUID_FAULT
&&
2359 !supports_cpuid_fault(vcpu
)))
2361 vcpu
->arch
.msr_misc_features_enables
= data
;
2364 if (msr
&& (msr
== vcpu
->kvm
->arch
.xen_hvm_config
.msr
))
2365 return xen_hvm_config(vcpu
, data
);
2366 if (kvm_pmu_is_valid_msr(vcpu
, msr
))
2367 return kvm_pmu_set_msr(vcpu
, msr_info
);
2369 vcpu_debug_ratelimited(vcpu
, "unhandled wrmsr: 0x%x data 0x%llx\n",
2373 if (report_ignored_msrs
)
2375 "ignored wrmsr: 0x%x data 0x%llx\n",
2382 EXPORT_SYMBOL_GPL(kvm_set_msr_common
);
2386 * Reads an msr value (of 'msr_index') into 'pdata'.
2387 * Returns 0 on success, non-0 otherwise.
2388 * Assumes vcpu_load() was already called.
2390 int kvm_get_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
2392 return kvm_x86_ops
->get_msr(vcpu
, msr
);
2394 EXPORT_SYMBOL_GPL(kvm_get_msr
);
2396 static int get_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
2399 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
2400 unsigned bank_num
= mcg_cap
& 0xff;
2403 case MSR_IA32_P5_MC_ADDR
:
2404 case MSR_IA32_P5_MC_TYPE
:
2407 case MSR_IA32_MCG_CAP
:
2408 data
= vcpu
->arch
.mcg_cap
;
2410 case MSR_IA32_MCG_CTL
:
2411 if (!(mcg_cap
& MCG_CTL_P
))
2413 data
= vcpu
->arch
.mcg_ctl
;
2415 case MSR_IA32_MCG_STATUS
:
2416 data
= vcpu
->arch
.mcg_status
;
2419 if (msr
>= MSR_IA32_MC0_CTL
&&
2420 msr
< MSR_IA32_MCx_CTL(bank_num
)) {
2421 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
2422 data
= vcpu
->arch
.mce_banks
[offset
];
2431 int kvm_get_msr_common(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
2433 switch (msr_info
->index
) {
2434 case MSR_IA32_PLATFORM_ID
:
2435 case MSR_IA32_EBL_CR_POWERON
:
2436 case MSR_IA32_DEBUGCTLMSR
:
2437 case MSR_IA32_LASTBRANCHFROMIP
:
2438 case MSR_IA32_LASTBRANCHTOIP
:
2439 case MSR_IA32_LASTINTFROMIP
:
2440 case MSR_IA32_LASTINTTOIP
:
2442 case MSR_K8_TSEG_ADDR
:
2443 case MSR_K8_TSEG_MASK
:
2445 case MSR_VM_HSAVE_PA
:
2446 case MSR_K8_INT_PENDING_MSG
:
2447 case MSR_AMD64_NB_CFG
:
2448 case MSR_FAM10H_MMIO_CONF_BASE
:
2449 case MSR_AMD64_BU_CFG2
:
2450 case MSR_IA32_PERF_CTL
:
2451 case MSR_AMD64_DC_CFG
:
2454 case MSR_K7_EVNTSEL0
... MSR_K7_EVNTSEL3
:
2455 case MSR_K7_PERFCTR0
... MSR_K7_PERFCTR3
:
2456 case MSR_P6_PERFCTR0
... MSR_P6_PERFCTR1
:
2457 case MSR_P6_EVNTSEL0
... MSR_P6_EVNTSEL1
:
2458 if (kvm_pmu_is_valid_msr(vcpu
, msr_info
->index
))
2459 return kvm_pmu_get_msr(vcpu
, msr_info
->index
, &msr_info
->data
);
2462 case MSR_IA32_UCODE_REV
:
2463 msr_info
->data
= 0x100000000ULL
;
2466 case 0x200 ... 0x2ff:
2467 return kvm_mtrr_get_msr(vcpu
, msr_info
->index
, &msr_info
->data
);
2468 case 0xcd: /* fsb frequency */
2472 * MSR_EBC_FREQUENCY_ID
2473 * Conservative value valid for even the basic CPU models.
2474 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2475 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2476 * and 266MHz for model 3, or 4. Set Core Clock
2477 * Frequency to System Bus Frequency Ratio to 1 (bits
2478 * 31:24) even though these are only valid for CPU
2479 * models > 2, however guests may end up dividing or
2480 * multiplying by zero otherwise.
2482 case MSR_EBC_FREQUENCY_ID
:
2483 msr_info
->data
= 1 << 24;
2485 case MSR_IA32_APICBASE
:
2486 msr_info
->data
= kvm_get_apic_base(vcpu
);
2488 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
2489 return kvm_x2apic_msr_read(vcpu
, msr_info
->index
, &msr_info
->data
);
2491 case MSR_IA32_TSCDEADLINE
:
2492 msr_info
->data
= kvm_get_lapic_tscdeadline_msr(vcpu
);
2494 case MSR_IA32_TSC_ADJUST
:
2495 msr_info
->data
= (u64
)vcpu
->arch
.ia32_tsc_adjust_msr
;
2497 case MSR_IA32_MISC_ENABLE
:
2498 msr_info
->data
= vcpu
->arch
.ia32_misc_enable_msr
;
2500 case MSR_IA32_SMBASE
:
2501 if (!msr_info
->host_initiated
)
2503 msr_info
->data
= vcpu
->arch
.smbase
;
2505 case MSR_IA32_PERF_STATUS
:
2506 /* TSC increment by tick */
2507 msr_info
->data
= 1000ULL;
2508 /* CPU multiplier */
2509 msr_info
->data
|= (((uint64_t)4ULL) << 40);
2512 msr_info
->data
= vcpu
->arch
.efer
;
2514 case MSR_KVM_WALL_CLOCK
:
2515 case MSR_KVM_WALL_CLOCK_NEW
:
2516 msr_info
->data
= vcpu
->kvm
->arch
.wall_clock
;
2518 case MSR_KVM_SYSTEM_TIME
:
2519 case MSR_KVM_SYSTEM_TIME_NEW
:
2520 msr_info
->data
= vcpu
->arch
.time
;
2522 case MSR_KVM_ASYNC_PF_EN
:
2523 msr_info
->data
= vcpu
->arch
.apf
.msr_val
;
2525 case MSR_KVM_STEAL_TIME
:
2526 msr_info
->data
= vcpu
->arch
.st
.msr_val
;
2528 case MSR_KVM_PV_EOI_EN
:
2529 msr_info
->data
= vcpu
->arch
.pv_eoi
.msr_val
;
2531 case MSR_IA32_P5_MC_ADDR
:
2532 case MSR_IA32_P5_MC_TYPE
:
2533 case MSR_IA32_MCG_CAP
:
2534 case MSR_IA32_MCG_CTL
:
2535 case MSR_IA32_MCG_STATUS
:
2536 case MSR_IA32_MC0_CTL
... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS
) - 1:
2537 return get_msr_mce(vcpu
, msr_info
->index
, &msr_info
->data
);
2538 case MSR_K7_CLK_CTL
:
2540 * Provide expected ramp-up count for K7. All other
2541 * are set to zero, indicating minimum divisors for
2544 * This prevents guest kernels on AMD host with CPU
2545 * type 6, model 8 and higher from exploding due to
2546 * the rdmsr failing.
2548 msr_info
->data
= 0x20000000;
2550 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
2551 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
2552 case HV_X64_MSR_CRASH_CTL
:
2553 case HV_X64_MSR_STIMER0_CONFIG
... HV_X64_MSR_STIMER3_COUNT
:
2554 return kvm_hv_get_msr_common(vcpu
,
2555 msr_info
->index
, &msr_info
->data
);
2557 case MSR_IA32_BBL_CR_CTL3
:
2558 /* This legacy MSR exists but isn't fully documented in current
2559 * silicon. It is however accessed by winxp in very narrow
2560 * scenarios where it sets bit #19, itself documented as
2561 * a "reserved" bit. Best effort attempt to source coherent
2562 * read data here should the balance of the register be
2563 * interpreted by the guest:
2565 * L2 cache control register 3: 64GB range, 256KB size,
2566 * enabled, latency 0x1, configured
2568 msr_info
->data
= 0xbe702111;
2570 case MSR_AMD64_OSVW_ID_LENGTH
:
2571 if (!guest_cpuid_has(vcpu
, X86_FEATURE_OSVW
))
2573 msr_info
->data
= vcpu
->arch
.osvw
.length
;
2575 case MSR_AMD64_OSVW_STATUS
:
2576 if (!guest_cpuid_has(vcpu
, X86_FEATURE_OSVW
))
2578 msr_info
->data
= vcpu
->arch
.osvw
.status
;
2580 case MSR_PLATFORM_INFO
:
2581 msr_info
->data
= vcpu
->arch
.msr_platform_info
;
2583 case MSR_MISC_FEATURES_ENABLES
:
2584 msr_info
->data
= vcpu
->arch
.msr_misc_features_enables
;
2587 if (kvm_pmu_is_valid_msr(vcpu
, msr_info
->index
))
2588 return kvm_pmu_get_msr(vcpu
, msr_info
->index
, &msr_info
->data
);
2590 vcpu_debug_ratelimited(vcpu
, "unhandled rdmsr: 0x%x\n",
2594 if (report_ignored_msrs
)
2595 vcpu_unimpl(vcpu
, "ignored rdmsr: 0x%x\n",
2603 EXPORT_SYMBOL_GPL(kvm_get_msr_common
);
2606 * Read or write a bunch of msrs. All parameters are kernel addresses.
2608 * @return number of msrs set successfully.
2610 static int __msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs
*msrs
,
2611 struct kvm_msr_entry
*entries
,
2612 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
2613 unsigned index
, u64
*data
))
2617 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
2618 for (i
= 0; i
< msrs
->nmsrs
; ++i
)
2619 if (do_msr(vcpu
, entries
[i
].index
, &entries
[i
].data
))
2621 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
2627 * Read or write a bunch of msrs. Parameters are user addresses.
2629 * @return number of msrs set successfully.
2631 static int msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs __user
*user_msrs
,
2632 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
2633 unsigned index
, u64
*data
),
2636 struct kvm_msrs msrs
;
2637 struct kvm_msr_entry
*entries
;
2642 if (copy_from_user(&msrs
, user_msrs
, sizeof msrs
))
2646 if (msrs
.nmsrs
>= MAX_IO_MSRS
)
2649 size
= sizeof(struct kvm_msr_entry
) * msrs
.nmsrs
;
2650 entries
= memdup_user(user_msrs
->entries
, size
);
2651 if (IS_ERR(entries
)) {
2652 r
= PTR_ERR(entries
);
2656 r
= n
= __msr_io(vcpu
, &msrs
, entries
, do_msr
);
2661 if (writeback
&& copy_to_user(user_msrs
->entries
, entries
, size
))
2672 int kvm_vm_ioctl_check_extension(struct kvm
*kvm
, long ext
)
2677 case KVM_CAP_IRQCHIP
:
2679 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL
:
2680 case KVM_CAP_SET_TSS_ADDR
:
2681 case KVM_CAP_EXT_CPUID
:
2682 case KVM_CAP_EXT_EMUL_CPUID
:
2683 case KVM_CAP_CLOCKSOURCE
:
2685 case KVM_CAP_NOP_IO_DELAY
:
2686 case KVM_CAP_MP_STATE
:
2687 case KVM_CAP_SYNC_MMU
:
2688 case KVM_CAP_USER_NMI
:
2689 case KVM_CAP_REINJECT_CONTROL
:
2690 case KVM_CAP_IRQ_INJECT_STATUS
:
2691 case KVM_CAP_IOEVENTFD
:
2692 case KVM_CAP_IOEVENTFD_NO_LENGTH
:
2694 case KVM_CAP_PIT_STATE2
:
2695 case KVM_CAP_SET_IDENTITY_MAP_ADDR
:
2696 case KVM_CAP_XEN_HVM
:
2697 case KVM_CAP_VCPU_EVENTS
:
2698 case KVM_CAP_HYPERV
:
2699 case KVM_CAP_HYPERV_VAPIC
:
2700 case KVM_CAP_HYPERV_SPIN
:
2701 case KVM_CAP_HYPERV_SYNIC
:
2702 case KVM_CAP_HYPERV_SYNIC2
:
2703 case KVM_CAP_HYPERV_VP_INDEX
:
2704 case KVM_CAP_PCI_SEGMENT
:
2705 case KVM_CAP_DEBUGREGS
:
2706 case KVM_CAP_X86_ROBUST_SINGLESTEP
:
2708 case KVM_CAP_ASYNC_PF
:
2709 case KVM_CAP_GET_TSC_KHZ
:
2710 case KVM_CAP_KVMCLOCK_CTRL
:
2711 case KVM_CAP_READONLY_MEM
:
2712 case KVM_CAP_HYPERV_TIME
:
2713 case KVM_CAP_IOAPIC_POLARITY_IGNORED
:
2714 case KVM_CAP_TSC_DEADLINE_TIMER
:
2715 case KVM_CAP_ENABLE_CAP_VM
:
2716 case KVM_CAP_DISABLE_QUIRKS
:
2717 case KVM_CAP_SET_BOOT_CPU_ID
:
2718 case KVM_CAP_SPLIT_IRQCHIP
:
2719 case KVM_CAP_IMMEDIATE_EXIT
:
2722 case KVM_CAP_ADJUST_CLOCK
:
2723 r
= KVM_CLOCK_TSC_STABLE
;
2725 case KVM_CAP_X86_GUEST_MWAIT
:
2726 r
= kvm_mwait_in_guest();
2728 case KVM_CAP_X86_SMM
:
2729 /* SMBASE is usually relocated above 1M on modern chipsets,
2730 * and SMM handlers might indeed rely on 4G segment limits,
2731 * so do not report SMM to be available if real mode is
2732 * emulated via vm86 mode. Still, do not go to great lengths
2733 * to avoid userspace's usage of the feature, because it is a
2734 * fringe case that is not enabled except via specific settings
2735 * of the module parameters.
2737 r
= kvm_x86_ops
->cpu_has_high_real_mode_segbase();
2740 r
= !kvm_x86_ops
->cpu_has_accelerated_tpr();
2742 case KVM_CAP_NR_VCPUS
:
2743 r
= KVM_SOFT_MAX_VCPUS
;
2745 case KVM_CAP_MAX_VCPUS
:
2748 case KVM_CAP_NR_MEMSLOTS
:
2749 r
= KVM_USER_MEM_SLOTS
;
2751 case KVM_CAP_PV_MMU
: /* obsolete */
2755 r
= KVM_MAX_MCE_BANKS
;
2758 r
= boot_cpu_has(X86_FEATURE_XSAVE
);
2760 case KVM_CAP_TSC_CONTROL
:
2761 r
= kvm_has_tsc_control
;
2763 case KVM_CAP_X2APIC_API
:
2764 r
= KVM_X2APIC_API_VALID_FLAGS
;
2774 long kvm_arch_dev_ioctl(struct file
*filp
,
2775 unsigned int ioctl
, unsigned long arg
)
2777 void __user
*argp
= (void __user
*)arg
;
2781 case KVM_GET_MSR_INDEX_LIST
: {
2782 struct kvm_msr_list __user
*user_msr_list
= argp
;
2783 struct kvm_msr_list msr_list
;
2787 if (copy_from_user(&msr_list
, user_msr_list
, sizeof msr_list
))
2790 msr_list
.nmsrs
= num_msrs_to_save
+ num_emulated_msrs
;
2791 if (copy_to_user(user_msr_list
, &msr_list
, sizeof msr_list
))
2794 if (n
< msr_list
.nmsrs
)
2797 if (copy_to_user(user_msr_list
->indices
, &msrs_to_save
,
2798 num_msrs_to_save
* sizeof(u32
)))
2800 if (copy_to_user(user_msr_list
->indices
+ num_msrs_to_save
,
2802 num_emulated_msrs
* sizeof(u32
)))
2807 case KVM_GET_SUPPORTED_CPUID
:
2808 case KVM_GET_EMULATED_CPUID
: {
2809 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
2810 struct kvm_cpuid2 cpuid
;
2813 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
2816 r
= kvm_dev_ioctl_get_cpuid(&cpuid
, cpuid_arg
->entries
,
2822 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
2827 case KVM_X86_GET_MCE_CAP_SUPPORTED
: {
2829 if (copy_to_user(argp
, &kvm_mce_cap_supported
,
2830 sizeof(kvm_mce_cap_supported
)))
2842 static void wbinvd_ipi(void *garbage
)
2847 static bool need_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
2849 return kvm_arch_has_noncoherent_dma(vcpu
->kvm
);
2852 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
2854 /* Address WBINVD may be executed by guest */
2855 if (need_emulate_wbinvd(vcpu
)) {
2856 if (kvm_x86_ops
->has_wbinvd_exit())
2857 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
2858 else if (vcpu
->cpu
!= -1 && vcpu
->cpu
!= cpu
)
2859 smp_call_function_single(vcpu
->cpu
,
2860 wbinvd_ipi
, NULL
, 1);
2863 kvm_x86_ops
->vcpu_load(vcpu
, cpu
);
2865 /* Apply any externally detected TSC adjustments (due to suspend) */
2866 if (unlikely(vcpu
->arch
.tsc_offset_adjustment
)) {
2867 adjust_tsc_offset_host(vcpu
, vcpu
->arch
.tsc_offset_adjustment
);
2868 vcpu
->arch
.tsc_offset_adjustment
= 0;
2869 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
2872 if (unlikely(vcpu
->cpu
!= cpu
) || check_tsc_unstable()) {
2873 s64 tsc_delta
= !vcpu
->arch
.last_host_tsc
? 0 :
2874 rdtsc() - vcpu
->arch
.last_host_tsc
;
2876 mark_tsc_unstable("KVM discovered backwards TSC");
2878 if (check_tsc_unstable()) {
2879 u64 offset
= kvm_compute_tsc_offset(vcpu
,
2880 vcpu
->arch
.last_guest_tsc
);
2881 kvm_vcpu_write_tsc_offset(vcpu
, offset
);
2882 vcpu
->arch
.tsc_catchup
= 1;
2885 if (kvm_lapic_hv_timer_in_use(vcpu
))
2886 kvm_lapic_restart_hv_timer(vcpu
);
2889 * On a host with synchronized TSC, there is no need to update
2890 * kvmclock on vcpu->cpu migration
2892 if (!vcpu
->kvm
->arch
.use_master_clock
|| vcpu
->cpu
== -1)
2893 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
);
2894 if (vcpu
->cpu
!= cpu
)
2895 kvm_make_request(KVM_REQ_MIGRATE_TIMER
, vcpu
);
2899 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
2902 static void kvm_steal_time_set_preempted(struct kvm_vcpu
*vcpu
)
2904 if (!(vcpu
->arch
.st
.msr_val
& KVM_MSR_ENABLED
))
2907 vcpu
->arch
.st
.steal
.preempted
= 1;
2909 kvm_write_guest_offset_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2910 &vcpu
->arch
.st
.steal
.preempted
,
2911 offsetof(struct kvm_steal_time
, preempted
),
2912 sizeof(vcpu
->arch
.st
.steal
.preempted
));
2915 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
2919 if (vcpu
->preempted
)
2920 vcpu
->arch
.preempted_in_kernel
= !kvm_x86_ops
->get_cpl(vcpu
);
2923 * Disable page faults because we're in atomic context here.
2924 * kvm_write_guest_offset_cached() would call might_fault()
2925 * that relies on pagefault_disable() to tell if there's a
2926 * bug. NOTE: the write to guest memory may not go through if
2927 * during postcopy live migration or if there's heavy guest
2930 pagefault_disable();
2932 * kvm_memslots() will be called by
2933 * kvm_write_guest_offset_cached() so take the srcu lock.
2935 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
2936 kvm_steal_time_set_preempted(vcpu
);
2937 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
2939 kvm_x86_ops
->vcpu_put(vcpu
);
2940 vcpu
->arch
.last_host_tsc
= rdtsc();
2943 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu
*vcpu
,
2944 struct kvm_lapic_state
*s
)
2946 if (kvm_x86_ops
->sync_pir_to_irr
&& vcpu
->arch
.apicv_active
)
2947 kvm_x86_ops
->sync_pir_to_irr(vcpu
);
2949 return kvm_apic_get_state(vcpu
, s
);
2952 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu
*vcpu
,
2953 struct kvm_lapic_state
*s
)
2957 r
= kvm_apic_set_state(vcpu
, s
);
2960 update_cr8_intercept(vcpu
);
2965 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu
*vcpu
)
2967 return (!lapic_in_kernel(vcpu
) ||
2968 kvm_apic_accept_pic_intr(vcpu
));
2972 * if userspace requested an interrupt window, check that the
2973 * interrupt window is open.
2975 * No need to exit to userspace if we already have an interrupt queued.
2977 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu
*vcpu
)
2979 return kvm_arch_interrupt_allowed(vcpu
) &&
2980 !kvm_cpu_has_interrupt(vcpu
) &&
2981 !kvm_event_needs_reinjection(vcpu
) &&
2982 kvm_cpu_accept_dm_intr(vcpu
);
2985 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
2986 struct kvm_interrupt
*irq
)
2988 if (irq
->irq
>= KVM_NR_INTERRUPTS
)
2991 if (!irqchip_in_kernel(vcpu
->kvm
)) {
2992 kvm_queue_interrupt(vcpu
, irq
->irq
, false);
2993 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
2998 * With in-kernel LAPIC, we only use this to inject EXTINT, so
2999 * fail for in-kernel 8259.
3001 if (pic_in_kernel(vcpu
->kvm
))
3004 if (vcpu
->arch
.pending_external_vector
!= -1)
3007 vcpu
->arch
.pending_external_vector
= irq
->irq
;
3008 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
3012 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu
*vcpu
)
3014 kvm_inject_nmi(vcpu
);
3019 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu
*vcpu
)
3021 kvm_make_request(KVM_REQ_SMI
, vcpu
);
3026 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu
*vcpu
,
3027 struct kvm_tpr_access_ctl
*tac
)
3031 vcpu
->arch
.tpr_access_reporting
= !!tac
->enabled
;
3035 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu
*vcpu
,
3039 unsigned bank_num
= mcg_cap
& 0xff, bank
;
3042 if (!bank_num
|| bank_num
>= KVM_MAX_MCE_BANKS
)
3044 if (mcg_cap
& ~(kvm_mce_cap_supported
| 0xff | 0xff0000))
3047 vcpu
->arch
.mcg_cap
= mcg_cap
;
3048 /* Init IA32_MCG_CTL to all 1s */
3049 if (mcg_cap
& MCG_CTL_P
)
3050 vcpu
->arch
.mcg_ctl
= ~(u64
)0;
3051 /* Init IA32_MCi_CTL to all 1s */
3052 for (bank
= 0; bank
< bank_num
; bank
++)
3053 vcpu
->arch
.mce_banks
[bank
*4] = ~(u64
)0;
3055 if (kvm_x86_ops
->setup_mce
)
3056 kvm_x86_ops
->setup_mce(vcpu
);
3061 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu
*vcpu
,
3062 struct kvm_x86_mce
*mce
)
3064 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
3065 unsigned bank_num
= mcg_cap
& 0xff;
3066 u64
*banks
= vcpu
->arch
.mce_banks
;
3068 if (mce
->bank
>= bank_num
|| !(mce
->status
& MCI_STATUS_VAL
))
3071 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3072 * reporting is disabled
3074 if ((mce
->status
& MCI_STATUS_UC
) && (mcg_cap
& MCG_CTL_P
) &&
3075 vcpu
->arch
.mcg_ctl
!= ~(u64
)0)
3077 banks
+= 4 * mce
->bank
;
3079 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3080 * reporting is disabled for the bank
3082 if ((mce
->status
& MCI_STATUS_UC
) && banks
[0] != ~(u64
)0)
3084 if (mce
->status
& MCI_STATUS_UC
) {
3085 if ((vcpu
->arch
.mcg_status
& MCG_STATUS_MCIP
) ||
3086 !kvm_read_cr4_bits(vcpu
, X86_CR4_MCE
)) {
3087 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
3090 if (banks
[1] & MCI_STATUS_VAL
)
3091 mce
->status
|= MCI_STATUS_OVER
;
3092 banks
[2] = mce
->addr
;
3093 banks
[3] = mce
->misc
;
3094 vcpu
->arch
.mcg_status
= mce
->mcg_status
;
3095 banks
[1] = mce
->status
;
3096 kvm_queue_exception(vcpu
, MC_VECTOR
);
3097 } else if (!(banks
[1] & MCI_STATUS_VAL
)
3098 || !(banks
[1] & MCI_STATUS_UC
)) {
3099 if (banks
[1] & MCI_STATUS_VAL
)
3100 mce
->status
|= MCI_STATUS_OVER
;
3101 banks
[2] = mce
->addr
;
3102 banks
[3] = mce
->misc
;
3103 banks
[1] = mce
->status
;
3105 banks
[1] |= MCI_STATUS_OVER
;
3109 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu
*vcpu
,
3110 struct kvm_vcpu_events
*events
)
3114 * FIXME: pass injected and pending separately. This is only
3115 * needed for nested virtualization, whose state cannot be
3116 * migrated yet. For now we can combine them.
3118 events
->exception
.injected
=
3119 (vcpu
->arch
.exception
.pending
||
3120 vcpu
->arch
.exception
.injected
) &&
3121 !kvm_exception_is_soft(vcpu
->arch
.exception
.nr
);
3122 events
->exception
.nr
= vcpu
->arch
.exception
.nr
;
3123 events
->exception
.has_error_code
= vcpu
->arch
.exception
.has_error_code
;
3124 events
->exception
.pad
= 0;
3125 events
->exception
.error_code
= vcpu
->arch
.exception
.error_code
;
3127 events
->interrupt
.injected
=
3128 vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
;
3129 events
->interrupt
.nr
= vcpu
->arch
.interrupt
.nr
;
3130 events
->interrupt
.soft
= 0;
3131 events
->interrupt
.shadow
= kvm_x86_ops
->get_interrupt_shadow(vcpu
);
3133 events
->nmi
.injected
= vcpu
->arch
.nmi_injected
;
3134 events
->nmi
.pending
= vcpu
->arch
.nmi_pending
!= 0;
3135 events
->nmi
.masked
= kvm_x86_ops
->get_nmi_mask(vcpu
);
3136 events
->nmi
.pad
= 0;
3138 events
->sipi_vector
= 0; /* never valid when reporting to user space */
3140 events
->smi
.smm
= is_smm(vcpu
);
3141 events
->smi
.pending
= vcpu
->arch
.smi_pending
;
3142 events
->smi
.smm_inside_nmi
=
3143 !!(vcpu
->arch
.hflags
& HF_SMM_INSIDE_NMI_MASK
);
3144 events
->smi
.latched_init
= kvm_lapic_latched_init(vcpu
);
3146 events
->flags
= (KVM_VCPUEVENT_VALID_NMI_PENDING
3147 | KVM_VCPUEVENT_VALID_SHADOW
3148 | KVM_VCPUEVENT_VALID_SMM
);
3149 memset(&events
->reserved
, 0, sizeof(events
->reserved
));
3152 static void kvm_set_hflags(struct kvm_vcpu
*vcpu
, unsigned emul_flags
);
3154 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu
*vcpu
,
3155 struct kvm_vcpu_events
*events
)
3157 if (events
->flags
& ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3158 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3159 | KVM_VCPUEVENT_VALID_SHADOW
3160 | KVM_VCPUEVENT_VALID_SMM
))
3163 if (events
->exception
.injected
&&
3164 (events
->exception
.nr
> 31 || events
->exception
.nr
== NMI_VECTOR
||
3165 is_guest_mode(vcpu
)))
3168 /* INITs are latched while in SMM */
3169 if (events
->flags
& KVM_VCPUEVENT_VALID_SMM
&&
3170 (events
->smi
.smm
|| events
->smi
.pending
) &&
3171 vcpu
->arch
.mp_state
== KVM_MP_STATE_INIT_RECEIVED
)
3175 vcpu
->arch
.exception
.injected
= false;
3176 vcpu
->arch
.exception
.pending
= events
->exception
.injected
;
3177 vcpu
->arch
.exception
.nr
= events
->exception
.nr
;
3178 vcpu
->arch
.exception
.has_error_code
= events
->exception
.has_error_code
;
3179 vcpu
->arch
.exception
.error_code
= events
->exception
.error_code
;
3181 vcpu
->arch
.interrupt
.pending
= events
->interrupt
.injected
;
3182 vcpu
->arch
.interrupt
.nr
= events
->interrupt
.nr
;
3183 vcpu
->arch
.interrupt
.soft
= events
->interrupt
.soft
;
3184 if (events
->flags
& KVM_VCPUEVENT_VALID_SHADOW
)
3185 kvm_x86_ops
->set_interrupt_shadow(vcpu
,
3186 events
->interrupt
.shadow
);
3188 vcpu
->arch
.nmi_injected
= events
->nmi
.injected
;
3189 if (events
->flags
& KVM_VCPUEVENT_VALID_NMI_PENDING
)
3190 vcpu
->arch
.nmi_pending
= events
->nmi
.pending
;
3191 kvm_x86_ops
->set_nmi_mask(vcpu
, events
->nmi
.masked
);
3193 if (events
->flags
& KVM_VCPUEVENT_VALID_SIPI_VECTOR
&&
3194 lapic_in_kernel(vcpu
))
3195 vcpu
->arch
.apic
->sipi_vector
= events
->sipi_vector
;
3197 if (events
->flags
& KVM_VCPUEVENT_VALID_SMM
) {
3198 u32 hflags
= vcpu
->arch
.hflags
;
3199 if (events
->smi
.smm
)
3200 hflags
|= HF_SMM_MASK
;
3202 hflags
&= ~HF_SMM_MASK
;
3203 kvm_set_hflags(vcpu
, hflags
);
3205 vcpu
->arch
.smi_pending
= events
->smi
.pending
;
3207 if (events
->smi
.smm
) {
3208 if (events
->smi
.smm_inside_nmi
)
3209 vcpu
->arch
.hflags
|= HF_SMM_INSIDE_NMI_MASK
;
3211 vcpu
->arch
.hflags
&= ~HF_SMM_INSIDE_NMI_MASK
;
3212 if (lapic_in_kernel(vcpu
)) {
3213 if (events
->smi
.latched_init
)
3214 set_bit(KVM_APIC_INIT
, &vcpu
->arch
.apic
->pending_events
);
3216 clear_bit(KVM_APIC_INIT
, &vcpu
->arch
.apic
->pending_events
);
3221 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
3226 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu
*vcpu
,
3227 struct kvm_debugregs
*dbgregs
)
3231 memcpy(dbgregs
->db
, vcpu
->arch
.db
, sizeof(vcpu
->arch
.db
));
3232 kvm_get_dr(vcpu
, 6, &val
);
3234 dbgregs
->dr7
= vcpu
->arch
.dr7
;
3236 memset(&dbgregs
->reserved
, 0, sizeof(dbgregs
->reserved
));
3239 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu
*vcpu
,
3240 struct kvm_debugregs
*dbgregs
)
3245 if (dbgregs
->dr6
& ~0xffffffffull
)
3247 if (dbgregs
->dr7
& ~0xffffffffull
)
3250 memcpy(vcpu
->arch
.db
, dbgregs
->db
, sizeof(vcpu
->arch
.db
));
3251 kvm_update_dr0123(vcpu
);
3252 vcpu
->arch
.dr6
= dbgregs
->dr6
;
3253 kvm_update_dr6(vcpu
);
3254 vcpu
->arch
.dr7
= dbgregs
->dr7
;
3255 kvm_update_dr7(vcpu
);
3260 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3262 static void fill_xsave(u8
*dest
, struct kvm_vcpu
*vcpu
)
3264 struct xregs_state
*xsave
= &vcpu
->arch
.guest_fpu
.state
.xsave
;
3265 u64 xstate_bv
= xsave
->header
.xfeatures
;
3269 * Copy legacy XSAVE area, to avoid complications with CPUID
3270 * leaves 0 and 1 in the loop below.
3272 memcpy(dest
, xsave
, XSAVE_HDR_OFFSET
);
3275 xstate_bv
&= vcpu
->arch
.guest_supported_xcr0
| XFEATURE_MASK_FPSSE
;
3276 *(u64
*)(dest
+ XSAVE_HDR_OFFSET
) = xstate_bv
;
3279 * Copy each region from the possibly compacted offset to the
3280 * non-compacted offset.
3282 valid
= xstate_bv
& ~XFEATURE_MASK_FPSSE
;
3284 u64 feature
= valid
& -valid
;
3285 int index
= fls64(feature
) - 1;
3286 void *src
= get_xsave_addr(xsave
, feature
);
3289 u32 size
, offset
, ecx
, edx
;
3290 cpuid_count(XSTATE_CPUID
, index
,
3291 &size
, &offset
, &ecx
, &edx
);
3292 if (feature
== XFEATURE_MASK_PKRU
)
3293 memcpy(dest
+ offset
, &vcpu
->arch
.pkru
,
3294 sizeof(vcpu
->arch
.pkru
));
3296 memcpy(dest
+ offset
, src
, size
);
3304 static void load_xsave(struct kvm_vcpu
*vcpu
, u8
*src
)
3306 struct xregs_state
*xsave
= &vcpu
->arch
.guest_fpu
.state
.xsave
;
3307 u64 xstate_bv
= *(u64
*)(src
+ XSAVE_HDR_OFFSET
);
3311 * Copy legacy XSAVE area, to avoid complications with CPUID
3312 * leaves 0 and 1 in the loop below.
3314 memcpy(xsave
, src
, XSAVE_HDR_OFFSET
);
3316 /* Set XSTATE_BV and possibly XCOMP_BV. */
3317 xsave
->header
.xfeatures
= xstate_bv
;
3318 if (boot_cpu_has(X86_FEATURE_XSAVES
))
3319 xsave
->header
.xcomp_bv
= host_xcr0
| XSTATE_COMPACTION_ENABLED
;
3322 * Copy each region from the non-compacted offset to the
3323 * possibly compacted offset.
3325 valid
= xstate_bv
& ~XFEATURE_MASK_FPSSE
;
3327 u64 feature
= valid
& -valid
;
3328 int index
= fls64(feature
) - 1;
3329 void *dest
= get_xsave_addr(xsave
, feature
);
3332 u32 size
, offset
, ecx
, edx
;
3333 cpuid_count(XSTATE_CPUID
, index
,
3334 &size
, &offset
, &ecx
, &edx
);
3335 if (feature
== XFEATURE_MASK_PKRU
)
3336 memcpy(&vcpu
->arch
.pkru
, src
+ offset
,
3337 sizeof(vcpu
->arch
.pkru
));
3339 memcpy(dest
, src
+ offset
, size
);
3346 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu
*vcpu
,
3347 struct kvm_xsave
*guest_xsave
)
3349 if (boot_cpu_has(X86_FEATURE_XSAVE
)) {
3350 memset(guest_xsave
, 0, sizeof(struct kvm_xsave
));
3351 fill_xsave((u8
*) guest_xsave
->region
, vcpu
);
3353 memcpy(guest_xsave
->region
,
3354 &vcpu
->arch
.guest_fpu
.state
.fxsave
,
3355 sizeof(struct fxregs_state
));
3356 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)] =
3357 XFEATURE_MASK_FPSSE
;
3361 #define XSAVE_MXCSR_OFFSET 24
3363 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu
*vcpu
,
3364 struct kvm_xsave
*guest_xsave
)
3367 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)];
3368 u32 mxcsr
= *(u32
*)&guest_xsave
->region
[XSAVE_MXCSR_OFFSET
/ sizeof(u32
)];
3370 if (boot_cpu_has(X86_FEATURE_XSAVE
)) {
3372 * Here we allow setting states that are not present in
3373 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3374 * with old userspace.
3376 if (xstate_bv
& ~kvm_supported_xcr0() ||
3377 mxcsr
& ~mxcsr_feature_mask
)
3379 load_xsave(vcpu
, (u8
*)guest_xsave
->region
);
3381 if (xstate_bv
& ~XFEATURE_MASK_FPSSE
||
3382 mxcsr
& ~mxcsr_feature_mask
)
3384 memcpy(&vcpu
->arch
.guest_fpu
.state
.fxsave
,
3385 guest_xsave
->region
, sizeof(struct fxregs_state
));
3390 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu
*vcpu
,
3391 struct kvm_xcrs
*guest_xcrs
)
3393 if (!boot_cpu_has(X86_FEATURE_XSAVE
)) {
3394 guest_xcrs
->nr_xcrs
= 0;
3398 guest_xcrs
->nr_xcrs
= 1;
3399 guest_xcrs
->flags
= 0;
3400 guest_xcrs
->xcrs
[0].xcr
= XCR_XFEATURE_ENABLED_MASK
;
3401 guest_xcrs
->xcrs
[0].value
= vcpu
->arch
.xcr0
;
3404 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu
*vcpu
,
3405 struct kvm_xcrs
*guest_xcrs
)
3409 if (!boot_cpu_has(X86_FEATURE_XSAVE
))
3412 if (guest_xcrs
->nr_xcrs
> KVM_MAX_XCRS
|| guest_xcrs
->flags
)
3415 for (i
= 0; i
< guest_xcrs
->nr_xcrs
; i
++)
3416 /* Only support XCR0 currently */
3417 if (guest_xcrs
->xcrs
[i
].xcr
== XCR_XFEATURE_ENABLED_MASK
) {
3418 r
= __kvm_set_xcr(vcpu
, XCR_XFEATURE_ENABLED_MASK
,
3419 guest_xcrs
->xcrs
[i
].value
);
3428 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3429 * stopped by the hypervisor. This function will be called from the host only.
3430 * EINVAL is returned when the host attempts to set the flag for a guest that
3431 * does not support pv clocks.
3433 static int kvm_set_guest_paused(struct kvm_vcpu
*vcpu
)
3435 if (!vcpu
->arch
.pv_time_enabled
)
3437 vcpu
->arch
.pvclock_set_guest_stopped_request
= true;
3438 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
3442 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu
*vcpu
,
3443 struct kvm_enable_cap
*cap
)
3449 case KVM_CAP_HYPERV_SYNIC2
:
3452 case KVM_CAP_HYPERV_SYNIC
:
3453 if (!irqchip_in_kernel(vcpu
->kvm
))
3455 return kvm_hv_activate_synic(vcpu
, cap
->cap
==
3456 KVM_CAP_HYPERV_SYNIC2
);
3462 long kvm_arch_vcpu_ioctl(struct file
*filp
,
3463 unsigned int ioctl
, unsigned long arg
)
3465 struct kvm_vcpu
*vcpu
= filp
->private_data
;
3466 void __user
*argp
= (void __user
*)arg
;
3469 struct kvm_lapic_state
*lapic
;
3470 struct kvm_xsave
*xsave
;
3471 struct kvm_xcrs
*xcrs
;
3477 case KVM_GET_LAPIC
: {
3479 if (!lapic_in_kernel(vcpu
))
3481 u
.lapic
= kzalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
3486 r
= kvm_vcpu_ioctl_get_lapic(vcpu
, u
.lapic
);
3490 if (copy_to_user(argp
, u
.lapic
, sizeof(struct kvm_lapic_state
)))
3495 case KVM_SET_LAPIC
: {
3497 if (!lapic_in_kernel(vcpu
))
3499 u
.lapic
= memdup_user(argp
, sizeof(*u
.lapic
));
3500 if (IS_ERR(u
.lapic
))
3501 return PTR_ERR(u
.lapic
);
3503 r
= kvm_vcpu_ioctl_set_lapic(vcpu
, u
.lapic
);
3506 case KVM_INTERRUPT
: {
3507 struct kvm_interrupt irq
;
3510 if (copy_from_user(&irq
, argp
, sizeof irq
))
3512 r
= kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
3516 r
= kvm_vcpu_ioctl_nmi(vcpu
);
3520 r
= kvm_vcpu_ioctl_smi(vcpu
);
3523 case KVM_SET_CPUID
: {
3524 struct kvm_cpuid __user
*cpuid_arg
= argp
;
3525 struct kvm_cpuid cpuid
;
3528 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3530 r
= kvm_vcpu_ioctl_set_cpuid(vcpu
, &cpuid
, cpuid_arg
->entries
);
3533 case KVM_SET_CPUID2
: {
3534 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
3535 struct kvm_cpuid2 cpuid
;
3538 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3540 r
= kvm_vcpu_ioctl_set_cpuid2(vcpu
, &cpuid
,
3541 cpuid_arg
->entries
);
3544 case KVM_GET_CPUID2
: {
3545 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
3546 struct kvm_cpuid2 cpuid
;
3549 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3551 r
= kvm_vcpu_ioctl_get_cpuid2(vcpu
, &cpuid
,
3552 cpuid_arg
->entries
);
3556 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
3562 r
= msr_io(vcpu
, argp
, do_get_msr
, 1);
3565 r
= msr_io(vcpu
, argp
, do_set_msr
, 0);
3567 case KVM_TPR_ACCESS_REPORTING
: {
3568 struct kvm_tpr_access_ctl tac
;
3571 if (copy_from_user(&tac
, argp
, sizeof tac
))
3573 r
= vcpu_ioctl_tpr_access_reporting(vcpu
, &tac
);
3577 if (copy_to_user(argp
, &tac
, sizeof tac
))
3582 case KVM_SET_VAPIC_ADDR
: {
3583 struct kvm_vapic_addr va
;
3587 if (!lapic_in_kernel(vcpu
))
3590 if (copy_from_user(&va
, argp
, sizeof va
))
3592 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
3593 r
= kvm_lapic_set_vapic_addr(vcpu
, va
.vapic_addr
);
3594 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
3597 case KVM_X86_SETUP_MCE
: {
3601 if (copy_from_user(&mcg_cap
, argp
, sizeof mcg_cap
))
3603 r
= kvm_vcpu_ioctl_x86_setup_mce(vcpu
, mcg_cap
);
3606 case KVM_X86_SET_MCE
: {
3607 struct kvm_x86_mce mce
;
3610 if (copy_from_user(&mce
, argp
, sizeof mce
))
3612 r
= kvm_vcpu_ioctl_x86_set_mce(vcpu
, &mce
);
3615 case KVM_GET_VCPU_EVENTS
: {
3616 struct kvm_vcpu_events events
;
3618 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu
, &events
);
3621 if (copy_to_user(argp
, &events
, sizeof(struct kvm_vcpu_events
)))
3626 case KVM_SET_VCPU_EVENTS
: {
3627 struct kvm_vcpu_events events
;
3630 if (copy_from_user(&events
, argp
, sizeof(struct kvm_vcpu_events
)))
3633 r
= kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu
, &events
);
3636 case KVM_GET_DEBUGREGS
: {
3637 struct kvm_debugregs dbgregs
;
3639 kvm_vcpu_ioctl_x86_get_debugregs(vcpu
, &dbgregs
);
3642 if (copy_to_user(argp
, &dbgregs
,
3643 sizeof(struct kvm_debugregs
)))
3648 case KVM_SET_DEBUGREGS
: {
3649 struct kvm_debugregs dbgregs
;
3652 if (copy_from_user(&dbgregs
, argp
,
3653 sizeof(struct kvm_debugregs
)))
3656 r
= kvm_vcpu_ioctl_x86_set_debugregs(vcpu
, &dbgregs
);
3659 case KVM_GET_XSAVE
: {
3660 u
.xsave
= kzalloc(sizeof(struct kvm_xsave
), GFP_KERNEL
);
3665 kvm_vcpu_ioctl_x86_get_xsave(vcpu
, u
.xsave
);
3668 if (copy_to_user(argp
, u
.xsave
, sizeof(struct kvm_xsave
)))
3673 case KVM_SET_XSAVE
: {
3674 u
.xsave
= memdup_user(argp
, sizeof(*u
.xsave
));
3675 if (IS_ERR(u
.xsave
))
3676 return PTR_ERR(u
.xsave
);
3678 r
= kvm_vcpu_ioctl_x86_set_xsave(vcpu
, u
.xsave
);
3681 case KVM_GET_XCRS
: {
3682 u
.xcrs
= kzalloc(sizeof(struct kvm_xcrs
), GFP_KERNEL
);
3687 kvm_vcpu_ioctl_x86_get_xcrs(vcpu
, u
.xcrs
);
3690 if (copy_to_user(argp
, u
.xcrs
,
3691 sizeof(struct kvm_xcrs
)))
3696 case KVM_SET_XCRS
: {
3697 u
.xcrs
= memdup_user(argp
, sizeof(*u
.xcrs
));
3699 return PTR_ERR(u
.xcrs
);
3701 r
= kvm_vcpu_ioctl_x86_set_xcrs(vcpu
, u
.xcrs
);
3704 case KVM_SET_TSC_KHZ
: {
3708 user_tsc_khz
= (u32
)arg
;
3710 if (user_tsc_khz
>= kvm_max_guest_tsc_khz
)
3713 if (user_tsc_khz
== 0)
3714 user_tsc_khz
= tsc_khz
;
3716 if (!kvm_set_tsc_khz(vcpu
, user_tsc_khz
))
3721 case KVM_GET_TSC_KHZ
: {
3722 r
= vcpu
->arch
.virtual_tsc_khz
;
3725 case KVM_KVMCLOCK_CTRL
: {
3726 r
= kvm_set_guest_paused(vcpu
);
3729 case KVM_ENABLE_CAP
: {
3730 struct kvm_enable_cap cap
;
3733 if (copy_from_user(&cap
, argp
, sizeof(cap
)))
3735 r
= kvm_vcpu_ioctl_enable_cap(vcpu
, &cap
);
3746 int kvm_arch_vcpu_fault(struct kvm_vcpu
*vcpu
, struct vm_fault
*vmf
)
3748 return VM_FAULT_SIGBUS
;
3751 static int kvm_vm_ioctl_set_tss_addr(struct kvm
*kvm
, unsigned long addr
)
3755 if (addr
> (unsigned int)(-3 * PAGE_SIZE
))
3757 ret
= kvm_x86_ops
->set_tss_addr(kvm
, addr
);
3761 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm
*kvm
,
3764 kvm
->arch
.ept_identity_map_addr
= ident_addr
;
3768 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm
*kvm
,
3769 u32 kvm_nr_mmu_pages
)
3771 if (kvm_nr_mmu_pages
< KVM_MIN_ALLOC_MMU_PAGES
)
3774 mutex_lock(&kvm
->slots_lock
);
3776 kvm_mmu_change_mmu_pages(kvm
, kvm_nr_mmu_pages
);
3777 kvm
->arch
.n_requested_mmu_pages
= kvm_nr_mmu_pages
;
3779 mutex_unlock(&kvm
->slots_lock
);
3783 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm
*kvm
)
3785 return kvm
->arch
.n_max_mmu_pages
;
3788 static int kvm_vm_ioctl_get_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
3790 struct kvm_pic
*pic
= kvm
->arch
.vpic
;
3794 switch (chip
->chip_id
) {
3795 case KVM_IRQCHIP_PIC_MASTER
:
3796 memcpy(&chip
->chip
.pic
, &pic
->pics
[0],
3797 sizeof(struct kvm_pic_state
));
3799 case KVM_IRQCHIP_PIC_SLAVE
:
3800 memcpy(&chip
->chip
.pic
, &pic
->pics
[1],
3801 sizeof(struct kvm_pic_state
));
3803 case KVM_IRQCHIP_IOAPIC
:
3804 kvm_get_ioapic(kvm
, &chip
->chip
.ioapic
);
3813 static int kvm_vm_ioctl_set_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
3815 struct kvm_pic
*pic
= kvm
->arch
.vpic
;
3819 switch (chip
->chip_id
) {
3820 case KVM_IRQCHIP_PIC_MASTER
:
3821 spin_lock(&pic
->lock
);
3822 memcpy(&pic
->pics
[0], &chip
->chip
.pic
,
3823 sizeof(struct kvm_pic_state
));
3824 spin_unlock(&pic
->lock
);
3826 case KVM_IRQCHIP_PIC_SLAVE
:
3827 spin_lock(&pic
->lock
);
3828 memcpy(&pic
->pics
[1], &chip
->chip
.pic
,
3829 sizeof(struct kvm_pic_state
));
3830 spin_unlock(&pic
->lock
);
3832 case KVM_IRQCHIP_IOAPIC
:
3833 kvm_set_ioapic(kvm
, &chip
->chip
.ioapic
);
3839 kvm_pic_update_irq(pic
);
3843 static int kvm_vm_ioctl_get_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
3845 struct kvm_kpit_state
*kps
= &kvm
->arch
.vpit
->pit_state
;
3847 BUILD_BUG_ON(sizeof(*ps
) != sizeof(kps
->channels
));
3849 mutex_lock(&kps
->lock
);
3850 memcpy(ps
, &kps
->channels
, sizeof(*ps
));
3851 mutex_unlock(&kps
->lock
);
3855 static int kvm_vm_ioctl_set_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
3858 struct kvm_pit
*pit
= kvm
->arch
.vpit
;
3860 mutex_lock(&pit
->pit_state
.lock
);
3861 memcpy(&pit
->pit_state
.channels
, ps
, sizeof(*ps
));
3862 for (i
= 0; i
< 3; i
++)
3863 kvm_pit_load_count(pit
, i
, ps
->channels
[i
].count
, 0);
3864 mutex_unlock(&pit
->pit_state
.lock
);
3868 static int kvm_vm_ioctl_get_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
3870 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3871 memcpy(ps
->channels
, &kvm
->arch
.vpit
->pit_state
.channels
,
3872 sizeof(ps
->channels
));
3873 ps
->flags
= kvm
->arch
.vpit
->pit_state
.flags
;
3874 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3875 memset(&ps
->reserved
, 0, sizeof(ps
->reserved
));
3879 static int kvm_vm_ioctl_set_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
3883 u32 prev_legacy
, cur_legacy
;
3884 struct kvm_pit
*pit
= kvm
->arch
.vpit
;
3886 mutex_lock(&pit
->pit_state
.lock
);
3887 prev_legacy
= pit
->pit_state
.flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
3888 cur_legacy
= ps
->flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
3889 if (!prev_legacy
&& cur_legacy
)
3891 memcpy(&pit
->pit_state
.channels
, &ps
->channels
,
3892 sizeof(pit
->pit_state
.channels
));
3893 pit
->pit_state
.flags
= ps
->flags
;
3894 for (i
= 0; i
< 3; i
++)
3895 kvm_pit_load_count(pit
, i
, pit
->pit_state
.channels
[i
].count
,
3897 mutex_unlock(&pit
->pit_state
.lock
);
3901 static int kvm_vm_ioctl_reinject(struct kvm
*kvm
,
3902 struct kvm_reinject_control
*control
)
3904 struct kvm_pit
*pit
= kvm
->arch
.vpit
;
3909 /* pit->pit_state.lock was overloaded to prevent userspace from getting
3910 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3911 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
3913 mutex_lock(&pit
->pit_state
.lock
);
3914 kvm_pit_set_reinject(pit
, control
->pit_reinject
);
3915 mutex_unlock(&pit
->pit_state
.lock
);
3921 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3922 * @kvm: kvm instance
3923 * @log: slot id and address to which we copy the log
3925 * Steps 1-4 below provide general overview of dirty page logging. See
3926 * kvm_get_dirty_log_protect() function description for additional details.
3928 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3929 * always flush the TLB (step 4) even if previous step failed and the dirty
3930 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3931 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3932 * writes will be marked dirty for next log read.
3934 * 1. Take a snapshot of the bit and clear it if needed.
3935 * 2. Write protect the corresponding page.
3936 * 3. Copy the snapshot to the userspace.
3937 * 4. Flush TLB's if needed.
3939 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
, struct kvm_dirty_log
*log
)
3941 bool is_dirty
= false;
3944 mutex_lock(&kvm
->slots_lock
);
3947 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3949 if (kvm_x86_ops
->flush_log_dirty
)
3950 kvm_x86_ops
->flush_log_dirty(kvm
);
3952 r
= kvm_get_dirty_log_protect(kvm
, log
, &is_dirty
);
3955 * All the TLBs can be flushed out of mmu lock, see the comments in
3956 * kvm_mmu_slot_remove_write_access().
3958 lockdep_assert_held(&kvm
->slots_lock
);
3960 kvm_flush_remote_tlbs(kvm
);
3962 mutex_unlock(&kvm
->slots_lock
);
3966 int kvm_vm_ioctl_irq_line(struct kvm
*kvm
, struct kvm_irq_level
*irq_event
,
3969 if (!irqchip_in_kernel(kvm
))
3972 irq_event
->status
= kvm_set_irq(kvm
, KVM_USERSPACE_IRQ_SOURCE_ID
,
3973 irq_event
->irq
, irq_event
->level
,
3978 static int kvm_vm_ioctl_enable_cap(struct kvm
*kvm
,
3979 struct kvm_enable_cap
*cap
)
3987 case KVM_CAP_DISABLE_QUIRKS
:
3988 kvm
->arch
.disabled_quirks
= cap
->args
[0];
3991 case KVM_CAP_SPLIT_IRQCHIP
: {
3992 mutex_lock(&kvm
->lock
);
3994 if (cap
->args
[0] > MAX_NR_RESERVED_IOAPIC_PINS
)
3995 goto split_irqchip_unlock
;
3997 if (irqchip_in_kernel(kvm
))
3998 goto split_irqchip_unlock
;
3999 if (kvm
->created_vcpus
)
4000 goto split_irqchip_unlock
;
4001 r
= kvm_setup_empty_irq_routing(kvm
);
4003 goto split_irqchip_unlock
;
4004 /* Pairs with irqchip_in_kernel. */
4006 kvm
->arch
.irqchip_mode
= KVM_IRQCHIP_SPLIT
;
4007 kvm
->arch
.nr_reserved_ioapic_pins
= cap
->args
[0];
4009 split_irqchip_unlock
:
4010 mutex_unlock(&kvm
->lock
);
4013 case KVM_CAP_X2APIC_API
:
4015 if (cap
->args
[0] & ~KVM_X2APIC_API_VALID_FLAGS
)
4018 if (cap
->args
[0] & KVM_X2APIC_API_USE_32BIT_IDS
)
4019 kvm
->arch
.x2apic_format
= true;
4020 if (cap
->args
[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK
)
4021 kvm
->arch
.x2apic_broadcast_quirk_disabled
= true;
4032 long kvm_arch_vm_ioctl(struct file
*filp
,
4033 unsigned int ioctl
, unsigned long arg
)
4035 struct kvm
*kvm
= filp
->private_data
;
4036 void __user
*argp
= (void __user
*)arg
;
4039 * This union makes it completely explicit to gcc-3.x
4040 * that these two variables' stack usage should be
4041 * combined, not added together.
4044 struct kvm_pit_state ps
;
4045 struct kvm_pit_state2 ps2
;
4046 struct kvm_pit_config pit_config
;
4050 case KVM_SET_TSS_ADDR
:
4051 r
= kvm_vm_ioctl_set_tss_addr(kvm
, arg
);
4053 case KVM_SET_IDENTITY_MAP_ADDR
: {
4056 mutex_lock(&kvm
->lock
);
4058 if (kvm
->created_vcpus
)
4059 goto set_identity_unlock
;
4061 if (copy_from_user(&ident_addr
, argp
, sizeof ident_addr
))
4062 goto set_identity_unlock
;
4063 r
= kvm_vm_ioctl_set_identity_map_addr(kvm
, ident_addr
);
4064 set_identity_unlock
:
4065 mutex_unlock(&kvm
->lock
);
4068 case KVM_SET_NR_MMU_PAGES
:
4069 r
= kvm_vm_ioctl_set_nr_mmu_pages(kvm
, arg
);
4071 case KVM_GET_NR_MMU_PAGES
:
4072 r
= kvm_vm_ioctl_get_nr_mmu_pages(kvm
);
4074 case KVM_CREATE_IRQCHIP
: {
4075 mutex_lock(&kvm
->lock
);
4078 if (irqchip_in_kernel(kvm
))
4079 goto create_irqchip_unlock
;
4082 if (kvm
->created_vcpus
)
4083 goto create_irqchip_unlock
;
4085 r
= kvm_pic_init(kvm
);
4087 goto create_irqchip_unlock
;
4089 r
= kvm_ioapic_init(kvm
);
4091 kvm_pic_destroy(kvm
);
4092 goto create_irqchip_unlock
;
4095 r
= kvm_setup_default_irq_routing(kvm
);
4097 kvm_ioapic_destroy(kvm
);
4098 kvm_pic_destroy(kvm
);
4099 goto create_irqchip_unlock
;
4101 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4103 kvm
->arch
.irqchip_mode
= KVM_IRQCHIP_KERNEL
;
4104 create_irqchip_unlock
:
4105 mutex_unlock(&kvm
->lock
);
4108 case KVM_CREATE_PIT
:
4109 u
.pit_config
.flags
= KVM_PIT_SPEAKER_DUMMY
;
4111 case KVM_CREATE_PIT2
:
4113 if (copy_from_user(&u
.pit_config
, argp
,
4114 sizeof(struct kvm_pit_config
)))
4117 mutex_lock(&kvm
->lock
);
4120 goto create_pit_unlock
;
4122 kvm
->arch
.vpit
= kvm_create_pit(kvm
, u
.pit_config
.flags
);
4126 mutex_unlock(&kvm
->lock
);
4128 case KVM_GET_IRQCHIP
: {
4129 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4130 struct kvm_irqchip
*chip
;
4132 chip
= memdup_user(argp
, sizeof(*chip
));
4139 if (!irqchip_kernel(kvm
))
4140 goto get_irqchip_out
;
4141 r
= kvm_vm_ioctl_get_irqchip(kvm
, chip
);
4143 goto get_irqchip_out
;
4145 if (copy_to_user(argp
, chip
, sizeof *chip
))
4146 goto get_irqchip_out
;
4152 case KVM_SET_IRQCHIP
: {
4153 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4154 struct kvm_irqchip
*chip
;
4156 chip
= memdup_user(argp
, sizeof(*chip
));
4163 if (!irqchip_kernel(kvm
))
4164 goto set_irqchip_out
;
4165 r
= kvm_vm_ioctl_set_irqchip(kvm
, chip
);
4167 goto set_irqchip_out
;
4175 if (copy_from_user(&u
.ps
, argp
, sizeof(struct kvm_pit_state
)))
4178 if (!kvm
->arch
.vpit
)
4180 r
= kvm_vm_ioctl_get_pit(kvm
, &u
.ps
);
4184 if (copy_to_user(argp
, &u
.ps
, sizeof(struct kvm_pit_state
)))
4191 if (copy_from_user(&u
.ps
, argp
, sizeof u
.ps
))
4194 if (!kvm
->arch
.vpit
)
4196 r
= kvm_vm_ioctl_set_pit(kvm
, &u
.ps
);
4199 case KVM_GET_PIT2
: {
4201 if (!kvm
->arch
.vpit
)
4203 r
= kvm_vm_ioctl_get_pit2(kvm
, &u
.ps2
);
4207 if (copy_to_user(argp
, &u
.ps2
, sizeof(u
.ps2
)))
4212 case KVM_SET_PIT2
: {
4214 if (copy_from_user(&u
.ps2
, argp
, sizeof(u
.ps2
)))
4217 if (!kvm
->arch
.vpit
)
4219 r
= kvm_vm_ioctl_set_pit2(kvm
, &u
.ps2
);
4222 case KVM_REINJECT_CONTROL
: {
4223 struct kvm_reinject_control control
;
4225 if (copy_from_user(&control
, argp
, sizeof(control
)))
4227 r
= kvm_vm_ioctl_reinject(kvm
, &control
);
4230 case KVM_SET_BOOT_CPU_ID
:
4232 mutex_lock(&kvm
->lock
);
4233 if (kvm
->created_vcpus
)
4236 kvm
->arch
.bsp_vcpu_id
= arg
;
4237 mutex_unlock(&kvm
->lock
);
4239 case KVM_XEN_HVM_CONFIG
: {
4241 if (copy_from_user(&kvm
->arch
.xen_hvm_config
, argp
,
4242 sizeof(struct kvm_xen_hvm_config
)))
4245 if (kvm
->arch
.xen_hvm_config
.flags
)
4250 case KVM_SET_CLOCK
: {
4251 struct kvm_clock_data user_ns
;
4255 if (copy_from_user(&user_ns
, argp
, sizeof(user_ns
)))
4264 * TODO: userspace has to take care of races with VCPU_RUN, so
4265 * kvm_gen_update_masterclock() can be cut down to locked
4266 * pvclock_update_vm_gtod_copy().
4268 kvm_gen_update_masterclock(kvm
);
4269 now_ns
= get_kvmclock_ns(kvm
);
4270 kvm
->arch
.kvmclock_offset
+= user_ns
.clock
- now_ns
;
4271 kvm_make_all_cpus_request(kvm
, KVM_REQ_CLOCK_UPDATE
);
4274 case KVM_GET_CLOCK
: {
4275 struct kvm_clock_data user_ns
;
4278 now_ns
= get_kvmclock_ns(kvm
);
4279 user_ns
.clock
= now_ns
;
4280 user_ns
.flags
= kvm
->arch
.use_master_clock
? KVM_CLOCK_TSC_STABLE
: 0;
4281 memset(&user_ns
.pad
, 0, sizeof(user_ns
.pad
));
4284 if (copy_to_user(argp
, &user_ns
, sizeof(user_ns
)))
4289 case KVM_ENABLE_CAP
: {
4290 struct kvm_enable_cap cap
;
4293 if (copy_from_user(&cap
, argp
, sizeof(cap
)))
4295 r
= kvm_vm_ioctl_enable_cap(kvm
, &cap
);
4305 static void kvm_init_msr_list(void)
4310 for (i
= j
= 0; i
< ARRAY_SIZE(msrs_to_save
); i
++) {
4311 if (rdmsr_safe(msrs_to_save
[i
], &dummy
[0], &dummy
[1]) < 0)
4315 * Even MSRs that are valid in the host may not be exposed
4316 * to the guests in some cases.
4318 switch (msrs_to_save
[i
]) {
4319 case MSR_IA32_BNDCFGS
:
4320 if (!kvm_x86_ops
->mpx_supported())
4324 if (!kvm_x86_ops
->rdtscp_supported())
4332 msrs_to_save
[j
] = msrs_to_save
[i
];
4335 num_msrs_to_save
= j
;
4337 for (i
= j
= 0; i
< ARRAY_SIZE(emulated_msrs
); i
++) {
4338 switch (emulated_msrs
[i
]) {
4339 case MSR_IA32_SMBASE
:
4340 if (!kvm_x86_ops
->cpu_has_high_real_mode_segbase())
4348 emulated_msrs
[j
] = emulated_msrs
[i
];
4351 num_emulated_msrs
= j
;
4354 static int vcpu_mmio_write(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
,
4362 if (!(lapic_in_kernel(vcpu
) &&
4363 !kvm_iodevice_write(vcpu
, &vcpu
->arch
.apic
->dev
, addr
, n
, v
))
4364 && kvm_io_bus_write(vcpu
, KVM_MMIO_BUS
, addr
, n
, v
))
4375 static int vcpu_mmio_read(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
, void *v
)
4382 if (!(lapic_in_kernel(vcpu
) &&
4383 !kvm_iodevice_read(vcpu
, &vcpu
->arch
.apic
->dev
,
4385 && kvm_io_bus_read(vcpu
, KVM_MMIO_BUS
, addr
, n
, v
))
4387 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, n
, addr
, v
);
4397 static void kvm_set_segment(struct kvm_vcpu
*vcpu
,
4398 struct kvm_segment
*var
, int seg
)
4400 kvm_x86_ops
->set_segment(vcpu
, var
, seg
);
4403 void kvm_get_segment(struct kvm_vcpu
*vcpu
,
4404 struct kvm_segment
*var
, int seg
)
4406 kvm_x86_ops
->get_segment(vcpu
, var
, seg
);
4409 gpa_t
translate_nested_gpa(struct kvm_vcpu
*vcpu
, gpa_t gpa
, u32 access
,
4410 struct x86_exception
*exception
)
4414 BUG_ON(!mmu_is_nested(vcpu
));
4416 /* NPT walks are always user-walks */
4417 access
|= PFERR_USER_MASK
;
4418 t_gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, gpa
, access
, exception
);
4423 gpa_t
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu
*vcpu
, gva_t gva
,
4424 struct x86_exception
*exception
)
4426 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4427 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4430 gpa_t
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu
*vcpu
, gva_t gva
,
4431 struct x86_exception
*exception
)
4433 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4434 access
|= PFERR_FETCH_MASK
;
4435 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4438 gpa_t
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu
*vcpu
, gva_t gva
,
4439 struct x86_exception
*exception
)
4441 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4442 access
|= PFERR_WRITE_MASK
;
4443 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4446 /* uses this to access any guest's mapped memory without checking CPL */
4447 gpa_t
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu
*vcpu
, gva_t gva
,
4448 struct x86_exception
*exception
)
4450 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, 0, exception
);
4453 static int kvm_read_guest_virt_helper(gva_t addr
, void *val
, unsigned int bytes
,
4454 struct kvm_vcpu
*vcpu
, u32 access
,
4455 struct x86_exception
*exception
)
4458 int r
= X86EMUL_CONTINUE
;
4461 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
, access
,
4463 unsigned offset
= addr
& (PAGE_SIZE
-1);
4464 unsigned toread
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
4467 if (gpa
== UNMAPPED_GVA
)
4468 return X86EMUL_PROPAGATE_FAULT
;
4469 ret
= kvm_vcpu_read_guest_page(vcpu
, gpa
>> PAGE_SHIFT
, data
,
4472 r
= X86EMUL_IO_NEEDED
;
4484 /* used for instruction fetching */
4485 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt
*ctxt
,
4486 gva_t addr
, void *val
, unsigned int bytes
,
4487 struct x86_exception
*exception
)
4489 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4490 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4494 /* Inline kvm_read_guest_virt_helper for speed. */
4495 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
, access
|PFERR_FETCH_MASK
,
4497 if (unlikely(gpa
== UNMAPPED_GVA
))
4498 return X86EMUL_PROPAGATE_FAULT
;
4500 offset
= addr
& (PAGE_SIZE
-1);
4501 if (WARN_ON(offset
+ bytes
> PAGE_SIZE
))
4502 bytes
= (unsigned)PAGE_SIZE
- offset
;
4503 ret
= kvm_vcpu_read_guest_page(vcpu
, gpa
>> PAGE_SHIFT
, val
,
4505 if (unlikely(ret
< 0))
4506 return X86EMUL_IO_NEEDED
;
4508 return X86EMUL_CONTINUE
;
4511 int kvm_read_guest_virt(struct x86_emulate_ctxt
*ctxt
,
4512 gva_t addr
, void *val
, unsigned int bytes
,
4513 struct x86_exception
*exception
)
4515 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4516 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4518 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, access
,
4521 EXPORT_SYMBOL_GPL(kvm_read_guest_virt
);
4523 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt
*ctxt
,
4524 gva_t addr
, void *val
, unsigned int bytes
,
4525 struct x86_exception
*exception
)
4527 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4528 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, 0, exception
);
4531 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt
*ctxt
,
4532 unsigned long addr
, void *val
, unsigned int bytes
)
4534 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4535 int r
= kvm_vcpu_read_guest(vcpu
, addr
, val
, bytes
);
4537 return r
< 0 ? X86EMUL_IO_NEEDED
: X86EMUL_CONTINUE
;
4540 int kvm_write_guest_virt_system(struct x86_emulate_ctxt
*ctxt
,
4541 gva_t addr
, void *val
,
4543 struct x86_exception
*exception
)
4545 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4547 int r
= X86EMUL_CONTINUE
;
4550 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
,
4553 unsigned offset
= addr
& (PAGE_SIZE
-1);
4554 unsigned towrite
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
4557 if (gpa
== UNMAPPED_GVA
)
4558 return X86EMUL_PROPAGATE_FAULT
;
4559 ret
= kvm_vcpu_write_guest(vcpu
, gpa
, data
, towrite
);
4561 r
= X86EMUL_IO_NEEDED
;
4572 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system
);
4574 static int vcpu_is_mmio_gpa(struct kvm_vcpu
*vcpu
, unsigned long gva
,
4575 gpa_t gpa
, bool write
)
4577 /* For APIC access vmexit */
4578 if ((gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
4581 if (vcpu_match_mmio_gpa(vcpu
, gpa
)) {
4582 trace_vcpu_match_mmio(gva
, gpa
, write
, true);
4589 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu
*vcpu
, unsigned long gva
,
4590 gpa_t
*gpa
, struct x86_exception
*exception
,
4593 u32 access
= ((kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0)
4594 | (write
? PFERR_WRITE_MASK
: 0);
4597 * currently PKRU is only applied to ept enabled guest so
4598 * there is no pkey in EPT page table for L1 guest or EPT
4599 * shadow page table for L2 guest.
4601 if (vcpu_match_mmio_gva(vcpu
, gva
)
4602 && !permission_fault(vcpu
, vcpu
->arch
.walk_mmu
,
4603 vcpu
->arch
.access
, 0, access
)) {
4604 *gpa
= vcpu
->arch
.mmio_gfn
<< PAGE_SHIFT
|
4605 (gva
& (PAGE_SIZE
- 1));
4606 trace_vcpu_match_mmio(gva
, *gpa
, write
, false);
4610 *gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4612 if (*gpa
== UNMAPPED_GVA
)
4615 return vcpu_is_mmio_gpa(vcpu
, gva
, *gpa
, write
);
4618 int emulator_write_phys(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4619 const void *val
, int bytes
)
4623 ret
= kvm_vcpu_write_guest(vcpu
, gpa
, val
, bytes
);
4626 kvm_page_track_write(vcpu
, gpa
, val
, bytes
);
4630 struct read_write_emulator_ops
{
4631 int (*read_write_prepare
)(struct kvm_vcpu
*vcpu
, void *val
,
4633 int (*read_write_emulate
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4634 void *val
, int bytes
);
4635 int (*read_write_mmio
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4636 int bytes
, void *val
);
4637 int (*read_write_exit_mmio
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4638 void *val
, int bytes
);
4642 static int read_prepare(struct kvm_vcpu
*vcpu
, void *val
, int bytes
)
4644 if (vcpu
->mmio_read_completed
) {
4645 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, bytes
,
4646 vcpu
->mmio_fragments
[0].gpa
, val
);
4647 vcpu
->mmio_read_completed
= 0;
4654 static int read_emulate(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4655 void *val
, int bytes
)
4657 return !kvm_vcpu_read_guest(vcpu
, gpa
, val
, bytes
);
4660 static int write_emulate(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4661 void *val
, int bytes
)
4663 return emulator_write_phys(vcpu
, gpa
, val
, bytes
);
4666 static int write_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
, int bytes
, void *val
)
4668 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE
, bytes
, gpa
, val
);
4669 return vcpu_mmio_write(vcpu
, gpa
, bytes
, val
);
4672 static int read_exit_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4673 void *val
, int bytes
)
4675 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED
, bytes
, gpa
, NULL
);
4676 return X86EMUL_IO_NEEDED
;
4679 static int write_exit_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4680 void *val
, int bytes
)
4682 struct kvm_mmio_fragment
*frag
= &vcpu
->mmio_fragments
[0];
4684 memcpy(vcpu
->run
->mmio
.data
, frag
->data
, min(8u, frag
->len
));
4685 return X86EMUL_CONTINUE
;
4688 static const struct read_write_emulator_ops read_emultor
= {
4689 .read_write_prepare
= read_prepare
,
4690 .read_write_emulate
= read_emulate
,
4691 .read_write_mmio
= vcpu_mmio_read
,
4692 .read_write_exit_mmio
= read_exit_mmio
,
4695 static const struct read_write_emulator_ops write_emultor
= {
4696 .read_write_emulate
= write_emulate
,
4697 .read_write_mmio
= write_mmio
,
4698 .read_write_exit_mmio
= write_exit_mmio
,
4702 static int emulator_read_write_onepage(unsigned long addr
, void *val
,
4704 struct x86_exception
*exception
,
4705 struct kvm_vcpu
*vcpu
,
4706 const struct read_write_emulator_ops
*ops
)
4710 bool write
= ops
->write
;
4711 struct kvm_mmio_fragment
*frag
;
4712 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
4715 * If the exit was due to a NPF we may already have a GPA.
4716 * If the GPA is present, use it to avoid the GVA to GPA table walk.
4717 * Note, this cannot be used on string operations since string
4718 * operation using rep will only have the initial GPA from the NPF
4721 if (vcpu
->arch
.gpa_available
&&
4722 emulator_can_use_gpa(ctxt
) &&
4723 (addr
& ~PAGE_MASK
) == (vcpu
->arch
.gpa_val
& ~PAGE_MASK
)) {
4724 gpa
= vcpu
->arch
.gpa_val
;
4725 ret
= vcpu_is_mmio_gpa(vcpu
, addr
, gpa
, write
);
4727 ret
= vcpu_mmio_gva_to_gpa(vcpu
, addr
, &gpa
, exception
, write
);
4729 return X86EMUL_PROPAGATE_FAULT
;
4732 if (!ret
&& ops
->read_write_emulate(vcpu
, gpa
, val
, bytes
))
4733 return X86EMUL_CONTINUE
;
4736 * Is this MMIO handled locally?
4738 handled
= ops
->read_write_mmio(vcpu
, gpa
, bytes
, val
);
4739 if (handled
== bytes
)
4740 return X86EMUL_CONTINUE
;
4746 WARN_ON(vcpu
->mmio_nr_fragments
>= KVM_MAX_MMIO_FRAGMENTS
);
4747 frag
= &vcpu
->mmio_fragments
[vcpu
->mmio_nr_fragments
++];
4751 return X86EMUL_CONTINUE
;
4754 static int emulator_read_write(struct x86_emulate_ctxt
*ctxt
,
4756 void *val
, unsigned int bytes
,
4757 struct x86_exception
*exception
,
4758 const struct read_write_emulator_ops
*ops
)
4760 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4764 if (ops
->read_write_prepare
&&
4765 ops
->read_write_prepare(vcpu
, val
, bytes
))
4766 return X86EMUL_CONTINUE
;
4768 vcpu
->mmio_nr_fragments
= 0;
4770 /* Crossing a page boundary? */
4771 if (((addr
+ bytes
- 1) ^ addr
) & PAGE_MASK
) {
4774 now
= -addr
& ~PAGE_MASK
;
4775 rc
= emulator_read_write_onepage(addr
, val
, now
, exception
,
4778 if (rc
!= X86EMUL_CONTINUE
)
4781 if (ctxt
->mode
!= X86EMUL_MODE_PROT64
)
4787 rc
= emulator_read_write_onepage(addr
, val
, bytes
, exception
,
4789 if (rc
!= X86EMUL_CONTINUE
)
4792 if (!vcpu
->mmio_nr_fragments
)
4795 gpa
= vcpu
->mmio_fragments
[0].gpa
;
4797 vcpu
->mmio_needed
= 1;
4798 vcpu
->mmio_cur_fragment
= 0;
4800 vcpu
->run
->mmio
.len
= min(8u, vcpu
->mmio_fragments
[0].len
);
4801 vcpu
->run
->mmio
.is_write
= vcpu
->mmio_is_write
= ops
->write
;
4802 vcpu
->run
->exit_reason
= KVM_EXIT_MMIO
;
4803 vcpu
->run
->mmio
.phys_addr
= gpa
;
4805 return ops
->read_write_exit_mmio(vcpu
, gpa
, val
, bytes
);
4808 static int emulator_read_emulated(struct x86_emulate_ctxt
*ctxt
,
4812 struct x86_exception
*exception
)
4814 return emulator_read_write(ctxt
, addr
, val
, bytes
,
4815 exception
, &read_emultor
);
4818 static int emulator_write_emulated(struct x86_emulate_ctxt
*ctxt
,
4822 struct x86_exception
*exception
)
4824 return emulator_read_write(ctxt
, addr
, (void *)val
, bytes
,
4825 exception
, &write_emultor
);
4828 #define CMPXCHG_TYPE(t, ptr, old, new) \
4829 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4831 #ifdef CONFIG_X86_64
4832 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4834 # define CMPXCHG64(ptr, old, new) \
4835 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4838 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt
*ctxt
,
4843 struct x86_exception
*exception
)
4845 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4851 /* guests cmpxchg8b have to be emulated atomically */
4852 if (bytes
> 8 || (bytes
& (bytes
- 1)))
4855 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, addr
, NULL
);
4857 if (gpa
== UNMAPPED_GVA
||
4858 (gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
4861 if (((gpa
+ bytes
- 1) & PAGE_MASK
) != (gpa
& PAGE_MASK
))
4864 page
= kvm_vcpu_gfn_to_page(vcpu
, gpa
>> PAGE_SHIFT
);
4865 if (is_error_page(page
))
4868 kaddr
= kmap_atomic(page
);
4869 kaddr
+= offset_in_page(gpa
);
4872 exchanged
= CMPXCHG_TYPE(u8
, kaddr
, old
, new);
4875 exchanged
= CMPXCHG_TYPE(u16
, kaddr
, old
, new);
4878 exchanged
= CMPXCHG_TYPE(u32
, kaddr
, old
, new);
4881 exchanged
= CMPXCHG64(kaddr
, old
, new);
4886 kunmap_atomic(kaddr
);
4887 kvm_release_page_dirty(page
);
4890 return X86EMUL_CMPXCHG_FAILED
;
4892 kvm_vcpu_mark_page_dirty(vcpu
, gpa
>> PAGE_SHIFT
);
4893 kvm_page_track_write(vcpu
, gpa
, new, bytes
);
4895 return X86EMUL_CONTINUE
;
4898 printk_once(KERN_WARNING
"kvm: emulating exchange as write\n");
4900 return emulator_write_emulated(ctxt
, addr
, new, bytes
, exception
);
4903 static int kernel_pio(struct kvm_vcpu
*vcpu
, void *pd
)
4907 for (i
= 0; i
< vcpu
->arch
.pio
.count
; i
++) {
4908 if (vcpu
->arch
.pio
.in
)
4909 r
= kvm_io_bus_read(vcpu
, KVM_PIO_BUS
, vcpu
->arch
.pio
.port
,
4910 vcpu
->arch
.pio
.size
, pd
);
4912 r
= kvm_io_bus_write(vcpu
, KVM_PIO_BUS
,
4913 vcpu
->arch
.pio
.port
, vcpu
->arch
.pio
.size
,
4917 pd
+= vcpu
->arch
.pio
.size
;
4922 static int emulator_pio_in_out(struct kvm_vcpu
*vcpu
, int size
,
4923 unsigned short port
, void *val
,
4924 unsigned int count
, bool in
)
4926 vcpu
->arch
.pio
.port
= port
;
4927 vcpu
->arch
.pio
.in
= in
;
4928 vcpu
->arch
.pio
.count
= count
;
4929 vcpu
->arch
.pio
.size
= size
;
4931 if (!kernel_pio(vcpu
, vcpu
->arch
.pio_data
)) {
4932 vcpu
->arch
.pio
.count
= 0;
4936 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
4937 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
4938 vcpu
->run
->io
.size
= size
;
4939 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
4940 vcpu
->run
->io
.count
= count
;
4941 vcpu
->run
->io
.port
= port
;
4946 static int emulator_pio_in_emulated(struct x86_emulate_ctxt
*ctxt
,
4947 int size
, unsigned short port
, void *val
,
4950 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4953 if (vcpu
->arch
.pio
.count
)
4956 memset(vcpu
->arch
.pio_data
, 0, size
* count
);
4958 ret
= emulator_pio_in_out(vcpu
, size
, port
, val
, count
, true);
4961 memcpy(val
, vcpu
->arch
.pio_data
, size
* count
);
4962 trace_kvm_pio(KVM_PIO_IN
, port
, size
, count
, vcpu
->arch
.pio_data
);
4963 vcpu
->arch
.pio
.count
= 0;
4970 static int emulator_pio_out_emulated(struct x86_emulate_ctxt
*ctxt
,
4971 int size
, unsigned short port
,
4972 const void *val
, unsigned int count
)
4974 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4976 memcpy(vcpu
->arch
.pio_data
, val
, size
* count
);
4977 trace_kvm_pio(KVM_PIO_OUT
, port
, size
, count
, vcpu
->arch
.pio_data
);
4978 return emulator_pio_in_out(vcpu
, size
, port
, (void *)val
, count
, false);
4981 static unsigned long get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
4983 return kvm_x86_ops
->get_segment_base(vcpu
, seg
);
4986 static void emulator_invlpg(struct x86_emulate_ctxt
*ctxt
, ulong address
)
4988 kvm_mmu_invlpg(emul_to_vcpu(ctxt
), address
);
4991 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu
*vcpu
)
4993 if (!need_emulate_wbinvd(vcpu
))
4994 return X86EMUL_CONTINUE
;
4996 if (kvm_x86_ops
->has_wbinvd_exit()) {
4997 int cpu
= get_cpu();
4999 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
5000 smp_call_function_many(vcpu
->arch
.wbinvd_dirty_mask
,
5001 wbinvd_ipi
, NULL
, 1);
5003 cpumask_clear(vcpu
->arch
.wbinvd_dirty_mask
);
5006 return X86EMUL_CONTINUE
;
5009 int kvm_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
5011 kvm_emulate_wbinvd_noskip(vcpu
);
5012 return kvm_skip_emulated_instruction(vcpu
);
5014 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd
);
5018 static void emulator_wbinvd(struct x86_emulate_ctxt
*ctxt
)
5020 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt
));
5023 static int emulator_get_dr(struct x86_emulate_ctxt
*ctxt
, int dr
,
5024 unsigned long *dest
)
5026 return kvm_get_dr(emul_to_vcpu(ctxt
), dr
, dest
);
5029 static int emulator_set_dr(struct x86_emulate_ctxt
*ctxt
, int dr
,
5030 unsigned long value
)
5033 return __kvm_set_dr(emul_to_vcpu(ctxt
), dr
, value
);
5036 static u64
mk_cr_64(u64 curr_cr
, u32 new_val
)
5038 return (curr_cr
& ~((1ULL << 32) - 1)) | new_val
;
5041 static unsigned long emulator_get_cr(struct x86_emulate_ctxt
*ctxt
, int cr
)
5043 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5044 unsigned long value
;
5048 value
= kvm_read_cr0(vcpu
);
5051 value
= vcpu
->arch
.cr2
;
5054 value
= kvm_read_cr3(vcpu
);
5057 value
= kvm_read_cr4(vcpu
);
5060 value
= kvm_get_cr8(vcpu
);
5063 kvm_err("%s: unexpected cr %u\n", __func__
, cr
);
5070 static int emulator_set_cr(struct x86_emulate_ctxt
*ctxt
, int cr
, ulong val
)
5072 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5077 res
= kvm_set_cr0(vcpu
, mk_cr_64(kvm_read_cr0(vcpu
), val
));
5080 vcpu
->arch
.cr2
= val
;
5083 res
= kvm_set_cr3(vcpu
, val
);
5086 res
= kvm_set_cr4(vcpu
, mk_cr_64(kvm_read_cr4(vcpu
), val
));
5089 res
= kvm_set_cr8(vcpu
, val
);
5092 kvm_err("%s: unexpected cr %u\n", __func__
, cr
);
5099 static int emulator_get_cpl(struct x86_emulate_ctxt
*ctxt
)
5101 return kvm_x86_ops
->get_cpl(emul_to_vcpu(ctxt
));
5104 static void emulator_get_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
5106 kvm_x86_ops
->get_gdt(emul_to_vcpu(ctxt
), dt
);
5109 static void emulator_get_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
5111 kvm_x86_ops
->get_idt(emul_to_vcpu(ctxt
), dt
);
5114 static void emulator_set_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
5116 kvm_x86_ops
->set_gdt(emul_to_vcpu(ctxt
), dt
);
5119 static void emulator_set_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
5121 kvm_x86_ops
->set_idt(emul_to_vcpu(ctxt
), dt
);
5124 static unsigned long emulator_get_cached_segment_base(
5125 struct x86_emulate_ctxt
*ctxt
, int seg
)
5127 return get_segment_base(emul_to_vcpu(ctxt
), seg
);
5130 static bool emulator_get_segment(struct x86_emulate_ctxt
*ctxt
, u16
*selector
,
5131 struct desc_struct
*desc
, u32
*base3
,
5134 struct kvm_segment var
;
5136 kvm_get_segment(emul_to_vcpu(ctxt
), &var
, seg
);
5137 *selector
= var
.selector
;
5140 memset(desc
, 0, sizeof(*desc
));
5148 set_desc_limit(desc
, var
.limit
);
5149 set_desc_base(desc
, (unsigned long)var
.base
);
5150 #ifdef CONFIG_X86_64
5152 *base3
= var
.base
>> 32;
5154 desc
->type
= var
.type
;
5156 desc
->dpl
= var
.dpl
;
5157 desc
->p
= var
.present
;
5158 desc
->avl
= var
.avl
;
5166 static void emulator_set_segment(struct x86_emulate_ctxt
*ctxt
, u16 selector
,
5167 struct desc_struct
*desc
, u32 base3
,
5170 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5171 struct kvm_segment var
;
5173 var
.selector
= selector
;
5174 var
.base
= get_desc_base(desc
);
5175 #ifdef CONFIG_X86_64
5176 var
.base
|= ((u64
)base3
) << 32;
5178 var
.limit
= get_desc_limit(desc
);
5180 var
.limit
= (var
.limit
<< 12) | 0xfff;
5181 var
.type
= desc
->type
;
5182 var
.dpl
= desc
->dpl
;
5187 var
.avl
= desc
->avl
;
5188 var
.present
= desc
->p
;
5189 var
.unusable
= !var
.present
;
5192 kvm_set_segment(vcpu
, &var
, seg
);
5196 static int emulator_get_msr(struct x86_emulate_ctxt
*ctxt
,
5197 u32 msr_index
, u64
*pdata
)
5199 struct msr_data msr
;
5202 msr
.index
= msr_index
;
5203 msr
.host_initiated
= false;
5204 r
= kvm_get_msr(emul_to_vcpu(ctxt
), &msr
);
5212 static int emulator_set_msr(struct x86_emulate_ctxt
*ctxt
,
5213 u32 msr_index
, u64 data
)
5215 struct msr_data msr
;
5218 msr
.index
= msr_index
;
5219 msr
.host_initiated
= false;
5220 return kvm_set_msr(emul_to_vcpu(ctxt
), &msr
);
5223 static u64
emulator_get_smbase(struct x86_emulate_ctxt
*ctxt
)
5225 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5227 return vcpu
->arch
.smbase
;
5230 static void emulator_set_smbase(struct x86_emulate_ctxt
*ctxt
, u64 smbase
)
5232 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5234 vcpu
->arch
.smbase
= smbase
;
5237 static int emulator_check_pmc(struct x86_emulate_ctxt
*ctxt
,
5240 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt
), pmc
);
5243 static int emulator_read_pmc(struct x86_emulate_ctxt
*ctxt
,
5244 u32 pmc
, u64
*pdata
)
5246 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt
), pmc
, pdata
);
5249 static void emulator_halt(struct x86_emulate_ctxt
*ctxt
)
5251 emul_to_vcpu(ctxt
)->arch
.halt_request
= 1;
5254 static int emulator_intercept(struct x86_emulate_ctxt
*ctxt
,
5255 struct x86_instruction_info
*info
,
5256 enum x86_intercept_stage stage
)
5258 return kvm_x86_ops
->check_intercept(emul_to_vcpu(ctxt
), info
, stage
);
5261 static bool emulator_get_cpuid(struct x86_emulate_ctxt
*ctxt
,
5262 u32
*eax
, u32
*ebx
, u32
*ecx
, u32
*edx
, bool check_limit
)
5264 return kvm_cpuid(emul_to_vcpu(ctxt
), eax
, ebx
, ecx
, edx
, check_limit
);
5267 static ulong
emulator_read_gpr(struct x86_emulate_ctxt
*ctxt
, unsigned reg
)
5269 return kvm_register_read(emul_to_vcpu(ctxt
), reg
);
5272 static void emulator_write_gpr(struct x86_emulate_ctxt
*ctxt
, unsigned reg
, ulong val
)
5274 kvm_register_write(emul_to_vcpu(ctxt
), reg
, val
);
5277 static void emulator_set_nmi_mask(struct x86_emulate_ctxt
*ctxt
, bool masked
)
5279 kvm_x86_ops
->set_nmi_mask(emul_to_vcpu(ctxt
), masked
);
5282 static unsigned emulator_get_hflags(struct x86_emulate_ctxt
*ctxt
)
5284 return emul_to_vcpu(ctxt
)->arch
.hflags
;
5287 static void emulator_set_hflags(struct x86_emulate_ctxt
*ctxt
, unsigned emul_flags
)
5289 kvm_set_hflags(emul_to_vcpu(ctxt
), emul_flags
);
5292 static int emulator_pre_leave_smm(struct x86_emulate_ctxt
*ctxt
, u64 smbase
)
5294 return kvm_x86_ops
->pre_leave_smm(emul_to_vcpu(ctxt
), smbase
);
5297 static const struct x86_emulate_ops emulate_ops
= {
5298 .read_gpr
= emulator_read_gpr
,
5299 .write_gpr
= emulator_write_gpr
,
5300 .read_std
= kvm_read_guest_virt_system
,
5301 .write_std
= kvm_write_guest_virt_system
,
5302 .read_phys
= kvm_read_guest_phys_system
,
5303 .fetch
= kvm_fetch_guest_virt
,
5304 .read_emulated
= emulator_read_emulated
,
5305 .write_emulated
= emulator_write_emulated
,
5306 .cmpxchg_emulated
= emulator_cmpxchg_emulated
,
5307 .invlpg
= emulator_invlpg
,
5308 .pio_in_emulated
= emulator_pio_in_emulated
,
5309 .pio_out_emulated
= emulator_pio_out_emulated
,
5310 .get_segment
= emulator_get_segment
,
5311 .set_segment
= emulator_set_segment
,
5312 .get_cached_segment_base
= emulator_get_cached_segment_base
,
5313 .get_gdt
= emulator_get_gdt
,
5314 .get_idt
= emulator_get_idt
,
5315 .set_gdt
= emulator_set_gdt
,
5316 .set_idt
= emulator_set_idt
,
5317 .get_cr
= emulator_get_cr
,
5318 .set_cr
= emulator_set_cr
,
5319 .cpl
= emulator_get_cpl
,
5320 .get_dr
= emulator_get_dr
,
5321 .set_dr
= emulator_set_dr
,
5322 .get_smbase
= emulator_get_smbase
,
5323 .set_smbase
= emulator_set_smbase
,
5324 .set_msr
= emulator_set_msr
,
5325 .get_msr
= emulator_get_msr
,
5326 .check_pmc
= emulator_check_pmc
,
5327 .read_pmc
= emulator_read_pmc
,
5328 .halt
= emulator_halt
,
5329 .wbinvd
= emulator_wbinvd
,
5330 .fix_hypercall
= emulator_fix_hypercall
,
5331 .intercept
= emulator_intercept
,
5332 .get_cpuid
= emulator_get_cpuid
,
5333 .set_nmi_mask
= emulator_set_nmi_mask
,
5334 .get_hflags
= emulator_get_hflags
,
5335 .set_hflags
= emulator_set_hflags
,
5336 .pre_leave_smm
= emulator_pre_leave_smm
,
5339 static void toggle_interruptibility(struct kvm_vcpu
*vcpu
, u32 mask
)
5341 u32 int_shadow
= kvm_x86_ops
->get_interrupt_shadow(vcpu
);
5343 * an sti; sti; sequence only disable interrupts for the first
5344 * instruction. So, if the last instruction, be it emulated or
5345 * not, left the system with the INT_STI flag enabled, it
5346 * means that the last instruction is an sti. We should not
5347 * leave the flag on in this case. The same goes for mov ss
5349 if (int_shadow
& mask
)
5351 if (unlikely(int_shadow
|| mask
)) {
5352 kvm_x86_ops
->set_interrupt_shadow(vcpu
, mask
);
5354 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5358 static bool inject_emulated_exception(struct kvm_vcpu
*vcpu
)
5360 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5361 if (ctxt
->exception
.vector
== PF_VECTOR
)
5362 return kvm_propagate_fault(vcpu
, &ctxt
->exception
);
5364 if (ctxt
->exception
.error_code_valid
)
5365 kvm_queue_exception_e(vcpu
, ctxt
->exception
.vector
,
5366 ctxt
->exception
.error_code
);
5368 kvm_queue_exception(vcpu
, ctxt
->exception
.vector
);
5372 static void init_emulate_ctxt(struct kvm_vcpu
*vcpu
)
5374 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5377 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
5379 ctxt
->eflags
= kvm_get_rflags(vcpu
);
5380 ctxt
->tf
= (ctxt
->eflags
& X86_EFLAGS_TF
) != 0;
5382 ctxt
->eip
= kvm_rip_read(vcpu
);
5383 ctxt
->mode
= (!is_protmode(vcpu
)) ? X86EMUL_MODE_REAL
:
5384 (ctxt
->eflags
& X86_EFLAGS_VM
) ? X86EMUL_MODE_VM86
:
5385 (cs_l
&& is_long_mode(vcpu
)) ? X86EMUL_MODE_PROT64
:
5386 cs_db
? X86EMUL_MODE_PROT32
:
5387 X86EMUL_MODE_PROT16
;
5388 BUILD_BUG_ON(HF_GUEST_MASK
!= X86EMUL_GUEST_MASK
);
5389 BUILD_BUG_ON(HF_SMM_MASK
!= X86EMUL_SMM_MASK
);
5390 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK
!= X86EMUL_SMM_INSIDE_NMI_MASK
);
5392 init_decode_cache(ctxt
);
5393 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
5396 int kvm_inject_realmode_interrupt(struct kvm_vcpu
*vcpu
, int irq
, int inc_eip
)
5398 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5401 init_emulate_ctxt(vcpu
);
5405 ctxt
->_eip
= ctxt
->eip
+ inc_eip
;
5406 ret
= emulate_int_real(ctxt
, irq
);
5408 if (ret
!= X86EMUL_CONTINUE
)
5409 return EMULATE_FAIL
;
5411 ctxt
->eip
= ctxt
->_eip
;
5412 kvm_rip_write(vcpu
, ctxt
->eip
);
5413 kvm_set_rflags(vcpu
, ctxt
->eflags
);
5415 if (irq
== NMI_VECTOR
)
5416 vcpu
->arch
.nmi_pending
= 0;
5418 vcpu
->arch
.interrupt
.pending
= false;
5420 return EMULATE_DONE
;
5422 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt
);
5424 static int handle_emulation_failure(struct kvm_vcpu
*vcpu
)
5426 int r
= EMULATE_DONE
;
5428 ++vcpu
->stat
.insn_emulation_fail
;
5429 trace_kvm_emulate_insn_failed(vcpu
);
5430 if (!is_guest_mode(vcpu
) && kvm_x86_ops
->get_cpl(vcpu
) == 0) {
5431 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
5432 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
5433 vcpu
->run
->internal
.ndata
= 0;
5434 r
= EMULATE_USER_EXIT
;
5436 kvm_queue_exception(vcpu
, UD_VECTOR
);
5441 static bool reexecute_instruction(struct kvm_vcpu
*vcpu
, gva_t cr2
,
5442 bool write_fault_to_shadow_pgtable
,
5448 if (emulation_type
& EMULTYPE_NO_REEXECUTE
)
5451 if (!vcpu
->arch
.mmu
.direct_map
) {
5453 * Write permission should be allowed since only
5454 * write access need to be emulated.
5456 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, cr2
, NULL
);
5459 * If the mapping is invalid in guest, let cpu retry
5460 * it to generate fault.
5462 if (gpa
== UNMAPPED_GVA
)
5467 * Do not retry the unhandleable instruction if it faults on the
5468 * readonly host memory, otherwise it will goto a infinite loop:
5469 * retry instruction -> write #PF -> emulation fail -> retry
5470 * instruction -> ...
5472 pfn
= gfn_to_pfn(vcpu
->kvm
, gpa_to_gfn(gpa
));
5475 * If the instruction failed on the error pfn, it can not be fixed,
5476 * report the error to userspace.
5478 if (is_error_noslot_pfn(pfn
))
5481 kvm_release_pfn_clean(pfn
);
5483 /* The instructions are well-emulated on direct mmu. */
5484 if (vcpu
->arch
.mmu
.direct_map
) {
5485 unsigned int indirect_shadow_pages
;
5487 spin_lock(&vcpu
->kvm
->mmu_lock
);
5488 indirect_shadow_pages
= vcpu
->kvm
->arch
.indirect_shadow_pages
;
5489 spin_unlock(&vcpu
->kvm
->mmu_lock
);
5491 if (indirect_shadow_pages
)
5492 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
5498 * if emulation was due to access to shadowed page table
5499 * and it failed try to unshadow page and re-enter the
5500 * guest to let CPU execute the instruction.
5502 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
5505 * If the access faults on its page table, it can not
5506 * be fixed by unprotecting shadow page and it should
5507 * be reported to userspace.
5509 return !write_fault_to_shadow_pgtable
;
5512 static bool retry_instruction(struct x86_emulate_ctxt
*ctxt
,
5513 unsigned long cr2
, int emulation_type
)
5515 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5516 unsigned long last_retry_eip
, last_retry_addr
, gpa
= cr2
;
5518 last_retry_eip
= vcpu
->arch
.last_retry_eip
;
5519 last_retry_addr
= vcpu
->arch
.last_retry_addr
;
5522 * If the emulation is caused by #PF and it is non-page_table
5523 * writing instruction, it means the VM-EXIT is caused by shadow
5524 * page protected, we can zap the shadow page and retry this
5525 * instruction directly.
5527 * Note: if the guest uses a non-page-table modifying instruction
5528 * on the PDE that points to the instruction, then we will unmap
5529 * the instruction and go to an infinite loop. So, we cache the
5530 * last retried eip and the last fault address, if we meet the eip
5531 * and the address again, we can break out of the potential infinite
5534 vcpu
->arch
.last_retry_eip
= vcpu
->arch
.last_retry_addr
= 0;
5536 if (!(emulation_type
& EMULTYPE_RETRY
))
5539 if (x86_page_table_writing_insn(ctxt
))
5542 if (ctxt
->eip
== last_retry_eip
&& last_retry_addr
== cr2
)
5545 vcpu
->arch
.last_retry_eip
= ctxt
->eip
;
5546 vcpu
->arch
.last_retry_addr
= cr2
;
5548 if (!vcpu
->arch
.mmu
.direct_map
)
5549 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, cr2
, NULL
);
5551 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
5556 static int complete_emulated_mmio(struct kvm_vcpu
*vcpu
);
5557 static int complete_emulated_pio(struct kvm_vcpu
*vcpu
);
5559 static void kvm_smm_changed(struct kvm_vcpu
*vcpu
)
5561 if (!(vcpu
->arch
.hflags
& HF_SMM_MASK
)) {
5562 /* This is a good place to trace that we are exiting SMM. */
5563 trace_kvm_enter_smm(vcpu
->vcpu_id
, vcpu
->arch
.smbase
, false);
5565 /* Process a latched INIT or SMI, if any. */
5566 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5569 kvm_mmu_reset_context(vcpu
);
5572 static void kvm_set_hflags(struct kvm_vcpu
*vcpu
, unsigned emul_flags
)
5574 unsigned changed
= vcpu
->arch
.hflags
^ emul_flags
;
5576 vcpu
->arch
.hflags
= emul_flags
;
5578 if (changed
& HF_SMM_MASK
)
5579 kvm_smm_changed(vcpu
);
5582 static int kvm_vcpu_check_hw_bp(unsigned long addr
, u32 type
, u32 dr7
,
5591 for (i
= 0; i
< 4; i
++, enable
>>= 2, rwlen
>>= 4)
5592 if ((enable
& 3) && (rwlen
& 15) == type
&& db
[i
] == addr
)
5597 static void kvm_vcpu_do_singlestep(struct kvm_vcpu
*vcpu
, int *r
)
5599 struct kvm_run
*kvm_run
= vcpu
->run
;
5601 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
) {
5602 kvm_run
->debug
.arch
.dr6
= DR6_BS
| DR6_FIXED_1
| DR6_RTM
;
5603 kvm_run
->debug
.arch
.pc
= vcpu
->arch
.singlestep_rip
;
5604 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
5605 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
5606 *r
= EMULATE_USER_EXIT
;
5609 * "Certain debug exceptions may clear bit 0-3. The
5610 * remaining contents of the DR6 register are never
5611 * cleared by the processor".
5613 vcpu
->arch
.dr6
&= ~15;
5614 vcpu
->arch
.dr6
|= DR6_BS
| DR6_RTM
;
5615 kvm_queue_exception(vcpu
, DB_VECTOR
);
5619 int kvm_skip_emulated_instruction(struct kvm_vcpu
*vcpu
)
5621 unsigned long rflags
= kvm_x86_ops
->get_rflags(vcpu
);
5622 int r
= EMULATE_DONE
;
5624 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
5627 * rflags is the old, "raw" value of the flags. The new value has
5628 * not been saved yet.
5630 * This is correct even for TF set by the guest, because "the
5631 * processor will not generate this exception after the instruction
5632 * that sets the TF flag".
5634 if (unlikely(rflags
& X86_EFLAGS_TF
))
5635 kvm_vcpu_do_singlestep(vcpu
, &r
);
5636 return r
== EMULATE_DONE
;
5638 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction
);
5640 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu
*vcpu
, int *r
)
5642 if (unlikely(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) &&
5643 (vcpu
->arch
.guest_debug_dr7
& DR7_BP_EN_MASK
)) {
5644 struct kvm_run
*kvm_run
= vcpu
->run
;
5645 unsigned long eip
= kvm_get_linear_rip(vcpu
);
5646 u32 dr6
= kvm_vcpu_check_hw_bp(eip
, 0,
5647 vcpu
->arch
.guest_debug_dr7
,
5651 kvm_run
->debug
.arch
.dr6
= dr6
| DR6_FIXED_1
| DR6_RTM
;
5652 kvm_run
->debug
.arch
.pc
= eip
;
5653 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
5654 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
5655 *r
= EMULATE_USER_EXIT
;
5660 if (unlikely(vcpu
->arch
.dr7
& DR7_BP_EN_MASK
) &&
5661 !(kvm_get_rflags(vcpu
) & X86_EFLAGS_RF
)) {
5662 unsigned long eip
= kvm_get_linear_rip(vcpu
);
5663 u32 dr6
= kvm_vcpu_check_hw_bp(eip
, 0,
5668 vcpu
->arch
.dr6
&= ~15;
5669 vcpu
->arch
.dr6
|= dr6
| DR6_RTM
;
5670 kvm_queue_exception(vcpu
, DB_VECTOR
);
5679 int x86_emulate_instruction(struct kvm_vcpu
*vcpu
,
5686 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5687 bool writeback
= true;
5688 bool write_fault_to_spt
= vcpu
->arch
.write_fault_to_shadow_pgtable
;
5691 * Clear write_fault_to_shadow_pgtable here to ensure it is
5694 vcpu
->arch
.write_fault_to_shadow_pgtable
= false;
5695 kvm_clear_exception_queue(vcpu
);
5697 if (!(emulation_type
& EMULTYPE_NO_DECODE
)) {
5698 init_emulate_ctxt(vcpu
);
5701 * We will reenter on the same instruction since
5702 * we do not set complete_userspace_io. This does not
5703 * handle watchpoints yet, those would be handled in
5706 if (kvm_vcpu_check_breakpoint(vcpu
, &r
))
5709 ctxt
->interruptibility
= 0;
5710 ctxt
->have_exception
= false;
5711 ctxt
->exception
.vector
= -1;
5712 ctxt
->perm_ok
= false;
5714 ctxt
->ud
= emulation_type
& EMULTYPE_TRAP_UD
;
5716 r
= x86_decode_insn(ctxt
, insn
, insn_len
);
5718 trace_kvm_emulate_insn_start(vcpu
);
5719 ++vcpu
->stat
.insn_emulation
;
5720 if (r
!= EMULATION_OK
) {
5721 if (emulation_type
& EMULTYPE_TRAP_UD
)
5722 return EMULATE_FAIL
;
5723 if (reexecute_instruction(vcpu
, cr2
, write_fault_to_spt
,
5725 return EMULATE_DONE
;
5726 if (ctxt
->have_exception
&& inject_emulated_exception(vcpu
))
5727 return EMULATE_DONE
;
5728 if (emulation_type
& EMULTYPE_SKIP
)
5729 return EMULATE_FAIL
;
5730 return handle_emulation_failure(vcpu
);
5734 if (emulation_type
& EMULTYPE_SKIP
) {
5735 kvm_rip_write(vcpu
, ctxt
->_eip
);
5736 if (ctxt
->eflags
& X86_EFLAGS_RF
)
5737 kvm_set_rflags(vcpu
, ctxt
->eflags
& ~X86_EFLAGS_RF
);
5738 return EMULATE_DONE
;
5741 if (retry_instruction(ctxt
, cr2
, emulation_type
))
5742 return EMULATE_DONE
;
5744 /* this is needed for vmware backdoor interface to work since it
5745 changes registers values during IO operation */
5746 if (vcpu
->arch
.emulate_regs_need_sync_from_vcpu
) {
5747 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
5748 emulator_invalidate_register_cache(ctxt
);
5752 /* Save the faulting GPA (cr2) in the address field */
5753 ctxt
->exception
.address
= cr2
;
5755 r
= x86_emulate_insn(ctxt
);
5757 if (r
== EMULATION_INTERCEPTED
)
5758 return EMULATE_DONE
;
5760 if (r
== EMULATION_FAILED
) {
5761 if (reexecute_instruction(vcpu
, cr2
, write_fault_to_spt
,
5763 return EMULATE_DONE
;
5765 return handle_emulation_failure(vcpu
);
5768 if (ctxt
->have_exception
) {
5770 if (inject_emulated_exception(vcpu
))
5772 } else if (vcpu
->arch
.pio
.count
) {
5773 if (!vcpu
->arch
.pio
.in
) {
5774 /* FIXME: return into emulator if single-stepping. */
5775 vcpu
->arch
.pio
.count
= 0;
5778 vcpu
->arch
.complete_userspace_io
= complete_emulated_pio
;
5780 r
= EMULATE_USER_EXIT
;
5781 } else if (vcpu
->mmio_needed
) {
5782 if (!vcpu
->mmio_is_write
)
5784 r
= EMULATE_USER_EXIT
;
5785 vcpu
->arch
.complete_userspace_io
= complete_emulated_mmio
;
5786 } else if (r
== EMULATION_RESTART
)
5792 unsigned long rflags
= kvm_x86_ops
->get_rflags(vcpu
);
5793 toggle_interruptibility(vcpu
, ctxt
->interruptibility
);
5794 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
5795 kvm_rip_write(vcpu
, ctxt
->eip
);
5796 if (r
== EMULATE_DONE
&&
5797 (ctxt
->tf
|| (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)))
5798 kvm_vcpu_do_singlestep(vcpu
, &r
);
5799 if (!ctxt
->have_exception
||
5800 exception_type(ctxt
->exception
.vector
) == EXCPT_TRAP
)
5801 __kvm_set_rflags(vcpu
, ctxt
->eflags
);
5804 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5805 * do nothing, and it will be requested again as soon as
5806 * the shadow expires. But we still need to check here,
5807 * because POPF has no interrupt shadow.
5809 if (unlikely((ctxt
->eflags
& ~rflags
) & X86_EFLAGS_IF
))
5810 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5812 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= true;
5816 EXPORT_SYMBOL_GPL(x86_emulate_instruction
);
5818 int kvm_fast_pio_out(struct kvm_vcpu
*vcpu
, int size
, unsigned short port
)
5820 unsigned long val
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
5821 int ret
= emulator_pio_out_emulated(&vcpu
->arch
.emulate_ctxt
,
5822 size
, port
, &val
, 1);
5823 /* do not return to emulator after return from userspace */
5824 vcpu
->arch
.pio
.count
= 0;
5827 EXPORT_SYMBOL_GPL(kvm_fast_pio_out
);
5829 static int complete_fast_pio_in(struct kvm_vcpu
*vcpu
)
5833 /* We should only ever be called with arch.pio.count equal to 1 */
5834 BUG_ON(vcpu
->arch
.pio
.count
!= 1);
5836 /* For size less than 4 we merge, else we zero extend */
5837 val
= (vcpu
->arch
.pio
.size
< 4) ? kvm_register_read(vcpu
, VCPU_REGS_RAX
)
5841 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
5842 * the copy and tracing
5844 emulator_pio_in_emulated(&vcpu
->arch
.emulate_ctxt
, vcpu
->arch
.pio
.size
,
5845 vcpu
->arch
.pio
.port
, &val
, 1);
5846 kvm_register_write(vcpu
, VCPU_REGS_RAX
, val
);
5851 int kvm_fast_pio_in(struct kvm_vcpu
*vcpu
, int size
, unsigned short port
)
5856 /* For size less than 4 we merge, else we zero extend */
5857 val
= (size
< 4) ? kvm_register_read(vcpu
, VCPU_REGS_RAX
) : 0;
5859 ret
= emulator_pio_in_emulated(&vcpu
->arch
.emulate_ctxt
, size
, port
,
5862 kvm_register_write(vcpu
, VCPU_REGS_RAX
, val
);
5866 vcpu
->arch
.complete_userspace_io
= complete_fast_pio_in
;
5870 EXPORT_SYMBOL_GPL(kvm_fast_pio_in
);
5872 static int kvmclock_cpu_down_prep(unsigned int cpu
)
5874 __this_cpu_write(cpu_tsc_khz
, 0);
5878 static void tsc_khz_changed(void *data
)
5880 struct cpufreq_freqs
*freq
= data
;
5881 unsigned long khz
= 0;
5885 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
5886 khz
= cpufreq_quick_get(raw_smp_processor_id());
5889 __this_cpu_write(cpu_tsc_khz
, khz
);
5892 static int kvmclock_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
5895 struct cpufreq_freqs
*freq
= data
;
5897 struct kvm_vcpu
*vcpu
;
5898 int i
, send_ipi
= 0;
5901 * We allow guests to temporarily run on slowing clocks,
5902 * provided we notify them after, or to run on accelerating
5903 * clocks, provided we notify them before. Thus time never
5906 * However, we have a problem. We can't atomically update
5907 * the frequency of a given CPU from this function; it is
5908 * merely a notifier, which can be called from any CPU.
5909 * Changing the TSC frequency at arbitrary points in time
5910 * requires a recomputation of local variables related to
5911 * the TSC for each VCPU. We must flag these local variables
5912 * to be updated and be sure the update takes place with the
5913 * new frequency before any guests proceed.
5915 * Unfortunately, the combination of hotplug CPU and frequency
5916 * change creates an intractable locking scenario; the order
5917 * of when these callouts happen is undefined with respect to
5918 * CPU hotplug, and they can race with each other. As such,
5919 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5920 * undefined; you can actually have a CPU frequency change take
5921 * place in between the computation of X and the setting of the
5922 * variable. To protect against this problem, all updates of
5923 * the per_cpu tsc_khz variable are done in an interrupt
5924 * protected IPI, and all callers wishing to update the value
5925 * must wait for a synchronous IPI to complete (which is trivial
5926 * if the caller is on the CPU already). This establishes the
5927 * necessary total order on variable updates.
5929 * Note that because a guest time update may take place
5930 * anytime after the setting of the VCPU's request bit, the
5931 * correct TSC value must be set before the request. However,
5932 * to ensure the update actually makes it to any guest which
5933 * starts running in hardware virtualization between the set
5934 * and the acquisition of the spinlock, we must also ping the
5935 * CPU after setting the request bit.
5939 if (val
== CPUFREQ_PRECHANGE
&& freq
->old
> freq
->new)
5941 if (val
== CPUFREQ_POSTCHANGE
&& freq
->old
< freq
->new)
5944 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
5946 spin_lock(&kvm_lock
);
5947 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
5948 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
5949 if (vcpu
->cpu
!= freq
->cpu
)
5951 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
5952 if (vcpu
->cpu
!= smp_processor_id())
5956 spin_unlock(&kvm_lock
);
5958 if (freq
->old
< freq
->new && send_ipi
) {
5960 * We upscale the frequency. Must make the guest
5961 * doesn't see old kvmclock values while running with
5962 * the new frequency, otherwise we risk the guest sees
5963 * time go backwards.
5965 * In case we update the frequency for another cpu
5966 * (which might be in guest context) send an interrupt
5967 * to kick the cpu out of guest context. Next time
5968 * guest context is entered kvmclock will be updated,
5969 * so the guest will not see stale values.
5971 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
5976 static struct notifier_block kvmclock_cpufreq_notifier_block
= {
5977 .notifier_call
= kvmclock_cpufreq_notifier
5980 static int kvmclock_cpu_online(unsigned int cpu
)
5982 tsc_khz_changed(NULL
);
5986 static void kvm_timer_init(void)
5988 max_tsc_khz
= tsc_khz
;
5990 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
)) {
5991 #ifdef CONFIG_CPU_FREQ
5992 struct cpufreq_policy policy
;
5995 memset(&policy
, 0, sizeof(policy
));
5997 cpufreq_get_policy(&policy
, cpu
);
5998 if (policy
.cpuinfo
.max_freq
)
5999 max_tsc_khz
= policy
.cpuinfo
.max_freq
;
6002 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block
,
6003 CPUFREQ_TRANSITION_NOTIFIER
);
6005 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz
);
6007 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE
, "x86/kvm/clk:online",
6008 kvmclock_cpu_online
, kvmclock_cpu_down_prep
);
6011 static DEFINE_PER_CPU(struct kvm_vcpu
*, current_vcpu
);
6013 int kvm_is_in_guest(void)
6015 return __this_cpu_read(current_vcpu
) != NULL
;
6018 static int kvm_is_user_mode(void)
6022 if (__this_cpu_read(current_vcpu
))
6023 user_mode
= kvm_x86_ops
->get_cpl(__this_cpu_read(current_vcpu
));
6025 return user_mode
!= 0;
6028 static unsigned long kvm_get_guest_ip(void)
6030 unsigned long ip
= 0;
6032 if (__this_cpu_read(current_vcpu
))
6033 ip
= kvm_rip_read(__this_cpu_read(current_vcpu
));
6038 static struct perf_guest_info_callbacks kvm_guest_cbs
= {
6039 .is_in_guest
= kvm_is_in_guest
,
6040 .is_user_mode
= kvm_is_user_mode
,
6041 .get_guest_ip
= kvm_get_guest_ip
,
6044 void kvm_before_handle_nmi(struct kvm_vcpu
*vcpu
)
6046 __this_cpu_write(current_vcpu
, vcpu
);
6048 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi
);
6050 void kvm_after_handle_nmi(struct kvm_vcpu
*vcpu
)
6052 __this_cpu_write(current_vcpu
, NULL
);
6054 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi
);
6056 static void kvm_set_mmio_spte_mask(void)
6059 int maxphyaddr
= boot_cpu_data
.x86_phys_bits
;
6062 * Set the reserved bits and the present bit of an paging-structure
6063 * entry to generate page fault with PFER.RSV = 1.
6065 /* Mask the reserved physical address bits. */
6066 mask
= rsvd_bits(maxphyaddr
, 51);
6068 /* Set the present bit. */
6071 #ifdef CONFIG_X86_64
6073 * If reserved bit is not supported, clear the present bit to disable
6076 if (maxphyaddr
== 52)
6080 kvm_mmu_set_mmio_spte_mask(mask
, mask
);
6083 #ifdef CONFIG_X86_64
6084 static void pvclock_gtod_update_fn(struct work_struct
*work
)
6088 struct kvm_vcpu
*vcpu
;
6091 spin_lock(&kvm_lock
);
6092 list_for_each_entry(kvm
, &vm_list
, vm_list
)
6093 kvm_for_each_vcpu(i
, vcpu
, kvm
)
6094 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
6095 atomic_set(&kvm_guest_has_master_clock
, 0);
6096 spin_unlock(&kvm_lock
);
6099 static DECLARE_WORK(pvclock_gtod_work
, pvclock_gtod_update_fn
);
6102 * Notification about pvclock gtod data update.
6104 static int pvclock_gtod_notify(struct notifier_block
*nb
, unsigned long unused
,
6107 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
6108 struct timekeeper
*tk
= priv
;
6110 update_pvclock_gtod(tk
);
6112 /* disable master clock if host does not trust, or does not
6113 * use, TSC clocksource
6115 if (gtod
->clock
.vclock_mode
!= VCLOCK_TSC
&&
6116 atomic_read(&kvm_guest_has_master_clock
) != 0)
6117 queue_work(system_long_wq
, &pvclock_gtod_work
);
6122 static struct notifier_block pvclock_gtod_notifier
= {
6123 .notifier_call
= pvclock_gtod_notify
,
6127 int kvm_arch_init(void *opaque
)
6130 struct kvm_x86_ops
*ops
= opaque
;
6133 printk(KERN_ERR
"kvm: already loaded the other module\n");
6138 if (!ops
->cpu_has_kvm_support()) {
6139 printk(KERN_ERR
"kvm: no hardware support\n");
6143 if (ops
->disabled_by_bios()) {
6144 printk(KERN_ERR
"kvm: disabled by bios\n");
6150 shared_msrs
= alloc_percpu(struct kvm_shared_msrs
);
6152 printk(KERN_ERR
"kvm: failed to allocate percpu kvm_shared_msrs\n");
6156 r
= kvm_mmu_module_init();
6158 goto out_free_percpu
;
6160 kvm_set_mmio_spte_mask();
6164 kvm_mmu_set_mask_ptes(PT_USER_MASK
, PT_ACCESSED_MASK
,
6165 PT_DIRTY_MASK
, PT64_NX_MASK
, 0,
6166 PT_PRESENT_MASK
, 0, sme_me_mask
);
6169 perf_register_guest_info_callbacks(&kvm_guest_cbs
);
6171 if (boot_cpu_has(X86_FEATURE_XSAVE
))
6172 host_xcr0
= xgetbv(XCR_XFEATURE_ENABLED_MASK
);
6175 #ifdef CONFIG_X86_64
6176 pvclock_gtod_register_notifier(&pvclock_gtod_notifier
);
6182 free_percpu(shared_msrs
);
6187 void kvm_arch_exit(void)
6190 perf_unregister_guest_info_callbacks(&kvm_guest_cbs
);
6192 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
6193 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block
,
6194 CPUFREQ_TRANSITION_NOTIFIER
);
6195 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE
);
6196 #ifdef CONFIG_X86_64
6197 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier
);
6200 kvm_mmu_module_exit();
6201 free_percpu(shared_msrs
);
6204 int kvm_vcpu_halt(struct kvm_vcpu
*vcpu
)
6206 ++vcpu
->stat
.halt_exits
;
6207 if (lapic_in_kernel(vcpu
)) {
6208 vcpu
->arch
.mp_state
= KVM_MP_STATE_HALTED
;
6211 vcpu
->run
->exit_reason
= KVM_EXIT_HLT
;
6215 EXPORT_SYMBOL_GPL(kvm_vcpu_halt
);
6217 int kvm_emulate_halt(struct kvm_vcpu
*vcpu
)
6219 int ret
= kvm_skip_emulated_instruction(vcpu
);
6221 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6222 * KVM_EXIT_DEBUG here.
6224 return kvm_vcpu_halt(vcpu
) && ret
;
6226 EXPORT_SYMBOL_GPL(kvm_emulate_halt
);
6228 #ifdef CONFIG_X86_64
6229 static int kvm_pv_clock_pairing(struct kvm_vcpu
*vcpu
, gpa_t paddr
,
6230 unsigned long clock_type
)
6232 struct kvm_clock_pairing clock_pairing
;
6237 if (clock_type
!= KVM_CLOCK_PAIRING_WALLCLOCK
)
6238 return -KVM_EOPNOTSUPP
;
6240 if (kvm_get_walltime_and_clockread(&ts
, &cycle
) == false)
6241 return -KVM_EOPNOTSUPP
;
6243 clock_pairing
.sec
= ts
.tv_sec
;
6244 clock_pairing
.nsec
= ts
.tv_nsec
;
6245 clock_pairing
.tsc
= kvm_read_l1_tsc(vcpu
, cycle
);
6246 clock_pairing
.flags
= 0;
6249 if (kvm_write_guest(vcpu
->kvm
, paddr
, &clock_pairing
,
6250 sizeof(struct kvm_clock_pairing
)))
6258 * kvm_pv_kick_cpu_op: Kick a vcpu.
6260 * @apicid - apicid of vcpu to be kicked.
6262 static void kvm_pv_kick_cpu_op(struct kvm
*kvm
, unsigned long flags
, int apicid
)
6264 struct kvm_lapic_irq lapic_irq
;
6266 lapic_irq
.shorthand
= 0;
6267 lapic_irq
.dest_mode
= 0;
6268 lapic_irq
.level
= 0;
6269 lapic_irq
.dest_id
= apicid
;
6270 lapic_irq
.msi_redir_hint
= false;
6272 lapic_irq
.delivery_mode
= APIC_DM_REMRD
;
6273 kvm_irq_delivery_to_apic(kvm
, NULL
, &lapic_irq
, NULL
);
6276 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu
*vcpu
)
6278 vcpu
->arch
.apicv_active
= false;
6279 kvm_x86_ops
->refresh_apicv_exec_ctrl(vcpu
);
6282 int kvm_emulate_hypercall(struct kvm_vcpu
*vcpu
)
6284 unsigned long nr
, a0
, a1
, a2
, a3
, ret
;
6287 r
= kvm_skip_emulated_instruction(vcpu
);
6289 if (kvm_hv_hypercall_enabled(vcpu
->kvm
))
6290 return kvm_hv_hypercall(vcpu
);
6292 nr
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
6293 a0
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
6294 a1
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
6295 a2
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
6296 a3
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
6298 trace_kvm_hypercall(nr
, a0
, a1
, a2
, a3
);
6300 op_64_bit
= is_64_bit_mode(vcpu
);
6309 if (kvm_x86_ops
->get_cpl(vcpu
) != 0) {
6315 case KVM_HC_VAPIC_POLL_IRQ
:
6318 case KVM_HC_KICK_CPU
:
6319 kvm_pv_kick_cpu_op(vcpu
->kvm
, a0
, a1
);
6322 #ifdef CONFIG_X86_64
6323 case KVM_HC_CLOCK_PAIRING
:
6324 ret
= kvm_pv_clock_pairing(vcpu
, a0
, a1
);
6334 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
6335 ++vcpu
->stat
.hypercalls
;
6338 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall
);
6340 static int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
)
6342 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
6343 char instruction
[3];
6344 unsigned long rip
= kvm_rip_read(vcpu
);
6346 kvm_x86_ops
->patch_hypercall(vcpu
, instruction
);
6348 return emulator_write_emulated(ctxt
, rip
, instruction
, 3,
6352 static int dm_request_for_irq_injection(struct kvm_vcpu
*vcpu
)
6354 return vcpu
->run
->request_interrupt_window
&&
6355 likely(!pic_in_kernel(vcpu
->kvm
));
6358 static void post_kvm_run_save(struct kvm_vcpu
*vcpu
)
6360 struct kvm_run
*kvm_run
= vcpu
->run
;
6362 kvm_run
->if_flag
= (kvm_get_rflags(vcpu
) & X86_EFLAGS_IF
) != 0;
6363 kvm_run
->flags
= is_smm(vcpu
) ? KVM_RUN_X86_SMM
: 0;
6364 kvm_run
->cr8
= kvm_get_cr8(vcpu
);
6365 kvm_run
->apic_base
= kvm_get_apic_base(vcpu
);
6366 kvm_run
->ready_for_interrupt_injection
=
6367 pic_in_kernel(vcpu
->kvm
) ||
6368 kvm_vcpu_ready_for_interrupt_injection(vcpu
);
6371 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
)
6375 if (!kvm_x86_ops
->update_cr8_intercept
)
6378 if (!lapic_in_kernel(vcpu
))
6381 if (vcpu
->arch
.apicv_active
)
6384 if (!vcpu
->arch
.apic
->vapic_addr
)
6385 max_irr
= kvm_lapic_find_highest_irr(vcpu
);
6392 tpr
= kvm_lapic_get_cr8(vcpu
);
6394 kvm_x86_ops
->update_cr8_intercept(vcpu
, tpr
, max_irr
);
6397 static int inject_pending_event(struct kvm_vcpu
*vcpu
, bool req_int_win
)
6401 /* try to reinject previous events if any */
6402 if (vcpu
->arch
.exception
.injected
) {
6403 kvm_x86_ops
->queue_exception(vcpu
);
6408 * Exceptions must be injected immediately, or the exception
6409 * frame will have the address of the NMI or interrupt handler.
6411 if (!vcpu
->arch
.exception
.pending
) {
6412 if (vcpu
->arch
.nmi_injected
) {
6413 kvm_x86_ops
->set_nmi(vcpu
);
6417 if (vcpu
->arch
.interrupt
.pending
) {
6418 kvm_x86_ops
->set_irq(vcpu
);
6423 if (is_guest_mode(vcpu
) && kvm_x86_ops
->check_nested_events
) {
6424 r
= kvm_x86_ops
->check_nested_events(vcpu
, req_int_win
);
6429 /* try to inject new event if pending */
6430 if (vcpu
->arch
.exception
.pending
) {
6431 trace_kvm_inj_exception(vcpu
->arch
.exception
.nr
,
6432 vcpu
->arch
.exception
.has_error_code
,
6433 vcpu
->arch
.exception
.error_code
);
6435 vcpu
->arch
.exception
.pending
= false;
6436 vcpu
->arch
.exception
.injected
= true;
6438 if (exception_type(vcpu
->arch
.exception
.nr
) == EXCPT_FAULT
)
6439 __kvm_set_rflags(vcpu
, kvm_get_rflags(vcpu
) |
6442 if (vcpu
->arch
.exception
.nr
== DB_VECTOR
&&
6443 (vcpu
->arch
.dr7
& DR7_GD
)) {
6444 vcpu
->arch
.dr7
&= ~DR7_GD
;
6445 kvm_update_dr7(vcpu
);
6448 kvm_x86_ops
->queue_exception(vcpu
);
6449 } else if (vcpu
->arch
.smi_pending
&& !is_smm(vcpu
) && kvm_x86_ops
->smi_allowed(vcpu
)) {
6450 vcpu
->arch
.smi_pending
= false;
6452 } else if (vcpu
->arch
.nmi_pending
&& kvm_x86_ops
->nmi_allowed(vcpu
)) {
6453 --vcpu
->arch
.nmi_pending
;
6454 vcpu
->arch
.nmi_injected
= true;
6455 kvm_x86_ops
->set_nmi(vcpu
);
6456 } else if (kvm_cpu_has_injectable_intr(vcpu
)) {
6458 * Because interrupts can be injected asynchronously, we are
6459 * calling check_nested_events again here to avoid a race condition.
6460 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6461 * proposal and current concerns. Perhaps we should be setting
6462 * KVM_REQ_EVENT only on certain events and not unconditionally?
6464 if (is_guest_mode(vcpu
) && kvm_x86_ops
->check_nested_events
) {
6465 r
= kvm_x86_ops
->check_nested_events(vcpu
, req_int_win
);
6469 if (kvm_x86_ops
->interrupt_allowed(vcpu
)) {
6470 kvm_queue_interrupt(vcpu
, kvm_cpu_get_interrupt(vcpu
),
6472 kvm_x86_ops
->set_irq(vcpu
);
6479 static void process_nmi(struct kvm_vcpu
*vcpu
)
6484 * x86 is limited to one NMI running, and one NMI pending after it.
6485 * If an NMI is already in progress, limit further NMIs to just one.
6486 * Otherwise, allow two (and we'll inject the first one immediately).
6488 if (kvm_x86_ops
->get_nmi_mask(vcpu
) || vcpu
->arch
.nmi_injected
)
6491 vcpu
->arch
.nmi_pending
+= atomic_xchg(&vcpu
->arch
.nmi_queued
, 0);
6492 vcpu
->arch
.nmi_pending
= min(vcpu
->arch
.nmi_pending
, limit
);
6493 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6496 static u32
enter_smm_get_segment_flags(struct kvm_segment
*seg
)
6499 flags
|= seg
->g
<< 23;
6500 flags
|= seg
->db
<< 22;
6501 flags
|= seg
->l
<< 21;
6502 flags
|= seg
->avl
<< 20;
6503 flags
|= seg
->present
<< 15;
6504 flags
|= seg
->dpl
<< 13;
6505 flags
|= seg
->s
<< 12;
6506 flags
|= seg
->type
<< 8;
6510 static void enter_smm_save_seg_32(struct kvm_vcpu
*vcpu
, char *buf
, int n
)
6512 struct kvm_segment seg
;
6515 kvm_get_segment(vcpu
, &seg
, n
);
6516 put_smstate(u32
, buf
, 0x7fa8 + n
* 4, seg
.selector
);
6519 offset
= 0x7f84 + n
* 12;
6521 offset
= 0x7f2c + (n
- 3) * 12;
6523 put_smstate(u32
, buf
, offset
+ 8, seg
.base
);
6524 put_smstate(u32
, buf
, offset
+ 4, seg
.limit
);
6525 put_smstate(u32
, buf
, offset
, enter_smm_get_segment_flags(&seg
));
6528 #ifdef CONFIG_X86_64
6529 static void enter_smm_save_seg_64(struct kvm_vcpu
*vcpu
, char *buf
, int n
)
6531 struct kvm_segment seg
;
6535 kvm_get_segment(vcpu
, &seg
, n
);
6536 offset
= 0x7e00 + n
* 16;
6538 flags
= enter_smm_get_segment_flags(&seg
) >> 8;
6539 put_smstate(u16
, buf
, offset
, seg
.selector
);
6540 put_smstate(u16
, buf
, offset
+ 2, flags
);
6541 put_smstate(u32
, buf
, offset
+ 4, seg
.limit
);
6542 put_smstate(u64
, buf
, offset
+ 8, seg
.base
);
6546 static void enter_smm_save_state_32(struct kvm_vcpu
*vcpu
, char *buf
)
6549 struct kvm_segment seg
;
6553 put_smstate(u32
, buf
, 0x7ffc, kvm_read_cr0(vcpu
));
6554 put_smstate(u32
, buf
, 0x7ff8, kvm_read_cr3(vcpu
));
6555 put_smstate(u32
, buf
, 0x7ff4, kvm_get_rflags(vcpu
));
6556 put_smstate(u32
, buf
, 0x7ff0, kvm_rip_read(vcpu
));
6558 for (i
= 0; i
< 8; i
++)
6559 put_smstate(u32
, buf
, 0x7fd0 + i
* 4, kvm_register_read(vcpu
, i
));
6561 kvm_get_dr(vcpu
, 6, &val
);
6562 put_smstate(u32
, buf
, 0x7fcc, (u32
)val
);
6563 kvm_get_dr(vcpu
, 7, &val
);
6564 put_smstate(u32
, buf
, 0x7fc8, (u32
)val
);
6566 kvm_get_segment(vcpu
, &seg
, VCPU_SREG_TR
);
6567 put_smstate(u32
, buf
, 0x7fc4, seg
.selector
);
6568 put_smstate(u32
, buf
, 0x7f64, seg
.base
);
6569 put_smstate(u32
, buf
, 0x7f60, seg
.limit
);
6570 put_smstate(u32
, buf
, 0x7f5c, enter_smm_get_segment_flags(&seg
));
6572 kvm_get_segment(vcpu
, &seg
, VCPU_SREG_LDTR
);
6573 put_smstate(u32
, buf
, 0x7fc0, seg
.selector
);
6574 put_smstate(u32
, buf
, 0x7f80, seg
.base
);
6575 put_smstate(u32
, buf
, 0x7f7c, seg
.limit
);
6576 put_smstate(u32
, buf
, 0x7f78, enter_smm_get_segment_flags(&seg
));
6578 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
6579 put_smstate(u32
, buf
, 0x7f74, dt
.address
);
6580 put_smstate(u32
, buf
, 0x7f70, dt
.size
);
6582 kvm_x86_ops
->get_idt(vcpu
, &dt
);
6583 put_smstate(u32
, buf
, 0x7f58, dt
.address
);
6584 put_smstate(u32
, buf
, 0x7f54, dt
.size
);
6586 for (i
= 0; i
< 6; i
++)
6587 enter_smm_save_seg_32(vcpu
, buf
, i
);
6589 put_smstate(u32
, buf
, 0x7f14, kvm_read_cr4(vcpu
));
6592 put_smstate(u32
, buf
, 0x7efc, 0x00020000);
6593 put_smstate(u32
, buf
, 0x7ef8, vcpu
->arch
.smbase
);
6596 static void enter_smm_save_state_64(struct kvm_vcpu
*vcpu
, char *buf
)
6598 #ifdef CONFIG_X86_64
6600 struct kvm_segment seg
;
6604 for (i
= 0; i
< 16; i
++)
6605 put_smstate(u64
, buf
, 0x7ff8 - i
* 8, kvm_register_read(vcpu
, i
));
6607 put_smstate(u64
, buf
, 0x7f78, kvm_rip_read(vcpu
));
6608 put_smstate(u32
, buf
, 0x7f70, kvm_get_rflags(vcpu
));
6610 kvm_get_dr(vcpu
, 6, &val
);
6611 put_smstate(u64
, buf
, 0x7f68, val
);
6612 kvm_get_dr(vcpu
, 7, &val
);
6613 put_smstate(u64
, buf
, 0x7f60, val
);
6615 put_smstate(u64
, buf
, 0x7f58, kvm_read_cr0(vcpu
));
6616 put_smstate(u64
, buf
, 0x7f50, kvm_read_cr3(vcpu
));
6617 put_smstate(u64
, buf
, 0x7f48, kvm_read_cr4(vcpu
));
6619 put_smstate(u32
, buf
, 0x7f00, vcpu
->arch
.smbase
);
6622 put_smstate(u32
, buf
, 0x7efc, 0x00020064);
6624 put_smstate(u64
, buf
, 0x7ed0, vcpu
->arch
.efer
);
6626 kvm_get_segment(vcpu
, &seg
, VCPU_SREG_TR
);
6627 put_smstate(u16
, buf
, 0x7e90, seg
.selector
);
6628 put_smstate(u16
, buf
, 0x7e92, enter_smm_get_segment_flags(&seg
) >> 8);
6629 put_smstate(u32
, buf
, 0x7e94, seg
.limit
);
6630 put_smstate(u64
, buf
, 0x7e98, seg
.base
);
6632 kvm_x86_ops
->get_idt(vcpu
, &dt
);
6633 put_smstate(u32
, buf
, 0x7e84, dt
.size
);
6634 put_smstate(u64
, buf
, 0x7e88, dt
.address
);
6636 kvm_get_segment(vcpu
, &seg
, VCPU_SREG_LDTR
);
6637 put_smstate(u16
, buf
, 0x7e70, seg
.selector
);
6638 put_smstate(u16
, buf
, 0x7e72, enter_smm_get_segment_flags(&seg
) >> 8);
6639 put_smstate(u32
, buf
, 0x7e74, seg
.limit
);
6640 put_smstate(u64
, buf
, 0x7e78, seg
.base
);
6642 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
6643 put_smstate(u32
, buf
, 0x7e64, dt
.size
);
6644 put_smstate(u64
, buf
, 0x7e68, dt
.address
);
6646 for (i
= 0; i
< 6; i
++)
6647 enter_smm_save_seg_64(vcpu
, buf
, i
);
6653 static void enter_smm(struct kvm_vcpu
*vcpu
)
6655 struct kvm_segment cs
, ds
;
6660 trace_kvm_enter_smm(vcpu
->vcpu_id
, vcpu
->arch
.smbase
, true);
6661 memset(buf
, 0, 512);
6662 if (guest_cpuid_has(vcpu
, X86_FEATURE_LM
))
6663 enter_smm_save_state_64(vcpu
, buf
);
6665 enter_smm_save_state_32(vcpu
, buf
);
6668 * Give pre_enter_smm() a chance to make ISA-specific changes to the
6669 * vCPU state (e.g. leave guest mode) after we've saved the state into
6670 * the SMM state-save area.
6672 kvm_x86_ops
->pre_enter_smm(vcpu
, buf
);
6674 vcpu
->arch
.hflags
|= HF_SMM_MASK
;
6675 kvm_vcpu_write_guest(vcpu
, vcpu
->arch
.smbase
+ 0xfe00, buf
, sizeof(buf
));
6677 if (kvm_x86_ops
->get_nmi_mask(vcpu
))
6678 vcpu
->arch
.hflags
|= HF_SMM_INSIDE_NMI_MASK
;
6680 kvm_x86_ops
->set_nmi_mask(vcpu
, true);
6682 kvm_set_rflags(vcpu
, X86_EFLAGS_FIXED
);
6683 kvm_rip_write(vcpu
, 0x8000);
6685 cr0
= vcpu
->arch
.cr0
& ~(X86_CR0_PE
| X86_CR0_EM
| X86_CR0_TS
| X86_CR0_PG
);
6686 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
6687 vcpu
->arch
.cr0
= cr0
;
6689 kvm_x86_ops
->set_cr4(vcpu
, 0);
6691 /* Undocumented: IDT limit is set to zero on entry to SMM. */
6692 dt
.address
= dt
.size
= 0;
6693 kvm_x86_ops
->set_idt(vcpu
, &dt
);
6695 __kvm_set_dr(vcpu
, 7, DR7_FIXED_1
);
6697 cs
.selector
= (vcpu
->arch
.smbase
>> 4) & 0xffff;
6698 cs
.base
= vcpu
->arch
.smbase
;
6703 cs
.limit
= ds
.limit
= 0xffffffff;
6704 cs
.type
= ds
.type
= 0x3;
6705 cs
.dpl
= ds
.dpl
= 0;
6710 cs
.avl
= ds
.avl
= 0;
6711 cs
.present
= ds
.present
= 1;
6712 cs
.unusable
= ds
.unusable
= 0;
6713 cs
.padding
= ds
.padding
= 0;
6715 kvm_set_segment(vcpu
, &cs
, VCPU_SREG_CS
);
6716 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_DS
);
6717 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_ES
);
6718 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_FS
);
6719 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_GS
);
6720 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_SS
);
6722 if (guest_cpuid_has(vcpu
, X86_FEATURE_LM
))
6723 kvm_x86_ops
->set_efer(vcpu
, 0);
6725 kvm_update_cpuid(vcpu
);
6726 kvm_mmu_reset_context(vcpu
);
6729 static void process_smi(struct kvm_vcpu
*vcpu
)
6731 vcpu
->arch
.smi_pending
= true;
6732 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6735 void kvm_make_scan_ioapic_request(struct kvm
*kvm
)
6737 kvm_make_all_cpus_request(kvm
, KVM_REQ_SCAN_IOAPIC
);
6740 static void vcpu_scan_ioapic(struct kvm_vcpu
*vcpu
)
6742 u64 eoi_exit_bitmap
[4];
6744 if (!kvm_apic_hw_enabled(vcpu
->arch
.apic
))
6747 bitmap_zero(vcpu
->arch
.ioapic_handled_vectors
, 256);
6749 if (irqchip_split(vcpu
->kvm
))
6750 kvm_scan_ioapic_routes(vcpu
, vcpu
->arch
.ioapic_handled_vectors
);
6752 if (kvm_x86_ops
->sync_pir_to_irr
&& vcpu
->arch
.apicv_active
)
6753 kvm_x86_ops
->sync_pir_to_irr(vcpu
);
6754 kvm_ioapic_scan_entry(vcpu
, vcpu
->arch
.ioapic_handled_vectors
);
6756 bitmap_or((ulong
*)eoi_exit_bitmap
, vcpu
->arch
.ioapic_handled_vectors
,
6757 vcpu_to_synic(vcpu
)->vec_bitmap
, 256);
6758 kvm_x86_ops
->load_eoi_exitmap(vcpu
, eoi_exit_bitmap
);
6761 static void kvm_vcpu_flush_tlb(struct kvm_vcpu
*vcpu
)
6763 ++vcpu
->stat
.tlb_flush
;
6764 kvm_x86_ops
->tlb_flush(vcpu
);
6767 void kvm_arch_mmu_notifier_invalidate_range(struct kvm
*kvm
,
6768 unsigned long start
, unsigned long end
)
6770 unsigned long apic_address
;
6773 * The physical address of apic access page is stored in the VMCS.
6774 * Update it when it becomes invalid.
6776 apic_address
= gfn_to_hva(kvm
, APIC_DEFAULT_PHYS_BASE
>> PAGE_SHIFT
);
6777 if (start
<= apic_address
&& apic_address
< end
)
6778 kvm_make_all_cpus_request(kvm
, KVM_REQ_APIC_PAGE_RELOAD
);
6781 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu
*vcpu
)
6783 struct page
*page
= NULL
;
6785 if (!lapic_in_kernel(vcpu
))
6788 if (!kvm_x86_ops
->set_apic_access_page_addr
)
6791 page
= gfn_to_page(vcpu
->kvm
, APIC_DEFAULT_PHYS_BASE
>> PAGE_SHIFT
);
6792 if (is_error_page(page
))
6794 kvm_x86_ops
->set_apic_access_page_addr(vcpu
, page_to_phys(page
));
6797 * Do not pin apic access page in memory, the MMU notifier
6798 * will call us again if it is migrated or swapped out.
6802 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page
);
6805 * Returns 1 to let vcpu_run() continue the guest execution loop without
6806 * exiting to the userspace. Otherwise, the value will be returned to the
6809 static int vcpu_enter_guest(struct kvm_vcpu
*vcpu
)
6813 dm_request_for_irq_injection(vcpu
) &&
6814 kvm_cpu_accept_dm_intr(vcpu
);
6816 bool req_immediate_exit
= false;
6818 if (kvm_request_pending(vcpu
)) {
6819 if (kvm_check_request(KVM_REQ_MMU_RELOAD
, vcpu
))
6820 kvm_mmu_unload(vcpu
);
6821 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER
, vcpu
))
6822 __kvm_migrate_timers(vcpu
);
6823 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
))
6824 kvm_gen_update_masterclock(vcpu
->kvm
);
6825 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
))
6826 kvm_gen_kvmclock_update(vcpu
);
6827 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE
, vcpu
)) {
6828 r
= kvm_guest_time_update(vcpu
);
6832 if (kvm_check_request(KVM_REQ_MMU_SYNC
, vcpu
))
6833 kvm_mmu_sync_roots(vcpu
);
6834 if (kvm_check_request(KVM_REQ_TLB_FLUSH
, vcpu
))
6835 kvm_vcpu_flush_tlb(vcpu
);
6836 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS
, vcpu
)) {
6837 vcpu
->run
->exit_reason
= KVM_EXIT_TPR_ACCESS
;
6841 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT
, vcpu
)) {
6842 vcpu
->run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
6843 vcpu
->mmio_needed
= 0;
6847 if (kvm_check_request(KVM_REQ_APF_HALT
, vcpu
)) {
6848 /* Page is swapped out. Do synthetic halt */
6849 vcpu
->arch
.apf
.halted
= true;
6853 if (kvm_check_request(KVM_REQ_STEAL_UPDATE
, vcpu
))
6854 record_steal_time(vcpu
);
6855 if (kvm_check_request(KVM_REQ_SMI
, vcpu
))
6857 if (kvm_check_request(KVM_REQ_NMI
, vcpu
))
6859 if (kvm_check_request(KVM_REQ_PMU
, vcpu
))
6860 kvm_pmu_handle_event(vcpu
);
6861 if (kvm_check_request(KVM_REQ_PMI
, vcpu
))
6862 kvm_pmu_deliver_pmi(vcpu
);
6863 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT
, vcpu
)) {
6864 BUG_ON(vcpu
->arch
.pending_ioapic_eoi
> 255);
6865 if (test_bit(vcpu
->arch
.pending_ioapic_eoi
,
6866 vcpu
->arch
.ioapic_handled_vectors
)) {
6867 vcpu
->run
->exit_reason
= KVM_EXIT_IOAPIC_EOI
;
6868 vcpu
->run
->eoi
.vector
=
6869 vcpu
->arch
.pending_ioapic_eoi
;
6874 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC
, vcpu
))
6875 vcpu_scan_ioapic(vcpu
);
6876 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD
, vcpu
))
6877 kvm_vcpu_reload_apic_access_page(vcpu
);
6878 if (kvm_check_request(KVM_REQ_HV_CRASH
, vcpu
)) {
6879 vcpu
->run
->exit_reason
= KVM_EXIT_SYSTEM_EVENT
;
6880 vcpu
->run
->system_event
.type
= KVM_SYSTEM_EVENT_CRASH
;
6884 if (kvm_check_request(KVM_REQ_HV_RESET
, vcpu
)) {
6885 vcpu
->run
->exit_reason
= KVM_EXIT_SYSTEM_EVENT
;
6886 vcpu
->run
->system_event
.type
= KVM_SYSTEM_EVENT_RESET
;
6890 if (kvm_check_request(KVM_REQ_HV_EXIT
, vcpu
)) {
6891 vcpu
->run
->exit_reason
= KVM_EXIT_HYPERV
;
6892 vcpu
->run
->hyperv
= vcpu
->arch
.hyperv
.exit
;
6898 * KVM_REQ_HV_STIMER has to be processed after
6899 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6900 * depend on the guest clock being up-to-date
6902 if (kvm_check_request(KVM_REQ_HV_STIMER
, vcpu
))
6903 kvm_hv_process_stimers(vcpu
);
6906 if (kvm_check_request(KVM_REQ_EVENT
, vcpu
) || req_int_win
) {
6907 ++vcpu
->stat
.req_event
;
6908 kvm_apic_accept_events(vcpu
);
6909 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_INIT_RECEIVED
) {
6914 if (inject_pending_event(vcpu
, req_int_win
) != 0)
6915 req_immediate_exit
= true;
6917 /* Enable SMI/NMI/IRQ window open exits if needed.
6919 * SMIs have three cases:
6920 * 1) They can be nested, and then there is nothing to
6921 * do here because RSM will cause a vmexit anyway.
6922 * 2) There is an ISA-specific reason why SMI cannot be
6923 * injected, and the moment when this changes can be
6925 * 3) Or the SMI can be pending because
6926 * inject_pending_event has completed the injection
6927 * of an IRQ or NMI from the previous vmexit, and
6928 * then we request an immediate exit to inject the
6931 if (vcpu
->arch
.smi_pending
&& !is_smm(vcpu
))
6932 if (!kvm_x86_ops
->enable_smi_window(vcpu
))
6933 req_immediate_exit
= true;
6934 if (vcpu
->arch
.nmi_pending
)
6935 kvm_x86_ops
->enable_nmi_window(vcpu
);
6936 if (kvm_cpu_has_injectable_intr(vcpu
) || req_int_win
)
6937 kvm_x86_ops
->enable_irq_window(vcpu
);
6938 WARN_ON(vcpu
->arch
.exception
.pending
);
6941 if (kvm_lapic_enabled(vcpu
)) {
6942 update_cr8_intercept(vcpu
);
6943 kvm_lapic_sync_to_vapic(vcpu
);
6947 r
= kvm_mmu_reload(vcpu
);
6949 goto cancel_injection
;
6954 kvm_x86_ops
->prepare_guest_switch(vcpu
);
6957 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
6958 * IPI are then delayed after guest entry, which ensures that they
6959 * result in virtual interrupt delivery.
6961 local_irq_disable();
6962 vcpu
->mode
= IN_GUEST_MODE
;
6964 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
6967 * 1) We should set ->mode before checking ->requests. Please see
6968 * the comment in kvm_vcpu_exiting_guest_mode().
6970 * 2) For APICv, we should set ->mode before checking PIR.ON. This
6971 * pairs with the memory barrier implicit in pi_test_and_set_on
6972 * (see vmx_deliver_posted_interrupt).
6974 * 3) This also orders the write to mode from any reads to the page
6975 * tables done while the VCPU is running. Please see the comment
6976 * in kvm_flush_remote_tlbs.
6978 smp_mb__after_srcu_read_unlock();
6981 * This handles the case where a posted interrupt was
6982 * notified with kvm_vcpu_kick.
6984 if (kvm_lapic_enabled(vcpu
)) {
6985 if (kvm_x86_ops
->sync_pir_to_irr
&& vcpu
->arch
.apicv_active
)
6986 kvm_x86_ops
->sync_pir_to_irr(vcpu
);
6989 if (vcpu
->mode
== EXITING_GUEST_MODE
|| kvm_request_pending(vcpu
)
6990 || need_resched() || signal_pending(current
)) {
6991 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
6995 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6997 goto cancel_injection
;
7000 kvm_load_guest_xcr0(vcpu
);
7002 if (req_immediate_exit
) {
7003 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7004 smp_send_reschedule(vcpu
->cpu
);
7007 trace_kvm_entry(vcpu
->vcpu_id
);
7008 wait_lapic_expire(vcpu
);
7009 guest_enter_irqoff();
7011 if (unlikely(vcpu
->arch
.switch_db_regs
)) {
7013 set_debugreg(vcpu
->arch
.eff_db
[0], 0);
7014 set_debugreg(vcpu
->arch
.eff_db
[1], 1);
7015 set_debugreg(vcpu
->arch
.eff_db
[2], 2);
7016 set_debugreg(vcpu
->arch
.eff_db
[3], 3);
7017 set_debugreg(vcpu
->arch
.dr6
, 6);
7018 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_RELOAD
;
7021 kvm_x86_ops
->run(vcpu
);
7024 * Do this here before restoring debug registers on the host. And
7025 * since we do this before handling the vmexit, a DR access vmexit
7026 * can (a) read the correct value of the debug registers, (b) set
7027 * KVM_DEBUGREG_WONT_EXIT again.
7029 if (unlikely(vcpu
->arch
.switch_db_regs
& KVM_DEBUGREG_WONT_EXIT
)) {
7030 WARN_ON(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
);
7031 kvm_x86_ops
->sync_dirty_debug_regs(vcpu
);
7032 kvm_update_dr0123(vcpu
);
7033 kvm_update_dr6(vcpu
);
7034 kvm_update_dr7(vcpu
);
7035 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_RELOAD
;
7039 * If the guest has used debug registers, at least dr7
7040 * will be disabled while returning to the host.
7041 * If we don't have active breakpoints in the host, we don't
7042 * care about the messed up debug address registers. But if
7043 * we have some of them active, restore the old state.
7045 if (hw_breakpoint_active())
7046 hw_breakpoint_restore();
7048 vcpu
->arch
.last_guest_tsc
= kvm_read_l1_tsc(vcpu
, rdtsc());
7050 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
7053 kvm_put_guest_xcr0(vcpu
);
7055 kvm_x86_ops
->handle_external_intr(vcpu
);
7059 guest_exit_irqoff();
7064 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
7067 * Profile KVM exit RIPs:
7069 if (unlikely(prof_on
== KVM_PROFILING
)) {
7070 unsigned long rip
= kvm_rip_read(vcpu
);
7071 profile_hit(KVM_PROFILING
, (void *)rip
);
7074 if (unlikely(vcpu
->arch
.tsc_always_catchup
))
7075 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
7077 if (vcpu
->arch
.apic_attention
)
7078 kvm_lapic_sync_from_vapic(vcpu
);
7080 vcpu
->arch
.gpa_available
= false;
7081 r
= kvm_x86_ops
->handle_exit(vcpu
);
7085 kvm_x86_ops
->cancel_injection(vcpu
);
7086 if (unlikely(vcpu
->arch
.apic_attention
))
7087 kvm_lapic_sync_from_vapic(vcpu
);
7092 static inline int vcpu_block(struct kvm
*kvm
, struct kvm_vcpu
*vcpu
)
7094 if (!kvm_arch_vcpu_runnable(vcpu
) &&
7095 (!kvm_x86_ops
->pre_block
|| kvm_x86_ops
->pre_block(vcpu
) == 0)) {
7096 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
7097 kvm_vcpu_block(vcpu
);
7098 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
7100 if (kvm_x86_ops
->post_block
)
7101 kvm_x86_ops
->post_block(vcpu
);
7103 if (!kvm_check_request(KVM_REQ_UNHALT
, vcpu
))
7107 kvm_apic_accept_events(vcpu
);
7108 switch(vcpu
->arch
.mp_state
) {
7109 case KVM_MP_STATE_HALTED
:
7110 vcpu
->arch
.pv
.pv_unhalted
= false;
7111 vcpu
->arch
.mp_state
=
7112 KVM_MP_STATE_RUNNABLE
;
7113 case KVM_MP_STATE_RUNNABLE
:
7114 vcpu
->arch
.apf
.halted
= false;
7116 case KVM_MP_STATE_INIT_RECEIVED
:
7125 static inline bool kvm_vcpu_running(struct kvm_vcpu
*vcpu
)
7127 if (is_guest_mode(vcpu
) && kvm_x86_ops
->check_nested_events
)
7128 kvm_x86_ops
->check_nested_events(vcpu
, false);
7130 return (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
&&
7131 !vcpu
->arch
.apf
.halted
);
7134 static int vcpu_run(struct kvm_vcpu
*vcpu
)
7137 struct kvm
*kvm
= vcpu
->kvm
;
7139 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
7142 if (kvm_vcpu_running(vcpu
)) {
7143 r
= vcpu_enter_guest(vcpu
);
7145 r
= vcpu_block(kvm
, vcpu
);
7151 kvm_clear_request(KVM_REQ_PENDING_TIMER
, vcpu
);
7152 if (kvm_cpu_has_pending_timer(vcpu
))
7153 kvm_inject_pending_timer_irqs(vcpu
);
7155 if (dm_request_for_irq_injection(vcpu
) &&
7156 kvm_vcpu_ready_for_interrupt_injection(vcpu
)) {
7158 vcpu
->run
->exit_reason
= KVM_EXIT_IRQ_WINDOW_OPEN
;
7159 ++vcpu
->stat
.request_irq_exits
;
7163 kvm_check_async_pf_completion(vcpu
);
7165 if (signal_pending(current
)) {
7167 vcpu
->run
->exit_reason
= KVM_EXIT_INTR
;
7168 ++vcpu
->stat
.signal_exits
;
7171 if (need_resched()) {
7172 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
7174 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
7178 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
7183 static inline int complete_emulated_io(struct kvm_vcpu
*vcpu
)
7186 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
7187 r
= emulate_instruction(vcpu
, EMULTYPE_NO_DECODE
);
7188 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
7189 if (r
!= EMULATE_DONE
)
7194 static int complete_emulated_pio(struct kvm_vcpu
*vcpu
)
7196 BUG_ON(!vcpu
->arch
.pio
.count
);
7198 return complete_emulated_io(vcpu
);
7202 * Implements the following, as a state machine:
7206 * for each mmio piece in the fragment
7214 * for each mmio piece in the fragment
7219 static int complete_emulated_mmio(struct kvm_vcpu
*vcpu
)
7221 struct kvm_run
*run
= vcpu
->run
;
7222 struct kvm_mmio_fragment
*frag
;
7225 BUG_ON(!vcpu
->mmio_needed
);
7227 /* Complete previous fragment */
7228 frag
= &vcpu
->mmio_fragments
[vcpu
->mmio_cur_fragment
];
7229 len
= min(8u, frag
->len
);
7230 if (!vcpu
->mmio_is_write
)
7231 memcpy(frag
->data
, run
->mmio
.data
, len
);
7233 if (frag
->len
<= 8) {
7234 /* Switch to the next fragment. */
7236 vcpu
->mmio_cur_fragment
++;
7238 /* Go forward to the next mmio piece. */
7244 if (vcpu
->mmio_cur_fragment
>= vcpu
->mmio_nr_fragments
) {
7245 vcpu
->mmio_needed
= 0;
7247 /* FIXME: return into emulator if single-stepping. */
7248 if (vcpu
->mmio_is_write
)
7250 vcpu
->mmio_read_completed
= 1;
7251 return complete_emulated_io(vcpu
);
7254 run
->exit_reason
= KVM_EXIT_MMIO
;
7255 run
->mmio
.phys_addr
= frag
->gpa
;
7256 if (vcpu
->mmio_is_write
)
7257 memcpy(run
->mmio
.data
, frag
->data
, min(8u, frag
->len
));
7258 run
->mmio
.len
= min(8u, frag
->len
);
7259 run
->mmio
.is_write
= vcpu
->mmio_is_write
;
7260 vcpu
->arch
.complete_userspace_io
= complete_emulated_mmio
;
7265 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
7269 kvm_sigset_activate(vcpu
);
7271 kvm_load_guest_fpu(vcpu
);
7273 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_UNINITIALIZED
)) {
7274 if (kvm_run
->immediate_exit
) {
7278 kvm_vcpu_block(vcpu
);
7279 kvm_apic_accept_events(vcpu
);
7280 kvm_clear_request(KVM_REQ_UNHALT
, vcpu
);
7282 if (signal_pending(current
)) {
7284 vcpu
->run
->exit_reason
= KVM_EXIT_INTR
;
7285 ++vcpu
->stat
.signal_exits
;
7290 /* re-sync apic's tpr */
7291 if (!lapic_in_kernel(vcpu
)) {
7292 if (kvm_set_cr8(vcpu
, kvm_run
->cr8
) != 0) {
7298 if (unlikely(vcpu
->arch
.complete_userspace_io
)) {
7299 int (*cui
)(struct kvm_vcpu
*) = vcpu
->arch
.complete_userspace_io
;
7300 vcpu
->arch
.complete_userspace_io
= NULL
;
7305 WARN_ON(vcpu
->arch
.pio
.count
|| vcpu
->mmio_needed
);
7307 if (kvm_run
->immediate_exit
)
7313 kvm_put_guest_fpu(vcpu
);
7314 post_kvm_run_save(vcpu
);
7315 kvm_sigset_deactivate(vcpu
);
7320 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
7322 if (vcpu
->arch
.emulate_regs_need_sync_to_vcpu
) {
7324 * We are here if userspace calls get_regs() in the middle of
7325 * instruction emulation. Registers state needs to be copied
7326 * back from emulation context to vcpu. Userspace shouldn't do
7327 * that usually, but some bad designed PV devices (vmware
7328 * backdoor interface) need this to work
7330 emulator_writeback_register_cache(&vcpu
->arch
.emulate_ctxt
);
7331 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
7333 regs
->rax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
7334 regs
->rbx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
7335 regs
->rcx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
7336 regs
->rdx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
7337 regs
->rsi
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
7338 regs
->rdi
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
7339 regs
->rsp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
7340 regs
->rbp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
7341 #ifdef CONFIG_X86_64
7342 regs
->r8
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
7343 regs
->r9
= kvm_register_read(vcpu
, VCPU_REGS_R9
);
7344 regs
->r10
= kvm_register_read(vcpu
, VCPU_REGS_R10
);
7345 regs
->r11
= kvm_register_read(vcpu
, VCPU_REGS_R11
);
7346 regs
->r12
= kvm_register_read(vcpu
, VCPU_REGS_R12
);
7347 regs
->r13
= kvm_register_read(vcpu
, VCPU_REGS_R13
);
7348 regs
->r14
= kvm_register_read(vcpu
, VCPU_REGS_R14
);
7349 regs
->r15
= kvm_register_read(vcpu
, VCPU_REGS_R15
);
7352 regs
->rip
= kvm_rip_read(vcpu
);
7353 regs
->rflags
= kvm_get_rflags(vcpu
);
7358 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
7360 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= true;
7361 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
7363 kvm_register_write(vcpu
, VCPU_REGS_RAX
, regs
->rax
);
7364 kvm_register_write(vcpu
, VCPU_REGS_RBX
, regs
->rbx
);
7365 kvm_register_write(vcpu
, VCPU_REGS_RCX
, regs
->rcx
);
7366 kvm_register_write(vcpu
, VCPU_REGS_RDX
, regs
->rdx
);
7367 kvm_register_write(vcpu
, VCPU_REGS_RSI
, regs
->rsi
);
7368 kvm_register_write(vcpu
, VCPU_REGS_RDI
, regs
->rdi
);
7369 kvm_register_write(vcpu
, VCPU_REGS_RSP
, regs
->rsp
);
7370 kvm_register_write(vcpu
, VCPU_REGS_RBP
, regs
->rbp
);
7371 #ifdef CONFIG_X86_64
7372 kvm_register_write(vcpu
, VCPU_REGS_R8
, regs
->r8
);
7373 kvm_register_write(vcpu
, VCPU_REGS_R9
, regs
->r9
);
7374 kvm_register_write(vcpu
, VCPU_REGS_R10
, regs
->r10
);
7375 kvm_register_write(vcpu
, VCPU_REGS_R11
, regs
->r11
);
7376 kvm_register_write(vcpu
, VCPU_REGS_R12
, regs
->r12
);
7377 kvm_register_write(vcpu
, VCPU_REGS_R13
, regs
->r13
);
7378 kvm_register_write(vcpu
, VCPU_REGS_R14
, regs
->r14
);
7379 kvm_register_write(vcpu
, VCPU_REGS_R15
, regs
->r15
);
7382 kvm_rip_write(vcpu
, regs
->rip
);
7383 kvm_set_rflags(vcpu
, regs
->rflags
| X86_EFLAGS_FIXED
);
7385 vcpu
->arch
.exception
.pending
= false;
7387 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7392 void kvm_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
7394 struct kvm_segment cs
;
7396 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
7400 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits
);
7402 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
7403 struct kvm_sregs
*sregs
)
7407 kvm_get_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
7408 kvm_get_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
7409 kvm_get_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
7410 kvm_get_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
7411 kvm_get_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
7412 kvm_get_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
7414 kvm_get_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
7415 kvm_get_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
7417 kvm_x86_ops
->get_idt(vcpu
, &dt
);
7418 sregs
->idt
.limit
= dt
.size
;
7419 sregs
->idt
.base
= dt
.address
;
7420 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
7421 sregs
->gdt
.limit
= dt
.size
;
7422 sregs
->gdt
.base
= dt
.address
;
7424 sregs
->cr0
= kvm_read_cr0(vcpu
);
7425 sregs
->cr2
= vcpu
->arch
.cr2
;
7426 sregs
->cr3
= kvm_read_cr3(vcpu
);
7427 sregs
->cr4
= kvm_read_cr4(vcpu
);
7428 sregs
->cr8
= kvm_get_cr8(vcpu
);
7429 sregs
->efer
= vcpu
->arch
.efer
;
7430 sregs
->apic_base
= kvm_get_apic_base(vcpu
);
7432 memset(sregs
->interrupt_bitmap
, 0, sizeof sregs
->interrupt_bitmap
);
7434 if (vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
)
7435 set_bit(vcpu
->arch
.interrupt
.nr
,
7436 (unsigned long *)sregs
->interrupt_bitmap
);
7441 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
7442 struct kvm_mp_state
*mp_state
)
7444 kvm_apic_accept_events(vcpu
);
7445 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_HALTED
&&
7446 vcpu
->arch
.pv
.pv_unhalted
)
7447 mp_state
->mp_state
= KVM_MP_STATE_RUNNABLE
;
7449 mp_state
->mp_state
= vcpu
->arch
.mp_state
;
7454 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
7455 struct kvm_mp_state
*mp_state
)
7457 if (!lapic_in_kernel(vcpu
) &&
7458 mp_state
->mp_state
!= KVM_MP_STATE_RUNNABLE
)
7461 /* INITs are latched while in SMM */
7462 if ((is_smm(vcpu
) || vcpu
->arch
.smi_pending
) &&
7463 (mp_state
->mp_state
== KVM_MP_STATE_SIPI_RECEIVED
||
7464 mp_state
->mp_state
== KVM_MP_STATE_INIT_RECEIVED
))
7467 if (mp_state
->mp_state
== KVM_MP_STATE_SIPI_RECEIVED
) {
7468 vcpu
->arch
.mp_state
= KVM_MP_STATE_INIT_RECEIVED
;
7469 set_bit(KVM_APIC_SIPI
, &vcpu
->arch
.apic
->pending_events
);
7471 vcpu
->arch
.mp_state
= mp_state
->mp_state
;
7472 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7476 int kvm_task_switch(struct kvm_vcpu
*vcpu
, u16 tss_selector
, int idt_index
,
7477 int reason
, bool has_error_code
, u32 error_code
)
7479 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
7482 init_emulate_ctxt(vcpu
);
7484 ret
= emulator_task_switch(ctxt
, tss_selector
, idt_index
, reason
,
7485 has_error_code
, error_code
);
7488 return EMULATE_FAIL
;
7490 kvm_rip_write(vcpu
, ctxt
->eip
);
7491 kvm_set_rflags(vcpu
, ctxt
->eflags
);
7492 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7493 return EMULATE_DONE
;
7495 EXPORT_SYMBOL_GPL(kvm_task_switch
);
7497 int kvm_valid_sregs(struct kvm_vcpu
*vcpu
, struct kvm_sregs
*sregs
)
7499 if ((sregs
->efer
& EFER_LME
) && (sregs
->cr0
& X86_CR0_PG_BIT
)) {
7501 * When EFER.LME and CR0.PG are set, the processor is in
7502 * 64-bit mode (though maybe in a 32-bit code segment).
7503 * CR4.PAE and EFER.LMA must be set.
7505 if (!(sregs
->cr4
& X86_CR4_PAE_BIT
)
7506 || !(sregs
->efer
& EFER_LMA
))
7510 * Not in 64-bit mode: EFER.LMA is clear and the code
7511 * segment cannot be 64-bit.
7513 if (sregs
->efer
& EFER_LMA
|| sregs
->cs
.l
)
7520 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
7521 struct kvm_sregs
*sregs
)
7523 struct msr_data apic_base_msr
;
7524 int mmu_reset_needed
= 0;
7525 int pending_vec
, max_bits
, idx
;
7528 if (!guest_cpuid_has(vcpu
, X86_FEATURE_XSAVE
) &&
7529 (sregs
->cr4
& X86_CR4_OSXSAVE
))
7532 if (kvm_valid_sregs(vcpu
, sregs
))
7535 apic_base_msr
.data
= sregs
->apic_base
;
7536 apic_base_msr
.host_initiated
= true;
7537 if (kvm_set_apic_base(vcpu
, &apic_base_msr
))
7540 dt
.size
= sregs
->idt
.limit
;
7541 dt
.address
= sregs
->idt
.base
;
7542 kvm_x86_ops
->set_idt(vcpu
, &dt
);
7543 dt
.size
= sregs
->gdt
.limit
;
7544 dt
.address
= sregs
->gdt
.base
;
7545 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
7547 vcpu
->arch
.cr2
= sregs
->cr2
;
7548 mmu_reset_needed
|= kvm_read_cr3(vcpu
) != sregs
->cr3
;
7549 vcpu
->arch
.cr3
= sregs
->cr3
;
7550 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
7552 kvm_set_cr8(vcpu
, sregs
->cr8
);
7554 mmu_reset_needed
|= vcpu
->arch
.efer
!= sregs
->efer
;
7555 kvm_x86_ops
->set_efer(vcpu
, sregs
->efer
);
7557 mmu_reset_needed
|= kvm_read_cr0(vcpu
) != sregs
->cr0
;
7558 kvm_x86_ops
->set_cr0(vcpu
, sregs
->cr0
);
7559 vcpu
->arch
.cr0
= sregs
->cr0
;
7561 mmu_reset_needed
|= kvm_read_cr4(vcpu
) != sregs
->cr4
;
7562 kvm_x86_ops
->set_cr4(vcpu
, sregs
->cr4
);
7563 if (sregs
->cr4
& (X86_CR4_OSXSAVE
| X86_CR4_PKE
))
7564 kvm_update_cpuid(vcpu
);
7566 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
7567 if (!is_long_mode(vcpu
) && is_pae(vcpu
)) {
7568 load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, kvm_read_cr3(vcpu
));
7569 mmu_reset_needed
= 1;
7571 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
7573 if (mmu_reset_needed
)
7574 kvm_mmu_reset_context(vcpu
);
7576 max_bits
= KVM_NR_INTERRUPTS
;
7577 pending_vec
= find_first_bit(
7578 (const unsigned long *)sregs
->interrupt_bitmap
, max_bits
);
7579 if (pending_vec
< max_bits
) {
7580 kvm_queue_interrupt(vcpu
, pending_vec
, false);
7581 pr_debug("Set back pending irq %d\n", pending_vec
);
7584 kvm_set_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
7585 kvm_set_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
7586 kvm_set_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
7587 kvm_set_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
7588 kvm_set_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
7589 kvm_set_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
7591 kvm_set_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
7592 kvm_set_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
7594 update_cr8_intercept(vcpu
);
7596 /* Older userspace won't unhalt the vcpu on reset. */
7597 if (kvm_vcpu_is_bsp(vcpu
) && kvm_rip_read(vcpu
) == 0xfff0 &&
7598 sregs
->cs
.selector
== 0xf000 && sregs
->cs
.base
== 0xffff0000 &&
7600 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
7602 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7607 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu
*vcpu
,
7608 struct kvm_guest_debug
*dbg
)
7610 unsigned long rflags
;
7613 if (dbg
->control
& (KVM_GUESTDBG_INJECT_DB
| KVM_GUESTDBG_INJECT_BP
)) {
7615 if (vcpu
->arch
.exception
.pending
)
7617 if (dbg
->control
& KVM_GUESTDBG_INJECT_DB
)
7618 kvm_queue_exception(vcpu
, DB_VECTOR
);
7620 kvm_queue_exception(vcpu
, BP_VECTOR
);
7624 * Read rflags as long as potentially injected trace flags are still
7627 rflags
= kvm_get_rflags(vcpu
);
7629 vcpu
->guest_debug
= dbg
->control
;
7630 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
))
7631 vcpu
->guest_debug
= 0;
7633 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) {
7634 for (i
= 0; i
< KVM_NR_DB_REGS
; ++i
)
7635 vcpu
->arch
.eff_db
[i
] = dbg
->arch
.debugreg
[i
];
7636 vcpu
->arch
.guest_debug_dr7
= dbg
->arch
.debugreg
[7];
7638 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
7639 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
7641 kvm_update_dr7(vcpu
);
7643 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
7644 vcpu
->arch
.singlestep_rip
= kvm_rip_read(vcpu
) +
7645 get_segment_base(vcpu
, VCPU_SREG_CS
);
7648 * Trigger an rflags update that will inject or remove the trace
7651 kvm_set_rflags(vcpu
, rflags
);
7653 kvm_x86_ops
->update_bp_intercept(vcpu
);
7663 * Translate a guest virtual address to a guest physical address.
7665 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
7666 struct kvm_translation
*tr
)
7668 unsigned long vaddr
= tr
->linear_address
;
7672 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
7673 gpa
= kvm_mmu_gva_to_gpa_system(vcpu
, vaddr
, NULL
);
7674 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
7675 tr
->physical_address
= gpa
;
7676 tr
->valid
= gpa
!= UNMAPPED_GVA
;
7683 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
7685 struct fxregs_state
*fxsave
=
7686 &vcpu
->arch
.guest_fpu
.state
.fxsave
;
7688 memcpy(fpu
->fpr
, fxsave
->st_space
, 128);
7689 fpu
->fcw
= fxsave
->cwd
;
7690 fpu
->fsw
= fxsave
->swd
;
7691 fpu
->ftwx
= fxsave
->twd
;
7692 fpu
->last_opcode
= fxsave
->fop
;
7693 fpu
->last_ip
= fxsave
->rip
;
7694 fpu
->last_dp
= fxsave
->rdp
;
7695 memcpy(fpu
->xmm
, fxsave
->xmm_space
, sizeof fxsave
->xmm_space
);
7700 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
7702 struct fxregs_state
*fxsave
=
7703 &vcpu
->arch
.guest_fpu
.state
.fxsave
;
7705 memcpy(fxsave
->st_space
, fpu
->fpr
, 128);
7706 fxsave
->cwd
= fpu
->fcw
;
7707 fxsave
->swd
= fpu
->fsw
;
7708 fxsave
->twd
= fpu
->ftwx
;
7709 fxsave
->fop
= fpu
->last_opcode
;
7710 fxsave
->rip
= fpu
->last_ip
;
7711 fxsave
->rdp
= fpu
->last_dp
;
7712 memcpy(fxsave
->xmm_space
, fpu
->xmm
, sizeof fxsave
->xmm_space
);
7717 static void fx_init(struct kvm_vcpu
*vcpu
)
7719 fpstate_init(&vcpu
->arch
.guest_fpu
.state
);
7720 if (boot_cpu_has(X86_FEATURE_XSAVES
))
7721 vcpu
->arch
.guest_fpu
.state
.xsave
.header
.xcomp_bv
=
7722 host_xcr0
| XSTATE_COMPACTION_ENABLED
;
7725 * Ensure guest xcr0 is valid for loading
7727 vcpu
->arch
.xcr0
= XFEATURE_MASK_FP
;
7729 vcpu
->arch
.cr0
|= X86_CR0_ET
;
7732 /* Swap (qemu) user FPU context for the guest FPU context. */
7733 void kvm_load_guest_fpu(struct kvm_vcpu
*vcpu
)
7736 copy_fpregs_to_fpstate(&vcpu
->arch
.user_fpu
);
7737 /* PKRU is separately restored in kvm_x86_ops->run. */
7738 __copy_kernel_to_fpregs(&vcpu
->arch
.guest_fpu
.state
,
7739 ~XFEATURE_MASK_PKRU
);
7744 /* When vcpu_run ends, restore user space FPU context. */
7745 void kvm_put_guest_fpu(struct kvm_vcpu
*vcpu
)
7748 copy_fpregs_to_fpstate(&vcpu
->arch
.guest_fpu
);
7749 copy_kernel_to_fpregs(&vcpu
->arch
.user_fpu
.state
);
7751 ++vcpu
->stat
.fpu_reload
;
7755 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
7757 void *wbinvd_dirty_mask
= vcpu
->arch
.wbinvd_dirty_mask
;
7759 kvmclock_reset(vcpu
);
7761 kvm_x86_ops
->vcpu_free(vcpu
);
7762 free_cpumask_var(wbinvd_dirty_mask
);
7765 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
,
7768 struct kvm_vcpu
*vcpu
;
7770 if (check_tsc_unstable() && atomic_read(&kvm
->online_vcpus
) != 0)
7771 printk_once(KERN_WARNING
7772 "kvm: SMP vm created on host with unstable TSC; "
7773 "guest TSC will not be reliable\n");
7775 vcpu
= kvm_x86_ops
->vcpu_create(kvm
, id
);
7780 int kvm_arch_vcpu_setup(struct kvm_vcpu
*vcpu
)
7784 kvm_vcpu_mtrr_init(vcpu
);
7785 r
= vcpu_load(vcpu
);
7788 kvm_vcpu_reset(vcpu
, false);
7789 kvm_mmu_setup(vcpu
);
7794 void kvm_arch_vcpu_postcreate(struct kvm_vcpu
*vcpu
)
7796 struct msr_data msr
;
7797 struct kvm
*kvm
= vcpu
->kvm
;
7799 kvm_hv_vcpu_postcreate(vcpu
);
7801 if (vcpu_load(vcpu
))
7804 msr
.index
= MSR_IA32_TSC
;
7805 msr
.host_initiated
= true;
7806 kvm_write_tsc(vcpu
, &msr
);
7809 if (!kvmclock_periodic_sync
)
7812 schedule_delayed_work(&kvm
->arch
.kvmclock_sync_work
,
7813 KVMCLOCK_SYNC_PERIOD
);
7816 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
7819 vcpu
->arch
.apf
.msr_val
= 0;
7821 r
= vcpu_load(vcpu
);
7823 kvm_mmu_unload(vcpu
);
7826 kvm_x86_ops
->vcpu_free(vcpu
);
7829 void kvm_vcpu_reset(struct kvm_vcpu
*vcpu
, bool init_event
)
7831 vcpu
->arch
.hflags
= 0;
7833 vcpu
->arch
.smi_pending
= 0;
7834 atomic_set(&vcpu
->arch
.nmi_queued
, 0);
7835 vcpu
->arch
.nmi_pending
= 0;
7836 vcpu
->arch
.nmi_injected
= false;
7837 kvm_clear_interrupt_queue(vcpu
);
7838 kvm_clear_exception_queue(vcpu
);
7839 vcpu
->arch
.exception
.pending
= false;
7841 memset(vcpu
->arch
.db
, 0, sizeof(vcpu
->arch
.db
));
7842 kvm_update_dr0123(vcpu
);
7843 vcpu
->arch
.dr6
= DR6_INIT
;
7844 kvm_update_dr6(vcpu
);
7845 vcpu
->arch
.dr7
= DR7_FIXED_1
;
7846 kvm_update_dr7(vcpu
);
7850 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7851 vcpu
->arch
.apf
.msr_val
= 0;
7852 vcpu
->arch
.st
.msr_val
= 0;
7854 kvmclock_reset(vcpu
);
7856 kvm_clear_async_pf_completion_queue(vcpu
);
7857 kvm_async_pf_hash_reset(vcpu
);
7858 vcpu
->arch
.apf
.halted
= false;
7860 if (kvm_mpx_supported()) {
7861 void *mpx_state_buffer
;
7864 * To avoid have the INIT path from kvm_apic_has_events() that be
7865 * called with loaded FPU and does not let userspace fix the state.
7868 kvm_put_guest_fpu(vcpu
);
7869 mpx_state_buffer
= get_xsave_addr(&vcpu
->arch
.guest_fpu
.state
.xsave
,
7870 XFEATURE_MASK_BNDREGS
);
7871 if (mpx_state_buffer
)
7872 memset(mpx_state_buffer
, 0, sizeof(struct mpx_bndreg_state
));
7873 mpx_state_buffer
= get_xsave_addr(&vcpu
->arch
.guest_fpu
.state
.xsave
,
7874 XFEATURE_MASK_BNDCSR
);
7875 if (mpx_state_buffer
)
7876 memset(mpx_state_buffer
, 0, sizeof(struct mpx_bndcsr
));
7878 kvm_load_guest_fpu(vcpu
);
7882 kvm_pmu_reset(vcpu
);
7883 vcpu
->arch
.smbase
= 0x30000;
7885 vcpu
->arch
.msr_platform_info
= MSR_PLATFORM_INFO_CPUID_FAULT
;
7886 vcpu
->arch
.msr_misc_features_enables
= 0;
7888 vcpu
->arch
.xcr0
= XFEATURE_MASK_FP
;
7891 memset(vcpu
->arch
.regs
, 0, sizeof(vcpu
->arch
.regs
));
7892 vcpu
->arch
.regs_avail
= ~0;
7893 vcpu
->arch
.regs_dirty
= ~0;
7895 vcpu
->arch
.ia32_xss
= 0;
7897 kvm_x86_ops
->vcpu_reset(vcpu
, init_event
);
7900 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu
*vcpu
, u8 vector
)
7902 struct kvm_segment cs
;
7904 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
7905 cs
.selector
= vector
<< 8;
7906 cs
.base
= vector
<< 12;
7907 kvm_set_segment(vcpu
, &cs
, VCPU_SREG_CS
);
7908 kvm_rip_write(vcpu
, 0);
7911 int kvm_arch_hardware_enable(void)
7914 struct kvm_vcpu
*vcpu
;
7919 bool stable
, backwards_tsc
= false;
7921 kvm_shared_msr_cpu_online();
7922 ret
= kvm_x86_ops
->hardware_enable();
7926 local_tsc
= rdtsc();
7927 stable
= !check_tsc_unstable();
7928 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
7929 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
7930 if (!stable
&& vcpu
->cpu
== smp_processor_id())
7931 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
7932 if (stable
&& vcpu
->arch
.last_host_tsc
> local_tsc
) {
7933 backwards_tsc
= true;
7934 if (vcpu
->arch
.last_host_tsc
> max_tsc
)
7935 max_tsc
= vcpu
->arch
.last_host_tsc
;
7941 * Sometimes, even reliable TSCs go backwards. This happens on
7942 * platforms that reset TSC during suspend or hibernate actions, but
7943 * maintain synchronization. We must compensate. Fortunately, we can
7944 * detect that condition here, which happens early in CPU bringup,
7945 * before any KVM threads can be running. Unfortunately, we can't
7946 * bring the TSCs fully up to date with real time, as we aren't yet far
7947 * enough into CPU bringup that we know how much real time has actually
7948 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
7949 * variables that haven't been updated yet.
7951 * So we simply find the maximum observed TSC above, then record the
7952 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
7953 * the adjustment will be applied. Note that we accumulate
7954 * adjustments, in case multiple suspend cycles happen before some VCPU
7955 * gets a chance to run again. In the event that no KVM threads get a
7956 * chance to run, we will miss the entire elapsed period, as we'll have
7957 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7958 * loose cycle time. This isn't too big a deal, since the loss will be
7959 * uniform across all VCPUs (not to mention the scenario is extremely
7960 * unlikely). It is possible that a second hibernate recovery happens
7961 * much faster than a first, causing the observed TSC here to be
7962 * smaller; this would require additional padding adjustment, which is
7963 * why we set last_host_tsc to the local tsc observed here.
7965 * N.B. - this code below runs only on platforms with reliable TSC,
7966 * as that is the only way backwards_tsc is set above. Also note
7967 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7968 * have the same delta_cyc adjustment applied if backwards_tsc
7969 * is detected. Note further, this adjustment is only done once,
7970 * as we reset last_host_tsc on all VCPUs to stop this from being
7971 * called multiple times (one for each physical CPU bringup).
7973 * Platforms with unreliable TSCs don't have to deal with this, they
7974 * will be compensated by the logic in vcpu_load, which sets the TSC to
7975 * catchup mode. This will catchup all VCPUs to real time, but cannot
7976 * guarantee that they stay in perfect synchronization.
7978 if (backwards_tsc
) {
7979 u64 delta_cyc
= max_tsc
- local_tsc
;
7980 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
7981 kvm
->arch
.backwards_tsc_observed
= true;
7982 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
7983 vcpu
->arch
.tsc_offset_adjustment
+= delta_cyc
;
7984 vcpu
->arch
.last_host_tsc
= local_tsc
;
7985 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
7989 * We have to disable TSC offset matching.. if you were
7990 * booting a VM while issuing an S4 host suspend....
7991 * you may have some problem. Solving this issue is
7992 * left as an exercise to the reader.
7994 kvm
->arch
.last_tsc_nsec
= 0;
7995 kvm
->arch
.last_tsc_write
= 0;
8002 void kvm_arch_hardware_disable(void)
8004 kvm_x86_ops
->hardware_disable();
8005 drop_user_return_notifiers();
8008 int kvm_arch_hardware_setup(void)
8012 r
= kvm_x86_ops
->hardware_setup();
8016 if (kvm_has_tsc_control
) {
8018 * Make sure the user can only configure tsc_khz values that
8019 * fit into a signed integer.
8020 * A min value is not calculated needed because it will always
8021 * be 1 on all machines.
8023 u64 max
= min(0x7fffffffULL
,
8024 __scale_tsc(kvm_max_tsc_scaling_ratio
, tsc_khz
));
8025 kvm_max_guest_tsc_khz
= max
;
8027 kvm_default_tsc_scaling_ratio
= 1ULL << kvm_tsc_scaling_ratio_frac_bits
;
8030 kvm_init_msr_list();
8034 void kvm_arch_hardware_unsetup(void)
8036 kvm_x86_ops
->hardware_unsetup();
8039 void kvm_arch_check_processor_compat(void *rtn
)
8041 kvm_x86_ops
->check_processor_compatibility(rtn
);
8044 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu
*vcpu
)
8046 return vcpu
->kvm
->arch
.bsp_vcpu_id
== vcpu
->vcpu_id
;
8048 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp
);
8050 bool kvm_vcpu_is_bsp(struct kvm_vcpu
*vcpu
)
8052 return (vcpu
->arch
.apic_base
& MSR_IA32_APICBASE_BSP
) != 0;
8055 struct static_key kvm_no_apic_vcpu __read_mostly
;
8056 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu
);
8058 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
8063 vcpu
->arch
.apicv_active
= kvm_x86_ops
->get_enable_apicv(vcpu
);
8064 vcpu
->arch
.emulate_ctxt
.ops
= &emulate_ops
;
8065 if (!irqchip_in_kernel(vcpu
->kvm
) || kvm_vcpu_is_reset_bsp(vcpu
))
8066 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
8068 vcpu
->arch
.mp_state
= KVM_MP_STATE_UNINITIALIZED
;
8070 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
8075 vcpu
->arch
.pio_data
= page_address(page
);
8077 kvm_set_tsc_khz(vcpu
, max_tsc_khz
);
8079 r
= kvm_mmu_create(vcpu
);
8081 goto fail_free_pio_data
;
8083 if (irqchip_in_kernel(vcpu
->kvm
)) {
8084 r
= kvm_create_lapic(vcpu
);
8086 goto fail_mmu_destroy
;
8088 static_key_slow_inc(&kvm_no_apic_vcpu
);
8090 vcpu
->arch
.mce_banks
= kzalloc(KVM_MAX_MCE_BANKS
* sizeof(u64
) * 4,
8092 if (!vcpu
->arch
.mce_banks
) {
8094 goto fail_free_lapic
;
8096 vcpu
->arch
.mcg_cap
= KVM_MAX_MCE_BANKS
;
8098 if (!zalloc_cpumask_var(&vcpu
->arch
.wbinvd_dirty_mask
, GFP_KERNEL
)) {
8100 goto fail_free_mce_banks
;
8105 vcpu
->arch
.guest_xstate_size
= XSAVE_HDR_SIZE
+ XSAVE_HDR_OFFSET
;
8107 vcpu
->arch
.maxphyaddr
= cpuid_query_maxphyaddr(vcpu
);
8109 vcpu
->arch
.pat
= MSR_IA32_CR_PAT_DEFAULT
;
8111 kvm_async_pf_hash_reset(vcpu
);
8114 vcpu
->arch
.pending_external_vector
= -1;
8115 vcpu
->arch
.preempted_in_kernel
= false;
8117 kvm_hv_vcpu_init(vcpu
);
8121 fail_free_mce_banks
:
8122 kfree(vcpu
->arch
.mce_banks
);
8124 kvm_free_lapic(vcpu
);
8126 kvm_mmu_destroy(vcpu
);
8128 free_page((unsigned long)vcpu
->arch
.pio_data
);
8133 void kvm_arch_vcpu_uninit(struct kvm_vcpu
*vcpu
)
8137 kvm_hv_vcpu_uninit(vcpu
);
8138 kvm_pmu_destroy(vcpu
);
8139 kfree(vcpu
->arch
.mce_banks
);
8140 kvm_free_lapic(vcpu
);
8141 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
8142 kvm_mmu_destroy(vcpu
);
8143 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
8144 free_page((unsigned long)vcpu
->arch
.pio_data
);
8145 if (!lapic_in_kernel(vcpu
))
8146 static_key_slow_dec(&kvm_no_apic_vcpu
);
8149 void kvm_arch_sched_in(struct kvm_vcpu
*vcpu
, int cpu
)
8151 kvm_x86_ops
->sched_in(vcpu
, cpu
);
8154 int kvm_arch_init_vm(struct kvm
*kvm
, unsigned long type
)
8159 INIT_HLIST_HEAD(&kvm
->arch
.mask_notifier_list
);
8160 INIT_LIST_HEAD(&kvm
->arch
.active_mmu_pages
);
8161 INIT_LIST_HEAD(&kvm
->arch
.zapped_obsolete_pages
);
8162 INIT_LIST_HEAD(&kvm
->arch
.assigned_dev_head
);
8163 atomic_set(&kvm
->arch
.noncoherent_dma_count
, 0);
8165 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8166 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID
, &kvm
->arch
.irq_sources_bitmap
);
8167 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8168 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID
,
8169 &kvm
->arch
.irq_sources_bitmap
);
8171 raw_spin_lock_init(&kvm
->arch
.tsc_write_lock
);
8172 mutex_init(&kvm
->arch
.apic_map_lock
);
8173 mutex_init(&kvm
->arch
.hyperv
.hv_lock
);
8174 spin_lock_init(&kvm
->arch
.pvclock_gtod_sync_lock
);
8176 kvm
->arch
.kvmclock_offset
= -ktime_get_boot_ns();
8177 pvclock_update_vm_gtod_copy(kvm
);
8179 INIT_DELAYED_WORK(&kvm
->arch
.kvmclock_update_work
, kvmclock_update_fn
);
8180 INIT_DELAYED_WORK(&kvm
->arch
.kvmclock_sync_work
, kvmclock_sync_fn
);
8182 kvm_page_track_init(kvm
);
8183 kvm_mmu_init_vm(kvm
);
8185 if (kvm_x86_ops
->vm_init
)
8186 return kvm_x86_ops
->vm_init(kvm
);
8191 static void kvm_unload_vcpu_mmu(struct kvm_vcpu
*vcpu
)
8194 r
= vcpu_load(vcpu
);
8196 kvm_mmu_unload(vcpu
);
8200 static void kvm_free_vcpus(struct kvm
*kvm
)
8203 struct kvm_vcpu
*vcpu
;
8206 * Unpin any mmu pages first.
8208 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
8209 kvm_clear_async_pf_completion_queue(vcpu
);
8210 kvm_unload_vcpu_mmu(vcpu
);
8212 kvm_for_each_vcpu(i
, vcpu
, kvm
)
8213 kvm_arch_vcpu_free(vcpu
);
8215 mutex_lock(&kvm
->lock
);
8216 for (i
= 0; i
< atomic_read(&kvm
->online_vcpus
); i
++)
8217 kvm
->vcpus
[i
] = NULL
;
8219 atomic_set(&kvm
->online_vcpus
, 0);
8220 mutex_unlock(&kvm
->lock
);
8223 void kvm_arch_sync_events(struct kvm
*kvm
)
8225 cancel_delayed_work_sync(&kvm
->arch
.kvmclock_sync_work
);
8226 cancel_delayed_work_sync(&kvm
->arch
.kvmclock_update_work
);
8230 int __x86_set_memory_region(struct kvm
*kvm
, int id
, gpa_t gpa
, u32 size
)
8234 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
8235 struct kvm_memory_slot
*slot
, old
;
8237 /* Called with kvm->slots_lock held. */
8238 if (WARN_ON(id
>= KVM_MEM_SLOTS_NUM
))
8241 slot
= id_to_memslot(slots
, id
);
8247 * MAP_SHARED to prevent internal slot pages from being moved
8250 hva
= vm_mmap(NULL
, 0, size
, PROT_READ
| PROT_WRITE
,
8251 MAP_SHARED
| MAP_ANONYMOUS
, 0);
8252 if (IS_ERR((void *)hva
))
8253 return PTR_ERR((void *)hva
);
8262 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++) {
8263 struct kvm_userspace_memory_region m
;
8265 m
.slot
= id
| (i
<< 16);
8267 m
.guest_phys_addr
= gpa
;
8268 m
.userspace_addr
= hva
;
8269 m
.memory_size
= size
;
8270 r
= __kvm_set_memory_region(kvm
, &m
);
8276 r
= vm_munmap(old
.userspace_addr
, old
.npages
* PAGE_SIZE
);
8282 EXPORT_SYMBOL_GPL(__x86_set_memory_region
);
8284 int x86_set_memory_region(struct kvm
*kvm
, int id
, gpa_t gpa
, u32 size
)
8288 mutex_lock(&kvm
->slots_lock
);
8289 r
= __x86_set_memory_region(kvm
, id
, gpa
, size
);
8290 mutex_unlock(&kvm
->slots_lock
);
8294 EXPORT_SYMBOL_GPL(x86_set_memory_region
);
8296 void kvm_arch_destroy_vm(struct kvm
*kvm
)
8298 if (current
->mm
== kvm
->mm
) {
8300 * Free memory regions allocated on behalf of userspace,
8301 * unless the the memory map has changed due to process exit
8304 x86_set_memory_region(kvm
, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
, 0, 0);
8305 x86_set_memory_region(kvm
, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT
, 0, 0);
8306 x86_set_memory_region(kvm
, TSS_PRIVATE_MEMSLOT
, 0, 0);
8308 if (kvm_x86_ops
->vm_destroy
)
8309 kvm_x86_ops
->vm_destroy(kvm
);
8310 kvm_pic_destroy(kvm
);
8311 kvm_ioapic_destroy(kvm
);
8312 kvm_free_vcpus(kvm
);
8313 kvfree(rcu_dereference_check(kvm
->arch
.apic_map
, 1));
8314 kvm_mmu_uninit_vm(kvm
);
8315 kvm_page_track_cleanup(kvm
);
8318 void kvm_arch_free_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*free
,
8319 struct kvm_memory_slot
*dont
)
8323 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
8324 if (!dont
|| free
->arch
.rmap
[i
] != dont
->arch
.rmap
[i
]) {
8325 kvfree(free
->arch
.rmap
[i
]);
8326 free
->arch
.rmap
[i
] = NULL
;
8331 if (!dont
|| free
->arch
.lpage_info
[i
- 1] !=
8332 dont
->arch
.lpage_info
[i
- 1]) {
8333 kvfree(free
->arch
.lpage_info
[i
- 1]);
8334 free
->arch
.lpage_info
[i
- 1] = NULL
;
8338 kvm_page_track_free_memslot(free
, dont
);
8341 int kvm_arch_create_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*slot
,
8342 unsigned long npages
)
8346 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
8347 struct kvm_lpage_info
*linfo
;
8352 lpages
= gfn_to_index(slot
->base_gfn
+ npages
- 1,
8353 slot
->base_gfn
, level
) + 1;
8355 slot
->arch
.rmap
[i
] =
8356 kvzalloc(lpages
* sizeof(*slot
->arch
.rmap
[i
]), GFP_KERNEL
);
8357 if (!slot
->arch
.rmap
[i
])
8362 linfo
= kvzalloc(lpages
* sizeof(*linfo
), GFP_KERNEL
);
8366 slot
->arch
.lpage_info
[i
- 1] = linfo
;
8368 if (slot
->base_gfn
& (KVM_PAGES_PER_HPAGE(level
) - 1))
8369 linfo
[0].disallow_lpage
= 1;
8370 if ((slot
->base_gfn
+ npages
) & (KVM_PAGES_PER_HPAGE(level
) - 1))
8371 linfo
[lpages
- 1].disallow_lpage
= 1;
8372 ugfn
= slot
->userspace_addr
>> PAGE_SHIFT
;
8374 * If the gfn and userspace address are not aligned wrt each
8375 * other, or if explicitly asked to, disable large page
8376 * support for this slot
8378 if ((slot
->base_gfn
^ ugfn
) & (KVM_PAGES_PER_HPAGE(level
) - 1) ||
8379 !kvm_largepages_enabled()) {
8382 for (j
= 0; j
< lpages
; ++j
)
8383 linfo
[j
].disallow_lpage
= 1;
8387 if (kvm_page_track_create_memslot(slot
, npages
))
8393 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
8394 kvfree(slot
->arch
.rmap
[i
]);
8395 slot
->arch
.rmap
[i
] = NULL
;
8399 kvfree(slot
->arch
.lpage_info
[i
- 1]);
8400 slot
->arch
.lpage_info
[i
- 1] = NULL
;
8405 void kvm_arch_memslots_updated(struct kvm
*kvm
, struct kvm_memslots
*slots
)
8408 * memslots->generation has been incremented.
8409 * mmio generation may have reached its maximum value.
8411 kvm_mmu_invalidate_mmio_sptes(kvm
, slots
);
8414 int kvm_arch_prepare_memory_region(struct kvm
*kvm
,
8415 struct kvm_memory_slot
*memslot
,
8416 const struct kvm_userspace_memory_region
*mem
,
8417 enum kvm_mr_change change
)
8422 static void kvm_mmu_slot_apply_flags(struct kvm
*kvm
,
8423 struct kvm_memory_slot
*new)
8425 /* Still write protect RO slot */
8426 if (new->flags
& KVM_MEM_READONLY
) {
8427 kvm_mmu_slot_remove_write_access(kvm
, new);
8432 * Call kvm_x86_ops dirty logging hooks when they are valid.
8434 * kvm_x86_ops->slot_disable_log_dirty is called when:
8436 * - KVM_MR_CREATE with dirty logging is disabled
8437 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8439 * The reason is, in case of PML, we need to set D-bit for any slots
8440 * with dirty logging disabled in order to eliminate unnecessary GPA
8441 * logging in PML buffer (and potential PML buffer full VMEXT). This
8442 * guarantees leaving PML enabled during guest's lifetime won't have
8443 * any additonal overhead from PML when guest is running with dirty
8444 * logging disabled for memory slots.
8446 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8447 * to dirty logging mode.
8449 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8451 * In case of write protect:
8453 * Write protect all pages for dirty logging.
8455 * All the sptes including the large sptes which point to this
8456 * slot are set to readonly. We can not create any new large
8457 * spte on this slot until the end of the logging.
8459 * See the comments in fast_page_fault().
8461 if (new->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
8462 if (kvm_x86_ops
->slot_enable_log_dirty
)
8463 kvm_x86_ops
->slot_enable_log_dirty(kvm
, new);
8465 kvm_mmu_slot_remove_write_access(kvm
, new);
8467 if (kvm_x86_ops
->slot_disable_log_dirty
)
8468 kvm_x86_ops
->slot_disable_log_dirty(kvm
, new);
8472 void kvm_arch_commit_memory_region(struct kvm
*kvm
,
8473 const struct kvm_userspace_memory_region
*mem
,
8474 const struct kvm_memory_slot
*old
,
8475 const struct kvm_memory_slot
*new,
8476 enum kvm_mr_change change
)
8478 int nr_mmu_pages
= 0;
8480 if (!kvm
->arch
.n_requested_mmu_pages
)
8481 nr_mmu_pages
= kvm_mmu_calculate_mmu_pages(kvm
);
8484 kvm_mmu_change_mmu_pages(kvm
, nr_mmu_pages
);
8487 * Dirty logging tracks sptes in 4k granularity, meaning that large
8488 * sptes have to be split. If live migration is successful, the guest
8489 * in the source machine will be destroyed and large sptes will be
8490 * created in the destination. However, if the guest continues to run
8491 * in the source machine (for example if live migration fails), small
8492 * sptes will remain around and cause bad performance.
8494 * Scan sptes if dirty logging has been stopped, dropping those
8495 * which can be collapsed into a single large-page spte. Later
8496 * page faults will create the large-page sptes.
8498 if ((change
!= KVM_MR_DELETE
) &&
8499 (old
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) &&
8500 !(new->flags
& KVM_MEM_LOG_DIRTY_PAGES
))
8501 kvm_mmu_zap_collapsible_sptes(kvm
, new);
8504 * Set up write protection and/or dirty logging for the new slot.
8506 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8507 * been zapped so no dirty logging staff is needed for old slot. For
8508 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8509 * new and it's also covered when dealing with the new slot.
8511 * FIXME: const-ify all uses of struct kvm_memory_slot.
8513 if (change
!= KVM_MR_DELETE
)
8514 kvm_mmu_slot_apply_flags(kvm
, (struct kvm_memory_slot
*) new);
8517 void kvm_arch_flush_shadow_all(struct kvm
*kvm
)
8519 kvm_mmu_invalidate_zap_all_pages(kvm
);
8522 void kvm_arch_flush_shadow_memslot(struct kvm
*kvm
,
8523 struct kvm_memory_slot
*slot
)
8525 kvm_page_track_flush_slot(kvm
, slot
);
8528 static inline bool kvm_vcpu_has_events(struct kvm_vcpu
*vcpu
)
8530 if (!list_empty_careful(&vcpu
->async_pf
.done
))
8533 if (kvm_apic_has_events(vcpu
))
8536 if (vcpu
->arch
.pv
.pv_unhalted
)
8539 if (vcpu
->arch
.exception
.pending
)
8542 if (kvm_test_request(KVM_REQ_NMI
, vcpu
) ||
8543 (vcpu
->arch
.nmi_pending
&&
8544 kvm_x86_ops
->nmi_allowed(vcpu
)))
8547 if (kvm_test_request(KVM_REQ_SMI
, vcpu
) ||
8548 (vcpu
->arch
.smi_pending
&& !is_smm(vcpu
)))
8551 if (kvm_arch_interrupt_allowed(vcpu
) &&
8552 kvm_cpu_has_interrupt(vcpu
))
8555 if (kvm_hv_has_stimer_pending(vcpu
))
8561 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*vcpu
)
8563 return kvm_vcpu_running(vcpu
) || kvm_vcpu_has_events(vcpu
);
8566 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu
*vcpu
)
8568 return vcpu
->arch
.preempted_in_kernel
;
8571 int kvm_arch_vcpu_should_kick(struct kvm_vcpu
*vcpu
)
8573 return kvm_vcpu_exiting_guest_mode(vcpu
) == IN_GUEST_MODE
;
8576 int kvm_arch_interrupt_allowed(struct kvm_vcpu
*vcpu
)
8578 return kvm_x86_ops
->interrupt_allowed(vcpu
);
8581 unsigned long kvm_get_linear_rip(struct kvm_vcpu
*vcpu
)
8583 if (is_64_bit_mode(vcpu
))
8584 return kvm_rip_read(vcpu
);
8585 return (u32
)(get_segment_base(vcpu
, VCPU_SREG_CS
) +
8586 kvm_rip_read(vcpu
));
8588 EXPORT_SYMBOL_GPL(kvm_get_linear_rip
);
8590 bool kvm_is_linear_rip(struct kvm_vcpu
*vcpu
, unsigned long linear_rip
)
8592 return kvm_get_linear_rip(vcpu
) == linear_rip
;
8594 EXPORT_SYMBOL_GPL(kvm_is_linear_rip
);
8596 unsigned long kvm_get_rflags(struct kvm_vcpu
*vcpu
)
8598 unsigned long rflags
;
8600 rflags
= kvm_x86_ops
->get_rflags(vcpu
);
8601 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
8602 rflags
&= ~X86_EFLAGS_TF
;
8605 EXPORT_SYMBOL_GPL(kvm_get_rflags
);
8607 static void __kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
8609 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
&&
8610 kvm_is_linear_rip(vcpu
, vcpu
->arch
.singlestep_rip
))
8611 rflags
|= X86_EFLAGS_TF
;
8612 kvm_x86_ops
->set_rflags(vcpu
, rflags
);
8615 void kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
8617 __kvm_set_rflags(vcpu
, rflags
);
8618 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
8620 EXPORT_SYMBOL_GPL(kvm_set_rflags
);
8622 void kvm_arch_async_page_ready(struct kvm_vcpu
*vcpu
, struct kvm_async_pf
*work
)
8626 if ((vcpu
->arch
.mmu
.direct_map
!= work
->arch
.direct_map
) ||
8630 r
= kvm_mmu_reload(vcpu
);
8634 if (!vcpu
->arch
.mmu
.direct_map
&&
8635 work
->arch
.cr3
!= vcpu
->arch
.mmu
.get_cr3(vcpu
))
8638 vcpu
->arch
.mmu
.page_fault(vcpu
, work
->gva
, 0, true);
8641 static inline u32
kvm_async_pf_hash_fn(gfn_t gfn
)
8643 return hash_32(gfn
& 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU
));
8646 static inline u32
kvm_async_pf_next_probe(u32 key
)
8648 return (key
+ 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU
) - 1);
8651 static void kvm_add_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
8653 u32 key
= kvm_async_pf_hash_fn(gfn
);
8655 while (vcpu
->arch
.apf
.gfns
[key
] != ~0)
8656 key
= kvm_async_pf_next_probe(key
);
8658 vcpu
->arch
.apf
.gfns
[key
] = gfn
;
8661 static u32
kvm_async_pf_gfn_slot(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
8664 u32 key
= kvm_async_pf_hash_fn(gfn
);
8666 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
) &&
8667 (vcpu
->arch
.apf
.gfns
[key
] != gfn
&&
8668 vcpu
->arch
.apf
.gfns
[key
] != ~0); i
++)
8669 key
= kvm_async_pf_next_probe(key
);
8674 bool kvm_find_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
8676 return vcpu
->arch
.apf
.gfns
[kvm_async_pf_gfn_slot(vcpu
, gfn
)] == gfn
;
8679 static void kvm_del_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
8683 i
= j
= kvm_async_pf_gfn_slot(vcpu
, gfn
);
8685 vcpu
->arch
.apf
.gfns
[i
] = ~0;
8687 j
= kvm_async_pf_next_probe(j
);
8688 if (vcpu
->arch
.apf
.gfns
[j
] == ~0)
8690 k
= kvm_async_pf_hash_fn(vcpu
->arch
.apf
.gfns
[j
]);
8692 * k lies cyclically in ]i,j]
8694 * |....j i.k.| or |.k..j i...|
8696 } while ((i
<= j
) ? (i
< k
&& k
<= j
) : (i
< k
|| k
<= j
));
8697 vcpu
->arch
.apf
.gfns
[i
] = vcpu
->arch
.apf
.gfns
[j
];
8702 static int apf_put_user(struct kvm_vcpu
*vcpu
, u32 val
)
8705 return kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, &val
,
8709 static int apf_get_user(struct kvm_vcpu
*vcpu
, u32
*val
)
8712 return kvm_read_guest_cached(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, val
,
8716 void kvm_arch_async_page_not_present(struct kvm_vcpu
*vcpu
,
8717 struct kvm_async_pf
*work
)
8719 struct x86_exception fault
;
8721 trace_kvm_async_pf_not_present(work
->arch
.token
, work
->gva
);
8722 kvm_add_async_pf_gfn(vcpu
, work
->arch
.gfn
);
8724 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
) ||
8725 (vcpu
->arch
.apf
.send_user_only
&&
8726 kvm_x86_ops
->get_cpl(vcpu
) == 0))
8727 kvm_make_request(KVM_REQ_APF_HALT
, vcpu
);
8728 else if (!apf_put_user(vcpu
, KVM_PV_REASON_PAGE_NOT_PRESENT
)) {
8729 fault
.vector
= PF_VECTOR
;
8730 fault
.error_code_valid
= true;
8731 fault
.error_code
= 0;
8732 fault
.nested_page_fault
= false;
8733 fault
.address
= work
->arch
.token
;
8734 fault
.async_page_fault
= true;
8735 kvm_inject_page_fault(vcpu
, &fault
);
8739 void kvm_arch_async_page_present(struct kvm_vcpu
*vcpu
,
8740 struct kvm_async_pf
*work
)
8742 struct x86_exception fault
;
8745 if (work
->wakeup_all
)
8746 work
->arch
.token
= ~0; /* broadcast wakeup */
8748 kvm_del_async_pf_gfn(vcpu
, work
->arch
.gfn
);
8749 trace_kvm_async_pf_ready(work
->arch
.token
, work
->gva
);
8751 if (vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
&&
8752 !apf_get_user(vcpu
, &val
)) {
8753 if (val
== KVM_PV_REASON_PAGE_NOT_PRESENT
&&
8754 vcpu
->arch
.exception
.pending
&&
8755 vcpu
->arch
.exception
.nr
== PF_VECTOR
&&
8756 !apf_put_user(vcpu
, 0)) {
8757 vcpu
->arch
.exception
.injected
= false;
8758 vcpu
->arch
.exception
.pending
= false;
8759 vcpu
->arch
.exception
.nr
= 0;
8760 vcpu
->arch
.exception
.has_error_code
= false;
8761 vcpu
->arch
.exception
.error_code
= 0;
8762 } else if (!apf_put_user(vcpu
, KVM_PV_REASON_PAGE_READY
)) {
8763 fault
.vector
= PF_VECTOR
;
8764 fault
.error_code_valid
= true;
8765 fault
.error_code
= 0;
8766 fault
.nested_page_fault
= false;
8767 fault
.address
= work
->arch
.token
;
8768 fault
.async_page_fault
= true;
8769 kvm_inject_page_fault(vcpu
, &fault
);
8772 vcpu
->arch
.apf
.halted
= false;
8773 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
8776 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu
*vcpu
)
8778 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
))
8781 return kvm_can_do_async_pf(vcpu
);
8784 void kvm_arch_start_assignment(struct kvm
*kvm
)
8786 atomic_inc(&kvm
->arch
.assigned_device_count
);
8788 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment
);
8790 void kvm_arch_end_assignment(struct kvm
*kvm
)
8792 atomic_dec(&kvm
->arch
.assigned_device_count
);
8794 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment
);
8796 bool kvm_arch_has_assigned_device(struct kvm
*kvm
)
8798 return atomic_read(&kvm
->arch
.assigned_device_count
);
8800 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device
);
8802 void kvm_arch_register_noncoherent_dma(struct kvm
*kvm
)
8804 atomic_inc(&kvm
->arch
.noncoherent_dma_count
);
8806 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma
);
8808 void kvm_arch_unregister_noncoherent_dma(struct kvm
*kvm
)
8810 atomic_dec(&kvm
->arch
.noncoherent_dma_count
);
8812 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma
);
8814 bool kvm_arch_has_noncoherent_dma(struct kvm
*kvm
)
8816 return atomic_read(&kvm
->arch
.noncoherent_dma_count
);
8818 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma
);
8820 bool kvm_arch_has_irq_bypass(void)
8822 return kvm_x86_ops
->update_pi_irte
!= NULL
;
8825 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer
*cons
,
8826 struct irq_bypass_producer
*prod
)
8828 struct kvm_kernel_irqfd
*irqfd
=
8829 container_of(cons
, struct kvm_kernel_irqfd
, consumer
);
8831 irqfd
->producer
= prod
;
8833 return kvm_x86_ops
->update_pi_irte(irqfd
->kvm
,
8834 prod
->irq
, irqfd
->gsi
, 1);
8837 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer
*cons
,
8838 struct irq_bypass_producer
*prod
)
8841 struct kvm_kernel_irqfd
*irqfd
=
8842 container_of(cons
, struct kvm_kernel_irqfd
, consumer
);
8844 WARN_ON(irqfd
->producer
!= prod
);
8845 irqfd
->producer
= NULL
;
8848 * When producer of consumer is unregistered, we change back to
8849 * remapped mode, so we can re-use the current implementation
8850 * when the irq is masked/disabled or the consumer side (KVM
8851 * int this case doesn't want to receive the interrupts.
8853 ret
= kvm_x86_ops
->update_pi_irte(irqfd
->kvm
, prod
->irq
, irqfd
->gsi
, 0);
8855 printk(KERN_INFO
"irq bypass consumer (token %p) unregistration"
8856 " fails: %d\n", irqfd
->consumer
.token
, ret
);
8859 int kvm_arch_update_irqfd_routing(struct kvm
*kvm
, unsigned int host_irq
,
8860 uint32_t guest_irq
, bool set
)
8862 if (!kvm_x86_ops
->update_pi_irte
)
8865 return kvm_x86_ops
->update_pi_irte(kvm
, host_irq
, guest_irq
, set
);
8868 bool kvm_vector_hashing_enabled(void)
8870 return vector_hashing
;
8872 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled
);
8874 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit
);
8875 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio
);
8876 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq
);
8877 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault
);
8878 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr
);
8879 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr
);
8880 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun
);
8881 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit
);
8882 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject
);
8883 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit
);
8884 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga
);
8885 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit
);
8886 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts
);
8887 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset
);
8888 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window
);
8889 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full
);
8890 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update
);
8891 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access
);
8892 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi
);