]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kvm/x86.c
Merge tag 'platform-drivers-x86-v4.15-4' of git://git.infradead.org/linux-platform...
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
58
59 #include <trace/events/kvm.h>
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70
71 #define CREATE_TRACE_POINTS
72 #include "trace.h"
73
74 #define MAX_IO_MSRS 256
75 #define KVM_MAX_MCE_BANKS 32
76 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
77 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
78
79 #define emul_to_vcpu(ctxt) \
80 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
81
82 /* EFER defaults:
83 * - enable syscall per default because its emulated by KVM
84 * - enable LME and LMA per default on 64 bit KVM
85 */
86 #ifdef CONFIG_X86_64
87 static
88 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
89 #else
90 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
91 #endif
92
93 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
94 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
95
96 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
97 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
98
99 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
100 static void process_nmi(struct kvm_vcpu *vcpu);
101 static void enter_smm(struct kvm_vcpu *vcpu);
102 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
103
104 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
105 EXPORT_SYMBOL_GPL(kvm_x86_ops);
106
107 static bool __read_mostly ignore_msrs = 0;
108 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
109
110 static bool __read_mostly report_ignored_msrs = true;
111 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
112
113 unsigned int min_timer_period_us = 500;
114 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
115
116 static bool __read_mostly kvmclock_periodic_sync = true;
117 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
118
119 bool __read_mostly kvm_has_tsc_control;
120 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
121 u32 __read_mostly kvm_max_guest_tsc_khz;
122 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
123 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
124 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
125 u64 __read_mostly kvm_max_tsc_scaling_ratio;
126 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
127 u64 __read_mostly kvm_default_tsc_scaling_ratio;
128 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
129
130 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
131 static u32 __read_mostly tsc_tolerance_ppm = 250;
132 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
133
134 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
135 unsigned int __read_mostly lapic_timer_advance_ns = 0;
136 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
137
138 static bool __read_mostly vector_hashing = true;
139 module_param(vector_hashing, bool, S_IRUGO);
140
141 #define KVM_NR_SHARED_MSRS 16
142
143 struct kvm_shared_msrs_global {
144 int nr;
145 u32 msrs[KVM_NR_SHARED_MSRS];
146 };
147
148 struct kvm_shared_msrs {
149 struct user_return_notifier urn;
150 bool registered;
151 struct kvm_shared_msr_values {
152 u64 host;
153 u64 curr;
154 } values[KVM_NR_SHARED_MSRS];
155 };
156
157 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
158 static struct kvm_shared_msrs __percpu *shared_msrs;
159
160 struct kvm_stats_debugfs_item debugfs_entries[] = {
161 { "pf_fixed", VCPU_STAT(pf_fixed) },
162 { "pf_guest", VCPU_STAT(pf_guest) },
163 { "tlb_flush", VCPU_STAT(tlb_flush) },
164 { "invlpg", VCPU_STAT(invlpg) },
165 { "exits", VCPU_STAT(exits) },
166 { "io_exits", VCPU_STAT(io_exits) },
167 { "mmio_exits", VCPU_STAT(mmio_exits) },
168 { "signal_exits", VCPU_STAT(signal_exits) },
169 { "irq_window", VCPU_STAT(irq_window_exits) },
170 { "nmi_window", VCPU_STAT(nmi_window_exits) },
171 { "halt_exits", VCPU_STAT(halt_exits) },
172 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
173 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
174 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
175 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
176 { "hypercalls", VCPU_STAT(hypercalls) },
177 { "request_irq", VCPU_STAT(request_irq_exits) },
178 { "irq_exits", VCPU_STAT(irq_exits) },
179 { "host_state_reload", VCPU_STAT(host_state_reload) },
180 { "efer_reload", VCPU_STAT(efer_reload) },
181 { "fpu_reload", VCPU_STAT(fpu_reload) },
182 { "insn_emulation", VCPU_STAT(insn_emulation) },
183 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
184 { "irq_injections", VCPU_STAT(irq_injections) },
185 { "nmi_injections", VCPU_STAT(nmi_injections) },
186 { "req_event", VCPU_STAT(req_event) },
187 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
188 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
189 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
190 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
191 { "mmu_flooded", VM_STAT(mmu_flooded) },
192 { "mmu_recycled", VM_STAT(mmu_recycled) },
193 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
194 { "mmu_unsync", VM_STAT(mmu_unsync) },
195 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
196 { "largepages", VM_STAT(lpages) },
197 { "max_mmu_page_hash_collisions",
198 VM_STAT(max_mmu_page_hash_collisions) },
199 { NULL }
200 };
201
202 u64 __read_mostly host_xcr0;
203
204 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
205
206 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
207 {
208 int i;
209 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
210 vcpu->arch.apf.gfns[i] = ~0;
211 }
212
213 static void kvm_on_user_return(struct user_return_notifier *urn)
214 {
215 unsigned slot;
216 struct kvm_shared_msrs *locals
217 = container_of(urn, struct kvm_shared_msrs, urn);
218 struct kvm_shared_msr_values *values;
219 unsigned long flags;
220
221 /*
222 * Disabling irqs at this point since the following code could be
223 * interrupted and executed through kvm_arch_hardware_disable()
224 */
225 local_irq_save(flags);
226 if (locals->registered) {
227 locals->registered = false;
228 user_return_notifier_unregister(urn);
229 }
230 local_irq_restore(flags);
231 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
232 values = &locals->values[slot];
233 if (values->host != values->curr) {
234 wrmsrl(shared_msrs_global.msrs[slot], values->host);
235 values->curr = values->host;
236 }
237 }
238 }
239
240 static void shared_msr_update(unsigned slot, u32 msr)
241 {
242 u64 value;
243 unsigned int cpu = smp_processor_id();
244 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
245
246 /* only read, and nobody should modify it at this time,
247 * so don't need lock */
248 if (slot >= shared_msrs_global.nr) {
249 printk(KERN_ERR "kvm: invalid MSR slot!");
250 return;
251 }
252 rdmsrl_safe(msr, &value);
253 smsr->values[slot].host = value;
254 smsr->values[slot].curr = value;
255 }
256
257 void kvm_define_shared_msr(unsigned slot, u32 msr)
258 {
259 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
260 shared_msrs_global.msrs[slot] = msr;
261 if (slot >= shared_msrs_global.nr)
262 shared_msrs_global.nr = slot + 1;
263 }
264 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
265
266 static void kvm_shared_msr_cpu_online(void)
267 {
268 unsigned i;
269
270 for (i = 0; i < shared_msrs_global.nr; ++i)
271 shared_msr_update(i, shared_msrs_global.msrs[i]);
272 }
273
274 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
275 {
276 unsigned int cpu = smp_processor_id();
277 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
278 int err;
279
280 if (((value ^ smsr->values[slot].curr) & mask) == 0)
281 return 0;
282 smsr->values[slot].curr = value;
283 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
284 if (err)
285 return 1;
286
287 if (!smsr->registered) {
288 smsr->urn.on_user_return = kvm_on_user_return;
289 user_return_notifier_register(&smsr->urn);
290 smsr->registered = true;
291 }
292 return 0;
293 }
294 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
295
296 static void drop_user_return_notifiers(void)
297 {
298 unsigned int cpu = smp_processor_id();
299 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
300
301 if (smsr->registered)
302 kvm_on_user_return(&smsr->urn);
303 }
304
305 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
306 {
307 return vcpu->arch.apic_base;
308 }
309 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
310
311 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
312 {
313 u64 old_state = vcpu->arch.apic_base &
314 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
315 u64 new_state = msr_info->data &
316 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
317 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
318 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
319
320 if ((msr_info->data & reserved_bits) || new_state == X2APIC_ENABLE)
321 return 1;
322 if (!msr_info->host_initiated &&
323 ((new_state == MSR_IA32_APICBASE_ENABLE &&
324 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
325 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
326 old_state == 0)))
327 return 1;
328
329 kvm_lapic_set_base(vcpu, msr_info->data);
330 return 0;
331 }
332 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
333
334 asmlinkage __visible void kvm_spurious_fault(void)
335 {
336 /* Fault while not rebooting. We want the trace. */
337 BUG();
338 }
339 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
340
341 #define EXCPT_BENIGN 0
342 #define EXCPT_CONTRIBUTORY 1
343 #define EXCPT_PF 2
344
345 static int exception_class(int vector)
346 {
347 switch (vector) {
348 case PF_VECTOR:
349 return EXCPT_PF;
350 case DE_VECTOR:
351 case TS_VECTOR:
352 case NP_VECTOR:
353 case SS_VECTOR:
354 case GP_VECTOR:
355 return EXCPT_CONTRIBUTORY;
356 default:
357 break;
358 }
359 return EXCPT_BENIGN;
360 }
361
362 #define EXCPT_FAULT 0
363 #define EXCPT_TRAP 1
364 #define EXCPT_ABORT 2
365 #define EXCPT_INTERRUPT 3
366
367 static int exception_type(int vector)
368 {
369 unsigned int mask;
370
371 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
372 return EXCPT_INTERRUPT;
373
374 mask = 1 << vector;
375
376 /* #DB is trap, as instruction watchpoints are handled elsewhere */
377 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
378 return EXCPT_TRAP;
379
380 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
381 return EXCPT_ABORT;
382
383 /* Reserved exceptions will result in fault */
384 return EXCPT_FAULT;
385 }
386
387 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
388 unsigned nr, bool has_error, u32 error_code,
389 bool reinject)
390 {
391 u32 prev_nr;
392 int class1, class2;
393
394 kvm_make_request(KVM_REQ_EVENT, vcpu);
395
396 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
397 queue:
398 if (has_error && !is_protmode(vcpu))
399 has_error = false;
400 if (reinject) {
401 /*
402 * On vmentry, vcpu->arch.exception.pending is only
403 * true if an event injection was blocked by
404 * nested_run_pending. In that case, however,
405 * vcpu_enter_guest requests an immediate exit,
406 * and the guest shouldn't proceed far enough to
407 * need reinjection.
408 */
409 WARN_ON_ONCE(vcpu->arch.exception.pending);
410 vcpu->arch.exception.injected = true;
411 } else {
412 vcpu->arch.exception.pending = true;
413 vcpu->arch.exception.injected = false;
414 }
415 vcpu->arch.exception.has_error_code = has_error;
416 vcpu->arch.exception.nr = nr;
417 vcpu->arch.exception.error_code = error_code;
418 return;
419 }
420
421 /* to check exception */
422 prev_nr = vcpu->arch.exception.nr;
423 if (prev_nr == DF_VECTOR) {
424 /* triple fault -> shutdown */
425 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
426 return;
427 }
428 class1 = exception_class(prev_nr);
429 class2 = exception_class(nr);
430 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
431 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
432 /*
433 * Generate double fault per SDM Table 5-5. Set
434 * exception.pending = true so that the double fault
435 * can trigger a nested vmexit.
436 */
437 vcpu->arch.exception.pending = true;
438 vcpu->arch.exception.injected = false;
439 vcpu->arch.exception.has_error_code = true;
440 vcpu->arch.exception.nr = DF_VECTOR;
441 vcpu->arch.exception.error_code = 0;
442 } else
443 /* replace previous exception with a new one in a hope
444 that instruction re-execution will regenerate lost
445 exception */
446 goto queue;
447 }
448
449 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
450 {
451 kvm_multiple_exception(vcpu, nr, false, 0, false);
452 }
453 EXPORT_SYMBOL_GPL(kvm_queue_exception);
454
455 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
456 {
457 kvm_multiple_exception(vcpu, nr, false, 0, true);
458 }
459 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
460
461 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
462 {
463 if (err)
464 kvm_inject_gp(vcpu, 0);
465 else
466 return kvm_skip_emulated_instruction(vcpu);
467
468 return 1;
469 }
470 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
471
472 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
473 {
474 ++vcpu->stat.pf_guest;
475 vcpu->arch.exception.nested_apf =
476 is_guest_mode(vcpu) && fault->async_page_fault;
477 if (vcpu->arch.exception.nested_apf)
478 vcpu->arch.apf.nested_apf_token = fault->address;
479 else
480 vcpu->arch.cr2 = fault->address;
481 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
482 }
483 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
484
485 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
486 {
487 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
488 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
489 else
490 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
491
492 return fault->nested_page_fault;
493 }
494
495 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
496 {
497 atomic_inc(&vcpu->arch.nmi_queued);
498 kvm_make_request(KVM_REQ_NMI, vcpu);
499 }
500 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
501
502 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
503 {
504 kvm_multiple_exception(vcpu, nr, true, error_code, false);
505 }
506 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
507
508 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
509 {
510 kvm_multiple_exception(vcpu, nr, true, error_code, true);
511 }
512 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
513
514 /*
515 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
516 * a #GP and return false.
517 */
518 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
519 {
520 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
521 return true;
522 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
523 return false;
524 }
525 EXPORT_SYMBOL_GPL(kvm_require_cpl);
526
527 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
528 {
529 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
530 return true;
531
532 kvm_queue_exception(vcpu, UD_VECTOR);
533 return false;
534 }
535 EXPORT_SYMBOL_GPL(kvm_require_dr);
536
537 /*
538 * This function will be used to read from the physical memory of the currently
539 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
540 * can read from guest physical or from the guest's guest physical memory.
541 */
542 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
543 gfn_t ngfn, void *data, int offset, int len,
544 u32 access)
545 {
546 struct x86_exception exception;
547 gfn_t real_gfn;
548 gpa_t ngpa;
549
550 ngpa = gfn_to_gpa(ngfn);
551 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
552 if (real_gfn == UNMAPPED_GVA)
553 return -EFAULT;
554
555 real_gfn = gpa_to_gfn(real_gfn);
556
557 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
558 }
559 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
560
561 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
562 void *data, int offset, int len, u32 access)
563 {
564 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
565 data, offset, len, access);
566 }
567
568 /*
569 * Load the pae pdptrs. Return true is they are all valid.
570 */
571 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
572 {
573 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
574 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
575 int i;
576 int ret;
577 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
578
579 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
580 offset * sizeof(u64), sizeof(pdpte),
581 PFERR_USER_MASK|PFERR_WRITE_MASK);
582 if (ret < 0) {
583 ret = 0;
584 goto out;
585 }
586 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
587 if ((pdpte[i] & PT_PRESENT_MASK) &&
588 (pdpte[i] &
589 vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
590 ret = 0;
591 goto out;
592 }
593 }
594 ret = 1;
595
596 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
597 __set_bit(VCPU_EXREG_PDPTR,
598 (unsigned long *)&vcpu->arch.regs_avail);
599 __set_bit(VCPU_EXREG_PDPTR,
600 (unsigned long *)&vcpu->arch.regs_dirty);
601 out:
602
603 return ret;
604 }
605 EXPORT_SYMBOL_GPL(load_pdptrs);
606
607 bool pdptrs_changed(struct kvm_vcpu *vcpu)
608 {
609 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
610 bool changed = true;
611 int offset;
612 gfn_t gfn;
613 int r;
614
615 if (is_long_mode(vcpu) || !is_pae(vcpu))
616 return false;
617
618 if (!test_bit(VCPU_EXREG_PDPTR,
619 (unsigned long *)&vcpu->arch.regs_avail))
620 return true;
621
622 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
623 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
624 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
625 PFERR_USER_MASK | PFERR_WRITE_MASK);
626 if (r < 0)
627 goto out;
628 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
629 out:
630
631 return changed;
632 }
633 EXPORT_SYMBOL_GPL(pdptrs_changed);
634
635 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
636 {
637 unsigned long old_cr0 = kvm_read_cr0(vcpu);
638 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
639
640 cr0 |= X86_CR0_ET;
641
642 #ifdef CONFIG_X86_64
643 if (cr0 & 0xffffffff00000000UL)
644 return 1;
645 #endif
646
647 cr0 &= ~CR0_RESERVED_BITS;
648
649 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
650 return 1;
651
652 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
653 return 1;
654
655 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
656 #ifdef CONFIG_X86_64
657 if ((vcpu->arch.efer & EFER_LME)) {
658 int cs_db, cs_l;
659
660 if (!is_pae(vcpu))
661 return 1;
662 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
663 if (cs_l)
664 return 1;
665 } else
666 #endif
667 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
668 kvm_read_cr3(vcpu)))
669 return 1;
670 }
671
672 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
673 return 1;
674
675 kvm_x86_ops->set_cr0(vcpu, cr0);
676
677 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
678 kvm_clear_async_pf_completion_queue(vcpu);
679 kvm_async_pf_hash_reset(vcpu);
680 }
681
682 if ((cr0 ^ old_cr0) & update_bits)
683 kvm_mmu_reset_context(vcpu);
684
685 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
686 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
687 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
688 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
689
690 return 0;
691 }
692 EXPORT_SYMBOL_GPL(kvm_set_cr0);
693
694 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
695 {
696 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
697 }
698 EXPORT_SYMBOL_GPL(kvm_lmsw);
699
700 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
701 {
702 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
703 !vcpu->guest_xcr0_loaded) {
704 /* kvm_set_xcr() also depends on this */
705 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
706 vcpu->guest_xcr0_loaded = 1;
707 }
708 }
709
710 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
711 {
712 if (vcpu->guest_xcr0_loaded) {
713 if (vcpu->arch.xcr0 != host_xcr0)
714 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
715 vcpu->guest_xcr0_loaded = 0;
716 }
717 }
718
719 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
720 {
721 u64 xcr0 = xcr;
722 u64 old_xcr0 = vcpu->arch.xcr0;
723 u64 valid_bits;
724
725 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
726 if (index != XCR_XFEATURE_ENABLED_MASK)
727 return 1;
728 if (!(xcr0 & XFEATURE_MASK_FP))
729 return 1;
730 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
731 return 1;
732
733 /*
734 * Do not allow the guest to set bits that we do not support
735 * saving. However, xcr0 bit 0 is always set, even if the
736 * emulated CPU does not support XSAVE (see fx_init).
737 */
738 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
739 if (xcr0 & ~valid_bits)
740 return 1;
741
742 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
743 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
744 return 1;
745
746 if (xcr0 & XFEATURE_MASK_AVX512) {
747 if (!(xcr0 & XFEATURE_MASK_YMM))
748 return 1;
749 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
750 return 1;
751 }
752 vcpu->arch.xcr0 = xcr0;
753
754 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
755 kvm_update_cpuid(vcpu);
756 return 0;
757 }
758
759 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
760 {
761 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
762 __kvm_set_xcr(vcpu, index, xcr)) {
763 kvm_inject_gp(vcpu, 0);
764 return 1;
765 }
766 return 0;
767 }
768 EXPORT_SYMBOL_GPL(kvm_set_xcr);
769
770 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
771 {
772 unsigned long old_cr4 = kvm_read_cr4(vcpu);
773 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
774 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
775
776 if (cr4 & CR4_RESERVED_BITS)
777 return 1;
778
779 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
780 return 1;
781
782 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
783 return 1;
784
785 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
786 return 1;
787
788 if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
789 return 1;
790
791 if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
792 return 1;
793
794 if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
795 return 1;
796
797 if (is_long_mode(vcpu)) {
798 if (!(cr4 & X86_CR4_PAE))
799 return 1;
800 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
801 && ((cr4 ^ old_cr4) & pdptr_bits)
802 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
803 kvm_read_cr3(vcpu)))
804 return 1;
805
806 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
807 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
808 return 1;
809
810 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
811 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
812 return 1;
813 }
814
815 if (kvm_x86_ops->set_cr4(vcpu, cr4))
816 return 1;
817
818 if (((cr4 ^ old_cr4) & pdptr_bits) ||
819 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
820 kvm_mmu_reset_context(vcpu);
821
822 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
823 kvm_update_cpuid(vcpu);
824
825 return 0;
826 }
827 EXPORT_SYMBOL_GPL(kvm_set_cr4);
828
829 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
830 {
831 #ifdef CONFIG_X86_64
832 cr3 &= ~CR3_PCID_INVD;
833 #endif
834
835 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
836 kvm_mmu_sync_roots(vcpu);
837 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
838 return 0;
839 }
840
841 if (is_long_mode(vcpu) &&
842 (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 62)))
843 return 1;
844 else if (is_pae(vcpu) && is_paging(vcpu) &&
845 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
846 return 1;
847
848 vcpu->arch.cr3 = cr3;
849 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
850 kvm_mmu_new_cr3(vcpu);
851 return 0;
852 }
853 EXPORT_SYMBOL_GPL(kvm_set_cr3);
854
855 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
856 {
857 if (cr8 & CR8_RESERVED_BITS)
858 return 1;
859 if (lapic_in_kernel(vcpu))
860 kvm_lapic_set_tpr(vcpu, cr8);
861 else
862 vcpu->arch.cr8 = cr8;
863 return 0;
864 }
865 EXPORT_SYMBOL_GPL(kvm_set_cr8);
866
867 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
868 {
869 if (lapic_in_kernel(vcpu))
870 return kvm_lapic_get_cr8(vcpu);
871 else
872 return vcpu->arch.cr8;
873 }
874 EXPORT_SYMBOL_GPL(kvm_get_cr8);
875
876 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
877 {
878 int i;
879
880 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
881 for (i = 0; i < KVM_NR_DB_REGS; i++)
882 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
883 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
884 }
885 }
886
887 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
888 {
889 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
890 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
891 }
892
893 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
894 {
895 unsigned long dr7;
896
897 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
898 dr7 = vcpu->arch.guest_debug_dr7;
899 else
900 dr7 = vcpu->arch.dr7;
901 kvm_x86_ops->set_dr7(vcpu, dr7);
902 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
903 if (dr7 & DR7_BP_EN_MASK)
904 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
905 }
906
907 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
908 {
909 u64 fixed = DR6_FIXED_1;
910
911 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
912 fixed |= DR6_RTM;
913 return fixed;
914 }
915
916 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
917 {
918 switch (dr) {
919 case 0 ... 3:
920 vcpu->arch.db[dr] = val;
921 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
922 vcpu->arch.eff_db[dr] = val;
923 break;
924 case 4:
925 /* fall through */
926 case 6:
927 if (val & 0xffffffff00000000ULL)
928 return -1; /* #GP */
929 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
930 kvm_update_dr6(vcpu);
931 break;
932 case 5:
933 /* fall through */
934 default: /* 7 */
935 if (val & 0xffffffff00000000ULL)
936 return -1; /* #GP */
937 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
938 kvm_update_dr7(vcpu);
939 break;
940 }
941
942 return 0;
943 }
944
945 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
946 {
947 if (__kvm_set_dr(vcpu, dr, val)) {
948 kvm_inject_gp(vcpu, 0);
949 return 1;
950 }
951 return 0;
952 }
953 EXPORT_SYMBOL_GPL(kvm_set_dr);
954
955 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
956 {
957 switch (dr) {
958 case 0 ... 3:
959 *val = vcpu->arch.db[dr];
960 break;
961 case 4:
962 /* fall through */
963 case 6:
964 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
965 *val = vcpu->arch.dr6;
966 else
967 *val = kvm_x86_ops->get_dr6(vcpu);
968 break;
969 case 5:
970 /* fall through */
971 default: /* 7 */
972 *val = vcpu->arch.dr7;
973 break;
974 }
975 return 0;
976 }
977 EXPORT_SYMBOL_GPL(kvm_get_dr);
978
979 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
980 {
981 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
982 u64 data;
983 int err;
984
985 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
986 if (err)
987 return err;
988 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
989 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
990 return err;
991 }
992 EXPORT_SYMBOL_GPL(kvm_rdpmc);
993
994 /*
995 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
996 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
997 *
998 * This list is modified at module load time to reflect the
999 * capabilities of the host cpu. This capabilities test skips MSRs that are
1000 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1001 * may depend on host virtualization features rather than host cpu features.
1002 */
1003
1004 static u32 msrs_to_save[] = {
1005 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1006 MSR_STAR,
1007 #ifdef CONFIG_X86_64
1008 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1009 #endif
1010 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1011 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1012 };
1013
1014 static unsigned num_msrs_to_save;
1015
1016 static u32 emulated_msrs[] = {
1017 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1018 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1019 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1020 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1021 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1022 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1023 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1024 HV_X64_MSR_RESET,
1025 HV_X64_MSR_VP_INDEX,
1026 HV_X64_MSR_VP_RUNTIME,
1027 HV_X64_MSR_SCONTROL,
1028 HV_X64_MSR_STIMER0_CONFIG,
1029 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1030 MSR_KVM_PV_EOI_EN,
1031
1032 MSR_IA32_TSC_ADJUST,
1033 MSR_IA32_TSCDEADLINE,
1034 MSR_IA32_MISC_ENABLE,
1035 MSR_IA32_MCG_STATUS,
1036 MSR_IA32_MCG_CTL,
1037 MSR_IA32_MCG_EXT_CTL,
1038 MSR_IA32_SMBASE,
1039 MSR_PLATFORM_INFO,
1040 MSR_MISC_FEATURES_ENABLES,
1041 };
1042
1043 static unsigned num_emulated_msrs;
1044
1045 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1046 {
1047 if (efer & efer_reserved_bits)
1048 return false;
1049
1050 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1051 return false;
1052
1053 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1054 return false;
1055
1056 return true;
1057 }
1058 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1059
1060 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1061 {
1062 u64 old_efer = vcpu->arch.efer;
1063
1064 if (!kvm_valid_efer(vcpu, efer))
1065 return 1;
1066
1067 if (is_paging(vcpu)
1068 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1069 return 1;
1070
1071 efer &= ~EFER_LMA;
1072 efer |= vcpu->arch.efer & EFER_LMA;
1073
1074 kvm_x86_ops->set_efer(vcpu, efer);
1075
1076 /* Update reserved bits */
1077 if ((efer ^ old_efer) & EFER_NX)
1078 kvm_mmu_reset_context(vcpu);
1079
1080 return 0;
1081 }
1082
1083 void kvm_enable_efer_bits(u64 mask)
1084 {
1085 efer_reserved_bits &= ~mask;
1086 }
1087 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1088
1089 /*
1090 * Writes msr value into into the appropriate "register".
1091 * Returns 0 on success, non-0 otherwise.
1092 * Assumes vcpu_load() was already called.
1093 */
1094 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1095 {
1096 switch (msr->index) {
1097 case MSR_FS_BASE:
1098 case MSR_GS_BASE:
1099 case MSR_KERNEL_GS_BASE:
1100 case MSR_CSTAR:
1101 case MSR_LSTAR:
1102 if (is_noncanonical_address(msr->data, vcpu))
1103 return 1;
1104 break;
1105 case MSR_IA32_SYSENTER_EIP:
1106 case MSR_IA32_SYSENTER_ESP:
1107 /*
1108 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1109 * non-canonical address is written on Intel but not on
1110 * AMD (which ignores the top 32-bits, because it does
1111 * not implement 64-bit SYSENTER).
1112 *
1113 * 64-bit code should hence be able to write a non-canonical
1114 * value on AMD. Making the address canonical ensures that
1115 * vmentry does not fail on Intel after writing a non-canonical
1116 * value, and that something deterministic happens if the guest
1117 * invokes 64-bit SYSENTER.
1118 */
1119 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1120 }
1121 return kvm_x86_ops->set_msr(vcpu, msr);
1122 }
1123 EXPORT_SYMBOL_GPL(kvm_set_msr);
1124
1125 /*
1126 * Adapt set_msr() to msr_io()'s calling convention
1127 */
1128 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1129 {
1130 struct msr_data msr;
1131 int r;
1132
1133 msr.index = index;
1134 msr.host_initiated = true;
1135 r = kvm_get_msr(vcpu, &msr);
1136 if (r)
1137 return r;
1138
1139 *data = msr.data;
1140 return 0;
1141 }
1142
1143 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1144 {
1145 struct msr_data msr;
1146
1147 msr.data = *data;
1148 msr.index = index;
1149 msr.host_initiated = true;
1150 return kvm_set_msr(vcpu, &msr);
1151 }
1152
1153 #ifdef CONFIG_X86_64
1154 struct pvclock_gtod_data {
1155 seqcount_t seq;
1156
1157 struct { /* extract of a clocksource struct */
1158 int vclock_mode;
1159 u64 cycle_last;
1160 u64 mask;
1161 u32 mult;
1162 u32 shift;
1163 } clock;
1164
1165 u64 boot_ns;
1166 u64 nsec_base;
1167 u64 wall_time_sec;
1168 };
1169
1170 static struct pvclock_gtod_data pvclock_gtod_data;
1171
1172 static void update_pvclock_gtod(struct timekeeper *tk)
1173 {
1174 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1175 u64 boot_ns;
1176
1177 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1178
1179 write_seqcount_begin(&vdata->seq);
1180
1181 /* copy pvclock gtod data */
1182 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
1183 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1184 vdata->clock.mask = tk->tkr_mono.mask;
1185 vdata->clock.mult = tk->tkr_mono.mult;
1186 vdata->clock.shift = tk->tkr_mono.shift;
1187
1188 vdata->boot_ns = boot_ns;
1189 vdata->nsec_base = tk->tkr_mono.xtime_nsec;
1190
1191 vdata->wall_time_sec = tk->xtime_sec;
1192
1193 write_seqcount_end(&vdata->seq);
1194 }
1195 #endif
1196
1197 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1198 {
1199 /*
1200 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1201 * vcpu_enter_guest. This function is only called from
1202 * the physical CPU that is running vcpu.
1203 */
1204 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1205 }
1206
1207 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1208 {
1209 int version;
1210 int r;
1211 struct pvclock_wall_clock wc;
1212 struct timespec64 boot;
1213
1214 if (!wall_clock)
1215 return;
1216
1217 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1218 if (r)
1219 return;
1220
1221 if (version & 1)
1222 ++version; /* first time write, random junk */
1223
1224 ++version;
1225
1226 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1227 return;
1228
1229 /*
1230 * The guest calculates current wall clock time by adding
1231 * system time (updated by kvm_guest_time_update below) to the
1232 * wall clock specified here. guest system time equals host
1233 * system time for us, thus we must fill in host boot time here.
1234 */
1235 getboottime64(&boot);
1236
1237 if (kvm->arch.kvmclock_offset) {
1238 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1239 boot = timespec64_sub(boot, ts);
1240 }
1241 wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1242 wc.nsec = boot.tv_nsec;
1243 wc.version = version;
1244
1245 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1246
1247 version++;
1248 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1249 }
1250
1251 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1252 {
1253 do_shl32_div32(dividend, divisor);
1254 return dividend;
1255 }
1256
1257 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1258 s8 *pshift, u32 *pmultiplier)
1259 {
1260 uint64_t scaled64;
1261 int32_t shift = 0;
1262 uint64_t tps64;
1263 uint32_t tps32;
1264
1265 tps64 = base_hz;
1266 scaled64 = scaled_hz;
1267 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1268 tps64 >>= 1;
1269 shift--;
1270 }
1271
1272 tps32 = (uint32_t)tps64;
1273 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1274 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1275 scaled64 >>= 1;
1276 else
1277 tps32 <<= 1;
1278 shift++;
1279 }
1280
1281 *pshift = shift;
1282 *pmultiplier = div_frac(scaled64, tps32);
1283
1284 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1285 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1286 }
1287
1288 #ifdef CONFIG_X86_64
1289 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1290 #endif
1291
1292 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1293 static unsigned long max_tsc_khz;
1294
1295 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1296 {
1297 u64 v = (u64)khz * (1000000 + ppm);
1298 do_div(v, 1000000);
1299 return v;
1300 }
1301
1302 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1303 {
1304 u64 ratio;
1305
1306 /* Guest TSC same frequency as host TSC? */
1307 if (!scale) {
1308 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1309 return 0;
1310 }
1311
1312 /* TSC scaling supported? */
1313 if (!kvm_has_tsc_control) {
1314 if (user_tsc_khz > tsc_khz) {
1315 vcpu->arch.tsc_catchup = 1;
1316 vcpu->arch.tsc_always_catchup = 1;
1317 return 0;
1318 } else {
1319 WARN(1, "user requested TSC rate below hardware speed\n");
1320 return -1;
1321 }
1322 }
1323
1324 /* TSC scaling required - calculate ratio */
1325 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1326 user_tsc_khz, tsc_khz);
1327
1328 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1329 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1330 user_tsc_khz);
1331 return -1;
1332 }
1333
1334 vcpu->arch.tsc_scaling_ratio = ratio;
1335 return 0;
1336 }
1337
1338 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1339 {
1340 u32 thresh_lo, thresh_hi;
1341 int use_scaling = 0;
1342
1343 /* tsc_khz can be zero if TSC calibration fails */
1344 if (user_tsc_khz == 0) {
1345 /* set tsc_scaling_ratio to a safe value */
1346 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1347 return -1;
1348 }
1349
1350 /* Compute a scale to convert nanoseconds in TSC cycles */
1351 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1352 &vcpu->arch.virtual_tsc_shift,
1353 &vcpu->arch.virtual_tsc_mult);
1354 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1355
1356 /*
1357 * Compute the variation in TSC rate which is acceptable
1358 * within the range of tolerance and decide if the
1359 * rate being applied is within that bounds of the hardware
1360 * rate. If so, no scaling or compensation need be done.
1361 */
1362 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1363 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1364 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1365 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1366 use_scaling = 1;
1367 }
1368 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1369 }
1370
1371 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1372 {
1373 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1374 vcpu->arch.virtual_tsc_mult,
1375 vcpu->arch.virtual_tsc_shift);
1376 tsc += vcpu->arch.this_tsc_write;
1377 return tsc;
1378 }
1379
1380 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1381 {
1382 #ifdef CONFIG_X86_64
1383 bool vcpus_matched;
1384 struct kvm_arch *ka = &vcpu->kvm->arch;
1385 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1386
1387 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1388 atomic_read(&vcpu->kvm->online_vcpus));
1389
1390 /*
1391 * Once the masterclock is enabled, always perform request in
1392 * order to update it.
1393 *
1394 * In order to enable masterclock, the host clocksource must be TSC
1395 * and the vcpus need to have matched TSCs. When that happens,
1396 * perform request to enable masterclock.
1397 */
1398 if (ka->use_master_clock ||
1399 (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1400 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1401
1402 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1403 atomic_read(&vcpu->kvm->online_vcpus),
1404 ka->use_master_clock, gtod->clock.vclock_mode);
1405 #endif
1406 }
1407
1408 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1409 {
1410 u64 curr_offset = vcpu->arch.tsc_offset;
1411 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1412 }
1413
1414 /*
1415 * Multiply tsc by a fixed point number represented by ratio.
1416 *
1417 * The most significant 64-N bits (mult) of ratio represent the
1418 * integral part of the fixed point number; the remaining N bits
1419 * (frac) represent the fractional part, ie. ratio represents a fixed
1420 * point number (mult + frac * 2^(-N)).
1421 *
1422 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1423 */
1424 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1425 {
1426 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1427 }
1428
1429 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1430 {
1431 u64 _tsc = tsc;
1432 u64 ratio = vcpu->arch.tsc_scaling_ratio;
1433
1434 if (ratio != kvm_default_tsc_scaling_ratio)
1435 _tsc = __scale_tsc(ratio, tsc);
1436
1437 return _tsc;
1438 }
1439 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1440
1441 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1442 {
1443 u64 tsc;
1444
1445 tsc = kvm_scale_tsc(vcpu, rdtsc());
1446
1447 return target_tsc - tsc;
1448 }
1449
1450 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1451 {
1452 return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1453 }
1454 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1455
1456 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1457 {
1458 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1459 vcpu->arch.tsc_offset = offset;
1460 }
1461
1462 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1463 {
1464 struct kvm *kvm = vcpu->kvm;
1465 u64 offset, ns, elapsed;
1466 unsigned long flags;
1467 bool matched;
1468 bool already_matched;
1469 u64 data = msr->data;
1470 bool synchronizing = false;
1471
1472 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1473 offset = kvm_compute_tsc_offset(vcpu, data);
1474 ns = ktime_get_boot_ns();
1475 elapsed = ns - kvm->arch.last_tsc_nsec;
1476
1477 if (vcpu->arch.virtual_tsc_khz) {
1478 if (data == 0 && msr->host_initiated) {
1479 /*
1480 * detection of vcpu initialization -- need to sync
1481 * with other vCPUs. This particularly helps to keep
1482 * kvm_clock stable after CPU hotplug
1483 */
1484 synchronizing = true;
1485 } else {
1486 u64 tsc_exp = kvm->arch.last_tsc_write +
1487 nsec_to_cycles(vcpu, elapsed);
1488 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1489 /*
1490 * Special case: TSC write with a small delta (1 second)
1491 * of virtual cycle time against real time is
1492 * interpreted as an attempt to synchronize the CPU.
1493 */
1494 synchronizing = data < tsc_exp + tsc_hz &&
1495 data + tsc_hz > tsc_exp;
1496 }
1497 }
1498
1499 /*
1500 * For a reliable TSC, we can match TSC offsets, and for an unstable
1501 * TSC, we add elapsed time in this computation. We could let the
1502 * compensation code attempt to catch up if we fall behind, but
1503 * it's better to try to match offsets from the beginning.
1504 */
1505 if (synchronizing &&
1506 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1507 if (!check_tsc_unstable()) {
1508 offset = kvm->arch.cur_tsc_offset;
1509 pr_debug("kvm: matched tsc offset for %llu\n", data);
1510 } else {
1511 u64 delta = nsec_to_cycles(vcpu, elapsed);
1512 data += delta;
1513 offset = kvm_compute_tsc_offset(vcpu, data);
1514 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1515 }
1516 matched = true;
1517 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1518 } else {
1519 /*
1520 * We split periods of matched TSC writes into generations.
1521 * For each generation, we track the original measured
1522 * nanosecond time, offset, and write, so if TSCs are in
1523 * sync, we can match exact offset, and if not, we can match
1524 * exact software computation in compute_guest_tsc()
1525 *
1526 * These values are tracked in kvm->arch.cur_xxx variables.
1527 */
1528 kvm->arch.cur_tsc_generation++;
1529 kvm->arch.cur_tsc_nsec = ns;
1530 kvm->arch.cur_tsc_write = data;
1531 kvm->arch.cur_tsc_offset = offset;
1532 matched = false;
1533 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1534 kvm->arch.cur_tsc_generation, data);
1535 }
1536
1537 /*
1538 * We also track th most recent recorded KHZ, write and time to
1539 * allow the matching interval to be extended at each write.
1540 */
1541 kvm->arch.last_tsc_nsec = ns;
1542 kvm->arch.last_tsc_write = data;
1543 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1544
1545 vcpu->arch.last_guest_tsc = data;
1546
1547 /* Keep track of which generation this VCPU has synchronized to */
1548 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1549 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1550 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1551
1552 if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1553 update_ia32_tsc_adjust_msr(vcpu, offset);
1554
1555 kvm_vcpu_write_tsc_offset(vcpu, offset);
1556 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1557
1558 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1559 if (!matched) {
1560 kvm->arch.nr_vcpus_matched_tsc = 0;
1561 } else if (!already_matched) {
1562 kvm->arch.nr_vcpus_matched_tsc++;
1563 }
1564
1565 kvm_track_tsc_matching(vcpu);
1566 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1567 }
1568
1569 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1570
1571 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1572 s64 adjustment)
1573 {
1574 kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1575 }
1576
1577 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1578 {
1579 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1580 WARN_ON(adjustment < 0);
1581 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1582 adjust_tsc_offset_guest(vcpu, adjustment);
1583 }
1584
1585 #ifdef CONFIG_X86_64
1586
1587 static u64 read_tsc(void)
1588 {
1589 u64 ret = (u64)rdtsc_ordered();
1590 u64 last = pvclock_gtod_data.clock.cycle_last;
1591
1592 if (likely(ret >= last))
1593 return ret;
1594
1595 /*
1596 * GCC likes to generate cmov here, but this branch is extremely
1597 * predictable (it's just a function of time and the likely is
1598 * very likely) and there's a data dependence, so force GCC
1599 * to generate a branch instead. I don't barrier() because
1600 * we don't actually need a barrier, and if this function
1601 * ever gets inlined it will generate worse code.
1602 */
1603 asm volatile ("");
1604 return last;
1605 }
1606
1607 static inline u64 vgettsc(u64 *cycle_now)
1608 {
1609 long v;
1610 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1611
1612 *cycle_now = read_tsc();
1613
1614 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1615 return v * gtod->clock.mult;
1616 }
1617
1618 static int do_monotonic_boot(s64 *t, u64 *cycle_now)
1619 {
1620 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1621 unsigned long seq;
1622 int mode;
1623 u64 ns;
1624
1625 do {
1626 seq = read_seqcount_begin(&gtod->seq);
1627 mode = gtod->clock.vclock_mode;
1628 ns = gtod->nsec_base;
1629 ns += vgettsc(cycle_now);
1630 ns >>= gtod->clock.shift;
1631 ns += gtod->boot_ns;
1632 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1633 *t = ns;
1634
1635 return mode;
1636 }
1637
1638 static int do_realtime(struct timespec *ts, u64 *cycle_now)
1639 {
1640 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1641 unsigned long seq;
1642 int mode;
1643 u64 ns;
1644
1645 do {
1646 seq = read_seqcount_begin(&gtod->seq);
1647 mode = gtod->clock.vclock_mode;
1648 ts->tv_sec = gtod->wall_time_sec;
1649 ns = gtod->nsec_base;
1650 ns += vgettsc(cycle_now);
1651 ns >>= gtod->clock.shift;
1652 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1653
1654 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1655 ts->tv_nsec = ns;
1656
1657 return mode;
1658 }
1659
1660 /* returns true if host is using tsc clocksource */
1661 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now)
1662 {
1663 /* checked again under seqlock below */
1664 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1665 return false;
1666
1667 return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1668 }
1669
1670 /* returns true if host is using tsc clocksource */
1671 static bool kvm_get_walltime_and_clockread(struct timespec *ts,
1672 u64 *cycle_now)
1673 {
1674 /* checked again under seqlock below */
1675 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1676 return false;
1677
1678 return do_realtime(ts, cycle_now) == VCLOCK_TSC;
1679 }
1680 #endif
1681
1682 /*
1683 *
1684 * Assuming a stable TSC across physical CPUS, and a stable TSC
1685 * across virtual CPUs, the following condition is possible.
1686 * Each numbered line represents an event visible to both
1687 * CPUs at the next numbered event.
1688 *
1689 * "timespecX" represents host monotonic time. "tscX" represents
1690 * RDTSC value.
1691 *
1692 * VCPU0 on CPU0 | VCPU1 on CPU1
1693 *
1694 * 1. read timespec0,tsc0
1695 * 2. | timespec1 = timespec0 + N
1696 * | tsc1 = tsc0 + M
1697 * 3. transition to guest | transition to guest
1698 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1699 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1700 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1701 *
1702 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1703 *
1704 * - ret0 < ret1
1705 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1706 * ...
1707 * - 0 < N - M => M < N
1708 *
1709 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1710 * always the case (the difference between two distinct xtime instances
1711 * might be smaller then the difference between corresponding TSC reads,
1712 * when updating guest vcpus pvclock areas).
1713 *
1714 * To avoid that problem, do not allow visibility of distinct
1715 * system_timestamp/tsc_timestamp values simultaneously: use a master
1716 * copy of host monotonic time values. Update that master copy
1717 * in lockstep.
1718 *
1719 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1720 *
1721 */
1722
1723 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1724 {
1725 #ifdef CONFIG_X86_64
1726 struct kvm_arch *ka = &kvm->arch;
1727 int vclock_mode;
1728 bool host_tsc_clocksource, vcpus_matched;
1729
1730 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1731 atomic_read(&kvm->online_vcpus));
1732
1733 /*
1734 * If the host uses TSC clock, then passthrough TSC as stable
1735 * to the guest.
1736 */
1737 host_tsc_clocksource = kvm_get_time_and_clockread(
1738 &ka->master_kernel_ns,
1739 &ka->master_cycle_now);
1740
1741 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1742 && !ka->backwards_tsc_observed
1743 && !ka->boot_vcpu_runs_old_kvmclock;
1744
1745 if (ka->use_master_clock)
1746 atomic_set(&kvm_guest_has_master_clock, 1);
1747
1748 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1749 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1750 vcpus_matched);
1751 #endif
1752 }
1753
1754 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1755 {
1756 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1757 }
1758
1759 static void kvm_gen_update_masterclock(struct kvm *kvm)
1760 {
1761 #ifdef CONFIG_X86_64
1762 int i;
1763 struct kvm_vcpu *vcpu;
1764 struct kvm_arch *ka = &kvm->arch;
1765
1766 spin_lock(&ka->pvclock_gtod_sync_lock);
1767 kvm_make_mclock_inprogress_request(kvm);
1768 /* no guest entries from this point */
1769 pvclock_update_vm_gtod_copy(kvm);
1770
1771 kvm_for_each_vcpu(i, vcpu, kvm)
1772 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1773
1774 /* guest entries allowed */
1775 kvm_for_each_vcpu(i, vcpu, kvm)
1776 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1777
1778 spin_unlock(&ka->pvclock_gtod_sync_lock);
1779 #endif
1780 }
1781
1782 u64 get_kvmclock_ns(struct kvm *kvm)
1783 {
1784 struct kvm_arch *ka = &kvm->arch;
1785 struct pvclock_vcpu_time_info hv_clock;
1786 u64 ret;
1787
1788 spin_lock(&ka->pvclock_gtod_sync_lock);
1789 if (!ka->use_master_clock) {
1790 spin_unlock(&ka->pvclock_gtod_sync_lock);
1791 return ktime_get_boot_ns() + ka->kvmclock_offset;
1792 }
1793
1794 hv_clock.tsc_timestamp = ka->master_cycle_now;
1795 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1796 spin_unlock(&ka->pvclock_gtod_sync_lock);
1797
1798 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
1799 get_cpu();
1800
1801 if (__this_cpu_read(cpu_tsc_khz)) {
1802 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1803 &hv_clock.tsc_shift,
1804 &hv_clock.tsc_to_system_mul);
1805 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1806 } else
1807 ret = ktime_get_boot_ns() + ka->kvmclock_offset;
1808
1809 put_cpu();
1810
1811 return ret;
1812 }
1813
1814 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1815 {
1816 struct kvm_vcpu_arch *vcpu = &v->arch;
1817 struct pvclock_vcpu_time_info guest_hv_clock;
1818
1819 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1820 &guest_hv_clock, sizeof(guest_hv_clock))))
1821 return;
1822
1823 /* This VCPU is paused, but it's legal for a guest to read another
1824 * VCPU's kvmclock, so we really have to follow the specification where
1825 * it says that version is odd if data is being modified, and even after
1826 * it is consistent.
1827 *
1828 * Version field updates must be kept separate. This is because
1829 * kvm_write_guest_cached might use a "rep movs" instruction, and
1830 * writes within a string instruction are weakly ordered. So there
1831 * are three writes overall.
1832 *
1833 * As a small optimization, only write the version field in the first
1834 * and third write. The vcpu->pv_time cache is still valid, because the
1835 * version field is the first in the struct.
1836 */
1837 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1838
1839 if (guest_hv_clock.version & 1)
1840 ++guest_hv_clock.version; /* first time write, random junk */
1841
1842 vcpu->hv_clock.version = guest_hv_clock.version + 1;
1843 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1844 &vcpu->hv_clock,
1845 sizeof(vcpu->hv_clock.version));
1846
1847 smp_wmb();
1848
1849 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1850 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1851
1852 if (vcpu->pvclock_set_guest_stopped_request) {
1853 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1854 vcpu->pvclock_set_guest_stopped_request = false;
1855 }
1856
1857 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1858
1859 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1860 &vcpu->hv_clock,
1861 sizeof(vcpu->hv_clock));
1862
1863 smp_wmb();
1864
1865 vcpu->hv_clock.version++;
1866 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1867 &vcpu->hv_clock,
1868 sizeof(vcpu->hv_clock.version));
1869 }
1870
1871 static int kvm_guest_time_update(struct kvm_vcpu *v)
1872 {
1873 unsigned long flags, tgt_tsc_khz;
1874 struct kvm_vcpu_arch *vcpu = &v->arch;
1875 struct kvm_arch *ka = &v->kvm->arch;
1876 s64 kernel_ns;
1877 u64 tsc_timestamp, host_tsc;
1878 u8 pvclock_flags;
1879 bool use_master_clock;
1880
1881 kernel_ns = 0;
1882 host_tsc = 0;
1883
1884 /*
1885 * If the host uses TSC clock, then passthrough TSC as stable
1886 * to the guest.
1887 */
1888 spin_lock(&ka->pvclock_gtod_sync_lock);
1889 use_master_clock = ka->use_master_clock;
1890 if (use_master_clock) {
1891 host_tsc = ka->master_cycle_now;
1892 kernel_ns = ka->master_kernel_ns;
1893 }
1894 spin_unlock(&ka->pvclock_gtod_sync_lock);
1895
1896 /* Keep irq disabled to prevent changes to the clock */
1897 local_irq_save(flags);
1898 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1899 if (unlikely(tgt_tsc_khz == 0)) {
1900 local_irq_restore(flags);
1901 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1902 return 1;
1903 }
1904 if (!use_master_clock) {
1905 host_tsc = rdtsc();
1906 kernel_ns = ktime_get_boot_ns();
1907 }
1908
1909 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1910
1911 /*
1912 * We may have to catch up the TSC to match elapsed wall clock
1913 * time for two reasons, even if kvmclock is used.
1914 * 1) CPU could have been running below the maximum TSC rate
1915 * 2) Broken TSC compensation resets the base at each VCPU
1916 * entry to avoid unknown leaps of TSC even when running
1917 * again on the same CPU. This may cause apparent elapsed
1918 * time to disappear, and the guest to stand still or run
1919 * very slowly.
1920 */
1921 if (vcpu->tsc_catchup) {
1922 u64 tsc = compute_guest_tsc(v, kernel_ns);
1923 if (tsc > tsc_timestamp) {
1924 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1925 tsc_timestamp = tsc;
1926 }
1927 }
1928
1929 local_irq_restore(flags);
1930
1931 /* With all the info we got, fill in the values */
1932
1933 if (kvm_has_tsc_control)
1934 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1935
1936 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1937 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1938 &vcpu->hv_clock.tsc_shift,
1939 &vcpu->hv_clock.tsc_to_system_mul);
1940 vcpu->hw_tsc_khz = tgt_tsc_khz;
1941 }
1942
1943 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1944 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1945 vcpu->last_guest_tsc = tsc_timestamp;
1946
1947 /* If the host uses TSC clocksource, then it is stable */
1948 pvclock_flags = 0;
1949 if (use_master_clock)
1950 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1951
1952 vcpu->hv_clock.flags = pvclock_flags;
1953
1954 if (vcpu->pv_time_enabled)
1955 kvm_setup_pvclock_page(v);
1956 if (v == kvm_get_vcpu(v->kvm, 0))
1957 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
1958 return 0;
1959 }
1960
1961 /*
1962 * kvmclock updates which are isolated to a given vcpu, such as
1963 * vcpu->cpu migration, should not allow system_timestamp from
1964 * the rest of the vcpus to remain static. Otherwise ntp frequency
1965 * correction applies to one vcpu's system_timestamp but not
1966 * the others.
1967 *
1968 * So in those cases, request a kvmclock update for all vcpus.
1969 * We need to rate-limit these requests though, as they can
1970 * considerably slow guests that have a large number of vcpus.
1971 * The time for a remote vcpu to update its kvmclock is bound
1972 * by the delay we use to rate-limit the updates.
1973 */
1974
1975 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1976
1977 static void kvmclock_update_fn(struct work_struct *work)
1978 {
1979 int i;
1980 struct delayed_work *dwork = to_delayed_work(work);
1981 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1982 kvmclock_update_work);
1983 struct kvm *kvm = container_of(ka, struct kvm, arch);
1984 struct kvm_vcpu *vcpu;
1985
1986 kvm_for_each_vcpu(i, vcpu, kvm) {
1987 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1988 kvm_vcpu_kick(vcpu);
1989 }
1990 }
1991
1992 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1993 {
1994 struct kvm *kvm = v->kvm;
1995
1996 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1997 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1998 KVMCLOCK_UPDATE_DELAY);
1999 }
2000
2001 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2002
2003 static void kvmclock_sync_fn(struct work_struct *work)
2004 {
2005 struct delayed_work *dwork = to_delayed_work(work);
2006 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2007 kvmclock_sync_work);
2008 struct kvm *kvm = container_of(ka, struct kvm, arch);
2009
2010 if (!kvmclock_periodic_sync)
2011 return;
2012
2013 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2014 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2015 KVMCLOCK_SYNC_PERIOD);
2016 }
2017
2018 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2019 {
2020 u64 mcg_cap = vcpu->arch.mcg_cap;
2021 unsigned bank_num = mcg_cap & 0xff;
2022 u32 msr = msr_info->index;
2023 u64 data = msr_info->data;
2024
2025 switch (msr) {
2026 case MSR_IA32_MCG_STATUS:
2027 vcpu->arch.mcg_status = data;
2028 break;
2029 case MSR_IA32_MCG_CTL:
2030 if (!(mcg_cap & MCG_CTL_P))
2031 return 1;
2032 if (data != 0 && data != ~(u64)0)
2033 return -1;
2034 vcpu->arch.mcg_ctl = data;
2035 break;
2036 default:
2037 if (msr >= MSR_IA32_MC0_CTL &&
2038 msr < MSR_IA32_MCx_CTL(bank_num)) {
2039 u32 offset = msr - MSR_IA32_MC0_CTL;
2040 /* only 0 or all 1s can be written to IA32_MCi_CTL
2041 * some Linux kernels though clear bit 10 in bank 4 to
2042 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2043 * this to avoid an uncatched #GP in the guest
2044 */
2045 if ((offset & 0x3) == 0 &&
2046 data != 0 && (data | (1 << 10)) != ~(u64)0)
2047 return -1;
2048 if (!msr_info->host_initiated &&
2049 (offset & 0x3) == 1 && data != 0)
2050 return -1;
2051 vcpu->arch.mce_banks[offset] = data;
2052 break;
2053 }
2054 return 1;
2055 }
2056 return 0;
2057 }
2058
2059 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2060 {
2061 struct kvm *kvm = vcpu->kvm;
2062 int lm = is_long_mode(vcpu);
2063 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2064 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2065 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2066 : kvm->arch.xen_hvm_config.blob_size_32;
2067 u32 page_num = data & ~PAGE_MASK;
2068 u64 page_addr = data & PAGE_MASK;
2069 u8 *page;
2070 int r;
2071
2072 r = -E2BIG;
2073 if (page_num >= blob_size)
2074 goto out;
2075 r = -ENOMEM;
2076 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2077 if (IS_ERR(page)) {
2078 r = PTR_ERR(page);
2079 goto out;
2080 }
2081 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2082 goto out_free;
2083 r = 0;
2084 out_free:
2085 kfree(page);
2086 out:
2087 return r;
2088 }
2089
2090 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2091 {
2092 gpa_t gpa = data & ~0x3f;
2093
2094 /* Bits 3:5 are reserved, Should be zero */
2095 if (data & 0x38)
2096 return 1;
2097
2098 vcpu->arch.apf.msr_val = data;
2099
2100 if (!(data & KVM_ASYNC_PF_ENABLED)) {
2101 kvm_clear_async_pf_completion_queue(vcpu);
2102 kvm_async_pf_hash_reset(vcpu);
2103 return 0;
2104 }
2105
2106 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2107 sizeof(u32)))
2108 return 1;
2109
2110 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2111 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2112 kvm_async_pf_wakeup_all(vcpu);
2113 return 0;
2114 }
2115
2116 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2117 {
2118 vcpu->arch.pv_time_enabled = false;
2119 }
2120
2121 static void record_steal_time(struct kvm_vcpu *vcpu)
2122 {
2123 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2124 return;
2125
2126 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2127 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2128 return;
2129
2130 vcpu->arch.st.steal.preempted = 0;
2131
2132 if (vcpu->arch.st.steal.version & 1)
2133 vcpu->arch.st.steal.version += 1; /* first time write, random junk */
2134
2135 vcpu->arch.st.steal.version += 1;
2136
2137 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2138 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2139
2140 smp_wmb();
2141
2142 vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2143 vcpu->arch.st.last_steal;
2144 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2145
2146 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2147 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2148
2149 smp_wmb();
2150
2151 vcpu->arch.st.steal.version += 1;
2152
2153 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2154 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2155 }
2156
2157 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2158 {
2159 bool pr = false;
2160 u32 msr = msr_info->index;
2161 u64 data = msr_info->data;
2162
2163 switch (msr) {
2164 case MSR_AMD64_NB_CFG:
2165 case MSR_IA32_UCODE_REV:
2166 case MSR_IA32_UCODE_WRITE:
2167 case MSR_VM_HSAVE_PA:
2168 case MSR_AMD64_PATCH_LOADER:
2169 case MSR_AMD64_BU_CFG2:
2170 case MSR_AMD64_DC_CFG:
2171 break;
2172
2173 case MSR_EFER:
2174 return set_efer(vcpu, data);
2175 case MSR_K7_HWCR:
2176 data &= ~(u64)0x40; /* ignore flush filter disable */
2177 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2178 data &= ~(u64)0x8; /* ignore TLB cache disable */
2179 data &= ~(u64)0x40000; /* ignore Mc status write enable */
2180 if (data != 0) {
2181 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2182 data);
2183 return 1;
2184 }
2185 break;
2186 case MSR_FAM10H_MMIO_CONF_BASE:
2187 if (data != 0) {
2188 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2189 "0x%llx\n", data);
2190 return 1;
2191 }
2192 break;
2193 case MSR_IA32_DEBUGCTLMSR:
2194 if (!data) {
2195 /* We support the non-activated case already */
2196 break;
2197 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2198 /* Values other than LBR and BTF are vendor-specific,
2199 thus reserved and should throw a #GP */
2200 return 1;
2201 }
2202 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2203 __func__, data);
2204 break;
2205 case 0x200 ... 0x2ff:
2206 return kvm_mtrr_set_msr(vcpu, msr, data);
2207 case MSR_IA32_APICBASE:
2208 return kvm_set_apic_base(vcpu, msr_info);
2209 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2210 return kvm_x2apic_msr_write(vcpu, msr, data);
2211 case MSR_IA32_TSCDEADLINE:
2212 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2213 break;
2214 case MSR_IA32_TSC_ADJUST:
2215 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2216 if (!msr_info->host_initiated) {
2217 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2218 adjust_tsc_offset_guest(vcpu, adj);
2219 }
2220 vcpu->arch.ia32_tsc_adjust_msr = data;
2221 }
2222 break;
2223 case MSR_IA32_MISC_ENABLE:
2224 vcpu->arch.ia32_misc_enable_msr = data;
2225 break;
2226 case MSR_IA32_SMBASE:
2227 if (!msr_info->host_initiated)
2228 return 1;
2229 vcpu->arch.smbase = data;
2230 break;
2231 case MSR_KVM_WALL_CLOCK_NEW:
2232 case MSR_KVM_WALL_CLOCK:
2233 vcpu->kvm->arch.wall_clock = data;
2234 kvm_write_wall_clock(vcpu->kvm, data);
2235 break;
2236 case MSR_KVM_SYSTEM_TIME_NEW:
2237 case MSR_KVM_SYSTEM_TIME: {
2238 struct kvm_arch *ka = &vcpu->kvm->arch;
2239
2240 kvmclock_reset(vcpu);
2241
2242 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2243 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2244
2245 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2246 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2247
2248 ka->boot_vcpu_runs_old_kvmclock = tmp;
2249 }
2250
2251 vcpu->arch.time = data;
2252 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2253
2254 /* we verify if the enable bit is set... */
2255 if (!(data & 1))
2256 break;
2257
2258 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2259 &vcpu->arch.pv_time, data & ~1ULL,
2260 sizeof(struct pvclock_vcpu_time_info)))
2261 vcpu->arch.pv_time_enabled = false;
2262 else
2263 vcpu->arch.pv_time_enabled = true;
2264
2265 break;
2266 }
2267 case MSR_KVM_ASYNC_PF_EN:
2268 if (kvm_pv_enable_async_pf(vcpu, data))
2269 return 1;
2270 break;
2271 case MSR_KVM_STEAL_TIME:
2272
2273 if (unlikely(!sched_info_on()))
2274 return 1;
2275
2276 if (data & KVM_STEAL_RESERVED_MASK)
2277 return 1;
2278
2279 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2280 data & KVM_STEAL_VALID_BITS,
2281 sizeof(struct kvm_steal_time)))
2282 return 1;
2283
2284 vcpu->arch.st.msr_val = data;
2285
2286 if (!(data & KVM_MSR_ENABLED))
2287 break;
2288
2289 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2290
2291 break;
2292 case MSR_KVM_PV_EOI_EN:
2293 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2294 return 1;
2295 break;
2296
2297 case MSR_IA32_MCG_CTL:
2298 case MSR_IA32_MCG_STATUS:
2299 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2300 return set_msr_mce(vcpu, msr_info);
2301
2302 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2303 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2304 pr = true; /* fall through */
2305 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2306 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2307 if (kvm_pmu_is_valid_msr(vcpu, msr))
2308 return kvm_pmu_set_msr(vcpu, msr_info);
2309
2310 if (pr || data != 0)
2311 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2312 "0x%x data 0x%llx\n", msr, data);
2313 break;
2314 case MSR_K7_CLK_CTL:
2315 /*
2316 * Ignore all writes to this no longer documented MSR.
2317 * Writes are only relevant for old K7 processors,
2318 * all pre-dating SVM, but a recommended workaround from
2319 * AMD for these chips. It is possible to specify the
2320 * affected processor models on the command line, hence
2321 * the need to ignore the workaround.
2322 */
2323 break;
2324 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2325 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2326 case HV_X64_MSR_CRASH_CTL:
2327 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2328 return kvm_hv_set_msr_common(vcpu, msr, data,
2329 msr_info->host_initiated);
2330 case MSR_IA32_BBL_CR_CTL3:
2331 /* Drop writes to this legacy MSR -- see rdmsr
2332 * counterpart for further detail.
2333 */
2334 if (report_ignored_msrs)
2335 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2336 msr, data);
2337 break;
2338 case MSR_AMD64_OSVW_ID_LENGTH:
2339 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2340 return 1;
2341 vcpu->arch.osvw.length = data;
2342 break;
2343 case MSR_AMD64_OSVW_STATUS:
2344 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2345 return 1;
2346 vcpu->arch.osvw.status = data;
2347 break;
2348 case MSR_PLATFORM_INFO:
2349 if (!msr_info->host_initiated ||
2350 data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2351 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2352 cpuid_fault_enabled(vcpu)))
2353 return 1;
2354 vcpu->arch.msr_platform_info = data;
2355 break;
2356 case MSR_MISC_FEATURES_ENABLES:
2357 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2358 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2359 !supports_cpuid_fault(vcpu)))
2360 return 1;
2361 vcpu->arch.msr_misc_features_enables = data;
2362 break;
2363 default:
2364 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2365 return xen_hvm_config(vcpu, data);
2366 if (kvm_pmu_is_valid_msr(vcpu, msr))
2367 return kvm_pmu_set_msr(vcpu, msr_info);
2368 if (!ignore_msrs) {
2369 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2370 msr, data);
2371 return 1;
2372 } else {
2373 if (report_ignored_msrs)
2374 vcpu_unimpl(vcpu,
2375 "ignored wrmsr: 0x%x data 0x%llx\n",
2376 msr, data);
2377 break;
2378 }
2379 }
2380 return 0;
2381 }
2382 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2383
2384
2385 /*
2386 * Reads an msr value (of 'msr_index') into 'pdata'.
2387 * Returns 0 on success, non-0 otherwise.
2388 * Assumes vcpu_load() was already called.
2389 */
2390 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2391 {
2392 return kvm_x86_ops->get_msr(vcpu, msr);
2393 }
2394 EXPORT_SYMBOL_GPL(kvm_get_msr);
2395
2396 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2397 {
2398 u64 data;
2399 u64 mcg_cap = vcpu->arch.mcg_cap;
2400 unsigned bank_num = mcg_cap & 0xff;
2401
2402 switch (msr) {
2403 case MSR_IA32_P5_MC_ADDR:
2404 case MSR_IA32_P5_MC_TYPE:
2405 data = 0;
2406 break;
2407 case MSR_IA32_MCG_CAP:
2408 data = vcpu->arch.mcg_cap;
2409 break;
2410 case MSR_IA32_MCG_CTL:
2411 if (!(mcg_cap & MCG_CTL_P))
2412 return 1;
2413 data = vcpu->arch.mcg_ctl;
2414 break;
2415 case MSR_IA32_MCG_STATUS:
2416 data = vcpu->arch.mcg_status;
2417 break;
2418 default:
2419 if (msr >= MSR_IA32_MC0_CTL &&
2420 msr < MSR_IA32_MCx_CTL(bank_num)) {
2421 u32 offset = msr - MSR_IA32_MC0_CTL;
2422 data = vcpu->arch.mce_banks[offset];
2423 break;
2424 }
2425 return 1;
2426 }
2427 *pdata = data;
2428 return 0;
2429 }
2430
2431 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2432 {
2433 switch (msr_info->index) {
2434 case MSR_IA32_PLATFORM_ID:
2435 case MSR_IA32_EBL_CR_POWERON:
2436 case MSR_IA32_DEBUGCTLMSR:
2437 case MSR_IA32_LASTBRANCHFROMIP:
2438 case MSR_IA32_LASTBRANCHTOIP:
2439 case MSR_IA32_LASTINTFROMIP:
2440 case MSR_IA32_LASTINTTOIP:
2441 case MSR_K8_SYSCFG:
2442 case MSR_K8_TSEG_ADDR:
2443 case MSR_K8_TSEG_MASK:
2444 case MSR_K7_HWCR:
2445 case MSR_VM_HSAVE_PA:
2446 case MSR_K8_INT_PENDING_MSG:
2447 case MSR_AMD64_NB_CFG:
2448 case MSR_FAM10H_MMIO_CONF_BASE:
2449 case MSR_AMD64_BU_CFG2:
2450 case MSR_IA32_PERF_CTL:
2451 case MSR_AMD64_DC_CFG:
2452 msr_info->data = 0;
2453 break;
2454 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2455 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2456 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2457 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2458 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2459 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2460 msr_info->data = 0;
2461 break;
2462 case MSR_IA32_UCODE_REV:
2463 msr_info->data = 0x100000000ULL;
2464 break;
2465 case MSR_MTRRcap:
2466 case 0x200 ... 0x2ff:
2467 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2468 case 0xcd: /* fsb frequency */
2469 msr_info->data = 3;
2470 break;
2471 /*
2472 * MSR_EBC_FREQUENCY_ID
2473 * Conservative value valid for even the basic CPU models.
2474 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2475 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2476 * and 266MHz for model 3, or 4. Set Core Clock
2477 * Frequency to System Bus Frequency Ratio to 1 (bits
2478 * 31:24) even though these are only valid for CPU
2479 * models > 2, however guests may end up dividing or
2480 * multiplying by zero otherwise.
2481 */
2482 case MSR_EBC_FREQUENCY_ID:
2483 msr_info->data = 1 << 24;
2484 break;
2485 case MSR_IA32_APICBASE:
2486 msr_info->data = kvm_get_apic_base(vcpu);
2487 break;
2488 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2489 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2490 break;
2491 case MSR_IA32_TSCDEADLINE:
2492 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2493 break;
2494 case MSR_IA32_TSC_ADJUST:
2495 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2496 break;
2497 case MSR_IA32_MISC_ENABLE:
2498 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2499 break;
2500 case MSR_IA32_SMBASE:
2501 if (!msr_info->host_initiated)
2502 return 1;
2503 msr_info->data = vcpu->arch.smbase;
2504 break;
2505 case MSR_IA32_PERF_STATUS:
2506 /* TSC increment by tick */
2507 msr_info->data = 1000ULL;
2508 /* CPU multiplier */
2509 msr_info->data |= (((uint64_t)4ULL) << 40);
2510 break;
2511 case MSR_EFER:
2512 msr_info->data = vcpu->arch.efer;
2513 break;
2514 case MSR_KVM_WALL_CLOCK:
2515 case MSR_KVM_WALL_CLOCK_NEW:
2516 msr_info->data = vcpu->kvm->arch.wall_clock;
2517 break;
2518 case MSR_KVM_SYSTEM_TIME:
2519 case MSR_KVM_SYSTEM_TIME_NEW:
2520 msr_info->data = vcpu->arch.time;
2521 break;
2522 case MSR_KVM_ASYNC_PF_EN:
2523 msr_info->data = vcpu->arch.apf.msr_val;
2524 break;
2525 case MSR_KVM_STEAL_TIME:
2526 msr_info->data = vcpu->arch.st.msr_val;
2527 break;
2528 case MSR_KVM_PV_EOI_EN:
2529 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2530 break;
2531 case MSR_IA32_P5_MC_ADDR:
2532 case MSR_IA32_P5_MC_TYPE:
2533 case MSR_IA32_MCG_CAP:
2534 case MSR_IA32_MCG_CTL:
2535 case MSR_IA32_MCG_STATUS:
2536 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2537 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2538 case MSR_K7_CLK_CTL:
2539 /*
2540 * Provide expected ramp-up count for K7. All other
2541 * are set to zero, indicating minimum divisors for
2542 * every field.
2543 *
2544 * This prevents guest kernels on AMD host with CPU
2545 * type 6, model 8 and higher from exploding due to
2546 * the rdmsr failing.
2547 */
2548 msr_info->data = 0x20000000;
2549 break;
2550 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2551 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2552 case HV_X64_MSR_CRASH_CTL:
2553 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2554 return kvm_hv_get_msr_common(vcpu,
2555 msr_info->index, &msr_info->data);
2556 break;
2557 case MSR_IA32_BBL_CR_CTL3:
2558 /* This legacy MSR exists but isn't fully documented in current
2559 * silicon. It is however accessed by winxp in very narrow
2560 * scenarios where it sets bit #19, itself documented as
2561 * a "reserved" bit. Best effort attempt to source coherent
2562 * read data here should the balance of the register be
2563 * interpreted by the guest:
2564 *
2565 * L2 cache control register 3: 64GB range, 256KB size,
2566 * enabled, latency 0x1, configured
2567 */
2568 msr_info->data = 0xbe702111;
2569 break;
2570 case MSR_AMD64_OSVW_ID_LENGTH:
2571 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2572 return 1;
2573 msr_info->data = vcpu->arch.osvw.length;
2574 break;
2575 case MSR_AMD64_OSVW_STATUS:
2576 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2577 return 1;
2578 msr_info->data = vcpu->arch.osvw.status;
2579 break;
2580 case MSR_PLATFORM_INFO:
2581 msr_info->data = vcpu->arch.msr_platform_info;
2582 break;
2583 case MSR_MISC_FEATURES_ENABLES:
2584 msr_info->data = vcpu->arch.msr_misc_features_enables;
2585 break;
2586 default:
2587 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2588 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2589 if (!ignore_msrs) {
2590 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2591 msr_info->index);
2592 return 1;
2593 } else {
2594 if (report_ignored_msrs)
2595 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2596 msr_info->index);
2597 msr_info->data = 0;
2598 }
2599 break;
2600 }
2601 return 0;
2602 }
2603 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2604
2605 /*
2606 * Read or write a bunch of msrs. All parameters are kernel addresses.
2607 *
2608 * @return number of msrs set successfully.
2609 */
2610 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2611 struct kvm_msr_entry *entries,
2612 int (*do_msr)(struct kvm_vcpu *vcpu,
2613 unsigned index, u64 *data))
2614 {
2615 int i, idx;
2616
2617 idx = srcu_read_lock(&vcpu->kvm->srcu);
2618 for (i = 0; i < msrs->nmsrs; ++i)
2619 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2620 break;
2621 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2622
2623 return i;
2624 }
2625
2626 /*
2627 * Read or write a bunch of msrs. Parameters are user addresses.
2628 *
2629 * @return number of msrs set successfully.
2630 */
2631 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2632 int (*do_msr)(struct kvm_vcpu *vcpu,
2633 unsigned index, u64 *data),
2634 int writeback)
2635 {
2636 struct kvm_msrs msrs;
2637 struct kvm_msr_entry *entries;
2638 int r, n;
2639 unsigned size;
2640
2641 r = -EFAULT;
2642 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2643 goto out;
2644
2645 r = -E2BIG;
2646 if (msrs.nmsrs >= MAX_IO_MSRS)
2647 goto out;
2648
2649 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2650 entries = memdup_user(user_msrs->entries, size);
2651 if (IS_ERR(entries)) {
2652 r = PTR_ERR(entries);
2653 goto out;
2654 }
2655
2656 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2657 if (r < 0)
2658 goto out_free;
2659
2660 r = -EFAULT;
2661 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2662 goto out_free;
2663
2664 r = n;
2665
2666 out_free:
2667 kfree(entries);
2668 out:
2669 return r;
2670 }
2671
2672 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2673 {
2674 int r;
2675
2676 switch (ext) {
2677 case KVM_CAP_IRQCHIP:
2678 case KVM_CAP_HLT:
2679 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2680 case KVM_CAP_SET_TSS_ADDR:
2681 case KVM_CAP_EXT_CPUID:
2682 case KVM_CAP_EXT_EMUL_CPUID:
2683 case KVM_CAP_CLOCKSOURCE:
2684 case KVM_CAP_PIT:
2685 case KVM_CAP_NOP_IO_DELAY:
2686 case KVM_CAP_MP_STATE:
2687 case KVM_CAP_SYNC_MMU:
2688 case KVM_CAP_USER_NMI:
2689 case KVM_CAP_REINJECT_CONTROL:
2690 case KVM_CAP_IRQ_INJECT_STATUS:
2691 case KVM_CAP_IOEVENTFD:
2692 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2693 case KVM_CAP_PIT2:
2694 case KVM_CAP_PIT_STATE2:
2695 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2696 case KVM_CAP_XEN_HVM:
2697 case KVM_CAP_VCPU_EVENTS:
2698 case KVM_CAP_HYPERV:
2699 case KVM_CAP_HYPERV_VAPIC:
2700 case KVM_CAP_HYPERV_SPIN:
2701 case KVM_CAP_HYPERV_SYNIC:
2702 case KVM_CAP_HYPERV_SYNIC2:
2703 case KVM_CAP_HYPERV_VP_INDEX:
2704 case KVM_CAP_PCI_SEGMENT:
2705 case KVM_CAP_DEBUGREGS:
2706 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2707 case KVM_CAP_XSAVE:
2708 case KVM_CAP_ASYNC_PF:
2709 case KVM_CAP_GET_TSC_KHZ:
2710 case KVM_CAP_KVMCLOCK_CTRL:
2711 case KVM_CAP_READONLY_MEM:
2712 case KVM_CAP_HYPERV_TIME:
2713 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2714 case KVM_CAP_TSC_DEADLINE_TIMER:
2715 case KVM_CAP_ENABLE_CAP_VM:
2716 case KVM_CAP_DISABLE_QUIRKS:
2717 case KVM_CAP_SET_BOOT_CPU_ID:
2718 case KVM_CAP_SPLIT_IRQCHIP:
2719 case KVM_CAP_IMMEDIATE_EXIT:
2720 r = 1;
2721 break;
2722 case KVM_CAP_ADJUST_CLOCK:
2723 r = KVM_CLOCK_TSC_STABLE;
2724 break;
2725 case KVM_CAP_X86_GUEST_MWAIT:
2726 r = kvm_mwait_in_guest();
2727 break;
2728 case KVM_CAP_X86_SMM:
2729 /* SMBASE is usually relocated above 1M on modern chipsets,
2730 * and SMM handlers might indeed rely on 4G segment limits,
2731 * so do not report SMM to be available if real mode is
2732 * emulated via vm86 mode. Still, do not go to great lengths
2733 * to avoid userspace's usage of the feature, because it is a
2734 * fringe case that is not enabled except via specific settings
2735 * of the module parameters.
2736 */
2737 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2738 break;
2739 case KVM_CAP_VAPIC:
2740 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2741 break;
2742 case KVM_CAP_NR_VCPUS:
2743 r = KVM_SOFT_MAX_VCPUS;
2744 break;
2745 case KVM_CAP_MAX_VCPUS:
2746 r = KVM_MAX_VCPUS;
2747 break;
2748 case KVM_CAP_NR_MEMSLOTS:
2749 r = KVM_USER_MEM_SLOTS;
2750 break;
2751 case KVM_CAP_PV_MMU: /* obsolete */
2752 r = 0;
2753 break;
2754 case KVM_CAP_MCE:
2755 r = KVM_MAX_MCE_BANKS;
2756 break;
2757 case KVM_CAP_XCRS:
2758 r = boot_cpu_has(X86_FEATURE_XSAVE);
2759 break;
2760 case KVM_CAP_TSC_CONTROL:
2761 r = kvm_has_tsc_control;
2762 break;
2763 case KVM_CAP_X2APIC_API:
2764 r = KVM_X2APIC_API_VALID_FLAGS;
2765 break;
2766 default:
2767 r = 0;
2768 break;
2769 }
2770 return r;
2771
2772 }
2773
2774 long kvm_arch_dev_ioctl(struct file *filp,
2775 unsigned int ioctl, unsigned long arg)
2776 {
2777 void __user *argp = (void __user *)arg;
2778 long r;
2779
2780 switch (ioctl) {
2781 case KVM_GET_MSR_INDEX_LIST: {
2782 struct kvm_msr_list __user *user_msr_list = argp;
2783 struct kvm_msr_list msr_list;
2784 unsigned n;
2785
2786 r = -EFAULT;
2787 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2788 goto out;
2789 n = msr_list.nmsrs;
2790 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2791 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2792 goto out;
2793 r = -E2BIG;
2794 if (n < msr_list.nmsrs)
2795 goto out;
2796 r = -EFAULT;
2797 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2798 num_msrs_to_save * sizeof(u32)))
2799 goto out;
2800 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2801 &emulated_msrs,
2802 num_emulated_msrs * sizeof(u32)))
2803 goto out;
2804 r = 0;
2805 break;
2806 }
2807 case KVM_GET_SUPPORTED_CPUID:
2808 case KVM_GET_EMULATED_CPUID: {
2809 struct kvm_cpuid2 __user *cpuid_arg = argp;
2810 struct kvm_cpuid2 cpuid;
2811
2812 r = -EFAULT;
2813 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2814 goto out;
2815
2816 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2817 ioctl);
2818 if (r)
2819 goto out;
2820
2821 r = -EFAULT;
2822 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2823 goto out;
2824 r = 0;
2825 break;
2826 }
2827 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2828 r = -EFAULT;
2829 if (copy_to_user(argp, &kvm_mce_cap_supported,
2830 sizeof(kvm_mce_cap_supported)))
2831 goto out;
2832 r = 0;
2833 break;
2834 }
2835 default:
2836 r = -EINVAL;
2837 }
2838 out:
2839 return r;
2840 }
2841
2842 static void wbinvd_ipi(void *garbage)
2843 {
2844 wbinvd();
2845 }
2846
2847 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2848 {
2849 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2850 }
2851
2852 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2853 {
2854 /* Address WBINVD may be executed by guest */
2855 if (need_emulate_wbinvd(vcpu)) {
2856 if (kvm_x86_ops->has_wbinvd_exit())
2857 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2858 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2859 smp_call_function_single(vcpu->cpu,
2860 wbinvd_ipi, NULL, 1);
2861 }
2862
2863 kvm_x86_ops->vcpu_load(vcpu, cpu);
2864
2865 /* Apply any externally detected TSC adjustments (due to suspend) */
2866 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2867 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2868 vcpu->arch.tsc_offset_adjustment = 0;
2869 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2870 }
2871
2872 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2873 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2874 rdtsc() - vcpu->arch.last_host_tsc;
2875 if (tsc_delta < 0)
2876 mark_tsc_unstable("KVM discovered backwards TSC");
2877
2878 if (check_tsc_unstable()) {
2879 u64 offset = kvm_compute_tsc_offset(vcpu,
2880 vcpu->arch.last_guest_tsc);
2881 kvm_vcpu_write_tsc_offset(vcpu, offset);
2882 vcpu->arch.tsc_catchup = 1;
2883 }
2884
2885 if (kvm_lapic_hv_timer_in_use(vcpu))
2886 kvm_lapic_restart_hv_timer(vcpu);
2887
2888 /*
2889 * On a host with synchronized TSC, there is no need to update
2890 * kvmclock on vcpu->cpu migration
2891 */
2892 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2893 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2894 if (vcpu->cpu != cpu)
2895 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
2896 vcpu->cpu = cpu;
2897 }
2898
2899 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2900 }
2901
2902 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
2903 {
2904 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2905 return;
2906
2907 vcpu->arch.st.steal.preempted = 1;
2908
2909 kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
2910 &vcpu->arch.st.steal.preempted,
2911 offsetof(struct kvm_steal_time, preempted),
2912 sizeof(vcpu->arch.st.steal.preempted));
2913 }
2914
2915 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2916 {
2917 int idx;
2918
2919 if (vcpu->preempted)
2920 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
2921
2922 /*
2923 * Disable page faults because we're in atomic context here.
2924 * kvm_write_guest_offset_cached() would call might_fault()
2925 * that relies on pagefault_disable() to tell if there's a
2926 * bug. NOTE: the write to guest memory may not go through if
2927 * during postcopy live migration or if there's heavy guest
2928 * paging.
2929 */
2930 pagefault_disable();
2931 /*
2932 * kvm_memslots() will be called by
2933 * kvm_write_guest_offset_cached() so take the srcu lock.
2934 */
2935 idx = srcu_read_lock(&vcpu->kvm->srcu);
2936 kvm_steal_time_set_preempted(vcpu);
2937 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2938 pagefault_enable();
2939 kvm_x86_ops->vcpu_put(vcpu);
2940 vcpu->arch.last_host_tsc = rdtsc();
2941 }
2942
2943 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2944 struct kvm_lapic_state *s)
2945 {
2946 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
2947 kvm_x86_ops->sync_pir_to_irr(vcpu);
2948
2949 return kvm_apic_get_state(vcpu, s);
2950 }
2951
2952 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2953 struct kvm_lapic_state *s)
2954 {
2955 int r;
2956
2957 r = kvm_apic_set_state(vcpu, s);
2958 if (r)
2959 return r;
2960 update_cr8_intercept(vcpu);
2961
2962 return 0;
2963 }
2964
2965 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2966 {
2967 return (!lapic_in_kernel(vcpu) ||
2968 kvm_apic_accept_pic_intr(vcpu));
2969 }
2970
2971 /*
2972 * if userspace requested an interrupt window, check that the
2973 * interrupt window is open.
2974 *
2975 * No need to exit to userspace if we already have an interrupt queued.
2976 */
2977 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2978 {
2979 return kvm_arch_interrupt_allowed(vcpu) &&
2980 !kvm_cpu_has_interrupt(vcpu) &&
2981 !kvm_event_needs_reinjection(vcpu) &&
2982 kvm_cpu_accept_dm_intr(vcpu);
2983 }
2984
2985 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2986 struct kvm_interrupt *irq)
2987 {
2988 if (irq->irq >= KVM_NR_INTERRUPTS)
2989 return -EINVAL;
2990
2991 if (!irqchip_in_kernel(vcpu->kvm)) {
2992 kvm_queue_interrupt(vcpu, irq->irq, false);
2993 kvm_make_request(KVM_REQ_EVENT, vcpu);
2994 return 0;
2995 }
2996
2997 /*
2998 * With in-kernel LAPIC, we only use this to inject EXTINT, so
2999 * fail for in-kernel 8259.
3000 */
3001 if (pic_in_kernel(vcpu->kvm))
3002 return -ENXIO;
3003
3004 if (vcpu->arch.pending_external_vector != -1)
3005 return -EEXIST;
3006
3007 vcpu->arch.pending_external_vector = irq->irq;
3008 kvm_make_request(KVM_REQ_EVENT, vcpu);
3009 return 0;
3010 }
3011
3012 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3013 {
3014 kvm_inject_nmi(vcpu);
3015
3016 return 0;
3017 }
3018
3019 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3020 {
3021 kvm_make_request(KVM_REQ_SMI, vcpu);
3022
3023 return 0;
3024 }
3025
3026 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3027 struct kvm_tpr_access_ctl *tac)
3028 {
3029 if (tac->flags)
3030 return -EINVAL;
3031 vcpu->arch.tpr_access_reporting = !!tac->enabled;
3032 return 0;
3033 }
3034
3035 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3036 u64 mcg_cap)
3037 {
3038 int r;
3039 unsigned bank_num = mcg_cap & 0xff, bank;
3040
3041 r = -EINVAL;
3042 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3043 goto out;
3044 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3045 goto out;
3046 r = 0;
3047 vcpu->arch.mcg_cap = mcg_cap;
3048 /* Init IA32_MCG_CTL to all 1s */
3049 if (mcg_cap & MCG_CTL_P)
3050 vcpu->arch.mcg_ctl = ~(u64)0;
3051 /* Init IA32_MCi_CTL to all 1s */
3052 for (bank = 0; bank < bank_num; bank++)
3053 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3054
3055 if (kvm_x86_ops->setup_mce)
3056 kvm_x86_ops->setup_mce(vcpu);
3057 out:
3058 return r;
3059 }
3060
3061 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3062 struct kvm_x86_mce *mce)
3063 {
3064 u64 mcg_cap = vcpu->arch.mcg_cap;
3065 unsigned bank_num = mcg_cap & 0xff;
3066 u64 *banks = vcpu->arch.mce_banks;
3067
3068 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3069 return -EINVAL;
3070 /*
3071 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3072 * reporting is disabled
3073 */
3074 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3075 vcpu->arch.mcg_ctl != ~(u64)0)
3076 return 0;
3077 banks += 4 * mce->bank;
3078 /*
3079 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3080 * reporting is disabled for the bank
3081 */
3082 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3083 return 0;
3084 if (mce->status & MCI_STATUS_UC) {
3085 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3086 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3087 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3088 return 0;
3089 }
3090 if (banks[1] & MCI_STATUS_VAL)
3091 mce->status |= MCI_STATUS_OVER;
3092 banks[2] = mce->addr;
3093 banks[3] = mce->misc;
3094 vcpu->arch.mcg_status = mce->mcg_status;
3095 banks[1] = mce->status;
3096 kvm_queue_exception(vcpu, MC_VECTOR);
3097 } else if (!(banks[1] & MCI_STATUS_VAL)
3098 || !(banks[1] & MCI_STATUS_UC)) {
3099 if (banks[1] & MCI_STATUS_VAL)
3100 mce->status |= MCI_STATUS_OVER;
3101 banks[2] = mce->addr;
3102 banks[3] = mce->misc;
3103 banks[1] = mce->status;
3104 } else
3105 banks[1] |= MCI_STATUS_OVER;
3106 return 0;
3107 }
3108
3109 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3110 struct kvm_vcpu_events *events)
3111 {
3112 process_nmi(vcpu);
3113 /*
3114 * FIXME: pass injected and pending separately. This is only
3115 * needed for nested virtualization, whose state cannot be
3116 * migrated yet. For now we can combine them.
3117 */
3118 events->exception.injected =
3119 (vcpu->arch.exception.pending ||
3120 vcpu->arch.exception.injected) &&
3121 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3122 events->exception.nr = vcpu->arch.exception.nr;
3123 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3124 events->exception.pad = 0;
3125 events->exception.error_code = vcpu->arch.exception.error_code;
3126
3127 events->interrupt.injected =
3128 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3129 events->interrupt.nr = vcpu->arch.interrupt.nr;
3130 events->interrupt.soft = 0;
3131 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3132
3133 events->nmi.injected = vcpu->arch.nmi_injected;
3134 events->nmi.pending = vcpu->arch.nmi_pending != 0;
3135 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3136 events->nmi.pad = 0;
3137
3138 events->sipi_vector = 0; /* never valid when reporting to user space */
3139
3140 events->smi.smm = is_smm(vcpu);
3141 events->smi.pending = vcpu->arch.smi_pending;
3142 events->smi.smm_inside_nmi =
3143 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3144 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3145
3146 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3147 | KVM_VCPUEVENT_VALID_SHADOW
3148 | KVM_VCPUEVENT_VALID_SMM);
3149 memset(&events->reserved, 0, sizeof(events->reserved));
3150 }
3151
3152 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3153
3154 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3155 struct kvm_vcpu_events *events)
3156 {
3157 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3158 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3159 | KVM_VCPUEVENT_VALID_SHADOW
3160 | KVM_VCPUEVENT_VALID_SMM))
3161 return -EINVAL;
3162
3163 if (events->exception.injected &&
3164 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3165 is_guest_mode(vcpu)))
3166 return -EINVAL;
3167
3168 /* INITs are latched while in SMM */
3169 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3170 (events->smi.smm || events->smi.pending) &&
3171 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3172 return -EINVAL;
3173
3174 process_nmi(vcpu);
3175 vcpu->arch.exception.injected = false;
3176 vcpu->arch.exception.pending = events->exception.injected;
3177 vcpu->arch.exception.nr = events->exception.nr;
3178 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3179 vcpu->arch.exception.error_code = events->exception.error_code;
3180
3181 vcpu->arch.interrupt.pending = events->interrupt.injected;
3182 vcpu->arch.interrupt.nr = events->interrupt.nr;
3183 vcpu->arch.interrupt.soft = events->interrupt.soft;
3184 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3185 kvm_x86_ops->set_interrupt_shadow(vcpu,
3186 events->interrupt.shadow);
3187
3188 vcpu->arch.nmi_injected = events->nmi.injected;
3189 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3190 vcpu->arch.nmi_pending = events->nmi.pending;
3191 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3192
3193 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3194 lapic_in_kernel(vcpu))
3195 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3196
3197 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3198 u32 hflags = vcpu->arch.hflags;
3199 if (events->smi.smm)
3200 hflags |= HF_SMM_MASK;
3201 else
3202 hflags &= ~HF_SMM_MASK;
3203 kvm_set_hflags(vcpu, hflags);
3204
3205 vcpu->arch.smi_pending = events->smi.pending;
3206
3207 if (events->smi.smm) {
3208 if (events->smi.smm_inside_nmi)
3209 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3210 else
3211 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3212 if (lapic_in_kernel(vcpu)) {
3213 if (events->smi.latched_init)
3214 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3215 else
3216 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3217 }
3218 }
3219 }
3220
3221 kvm_make_request(KVM_REQ_EVENT, vcpu);
3222
3223 return 0;
3224 }
3225
3226 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3227 struct kvm_debugregs *dbgregs)
3228 {
3229 unsigned long val;
3230
3231 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3232 kvm_get_dr(vcpu, 6, &val);
3233 dbgregs->dr6 = val;
3234 dbgregs->dr7 = vcpu->arch.dr7;
3235 dbgregs->flags = 0;
3236 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3237 }
3238
3239 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3240 struct kvm_debugregs *dbgregs)
3241 {
3242 if (dbgregs->flags)
3243 return -EINVAL;
3244
3245 if (dbgregs->dr6 & ~0xffffffffull)
3246 return -EINVAL;
3247 if (dbgregs->dr7 & ~0xffffffffull)
3248 return -EINVAL;
3249
3250 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3251 kvm_update_dr0123(vcpu);
3252 vcpu->arch.dr6 = dbgregs->dr6;
3253 kvm_update_dr6(vcpu);
3254 vcpu->arch.dr7 = dbgregs->dr7;
3255 kvm_update_dr7(vcpu);
3256
3257 return 0;
3258 }
3259
3260 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3261
3262 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3263 {
3264 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3265 u64 xstate_bv = xsave->header.xfeatures;
3266 u64 valid;
3267
3268 /*
3269 * Copy legacy XSAVE area, to avoid complications with CPUID
3270 * leaves 0 and 1 in the loop below.
3271 */
3272 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3273
3274 /* Set XSTATE_BV */
3275 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3276 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3277
3278 /*
3279 * Copy each region from the possibly compacted offset to the
3280 * non-compacted offset.
3281 */
3282 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3283 while (valid) {
3284 u64 feature = valid & -valid;
3285 int index = fls64(feature) - 1;
3286 void *src = get_xsave_addr(xsave, feature);
3287
3288 if (src) {
3289 u32 size, offset, ecx, edx;
3290 cpuid_count(XSTATE_CPUID, index,
3291 &size, &offset, &ecx, &edx);
3292 if (feature == XFEATURE_MASK_PKRU)
3293 memcpy(dest + offset, &vcpu->arch.pkru,
3294 sizeof(vcpu->arch.pkru));
3295 else
3296 memcpy(dest + offset, src, size);
3297
3298 }
3299
3300 valid -= feature;
3301 }
3302 }
3303
3304 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3305 {
3306 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3307 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3308 u64 valid;
3309
3310 /*
3311 * Copy legacy XSAVE area, to avoid complications with CPUID
3312 * leaves 0 and 1 in the loop below.
3313 */
3314 memcpy(xsave, src, XSAVE_HDR_OFFSET);
3315
3316 /* Set XSTATE_BV and possibly XCOMP_BV. */
3317 xsave->header.xfeatures = xstate_bv;
3318 if (boot_cpu_has(X86_FEATURE_XSAVES))
3319 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3320
3321 /*
3322 * Copy each region from the non-compacted offset to the
3323 * possibly compacted offset.
3324 */
3325 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3326 while (valid) {
3327 u64 feature = valid & -valid;
3328 int index = fls64(feature) - 1;
3329 void *dest = get_xsave_addr(xsave, feature);
3330
3331 if (dest) {
3332 u32 size, offset, ecx, edx;
3333 cpuid_count(XSTATE_CPUID, index,
3334 &size, &offset, &ecx, &edx);
3335 if (feature == XFEATURE_MASK_PKRU)
3336 memcpy(&vcpu->arch.pkru, src + offset,
3337 sizeof(vcpu->arch.pkru));
3338 else
3339 memcpy(dest, src + offset, size);
3340 }
3341
3342 valid -= feature;
3343 }
3344 }
3345
3346 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3347 struct kvm_xsave *guest_xsave)
3348 {
3349 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3350 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3351 fill_xsave((u8 *) guest_xsave->region, vcpu);
3352 } else {
3353 memcpy(guest_xsave->region,
3354 &vcpu->arch.guest_fpu.state.fxsave,
3355 sizeof(struct fxregs_state));
3356 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3357 XFEATURE_MASK_FPSSE;
3358 }
3359 }
3360
3361 #define XSAVE_MXCSR_OFFSET 24
3362
3363 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3364 struct kvm_xsave *guest_xsave)
3365 {
3366 u64 xstate_bv =
3367 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3368 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3369
3370 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3371 /*
3372 * Here we allow setting states that are not present in
3373 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3374 * with old userspace.
3375 */
3376 if (xstate_bv & ~kvm_supported_xcr0() ||
3377 mxcsr & ~mxcsr_feature_mask)
3378 return -EINVAL;
3379 load_xsave(vcpu, (u8 *)guest_xsave->region);
3380 } else {
3381 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3382 mxcsr & ~mxcsr_feature_mask)
3383 return -EINVAL;
3384 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3385 guest_xsave->region, sizeof(struct fxregs_state));
3386 }
3387 return 0;
3388 }
3389
3390 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3391 struct kvm_xcrs *guest_xcrs)
3392 {
3393 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3394 guest_xcrs->nr_xcrs = 0;
3395 return;
3396 }
3397
3398 guest_xcrs->nr_xcrs = 1;
3399 guest_xcrs->flags = 0;
3400 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3401 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3402 }
3403
3404 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3405 struct kvm_xcrs *guest_xcrs)
3406 {
3407 int i, r = 0;
3408
3409 if (!boot_cpu_has(X86_FEATURE_XSAVE))
3410 return -EINVAL;
3411
3412 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3413 return -EINVAL;
3414
3415 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3416 /* Only support XCR0 currently */
3417 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3418 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3419 guest_xcrs->xcrs[i].value);
3420 break;
3421 }
3422 if (r)
3423 r = -EINVAL;
3424 return r;
3425 }
3426
3427 /*
3428 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3429 * stopped by the hypervisor. This function will be called from the host only.
3430 * EINVAL is returned when the host attempts to set the flag for a guest that
3431 * does not support pv clocks.
3432 */
3433 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3434 {
3435 if (!vcpu->arch.pv_time_enabled)
3436 return -EINVAL;
3437 vcpu->arch.pvclock_set_guest_stopped_request = true;
3438 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3439 return 0;
3440 }
3441
3442 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3443 struct kvm_enable_cap *cap)
3444 {
3445 if (cap->flags)
3446 return -EINVAL;
3447
3448 switch (cap->cap) {
3449 case KVM_CAP_HYPERV_SYNIC2:
3450 if (cap->args[0])
3451 return -EINVAL;
3452 case KVM_CAP_HYPERV_SYNIC:
3453 if (!irqchip_in_kernel(vcpu->kvm))
3454 return -EINVAL;
3455 return kvm_hv_activate_synic(vcpu, cap->cap ==
3456 KVM_CAP_HYPERV_SYNIC2);
3457 default:
3458 return -EINVAL;
3459 }
3460 }
3461
3462 long kvm_arch_vcpu_ioctl(struct file *filp,
3463 unsigned int ioctl, unsigned long arg)
3464 {
3465 struct kvm_vcpu *vcpu = filp->private_data;
3466 void __user *argp = (void __user *)arg;
3467 int r;
3468 union {
3469 struct kvm_lapic_state *lapic;
3470 struct kvm_xsave *xsave;
3471 struct kvm_xcrs *xcrs;
3472 void *buffer;
3473 } u;
3474
3475 u.buffer = NULL;
3476 switch (ioctl) {
3477 case KVM_GET_LAPIC: {
3478 r = -EINVAL;
3479 if (!lapic_in_kernel(vcpu))
3480 goto out;
3481 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3482
3483 r = -ENOMEM;
3484 if (!u.lapic)
3485 goto out;
3486 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3487 if (r)
3488 goto out;
3489 r = -EFAULT;
3490 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3491 goto out;
3492 r = 0;
3493 break;
3494 }
3495 case KVM_SET_LAPIC: {
3496 r = -EINVAL;
3497 if (!lapic_in_kernel(vcpu))
3498 goto out;
3499 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3500 if (IS_ERR(u.lapic))
3501 return PTR_ERR(u.lapic);
3502
3503 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3504 break;
3505 }
3506 case KVM_INTERRUPT: {
3507 struct kvm_interrupt irq;
3508
3509 r = -EFAULT;
3510 if (copy_from_user(&irq, argp, sizeof irq))
3511 goto out;
3512 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3513 break;
3514 }
3515 case KVM_NMI: {
3516 r = kvm_vcpu_ioctl_nmi(vcpu);
3517 break;
3518 }
3519 case KVM_SMI: {
3520 r = kvm_vcpu_ioctl_smi(vcpu);
3521 break;
3522 }
3523 case KVM_SET_CPUID: {
3524 struct kvm_cpuid __user *cpuid_arg = argp;
3525 struct kvm_cpuid cpuid;
3526
3527 r = -EFAULT;
3528 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3529 goto out;
3530 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3531 break;
3532 }
3533 case KVM_SET_CPUID2: {
3534 struct kvm_cpuid2 __user *cpuid_arg = argp;
3535 struct kvm_cpuid2 cpuid;
3536
3537 r = -EFAULT;
3538 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3539 goto out;
3540 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3541 cpuid_arg->entries);
3542 break;
3543 }
3544 case KVM_GET_CPUID2: {
3545 struct kvm_cpuid2 __user *cpuid_arg = argp;
3546 struct kvm_cpuid2 cpuid;
3547
3548 r = -EFAULT;
3549 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3550 goto out;
3551 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3552 cpuid_arg->entries);
3553 if (r)
3554 goto out;
3555 r = -EFAULT;
3556 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3557 goto out;
3558 r = 0;
3559 break;
3560 }
3561 case KVM_GET_MSRS:
3562 r = msr_io(vcpu, argp, do_get_msr, 1);
3563 break;
3564 case KVM_SET_MSRS:
3565 r = msr_io(vcpu, argp, do_set_msr, 0);
3566 break;
3567 case KVM_TPR_ACCESS_REPORTING: {
3568 struct kvm_tpr_access_ctl tac;
3569
3570 r = -EFAULT;
3571 if (copy_from_user(&tac, argp, sizeof tac))
3572 goto out;
3573 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3574 if (r)
3575 goto out;
3576 r = -EFAULT;
3577 if (copy_to_user(argp, &tac, sizeof tac))
3578 goto out;
3579 r = 0;
3580 break;
3581 };
3582 case KVM_SET_VAPIC_ADDR: {
3583 struct kvm_vapic_addr va;
3584 int idx;
3585
3586 r = -EINVAL;
3587 if (!lapic_in_kernel(vcpu))
3588 goto out;
3589 r = -EFAULT;
3590 if (copy_from_user(&va, argp, sizeof va))
3591 goto out;
3592 idx = srcu_read_lock(&vcpu->kvm->srcu);
3593 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3594 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3595 break;
3596 }
3597 case KVM_X86_SETUP_MCE: {
3598 u64 mcg_cap;
3599
3600 r = -EFAULT;
3601 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3602 goto out;
3603 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3604 break;
3605 }
3606 case KVM_X86_SET_MCE: {
3607 struct kvm_x86_mce mce;
3608
3609 r = -EFAULT;
3610 if (copy_from_user(&mce, argp, sizeof mce))
3611 goto out;
3612 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3613 break;
3614 }
3615 case KVM_GET_VCPU_EVENTS: {
3616 struct kvm_vcpu_events events;
3617
3618 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3619
3620 r = -EFAULT;
3621 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3622 break;
3623 r = 0;
3624 break;
3625 }
3626 case KVM_SET_VCPU_EVENTS: {
3627 struct kvm_vcpu_events events;
3628
3629 r = -EFAULT;
3630 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3631 break;
3632
3633 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3634 break;
3635 }
3636 case KVM_GET_DEBUGREGS: {
3637 struct kvm_debugregs dbgregs;
3638
3639 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3640
3641 r = -EFAULT;
3642 if (copy_to_user(argp, &dbgregs,
3643 sizeof(struct kvm_debugregs)))
3644 break;
3645 r = 0;
3646 break;
3647 }
3648 case KVM_SET_DEBUGREGS: {
3649 struct kvm_debugregs dbgregs;
3650
3651 r = -EFAULT;
3652 if (copy_from_user(&dbgregs, argp,
3653 sizeof(struct kvm_debugregs)))
3654 break;
3655
3656 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3657 break;
3658 }
3659 case KVM_GET_XSAVE: {
3660 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3661 r = -ENOMEM;
3662 if (!u.xsave)
3663 break;
3664
3665 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3666
3667 r = -EFAULT;
3668 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3669 break;
3670 r = 0;
3671 break;
3672 }
3673 case KVM_SET_XSAVE: {
3674 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3675 if (IS_ERR(u.xsave))
3676 return PTR_ERR(u.xsave);
3677
3678 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3679 break;
3680 }
3681 case KVM_GET_XCRS: {
3682 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3683 r = -ENOMEM;
3684 if (!u.xcrs)
3685 break;
3686
3687 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3688
3689 r = -EFAULT;
3690 if (copy_to_user(argp, u.xcrs,
3691 sizeof(struct kvm_xcrs)))
3692 break;
3693 r = 0;
3694 break;
3695 }
3696 case KVM_SET_XCRS: {
3697 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3698 if (IS_ERR(u.xcrs))
3699 return PTR_ERR(u.xcrs);
3700
3701 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3702 break;
3703 }
3704 case KVM_SET_TSC_KHZ: {
3705 u32 user_tsc_khz;
3706
3707 r = -EINVAL;
3708 user_tsc_khz = (u32)arg;
3709
3710 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3711 goto out;
3712
3713 if (user_tsc_khz == 0)
3714 user_tsc_khz = tsc_khz;
3715
3716 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3717 r = 0;
3718
3719 goto out;
3720 }
3721 case KVM_GET_TSC_KHZ: {
3722 r = vcpu->arch.virtual_tsc_khz;
3723 goto out;
3724 }
3725 case KVM_KVMCLOCK_CTRL: {
3726 r = kvm_set_guest_paused(vcpu);
3727 goto out;
3728 }
3729 case KVM_ENABLE_CAP: {
3730 struct kvm_enable_cap cap;
3731
3732 r = -EFAULT;
3733 if (copy_from_user(&cap, argp, sizeof(cap)))
3734 goto out;
3735 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3736 break;
3737 }
3738 default:
3739 r = -EINVAL;
3740 }
3741 out:
3742 kfree(u.buffer);
3743 return r;
3744 }
3745
3746 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3747 {
3748 return VM_FAULT_SIGBUS;
3749 }
3750
3751 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3752 {
3753 int ret;
3754
3755 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3756 return -EINVAL;
3757 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3758 return ret;
3759 }
3760
3761 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3762 u64 ident_addr)
3763 {
3764 kvm->arch.ept_identity_map_addr = ident_addr;
3765 return 0;
3766 }
3767
3768 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3769 u32 kvm_nr_mmu_pages)
3770 {
3771 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3772 return -EINVAL;
3773
3774 mutex_lock(&kvm->slots_lock);
3775
3776 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3777 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3778
3779 mutex_unlock(&kvm->slots_lock);
3780 return 0;
3781 }
3782
3783 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3784 {
3785 return kvm->arch.n_max_mmu_pages;
3786 }
3787
3788 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3789 {
3790 struct kvm_pic *pic = kvm->arch.vpic;
3791 int r;
3792
3793 r = 0;
3794 switch (chip->chip_id) {
3795 case KVM_IRQCHIP_PIC_MASTER:
3796 memcpy(&chip->chip.pic, &pic->pics[0],
3797 sizeof(struct kvm_pic_state));
3798 break;
3799 case KVM_IRQCHIP_PIC_SLAVE:
3800 memcpy(&chip->chip.pic, &pic->pics[1],
3801 sizeof(struct kvm_pic_state));
3802 break;
3803 case KVM_IRQCHIP_IOAPIC:
3804 kvm_get_ioapic(kvm, &chip->chip.ioapic);
3805 break;
3806 default:
3807 r = -EINVAL;
3808 break;
3809 }
3810 return r;
3811 }
3812
3813 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3814 {
3815 struct kvm_pic *pic = kvm->arch.vpic;
3816 int r;
3817
3818 r = 0;
3819 switch (chip->chip_id) {
3820 case KVM_IRQCHIP_PIC_MASTER:
3821 spin_lock(&pic->lock);
3822 memcpy(&pic->pics[0], &chip->chip.pic,
3823 sizeof(struct kvm_pic_state));
3824 spin_unlock(&pic->lock);
3825 break;
3826 case KVM_IRQCHIP_PIC_SLAVE:
3827 spin_lock(&pic->lock);
3828 memcpy(&pic->pics[1], &chip->chip.pic,
3829 sizeof(struct kvm_pic_state));
3830 spin_unlock(&pic->lock);
3831 break;
3832 case KVM_IRQCHIP_IOAPIC:
3833 kvm_set_ioapic(kvm, &chip->chip.ioapic);
3834 break;
3835 default:
3836 r = -EINVAL;
3837 break;
3838 }
3839 kvm_pic_update_irq(pic);
3840 return r;
3841 }
3842
3843 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3844 {
3845 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3846
3847 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3848
3849 mutex_lock(&kps->lock);
3850 memcpy(ps, &kps->channels, sizeof(*ps));
3851 mutex_unlock(&kps->lock);
3852 return 0;
3853 }
3854
3855 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3856 {
3857 int i;
3858 struct kvm_pit *pit = kvm->arch.vpit;
3859
3860 mutex_lock(&pit->pit_state.lock);
3861 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3862 for (i = 0; i < 3; i++)
3863 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3864 mutex_unlock(&pit->pit_state.lock);
3865 return 0;
3866 }
3867
3868 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3869 {
3870 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3871 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3872 sizeof(ps->channels));
3873 ps->flags = kvm->arch.vpit->pit_state.flags;
3874 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3875 memset(&ps->reserved, 0, sizeof(ps->reserved));
3876 return 0;
3877 }
3878
3879 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3880 {
3881 int start = 0;
3882 int i;
3883 u32 prev_legacy, cur_legacy;
3884 struct kvm_pit *pit = kvm->arch.vpit;
3885
3886 mutex_lock(&pit->pit_state.lock);
3887 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3888 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3889 if (!prev_legacy && cur_legacy)
3890 start = 1;
3891 memcpy(&pit->pit_state.channels, &ps->channels,
3892 sizeof(pit->pit_state.channels));
3893 pit->pit_state.flags = ps->flags;
3894 for (i = 0; i < 3; i++)
3895 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3896 start && i == 0);
3897 mutex_unlock(&pit->pit_state.lock);
3898 return 0;
3899 }
3900
3901 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3902 struct kvm_reinject_control *control)
3903 {
3904 struct kvm_pit *pit = kvm->arch.vpit;
3905
3906 if (!pit)
3907 return -ENXIO;
3908
3909 /* pit->pit_state.lock was overloaded to prevent userspace from getting
3910 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3911 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
3912 */
3913 mutex_lock(&pit->pit_state.lock);
3914 kvm_pit_set_reinject(pit, control->pit_reinject);
3915 mutex_unlock(&pit->pit_state.lock);
3916
3917 return 0;
3918 }
3919
3920 /**
3921 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3922 * @kvm: kvm instance
3923 * @log: slot id and address to which we copy the log
3924 *
3925 * Steps 1-4 below provide general overview of dirty page logging. See
3926 * kvm_get_dirty_log_protect() function description for additional details.
3927 *
3928 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3929 * always flush the TLB (step 4) even if previous step failed and the dirty
3930 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3931 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3932 * writes will be marked dirty for next log read.
3933 *
3934 * 1. Take a snapshot of the bit and clear it if needed.
3935 * 2. Write protect the corresponding page.
3936 * 3. Copy the snapshot to the userspace.
3937 * 4. Flush TLB's if needed.
3938 */
3939 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3940 {
3941 bool is_dirty = false;
3942 int r;
3943
3944 mutex_lock(&kvm->slots_lock);
3945
3946 /*
3947 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3948 */
3949 if (kvm_x86_ops->flush_log_dirty)
3950 kvm_x86_ops->flush_log_dirty(kvm);
3951
3952 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3953
3954 /*
3955 * All the TLBs can be flushed out of mmu lock, see the comments in
3956 * kvm_mmu_slot_remove_write_access().
3957 */
3958 lockdep_assert_held(&kvm->slots_lock);
3959 if (is_dirty)
3960 kvm_flush_remote_tlbs(kvm);
3961
3962 mutex_unlock(&kvm->slots_lock);
3963 return r;
3964 }
3965
3966 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3967 bool line_status)
3968 {
3969 if (!irqchip_in_kernel(kvm))
3970 return -ENXIO;
3971
3972 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3973 irq_event->irq, irq_event->level,
3974 line_status);
3975 return 0;
3976 }
3977
3978 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3979 struct kvm_enable_cap *cap)
3980 {
3981 int r;
3982
3983 if (cap->flags)
3984 return -EINVAL;
3985
3986 switch (cap->cap) {
3987 case KVM_CAP_DISABLE_QUIRKS:
3988 kvm->arch.disabled_quirks = cap->args[0];
3989 r = 0;
3990 break;
3991 case KVM_CAP_SPLIT_IRQCHIP: {
3992 mutex_lock(&kvm->lock);
3993 r = -EINVAL;
3994 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3995 goto split_irqchip_unlock;
3996 r = -EEXIST;
3997 if (irqchip_in_kernel(kvm))
3998 goto split_irqchip_unlock;
3999 if (kvm->created_vcpus)
4000 goto split_irqchip_unlock;
4001 r = kvm_setup_empty_irq_routing(kvm);
4002 if (r)
4003 goto split_irqchip_unlock;
4004 /* Pairs with irqchip_in_kernel. */
4005 smp_wmb();
4006 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4007 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4008 r = 0;
4009 split_irqchip_unlock:
4010 mutex_unlock(&kvm->lock);
4011 break;
4012 }
4013 case KVM_CAP_X2APIC_API:
4014 r = -EINVAL;
4015 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4016 break;
4017
4018 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4019 kvm->arch.x2apic_format = true;
4020 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4021 kvm->arch.x2apic_broadcast_quirk_disabled = true;
4022
4023 r = 0;
4024 break;
4025 default:
4026 r = -EINVAL;
4027 break;
4028 }
4029 return r;
4030 }
4031
4032 long kvm_arch_vm_ioctl(struct file *filp,
4033 unsigned int ioctl, unsigned long arg)
4034 {
4035 struct kvm *kvm = filp->private_data;
4036 void __user *argp = (void __user *)arg;
4037 int r = -ENOTTY;
4038 /*
4039 * This union makes it completely explicit to gcc-3.x
4040 * that these two variables' stack usage should be
4041 * combined, not added together.
4042 */
4043 union {
4044 struct kvm_pit_state ps;
4045 struct kvm_pit_state2 ps2;
4046 struct kvm_pit_config pit_config;
4047 } u;
4048
4049 switch (ioctl) {
4050 case KVM_SET_TSS_ADDR:
4051 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4052 break;
4053 case KVM_SET_IDENTITY_MAP_ADDR: {
4054 u64 ident_addr;
4055
4056 mutex_lock(&kvm->lock);
4057 r = -EINVAL;
4058 if (kvm->created_vcpus)
4059 goto set_identity_unlock;
4060 r = -EFAULT;
4061 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4062 goto set_identity_unlock;
4063 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4064 set_identity_unlock:
4065 mutex_unlock(&kvm->lock);
4066 break;
4067 }
4068 case KVM_SET_NR_MMU_PAGES:
4069 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4070 break;
4071 case KVM_GET_NR_MMU_PAGES:
4072 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4073 break;
4074 case KVM_CREATE_IRQCHIP: {
4075 mutex_lock(&kvm->lock);
4076
4077 r = -EEXIST;
4078 if (irqchip_in_kernel(kvm))
4079 goto create_irqchip_unlock;
4080
4081 r = -EINVAL;
4082 if (kvm->created_vcpus)
4083 goto create_irqchip_unlock;
4084
4085 r = kvm_pic_init(kvm);
4086 if (r)
4087 goto create_irqchip_unlock;
4088
4089 r = kvm_ioapic_init(kvm);
4090 if (r) {
4091 kvm_pic_destroy(kvm);
4092 goto create_irqchip_unlock;
4093 }
4094
4095 r = kvm_setup_default_irq_routing(kvm);
4096 if (r) {
4097 kvm_ioapic_destroy(kvm);
4098 kvm_pic_destroy(kvm);
4099 goto create_irqchip_unlock;
4100 }
4101 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4102 smp_wmb();
4103 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4104 create_irqchip_unlock:
4105 mutex_unlock(&kvm->lock);
4106 break;
4107 }
4108 case KVM_CREATE_PIT:
4109 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4110 goto create_pit;
4111 case KVM_CREATE_PIT2:
4112 r = -EFAULT;
4113 if (copy_from_user(&u.pit_config, argp,
4114 sizeof(struct kvm_pit_config)))
4115 goto out;
4116 create_pit:
4117 mutex_lock(&kvm->lock);
4118 r = -EEXIST;
4119 if (kvm->arch.vpit)
4120 goto create_pit_unlock;
4121 r = -ENOMEM;
4122 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4123 if (kvm->arch.vpit)
4124 r = 0;
4125 create_pit_unlock:
4126 mutex_unlock(&kvm->lock);
4127 break;
4128 case KVM_GET_IRQCHIP: {
4129 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4130 struct kvm_irqchip *chip;
4131
4132 chip = memdup_user(argp, sizeof(*chip));
4133 if (IS_ERR(chip)) {
4134 r = PTR_ERR(chip);
4135 goto out;
4136 }
4137
4138 r = -ENXIO;
4139 if (!irqchip_kernel(kvm))
4140 goto get_irqchip_out;
4141 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4142 if (r)
4143 goto get_irqchip_out;
4144 r = -EFAULT;
4145 if (copy_to_user(argp, chip, sizeof *chip))
4146 goto get_irqchip_out;
4147 r = 0;
4148 get_irqchip_out:
4149 kfree(chip);
4150 break;
4151 }
4152 case KVM_SET_IRQCHIP: {
4153 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4154 struct kvm_irqchip *chip;
4155
4156 chip = memdup_user(argp, sizeof(*chip));
4157 if (IS_ERR(chip)) {
4158 r = PTR_ERR(chip);
4159 goto out;
4160 }
4161
4162 r = -ENXIO;
4163 if (!irqchip_kernel(kvm))
4164 goto set_irqchip_out;
4165 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4166 if (r)
4167 goto set_irqchip_out;
4168 r = 0;
4169 set_irqchip_out:
4170 kfree(chip);
4171 break;
4172 }
4173 case KVM_GET_PIT: {
4174 r = -EFAULT;
4175 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4176 goto out;
4177 r = -ENXIO;
4178 if (!kvm->arch.vpit)
4179 goto out;
4180 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4181 if (r)
4182 goto out;
4183 r = -EFAULT;
4184 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4185 goto out;
4186 r = 0;
4187 break;
4188 }
4189 case KVM_SET_PIT: {
4190 r = -EFAULT;
4191 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4192 goto out;
4193 r = -ENXIO;
4194 if (!kvm->arch.vpit)
4195 goto out;
4196 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4197 break;
4198 }
4199 case KVM_GET_PIT2: {
4200 r = -ENXIO;
4201 if (!kvm->arch.vpit)
4202 goto out;
4203 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4204 if (r)
4205 goto out;
4206 r = -EFAULT;
4207 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4208 goto out;
4209 r = 0;
4210 break;
4211 }
4212 case KVM_SET_PIT2: {
4213 r = -EFAULT;
4214 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4215 goto out;
4216 r = -ENXIO;
4217 if (!kvm->arch.vpit)
4218 goto out;
4219 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4220 break;
4221 }
4222 case KVM_REINJECT_CONTROL: {
4223 struct kvm_reinject_control control;
4224 r = -EFAULT;
4225 if (copy_from_user(&control, argp, sizeof(control)))
4226 goto out;
4227 r = kvm_vm_ioctl_reinject(kvm, &control);
4228 break;
4229 }
4230 case KVM_SET_BOOT_CPU_ID:
4231 r = 0;
4232 mutex_lock(&kvm->lock);
4233 if (kvm->created_vcpus)
4234 r = -EBUSY;
4235 else
4236 kvm->arch.bsp_vcpu_id = arg;
4237 mutex_unlock(&kvm->lock);
4238 break;
4239 case KVM_XEN_HVM_CONFIG: {
4240 r = -EFAULT;
4241 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4242 sizeof(struct kvm_xen_hvm_config)))
4243 goto out;
4244 r = -EINVAL;
4245 if (kvm->arch.xen_hvm_config.flags)
4246 goto out;
4247 r = 0;
4248 break;
4249 }
4250 case KVM_SET_CLOCK: {
4251 struct kvm_clock_data user_ns;
4252 u64 now_ns;
4253
4254 r = -EFAULT;
4255 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4256 goto out;
4257
4258 r = -EINVAL;
4259 if (user_ns.flags)
4260 goto out;
4261
4262 r = 0;
4263 /*
4264 * TODO: userspace has to take care of races with VCPU_RUN, so
4265 * kvm_gen_update_masterclock() can be cut down to locked
4266 * pvclock_update_vm_gtod_copy().
4267 */
4268 kvm_gen_update_masterclock(kvm);
4269 now_ns = get_kvmclock_ns(kvm);
4270 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4271 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4272 break;
4273 }
4274 case KVM_GET_CLOCK: {
4275 struct kvm_clock_data user_ns;
4276 u64 now_ns;
4277
4278 now_ns = get_kvmclock_ns(kvm);
4279 user_ns.clock = now_ns;
4280 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4281 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4282
4283 r = -EFAULT;
4284 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4285 goto out;
4286 r = 0;
4287 break;
4288 }
4289 case KVM_ENABLE_CAP: {
4290 struct kvm_enable_cap cap;
4291
4292 r = -EFAULT;
4293 if (copy_from_user(&cap, argp, sizeof(cap)))
4294 goto out;
4295 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4296 break;
4297 }
4298 default:
4299 r = -ENOTTY;
4300 }
4301 out:
4302 return r;
4303 }
4304
4305 static void kvm_init_msr_list(void)
4306 {
4307 u32 dummy[2];
4308 unsigned i, j;
4309
4310 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4311 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4312 continue;
4313
4314 /*
4315 * Even MSRs that are valid in the host may not be exposed
4316 * to the guests in some cases.
4317 */
4318 switch (msrs_to_save[i]) {
4319 case MSR_IA32_BNDCFGS:
4320 if (!kvm_x86_ops->mpx_supported())
4321 continue;
4322 break;
4323 case MSR_TSC_AUX:
4324 if (!kvm_x86_ops->rdtscp_supported())
4325 continue;
4326 break;
4327 default:
4328 break;
4329 }
4330
4331 if (j < i)
4332 msrs_to_save[j] = msrs_to_save[i];
4333 j++;
4334 }
4335 num_msrs_to_save = j;
4336
4337 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4338 switch (emulated_msrs[i]) {
4339 case MSR_IA32_SMBASE:
4340 if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4341 continue;
4342 break;
4343 default:
4344 break;
4345 }
4346
4347 if (j < i)
4348 emulated_msrs[j] = emulated_msrs[i];
4349 j++;
4350 }
4351 num_emulated_msrs = j;
4352 }
4353
4354 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4355 const void *v)
4356 {
4357 int handled = 0;
4358 int n;
4359
4360 do {
4361 n = min(len, 8);
4362 if (!(lapic_in_kernel(vcpu) &&
4363 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4364 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4365 break;
4366 handled += n;
4367 addr += n;
4368 len -= n;
4369 v += n;
4370 } while (len);
4371
4372 return handled;
4373 }
4374
4375 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4376 {
4377 int handled = 0;
4378 int n;
4379
4380 do {
4381 n = min(len, 8);
4382 if (!(lapic_in_kernel(vcpu) &&
4383 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4384 addr, n, v))
4385 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4386 break;
4387 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
4388 handled += n;
4389 addr += n;
4390 len -= n;
4391 v += n;
4392 } while (len);
4393
4394 return handled;
4395 }
4396
4397 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4398 struct kvm_segment *var, int seg)
4399 {
4400 kvm_x86_ops->set_segment(vcpu, var, seg);
4401 }
4402
4403 void kvm_get_segment(struct kvm_vcpu *vcpu,
4404 struct kvm_segment *var, int seg)
4405 {
4406 kvm_x86_ops->get_segment(vcpu, var, seg);
4407 }
4408
4409 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4410 struct x86_exception *exception)
4411 {
4412 gpa_t t_gpa;
4413
4414 BUG_ON(!mmu_is_nested(vcpu));
4415
4416 /* NPT walks are always user-walks */
4417 access |= PFERR_USER_MASK;
4418 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4419
4420 return t_gpa;
4421 }
4422
4423 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4424 struct x86_exception *exception)
4425 {
4426 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4427 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4428 }
4429
4430 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4431 struct x86_exception *exception)
4432 {
4433 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4434 access |= PFERR_FETCH_MASK;
4435 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4436 }
4437
4438 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4439 struct x86_exception *exception)
4440 {
4441 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4442 access |= PFERR_WRITE_MASK;
4443 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4444 }
4445
4446 /* uses this to access any guest's mapped memory without checking CPL */
4447 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4448 struct x86_exception *exception)
4449 {
4450 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4451 }
4452
4453 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4454 struct kvm_vcpu *vcpu, u32 access,
4455 struct x86_exception *exception)
4456 {
4457 void *data = val;
4458 int r = X86EMUL_CONTINUE;
4459
4460 while (bytes) {
4461 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4462 exception);
4463 unsigned offset = addr & (PAGE_SIZE-1);
4464 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4465 int ret;
4466
4467 if (gpa == UNMAPPED_GVA)
4468 return X86EMUL_PROPAGATE_FAULT;
4469 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4470 offset, toread);
4471 if (ret < 0) {
4472 r = X86EMUL_IO_NEEDED;
4473 goto out;
4474 }
4475
4476 bytes -= toread;
4477 data += toread;
4478 addr += toread;
4479 }
4480 out:
4481 return r;
4482 }
4483
4484 /* used for instruction fetching */
4485 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4486 gva_t addr, void *val, unsigned int bytes,
4487 struct x86_exception *exception)
4488 {
4489 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4490 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4491 unsigned offset;
4492 int ret;
4493
4494 /* Inline kvm_read_guest_virt_helper for speed. */
4495 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4496 exception);
4497 if (unlikely(gpa == UNMAPPED_GVA))
4498 return X86EMUL_PROPAGATE_FAULT;
4499
4500 offset = addr & (PAGE_SIZE-1);
4501 if (WARN_ON(offset + bytes > PAGE_SIZE))
4502 bytes = (unsigned)PAGE_SIZE - offset;
4503 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4504 offset, bytes);
4505 if (unlikely(ret < 0))
4506 return X86EMUL_IO_NEEDED;
4507
4508 return X86EMUL_CONTINUE;
4509 }
4510
4511 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4512 gva_t addr, void *val, unsigned int bytes,
4513 struct x86_exception *exception)
4514 {
4515 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4516 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4517
4518 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4519 exception);
4520 }
4521 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4522
4523 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4524 gva_t addr, void *val, unsigned int bytes,
4525 struct x86_exception *exception)
4526 {
4527 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4528 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4529 }
4530
4531 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4532 unsigned long addr, void *val, unsigned int bytes)
4533 {
4534 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4535 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4536
4537 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4538 }
4539
4540 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4541 gva_t addr, void *val,
4542 unsigned int bytes,
4543 struct x86_exception *exception)
4544 {
4545 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4546 void *data = val;
4547 int r = X86EMUL_CONTINUE;
4548
4549 while (bytes) {
4550 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4551 PFERR_WRITE_MASK,
4552 exception);
4553 unsigned offset = addr & (PAGE_SIZE-1);
4554 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4555 int ret;
4556
4557 if (gpa == UNMAPPED_GVA)
4558 return X86EMUL_PROPAGATE_FAULT;
4559 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4560 if (ret < 0) {
4561 r = X86EMUL_IO_NEEDED;
4562 goto out;
4563 }
4564
4565 bytes -= towrite;
4566 data += towrite;
4567 addr += towrite;
4568 }
4569 out:
4570 return r;
4571 }
4572 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4573
4574 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4575 gpa_t gpa, bool write)
4576 {
4577 /* For APIC access vmexit */
4578 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4579 return 1;
4580
4581 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4582 trace_vcpu_match_mmio(gva, gpa, write, true);
4583 return 1;
4584 }
4585
4586 return 0;
4587 }
4588
4589 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4590 gpa_t *gpa, struct x86_exception *exception,
4591 bool write)
4592 {
4593 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4594 | (write ? PFERR_WRITE_MASK : 0);
4595
4596 /*
4597 * currently PKRU is only applied to ept enabled guest so
4598 * there is no pkey in EPT page table for L1 guest or EPT
4599 * shadow page table for L2 guest.
4600 */
4601 if (vcpu_match_mmio_gva(vcpu, gva)
4602 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4603 vcpu->arch.access, 0, access)) {
4604 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4605 (gva & (PAGE_SIZE - 1));
4606 trace_vcpu_match_mmio(gva, *gpa, write, false);
4607 return 1;
4608 }
4609
4610 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4611
4612 if (*gpa == UNMAPPED_GVA)
4613 return -1;
4614
4615 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4616 }
4617
4618 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4619 const void *val, int bytes)
4620 {
4621 int ret;
4622
4623 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4624 if (ret < 0)
4625 return 0;
4626 kvm_page_track_write(vcpu, gpa, val, bytes);
4627 return 1;
4628 }
4629
4630 struct read_write_emulator_ops {
4631 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4632 int bytes);
4633 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4634 void *val, int bytes);
4635 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4636 int bytes, void *val);
4637 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4638 void *val, int bytes);
4639 bool write;
4640 };
4641
4642 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4643 {
4644 if (vcpu->mmio_read_completed) {
4645 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4646 vcpu->mmio_fragments[0].gpa, val);
4647 vcpu->mmio_read_completed = 0;
4648 return 1;
4649 }
4650
4651 return 0;
4652 }
4653
4654 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4655 void *val, int bytes)
4656 {
4657 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4658 }
4659
4660 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4661 void *val, int bytes)
4662 {
4663 return emulator_write_phys(vcpu, gpa, val, bytes);
4664 }
4665
4666 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4667 {
4668 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
4669 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4670 }
4671
4672 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4673 void *val, int bytes)
4674 {
4675 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
4676 return X86EMUL_IO_NEEDED;
4677 }
4678
4679 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4680 void *val, int bytes)
4681 {
4682 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4683
4684 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4685 return X86EMUL_CONTINUE;
4686 }
4687
4688 static const struct read_write_emulator_ops read_emultor = {
4689 .read_write_prepare = read_prepare,
4690 .read_write_emulate = read_emulate,
4691 .read_write_mmio = vcpu_mmio_read,
4692 .read_write_exit_mmio = read_exit_mmio,
4693 };
4694
4695 static const struct read_write_emulator_ops write_emultor = {
4696 .read_write_emulate = write_emulate,
4697 .read_write_mmio = write_mmio,
4698 .read_write_exit_mmio = write_exit_mmio,
4699 .write = true,
4700 };
4701
4702 static int emulator_read_write_onepage(unsigned long addr, void *val,
4703 unsigned int bytes,
4704 struct x86_exception *exception,
4705 struct kvm_vcpu *vcpu,
4706 const struct read_write_emulator_ops *ops)
4707 {
4708 gpa_t gpa;
4709 int handled, ret;
4710 bool write = ops->write;
4711 struct kvm_mmio_fragment *frag;
4712 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4713
4714 /*
4715 * If the exit was due to a NPF we may already have a GPA.
4716 * If the GPA is present, use it to avoid the GVA to GPA table walk.
4717 * Note, this cannot be used on string operations since string
4718 * operation using rep will only have the initial GPA from the NPF
4719 * occurred.
4720 */
4721 if (vcpu->arch.gpa_available &&
4722 emulator_can_use_gpa(ctxt) &&
4723 (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
4724 gpa = vcpu->arch.gpa_val;
4725 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
4726 } else {
4727 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4728 if (ret < 0)
4729 return X86EMUL_PROPAGATE_FAULT;
4730 }
4731
4732 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
4733 return X86EMUL_CONTINUE;
4734
4735 /*
4736 * Is this MMIO handled locally?
4737 */
4738 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4739 if (handled == bytes)
4740 return X86EMUL_CONTINUE;
4741
4742 gpa += handled;
4743 bytes -= handled;
4744 val += handled;
4745
4746 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4747 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4748 frag->gpa = gpa;
4749 frag->data = val;
4750 frag->len = bytes;
4751 return X86EMUL_CONTINUE;
4752 }
4753
4754 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4755 unsigned long addr,
4756 void *val, unsigned int bytes,
4757 struct x86_exception *exception,
4758 const struct read_write_emulator_ops *ops)
4759 {
4760 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4761 gpa_t gpa;
4762 int rc;
4763
4764 if (ops->read_write_prepare &&
4765 ops->read_write_prepare(vcpu, val, bytes))
4766 return X86EMUL_CONTINUE;
4767
4768 vcpu->mmio_nr_fragments = 0;
4769
4770 /* Crossing a page boundary? */
4771 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4772 int now;
4773
4774 now = -addr & ~PAGE_MASK;
4775 rc = emulator_read_write_onepage(addr, val, now, exception,
4776 vcpu, ops);
4777
4778 if (rc != X86EMUL_CONTINUE)
4779 return rc;
4780 addr += now;
4781 if (ctxt->mode != X86EMUL_MODE_PROT64)
4782 addr = (u32)addr;
4783 val += now;
4784 bytes -= now;
4785 }
4786
4787 rc = emulator_read_write_onepage(addr, val, bytes, exception,
4788 vcpu, ops);
4789 if (rc != X86EMUL_CONTINUE)
4790 return rc;
4791
4792 if (!vcpu->mmio_nr_fragments)
4793 return rc;
4794
4795 gpa = vcpu->mmio_fragments[0].gpa;
4796
4797 vcpu->mmio_needed = 1;
4798 vcpu->mmio_cur_fragment = 0;
4799
4800 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4801 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4802 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4803 vcpu->run->mmio.phys_addr = gpa;
4804
4805 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4806 }
4807
4808 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4809 unsigned long addr,
4810 void *val,
4811 unsigned int bytes,
4812 struct x86_exception *exception)
4813 {
4814 return emulator_read_write(ctxt, addr, val, bytes,
4815 exception, &read_emultor);
4816 }
4817
4818 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4819 unsigned long addr,
4820 const void *val,
4821 unsigned int bytes,
4822 struct x86_exception *exception)
4823 {
4824 return emulator_read_write(ctxt, addr, (void *)val, bytes,
4825 exception, &write_emultor);
4826 }
4827
4828 #define CMPXCHG_TYPE(t, ptr, old, new) \
4829 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4830
4831 #ifdef CONFIG_X86_64
4832 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4833 #else
4834 # define CMPXCHG64(ptr, old, new) \
4835 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4836 #endif
4837
4838 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4839 unsigned long addr,
4840 const void *old,
4841 const void *new,
4842 unsigned int bytes,
4843 struct x86_exception *exception)
4844 {
4845 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4846 gpa_t gpa;
4847 struct page *page;
4848 char *kaddr;
4849 bool exchanged;
4850
4851 /* guests cmpxchg8b have to be emulated atomically */
4852 if (bytes > 8 || (bytes & (bytes - 1)))
4853 goto emul_write;
4854
4855 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4856
4857 if (gpa == UNMAPPED_GVA ||
4858 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4859 goto emul_write;
4860
4861 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4862 goto emul_write;
4863
4864 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4865 if (is_error_page(page))
4866 goto emul_write;
4867
4868 kaddr = kmap_atomic(page);
4869 kaddr += offset_in_page(gpa);
4870 switch (bytes) {
4871 case 1:
4872 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4873 break;
4874 case 2:
4875 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4876 break;
4877 case 4:
4878 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4879 break;
4880 case 8:
4881 exchanged = CMPXCHG64(kaddr, old, new);
4882 break;
4883 default:
4884 BUG();
4885 }
4886 kunmap_atomic(kaddr);
4887 kvm_release_page_dirty(page);
4888
4889 if (!exchanged)
4890 return X86EMUL_CMPXCHG_FAILED;
4891
4892 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4893 kvm_page_track_write(vcpu, gpa, new, bytes);
4894
4895 return X86EMUL_CONTINUE;
4896
4897 emul_write:
4898 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4899
4900 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4901 }
4902
4903 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4904 {
4905 int r = 0, i;
4906
4907 for (i = 0; i < vcpu->arch.pio.count; i++) {
4908 if (vcpu->arch.pio.in)
4909 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4910 vcpu->arch.pio.size, pd);
4911 else
4912 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4913 vcpu->arch.pio.port, vcpu->arch.pio.size,
4914 pd);
4915 if (r)
4916 break;
4917 pd += vcpu->arch.pio.size;
4918 }
4919 return r;
4920 }
4921
4922 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4923 unsigned short port, void *val,
4924 unsigned int count, bool in)
4925 {
4926 vcpu->arch.pio.port = port;
4927 vcpu->arch.pio.in = in;
4928 vcpu->arch.pio.count = count;
4929 vcpu->arch.pio.size = size;
4930
4931 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4932 vcpu->arch.pio.count = 0;
4933 return 1;
4934 }
4935
4936 vcpu->run->exit_reason = KVM_EXIT_IO;
4937 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4938 vcpu->run->io.size = size;
4939 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4940 vcpu->run->io.count = count;
4941 vcpu->run->io.port = port;
4942
4943 return 0;
4944 }
4945
4946 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4947 int size, unsigned short port, void *val,
4948 unsigned int count)
4949 {
4950 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4951 int ret;
4952
4953 if (vcpu->arch.pio.count)
4954 goto data_avail;
4955
4956 memset(vcpu->arch.pio_data, 0, size * count);
4957
4958 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4959 if (ret) {
4960 data_avail:
4961 memcpy(val, vcpu->arch.pio_data, size * count);
4962 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4963 vcpu->arch.pio.count = 0;
4964 return 1;
4965 }
4966
4967 return 0;
4968 }
4969
4970 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4971 int size, unsigned short port,
4972 const void *val, unsigned int count)
4973 {
4974 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4975
4976 memcpy(vcpu->arch.pio_data, val, size * count);
4977 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4978 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4979 }
4980
4981 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4982 {
4983 return kvm_x86_ops->get_segment_base(vcpu, seg);
4984 }
4985
4986 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4987 {
4988 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4989 }
4990
4991 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4992 {
4993 if (!need_emulate_wbinvd(vcpu))
4994 return X86EMUL_CONTINUE;
4995
4996 if (kvm_x86_ops->has_wbinvd_exit()) {
4997 int cpu = get_cpu();
4998
4999 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5000 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5001 wbinvd_ipi, NULL, 1);
5002 put_cpu();
5003 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5004 } else
5005 wbinvd();
5006 return X86EMUL_CONTINUE;
5007 }
5008
5009 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5010 {
5011 kvm_emulate_wbinvd_noskip(vcpu);
5012 return kvm_skip_emulated_instruction(vcpu);
5013 }
5014 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5015
5016
5017
5018 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5019 {
5020 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5021 }
5022
5023 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5024 unsigned long *dest)
5025 {
5026 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5027 }
5028
5029 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5030 unsigned long value)
5031 {
5032
5033 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5034 }
5035
5036 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5037 {
5038 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5039 }
5040
5041 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5042 {
5043 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5044 unsigned long value;
5045
5046 switch (cr) {
5047 case 0:
5048 value = kvm_read_cr0(vcpu);
5049 break;
5050 case 2:
5051 value = vcpu->arch.cr2;
5052 break;
5053 case 3:
5054 value = kvm_read_cr3(vcpu);
5055 break;
5056 case 4:
5057 value = kvm_read_cr4(vcpu);
5058 break;
5059 case 8:
5060 value = kvm_get_cr8(vcpu);
5061 break;
5062 default:
5063 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5064 return 0;
5065 }
5066
5067 return value;
5068 }
5069
5070 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5071 {
5072 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5073 int res = 0;
5074
5075 switch (cr) {
5076 case 0:
5077 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5078 break;
5079 case 2:
5080 vcpu->arch.cr2 = val;
5081 break;
5082 case 3:
5083 res = kvm_set_cr3(vcpu, val);
5084 break;
5085 case 4:
5086 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5087 break;
5088 case 8:
5089 res = kvm_set_cr8(vcpu, val);
5090 break;
5091 default:
5092 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5093 res = -1;
5094 }
5095
5096 return res;
5097 }
5098
5099 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5100 {
5101 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5102 }
5103
5104 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5105 {
5106 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5107 }
5108
5109 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5110 {
5111 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5112 }
5113
5114 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5115 {
5116 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5117 }
5118
5119 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5120 {
5121 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5122 }
5123
5124 static unsigned long emulator_get_cached_segment_base(
5125 struct x86_emulate_ctxt *ctxt, int seg)
5126 {
5127 return get_segment_base(emul_to_vcpu(ctxt), seg);
5128 }
5129
5130 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5131 struct desc_struct *desc, u32 *base3,
5132 int seg)
5133 {
5134 struct kvm_segment var;
5135
5136 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5137 *selector = var.selector;
5138
5139 if (var.unusable) {
5140 memset(desc, 0, sizeof(*desc));
5141 if (base3)
5142 *base3 = 0;
5143 return false;
5144 }
5145
5146 if (var.g)
5147 var.limit >>= 12;
5148 set_desc_limit(desc, var.limit);
5149 set_desc_base(desc, (unsigned long)var.base);
5150 #ifdef CONFIG_X86_64
5151 if (base3)
5152 *base3 = var.base >> 32;
5153 #endif
5154 desc->type = var.type;
5155 desc->s = var.s;
5156 desc->dpl = var.dpl;
5157 desc->p = var.present;
5158 desc->avl = var.avl;
5159 desc->l = var.l;
5160 desc->d = var.db;
5161 desc->g = var.g;
5162
5163 return true;
5164 }
5165
5166 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5167 struct desc_struct *desc, u32 base3,
5168 int seg)
5169 {
5170 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5171 struct kvm_segment var;
5172
5173 var.selector = selector;
5174 var.base = get_desc_base(desc);
5175 #ifdef CONFIG_X86_64
5176 var.base |= ((u64)base3) << 32;
5177 #endif
5178 var.limit = get_desc_limit(desc);
5179 if (desc->g)
5180 var.limit = (var.limit << 12) | 0xfff;
5181 var.type = desc->type;
5182 var.dpl = desc->dpl;
5183 var.db = desc->d;
5184 var.s = desc->s;
5185 var.l = desc->l;
5186 var.g = desc->g;
5187 var.avl = desc->avl;
5188 var.present = desc->p;
5189 var.unusable = !var.present;
5190 var.padding = 0;
5191
5192 kvm_set_segment(vcpu, &var, seg);
5193 return;
5194 }
5195
5196 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5197 u32 msr_index, u64 *pdata)
5198 {
5199 struct msr_data msr;
5200 int r;
5201
5202 msr.index = msr_index;
5203 msr.host_initiated = false;
5204 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5205 if (r)
5206 return r;
5207
5208 *pdata = msr.data;
5209 return 0;
5210 }
5211
5212 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5213 u32 msr_index, u64 data)
5214 {
5215 struct msr_data msr;
5216
5217 msr.data = data;
5218 msr.index = msr_index;
5219 msr.host_initiated = false;
5220 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5221 }
5222
5223 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5224 {
5225 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5226
5227 return vcpu->arch.smbase;
5228 }
5229
5230 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5231 {
5232 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5233
5234 vcpu->arch.smbase = smbase;
5235 }
5236
5237 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5238 u32 pmc)
5239 {
5240 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5241 }
5242
5243 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5244 u32 pmc, u64 *pdata)
5245 {
5246 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5247 }
5248
5249 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5250 {
5251 emul_to_vcpu(ctxt)->arch.halt_request = 1;
5252 }
5253
5254 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5255 struct x86_instruction_info *info,
5256 enum x86_intercept_stage stage)
5257 {
5258 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5259 }
5260
5261 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5262 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5263 {
5264 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5265 }
5266
5267 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5268 {
5269 return kvm_register_read(emul_to_vcpu(ctxt), reg);
5270 }
5271
5272 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5273 {
5274 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5275 }
5276
5277 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5278 {
5279 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5280 }
5281
5282 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5283 {
5284 return emul_to_vcpu(ctxt)->arch.hflags;
5285 }
5286
5287 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5288 {
5289 kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5290 }
5291
5292 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase)
5293 {
5294 return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase);
5295 }
5296
5297 static const struct x86_emulate_ops emulate_ops = {
5298 .read_gpr = emulator_read_gpr,
5299 .write_gpr = emulator_write_gpr,
5300 .read_std = kvm_read_guest_virt_system,
5301 .write_std = kvm_write_guest_virt_system,
5302 .read_phys = kvm_read_guest_phys_system,
5303 .fetch = kvm_fetch_guest_virt,
5304 .read_emulated = emulator_read_emulated,
5305 .write_emulated = emulator_write_emulated,
5306 .cmpxchg_emulated = emulator_cmpxchg_emulated,
5307 .invlpg = emulator_invlpg,
5308 .pio_in_emulated = emulator_pio_in_emulated,
5309 .pio_out_emulated = emulator_pio_out_emulated,
5310 .get_segment = emulator_get_segment,
5311 .set_segment = emulator_set_segment,
5312 .get_cached_segment_base = emulator_get_cached_segment_base,
5313 .get_gdt = emulator_get_gdt,
5314 .get_idt = emulator_get_idt,
5315 .set_gdt = emulator_set_gdt,
5316 .set_idt = emulator_set_idt,
5317 .get_cr = emulator_get_cr,
5318 .set_cr = emulator_set_cr,
5319 .cpl = emulator_get_cpl,
5320 .get_dr = emulator_get_dr,
5321 .set_dr = emulator_set_dr,
5322 .get_smbase = emulator_get_smbase,
5323 .set_smbase = emulator_set_smbase,
5324 .set_msr = emulator_set_msr,
5325 .get_msr = emulator_get_msr,
5326 .check_pmc = emulator_check_pmc,
5327 .read_pmc = emulator_read_pmc,
5328 .halt = emulator_halt,
5329 .wbinvd = emulator_wbinvd,
5330 .fix_hypercall = emulator_fix_hypercall,
5331 .intercept = emulator_intercept,
5332 .get_cpuid = emulator_get_cpuid,
5333 .set_nmi_mask = emulator_set_nmi_mask,
5334 .get_hflags = emulator_get_hflags,
5335 .set_hflags = emulator_set_hflags,
5336 .pre_leave_smm = emulator_pre_leave_smm,
5337 };
5338
5339 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5340 {
5341 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5342 /*
5343 * an sti; sti; sequence only disable interrupts for the first
5344 * instruction. So, if the last instruction, be it emulated or
5345 * not, left the system with the INT_STI flag enabled, it
5346 * means that the last instruction is an sti. We should not
5347 * leave the flag on in this case. The same goes for mov ss
5348 */
5349 if (int_shadow & mask)
5350 mask = 0;
5351 if (unlikely(int_shadow || mask)) {
5352 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5353 if (!mask)
5354 kvm_make_request(KVM_REQ_EVENT, vcpu);
5355 }
5356 }
5357
5358 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5359 {
5360 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5361 if (ctxt->exception.vector == PF_VECTOR)
5362 return kvm_propagate_fault(vcpu, &ctxt->exception);
5363
5364 if (ctxt->exception.error_code_valid)
5365 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5366 ctxt->exception.error_code);
5367 else
5368 kvm_queue_exception(vcpu, ctxt->exception.vector);
5369 return false;
5370 }
5371
5372 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5373 {
5374 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5375 int cs_db, cs_l;
5376
5377 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5378
5379 ctxt->eflags = kvm_get_rflags(vcpu);
5380 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5381
5382 ctxt->eip = kvm_rip_read(vcpu);
5383 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
5384 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
5385 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
5386 cs_db ? X86EMUL_MODE_PROT32 :
5387 X86EMUL_MODE_PROT16;
5388 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5389 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5390 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5391
5392 init_decode_cache(ctxt);
5393 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5394 }
5395
5396 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5397 {
5398 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5399 int ret;
5400
5401 init_emulate_ctxt(vcpu);
5402
5403 ctxt->op_bytes = 2;
5404 ctxt->ad_bytes = 2;
5405 ctxt->_eip = ctxt->eip + inc_eip;
5406 ret = emulate_int_real(ctxt, irq);
5407
5408 if (ret != X86EMUL_CONTINUE)
5409 return EMULATE_FAIL;
5410
5411 ctxt->eip = ctxt->_eip;
5412 kvm_rip_write(vcpu, ctxt->eip);
5413 kvm_set_rflags(vcpu, ctxt->eflags);
5414
5415 if (irq == NMI_VECTOR)
5416 vcpu->arch.nmi_pending = 0;
5417 else
5418 vcpu->arch.interrupt.pending = false;
5419
5420 return EMULATE_DONE;
5421 }
5422 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5423
5424 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5425 {
5426 int r = EMULATE_DONE;
5427
5428 ++vcpu->stat.insn_emulation_fail;
5429 trace_kvm_emulate_insn_failed(vcpu);
5430 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5431 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5432 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5433 vcpu->run->internal.ndata = 0;
5434 r = EMULATE_USER_EXIT;
5435 }
5436 kvm_queue_exception(vcpu, UD_VECTOR);
5437
5438 return r;
5439 }
5440
5441 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5442 bool write_fault_to_shadow_pgtable,
5443 int emulation_type)
5444 {
5445 gpa_t gpa = cr2;
5446 kvm_pfn_t pfn;
5447
5448 if (emulation_type & EMULTYPE_NO_REEXECUTE)
5449 return false;
5450
5451 if (!vcpu->arch.mmu.direct_map) {
5452 /*
5453 * Write permission should be allowed since only
5454 * write access need to be emulated.
5455 */
5456 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5457
5458 /*
5459 * If the mapping is invalid in guest, let cpu retry
5460 * it to generate fault.
5461 */
5462 if (gpa == UNMAPPED_GVA)
5463 return true;
5464 }
5465
5466 /*
5467 * Do not retry the unhandleable instruction if it faults on the
5468 * readonly host memory, otherwise it will goto a infinite loop:
5469 * retry instruction -> write #PF -> emulation fail -> retry
5470 * instruction -> ...
5471 */
5472 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5473
5474 /*
5475 * If the instruction failed on the error pfn, it can not be fixed,
5476 * report the error to userspace.
5477 */
5478 if (is_error_noslot_pfn(pfn))
5479 return false;
5480
5481 kvm_release_pfn_clean(pfn);
5482
5483 /* The instructions are well-emulated on direct mmu. */
5484 if (vcpu->arch.mmu.direct_map) {
5485 unsigned int indirect_shadow_pages;
5486
5487 spin_lock(&vcpu->kvm->mmu_lock);
5488 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5489 spin_unlock(&vcpu->kvm->mmu_lock);
5490
5491 if (indirect_shadow_pages)
5492 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5493
5494 return true;
5495 }
5496
5497 /*
5498 * if emulation was due to access to shadowed page table
5499 * and it failed try to unshadow page and re-enter the
5500 * guest to let CPU execute the instruction.
5501 */
5502 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5503
5504 /*
5505 * If the access faults on its page table, it can not
5506 * be fixed by unprotecting shadow page and it should
5507 * be reported to userspace.
5508 */
5509 return !write_fault_to_shadow_pgtable;
5510 }
5511
5512 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5513 unsigned long cr2, int emulation_type)
5514 {
5515 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5516 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5517
5518 last_retry_eip = vcpu->arch.last_retry_eip;
5519 last_retry_addr = vcpu->arch.last_retry_addr;
5520
5521 /*
5522 * If the emulation is caused by #PF and it is non-page_table
5523 * writing instruction, it means the VM-EXIT is caused by shadow
5524 * page protected, we can zap the shadow page and retry this
5525 * instruction directly.
5526 *
5527 * Note: if the guest uses a non-page-table modifying instruction
5528 * on the PDE that points to the instruction, then we will unmap
5529 * the instruction and go to an infinite loop. So, we cache the
5530 * last retried eip and the last fault address, if we meet the eip
5531 * and the address again, we can break out of the potential infinite
5532 * loop.
5533 */
5534 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5535
5536 if (!(emulation_type & EMULTYPE_RETRY))
5537 return false;
5538
5539 if (x86_page_table_writing_insn(ctxt))
5540 return false;
5541
5542 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5543 return false;
5544
5545 vcpu->arch.last_retry_eip = ctxt->eip;
5546 vcpu->arch.last_retry_addr = cr2;
5547
5548 if (!vcpu->arch.mmu.direct_map)
5549 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5550
5551 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5552
5553 return true;
5554 }
5555
5556 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5557 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5558
5559 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5560 {
5561 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5562 /* This is a good place to trace that we are exiting SMM. */
5563 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5564
5565 /* Process a latched INIT or SMI, if any. */
5566 kvm_make_request(KVM_REQ_EVENT, vcpu);
5567 }
5568
5569 kvm_mmu_reset_context(vcpu);
5570 }
5571
5572 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5573 {
5574 unsigned changed = vcpu->arch.hflags ^ emul_flags;
5575
5576 vcpu->arch.hflags = emul_flags;
5577
5578 if (changed & HF_SMM_MASK)
5579 kvm_smm_changed(vcpu);
5580 }
5581
5582 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5583 unsigned long *db)
5584 {
5585 u32 dr6 = 0;
5586 int i;
5587 u32 enable, rwlen;
5588
5589 enable = dr7;
5590 rwlen = dr7 >> 16;
5591 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5592 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5593 dr6 |= (1 << i);
5594 return dr6;
5595 }
5596
5597 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
5598 {
5599 struct kvm_run *kvm_run = vcpu->run;
5600
5601 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5602 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
5603 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5604 kvm_run->debug.arch.exception = DB_VECTOR;
5605 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5606 *r = EMULATE_USER_EXIT;
5607 } else {
5608 /*
5609 * "Certain debug exceptions may clear bit 0-3. The
5610 * remaining contents of the DR6 register are never
5611 * cleared by the processor".
5612 */
5613 vcpu->arch.dr6 &= ~15;
5614 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5615 kvm_queue_exception(vcpu, DB_VECTOR);
5616 }
5617 }
5618
5619 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5620 {
5621 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5622 int r = EMULATE_DONE;
5623
5624 kvm_x86_ops->skip_emulated_instruction(vcpu);
5625
5626 /*
5627 * rflags is the old, "raw" value of the flags. The new value has
5628 * not been saved yet.
5629 *
5630 * This is correct even for TF set by the guest, because "the
5631 * processor will not generate this exception after the instruction
5632 * that sets the TF flag".
5633 */
5634 if (unlikely(rflags & X86_EFLAGS_TF))
5635 kvm_vcpu_do_singlestep(vcpu, &r);
5636 return r == EMULATE_DONE;
5637 }
5638 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5639
5640 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5641 {
5642 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5643 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5644 struct kvm_run *kvm_run = vcpu->run;
5645 unsigned long eip = kvm_get_linear_rip(vcpu);
5646 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5647 vcpu->arch.guest_debug_dr7,
5648 vcpu->arch.eff_db);
5649
5650 if (dr6 != 0) {
5651 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5652 kvm_run->debug.arch.pc = eip;
5653 kvm_run->debug.arch.exception = DB_VECTOR;
5654 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5655 *r = EMULATE_USER_EXIT;
5656 return true;
5657 }
5658 }
5659
5660 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5661 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5662 unsigned long eip = kvm_get_linear_rip(vcpu);
5663 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5664 vcpu->arch.dr7,
5665 vcpu->arch.db);
5666
5667 if (dr6 != 0) {
5668 vcpu->arch.dr6 &= ~15;
5669 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5670 kvm_queue_exception(vcpu, DB_VECTOR);
5671 *r = EMULATE_DONE;
5672 return true;
5673 }
5674 }
5675
5676 return false;
5677 }
5678
5679 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5680 unsigned long cr2,
5681 int emulation_type,
5682 void *insn,
5683 int insn_len)
5684 {
5685 int r;
5686 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5687 bool writeback = true;
5688 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5689
5690 /*
5691 * Clear write_fault_to_shadow_pgtable here to ensure it is
5692 * never reused.
5693 */
5694 vcpu->arch.write_fault_to_shadow_pgtable = false;
5695 kvm_clear_exception_queue(vcpu);
5696
5697 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5698 init_emulate_ctxt(vcpu);
5699
5700 /*
5701 * We will reenter on the same instruction since
5702 * we do not set complete_userspace_io. This does not
5703 * handle watchpoints yet, those would be handled in
5704 * the emulate_ops.
5705 */
5706 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5707 return r;
5708
5709 ctxt->interruptibility = 0;
5710 ctxt->have_exception = false;
5711 ctxt->exception.vector = -1;
5712 ctxt->perm_ok = false;
5713
5714 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5715
5716 r = x86_decode_insn(ctxt, insn, insn_len);
5717
5718 trace_kvm_emulate_insn_start(vcpu);
5719 ++vcpu->stat.insn_emulation;
5720 if (r != EMULATION_OK) {
5721 if (emulation_type & EMULTYPE_TRAP_UD)
5722 return EMULATE_FAIL;
5723 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5724 emulation_type))
5725 return EMULATE_DONE;
5726 if (ctxt->have_exception && inject_emulated_exception(vcpu))
5727 return EMULATE_DONE;
5728 if (emulation_type & EMULTYPE_SKIP)
5729 return EMULATE_FAIL;
5730 return handle_emulation_failure(vcpu);
5731 }
5732 }
5733
5734 if (emulation_type & EMULTYPE_SKIP) {
5735 kvm_rip_write(vcpu, ctxt->_eip);
5736 if (ctxt->eflags & X86_EFLAGS_RF)
5737 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5738 return EMULATE_DONE;
5739 }
5740
5741 if (retry_instruction(ctxt, cr2, emulation_type))
5742 return EMULATE_DONE;
5743
5744 /* this is needed for vmware backdoor interface to work since it
5745 changes registers values during IO operation */
5746 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5747 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5748 emulator_invalidate_register_cache(ctxt);
5749 }
5750
5751 restart:
5752 /* Save the faulting GPA (cr2) in the address field */
5753 ctxt->exception.address = cr2;
5754
5755 r = x86_emulate_insn(ctxt);
5756
5757 if (r == EMULATION_INTERCEPTED)
5758 return EMULATE_DONE;
5759
5760 if (r == EMULATION_FAILED) {
5761 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5762 emulation_type))
5763 return EMULATE_DONE;
5764
5765 return handle_emulation_failure(vcpu);
5766 }
5767
5768 if (ctxt->have_exception) {
5769 r = EMULATE_DONE;
5770 if (inject_emulated_exception(vcpu))
5771 return r;
5772 } else if (vcpu->arch.pio.count) {
5773 if (!vcpu->arch.pio.in) {
5774 /* FIXME: return into emulator if single-stepping. */
5775 vcpu->arch.pio.count = 0;
5776 } else {
5777 writeback = false;
5778 vcpu->arch.complete_userspace_io = complete_emulated_pio;
5779 }
5780 r = EMULATE_USER_EXIT;
5781 } else if (vcpu->mmio_needed) {
5782 if (!vcpu->mmio_is_write)
5783 writeback = false;
5784 r = EMULATE_USER_EXIT;
5785 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5786 } else if (r == EMULATION_RESTART)
5787 goto restart;
5788 else
5789 r = EMULATE_DONE;
5790
5791 if (writeback) {
5792 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5793 toggle_interruptibility(vcpu, ctxt->interruptibility);
5794 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5795 kvm_rip_write(vcpu, ctxt->eip);
5796 if (r == EMULATE_DONE &&
5797 (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
5798 kvm_vcpu_do_singlestep(vcpu, &r);
5799 if (!ctxt->have_exception ||
5800 exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5801 __kvm_set_rflags(vcpu, ctxt->eflags);
5802
5803 /*
5804 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5805 * do nothing, and it will be requested again as soon as
5806 * the shadow expires. But we still need to check here,
5807 * because POPF has no interrupt shadow.
5808 */
5809 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5810 kvm_make_request(KVM_REQ_EVENT, vcpu);
5811 } else
5812 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5813
5814 return r;
5815 }
5816 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5817
5818 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5819 {
5820 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5821 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5822 size, port, &val, 1);
5823 /* do not return to emulator after return from userspace */
5824 vcpu->arch.pio.count = 0;
5825 return ret;
5826 }
5827 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5828
5829 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
5830 {
5831 unsigned long val;
5832
5833 /* We should only ever be called with arch.pio.count equal to 1 */
5834 BUG_ON(vcpu->arch.pio.count != 1);
5835
5836 /* For size less than 4 we merge, else we zero extend */
5837 val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
5838 : 0;
5839
5840 /*
5841 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
5842 * the copy and tracing
5843 */
5844 emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
5845 vcpu->arch.pio.port, &val, 1);
5846 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5847
5848 return 1;
5849 }
5850
5851 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
5852 {
5853 unsigned long val;
5854 int ret;
5855
5856 /* For size less than 4 we merge, else we zero extend */
5857 val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
5858
5859 ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
5860 &val, 1);
5861 if (ret) {
5862 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5863 return ret;
5864 }
5865
5866 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
5867
5868 return 0;
5869 }
5870 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
5871
5872 static int kvmclock_cpu_down_prep(unsigned int cpu)
5873 {
5874 __this_cpu_write(cpu_tsc_khz, 0);
5875 return 0;
5876 }
5877
5878 static void tsc_khz_changed(void *data)
5879 {
5880 struct cpufreq_freqs *freq = data;
5881 unsigned long khz = 0;
5882
5883 if (data)
5884 khz = freq->new;
5885 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5886 khz = cpufreq_quick_get(raw_smp_processor_id());
5887 if (!khz)
5888 khz = tsc_khz;
5889 __this_cpu_write(cpu_tsc_khz, khz);
5890 }
5891
5892 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5893 void *data)
5894 {
5895 struct cpufreq_freqs *freq = data;
5896 struct kvm *kvm;
5897 struct kvm_vcpu *vcpu;
5898 int i, send_ipi = 0;
5899
5900 /*
5901 * We allow guests to temporarily run on slowing clocks,
5902 * provided we notify them after, or to run on accelerating
5903 * clocks, provided we notify them before. Thus time never
5904 * goes backwards.
5905 *
5906 * However, we have a problem. We can't atomically update
5907 * the frequency of a given CPU from this function; it is
5908 * merely a notifier, which can be called from any CPU.
5909 * Changing the TSC frequency at arbitrary points in time
5910 * requires a recomputation of local variables related to
5911 * the TSC for each VCPU. We must flag these local variables
5912 * to be updated and be sure the update takes place with the
5913 * new frequency before any guests proceed.
5914 *
5915 * Unfortunately, the combination of hotplug CPU and frequency
5916 * change creates an intractable locking scenario; the order
5917 * of when these callouts happen is undefined with respect to
5918 * CPU hotplug, and they can race with each other. As such,
5919 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5920 * undefined; you can actually have a CPU frequency change take
5921 * place in between the computation of X and the setting of the
5922 * variable. To protect against this problem, all updates of
5923 * the per_cpu tsc_khz variable are done in an interrupt
5924 * protected IPI, and all callers wishing to update the value
5925 * must wait for a synchronous IPI to complete (which is trivial
5926 * if the caller is on the CPU already). This establishes the
5927 * necessary total order on variable updates.
5928 *
5929 * Note that because a guest time update may take place
5930 * anytime after the setting of the VCPU's request bit, the
5931 * correct TSC value must be set before the request. However,
5932 * to ensure the update actually makes it to any guest which
5933 * starts running in hardware virtualization between the set
5934 * and the acquisition of the spinlock, we must also ping the
5935 * CPU after setting the request bit.
5936 *
5937 */
5938
5939 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5940 return 0;
5941 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5942 return 0;
5943
5944 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5945
5946 spin_lock(&kvm_lock);
5947 list_for_each_entry(kvm, &vm_list, vm_list) {
5948 kvm_for_each_vcpu(i, vcpu, kvm) {
5949 if (vcpu->cpu != freq->cpu)
5950 continue;
5951 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5952 if (vcpu->cpu != smp_processor_id())
5953 send_ipi = 1;
5954 }
5955 }
5956 spin_unlock(&kvm_lock);
5957
5958 if (freq->old < freq->new && send_ipi) {
5959 /*
5960 * We upscale the frequency. Must make the guest
5961 * doesn't see old kvmclock values while running with
5962 * the new frequency, otherwise we risk the guest sees
5963 * time go backwards.
5964 *
5965 * In case we update the frequency for another cpu
5966 * (which might be in guest context) send an interrupt
5967 * to kick the cpu out of guest context. Next time
5968 * guest context is entered kvmclock will be updated,
5969 * so the guest will not see stale values.
5970 */
5971 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5972 }
5973 return 0;
5974 }
5975
5976 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5977 .notifier_call = kvmclock_cpufreq_notifier
5978 };
5979
5980 static int kvmclock_cpu_online(unsigned int cpu)
5981 {
5982 tsc_khz_changed(NULL);
5983 return 0;
5984 }
5985
5986 static void kvm_timer_init(void)
5987 {
5988 max_tsc_khz = tsc_khz;
5989
5990 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5991 #ifdef CONFIG_CPU_FREQ
5992 struct cpufreq_policy policy;
5993 int cpu;
5994
5995 memset(&policy, 0, sizeof(policy));
5996 cpu = get_cpu();
5997 cpufreq_get_policy(&policy, cpu);
5998 if (policy.cpuinfo.max_freq)
5999 max_tsc_khz = policy.cpuinfo.max_freq;
6000 put_cpu();
6001 #endif
6002 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6003 CPUFREQ_TRANSITION_NOTIFIER);
6004 }
6005 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6006
6007 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6008 kvmclock_cpu_online, kvmclock_cpu_down_prep);
6009 }
6010
6011 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6012
6013 int kvm_is_in_guest(void)
6014 {
6015 return __this_cpu_read(current_vcpu) != NULL;
6016 }
6017
6018 static int kvm_is_user_mode(void)
6019 {
6020 int user_mode = 3;
6021
6022 if (__this_cpu_read(current_vcpu))
6023 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6024
6025 return user_mode != 0;
6026 }
6027
6028 static unsigned long kvm_get_guest_ip(void)
6029 {
6030 unsigned long ip = 0;
6031
6032 if (__this_cpu_read(current_vcpu))
6033 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6034
6035 return ip;
6036 }
6037
6038 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6039 .is_in_guest = kvm_is_in_guest,
6040 .is_user_mode = kvm_is_user_mode,
6041 .get_guest_ip = kvm_get_guest_ip,
6042 };
6043
6044 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
6045 {
6046 __this_cpu_write(current_vcpu, vcpu);
6047 }
6048 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
6049
6050 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
6051 {
6052 __this_cpu_write(current_vcpu, NULL);
6053 }
6054 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
6055
6056 static void kvm_set_mmio_spte_mask(void)
6057 {
6058 u64 mask;
6059 int maxphyaddr = boot_cpu_data.x86_phys_bits;
6060
6061 /*
6062 * Set the reserved bits and the present bit of an paging-structure
6063 * entry to generate page fault with PFER.RSV = 1.
6064 */
6065 /* Mask the reserved physical address bits. */
6066 mask = rsvd_bits(maxphyaddr, 51);
6067
6068 /* Set the present bit. */
6069 mask |= 1ull;
6070
6071 #ifdef CONFIG_X86_64
6072 /*
6073 * If reserved bit is not supported, clear the present bit to disable
6074 * mmio page fault.
6075 */
6076 if (maxphyaddr == 52)
6077 mask &= ~1ull;
6078 #endif
6079
6080 kvm_mmu_set_mmio_spte_mask(mask, mask);
6081 }
6082
6083 #ifdef CONFIG_X86_64
6084 static void pvclock_gtod_update_fn(struct work_struct *work)
6085 {
6086 struct kvm *kvm;
6087
6088 struct kvm_vcpu *vcpu;
6089 int i;
6090
6091 spin_lock(&kvm_lock);
6092 list_for_each_entry(kvm, &vm_list, vm_list)
6093 kvm_for_each_vcpu(i, vcpu, kvm)
6094 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6095 atomic_set(&kvm_guest_has_master_clock, 0);
6096 spin_unlock(&kvm_lock);
6097 }
6098
6099 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6100
6101 /*
6102 * Notification about pvclock gtod data update.
6103 */
6104 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6105 void *priv)
6106 {
6107 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6108 struct timekeeper *tk = priv;
6109
6110 update_pvclock_gtod(tk);
6111
6112 /* disable master clock if host does not trust, or does not
6113 * use, TSC clocksource
6114 */
6115 if (gtod->clock.vclock_mode != VCLOCK_TSC &&
6116 atomic_read(&kvm_guest_has_master_clock) != 0)
6117 queue_work(system_long_wq, &pvclock_gtod_work);
6118
6119 return 0;
6120 }
6121
6122 static struct notifier_block pvclock_gtod_notifier = {
6123 .notifier_call = pvclock_gtod_notify,
6124 };
6125 #endif
6126
6127 int kvm_arch_init(void *opaque)
6128 {
6129 int r;
6130 struct kvm_x86_ops *ops = opaque;
6131
6132 if (kvm_x86_ops) {
6133 printk(KERN_ERR "kvm: already loaded the other module\n");
6134 r = -EEXIST;
6135 goto out;
6136 }
6137
6138 if (!ops->cpu_has_kvm_support()) {
6139 printk(KERN_ERR "kvm: no hardware support\n");
6140 r = -EOPNOTSUPP;
6141 goto out;
6142 }
6143 if (ops->disabled_by_bios()) {
6144 printk(KERN_ERR "kvm: disabled by bios\n");
6145 r = -EOPNOTSUPP;
6146 goto out;
6147 }
6148
6149 r = -ENOMEM;
6150 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6151 if (!shared_msrs) {
6152 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6153 goto out;
6154 }
6155
6156 r = kvm_mmu_module_init();
6157 if (r)
6158 goto out_free_percpu;
6159
6160 kvm_set_mmio_spte_mask();
6161
6162 kvm_x86_ops = ops;
6163
6164 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6165 PT_DIRTY_MASK, PT64_NX_MASK, 0,
6166 PT_PRESENT_MASK, 0, sme_me_mask);
6167 kvm_timer_init();
6168
6169 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6170
6171 if (boot_cpu_has(X86_FEATURE_XSAVE))
6172 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6173
6174 kvm_lapic_init();
6175 #ifdef CONFIG_X86_64
6176 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6177 #endif
6178
6179 return 0;
6180
6181 out_free_percpu:
6182 free_percpu(shared_msrs);
6183 out:
6184 return r;
6185 }
6186
6187 void kvm_arch_exit(void)
6188 {
6189 kvm_lapic_exit();
6190 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6191
6192 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6193 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6194 CPUFREQ_TRANSITION_NOTIFIER);
6195 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6196 #ifdef CONFIG_X86_64
6197 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6198 #endif
6199 kvm_x86_ops = NULL;
6200 kvm_mmu_module_exit();
6201 free_percpu(shared_msrs);
6202 }
6203
6204 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6205 {
6206 ++vcpu->stat.halt_exits;
6207 if (lapic_in_kernel(vcpu)) {
6208 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6209 return 1;
6210 } else {
6211 vcpu->run->exit_reason = KVM_EXIT_HLT;
6212 return 0;
6213 }
6214 }
6215 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6216
6217 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6218 {
6219 int ret = kvm_skip_emulated_instruction(vcpu);
6220 /*
6221 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6222 * KVM_EXIT_DEBUG here.
6223 */
6224 return kvm_vcpu_halt(vcpu) && ret;
6225 }
6226 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6227
6228 #ifdef CONFIG_X86_64
6229 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6230 unsigned long clock_type)
6231 {
6232 struct kvm_clock_pairing clock_pairing;
6233 struct timespec ts;
6234 u64 cycle;
6235 int ret;
6236
6237 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6238 return -KVM_EOPNOTSUPP;
6239
6240 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6241 return -KVM_EOPNOTSUPP;
6242
6243 clock_pairing.sec = ts.tv_sec;
6244 clock_pairing.nsec = ts.tv_nsec;
6245 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6246 clock_pairing.flags = 0;
6247
6248 ret = 0;
6249 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6250 sizeof(struct kvm_clock_pairing)))
6251 ret = -KVM_EFAULT;
6252
6253 return ret;
6254 }
6255 #endif
6256
6257 /*
6258 * kvm_pv_kick_cpu_op: Kick a vcpu.
6259 *
6260 * @apicid - apicid of vcpu to be kicked.
6261 */
6262 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6263 {
6264 struct kvm_lapic_irq lapic_irq;
6265
6266 lapic_irq.shorthand = 0;
6267 lapic_irq.dest_mode = 0;
6268 lapic_irq.level = 0;
6269 lapic_irq.dest_id = apicid;
6270 lapic_irq.msi_redir_hint = false;
6271
6272 lapic_irq.delivery_mode = APIC_DM_REMRD;
6273 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6274 }
6275
6276 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6277 {
6278 vcpu->arch.apicv_active = false;
6279 kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6280 }
6281
6282 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6283 {
6284 unsigned long nr, a0, a1, a2, a3, ret;
6285 int op_64_bit, r;
6286
6287 r = kvm_skip_emulated_instruction(vcpu);
6288
6289 if (kvm_hv_hypercall_enabled(vcpu->kvm))
6290 return kvm_hv_hypercall(vcpu);
6291
6292 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6293 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6294 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6295 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6296 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6297
6298 trace_kvm_hypercall(nr, a0, a1, a2, a3);
6299
6300 op_64_bit = is_64_bit_mode(vcpu);
6301 if (!op_64_bit) {
6302 nr &= 0xFFFFFFFF;
6303 a0 &= 0xFFFFFFFF;
6304 a1 &= 0xFFFFFFFF;
6305 a2 &= 0xFFFFFFFF;
6306 a3 &= 0xFFFFFFFF;
6307 }
6308
6309 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6310 ret = -KVM_EPERM;
6311 goto out;
6312 }
6313
6314 switch (nr) {
6315 case KVM_HC_VAPIC_POLL_IRQ:
6316 ret = 0;
6317 break;
6318 case KVM_HC_KICK_CPU:
6319 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6320 ret = 0;
6321 break;
6322 #ifdef CONFIG_X86_64
6323 case KVM_HC_CLOCK_PAIRING:
6324 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6325 break;
6326 #endif
6327 default:
6328 ret = -KVM_ENOSYS;
6329 break;
6330 }
6331 out:
6332 if (!op_64_bit)
6333 ret = (u32)ret;
6334 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6335 ++vcpu->stat.hypercalls;
6336 return r;
6337 }
6338 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6339
6340 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6341 {
6342 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6343 char instruction[3];
6344 unsigned long rip = kvm_rip_read(vcpu);
6345
6346 kvm_x86_ops->patch_hypercall(vcpu, instruction);
6347
6348 return emulator_write_emulated(ctxt, rip, instruction, 3,
6349 &ctxt->exception);
6350 }
6351
6352 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6353 {
6354 return vcpu->run->request_interrupt_window &&
6355 likely(!pic_in_kernel(vcpu->kvm));
6356 }
6357
6358 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6359 {
6360 struct kvm_run *kvm_run = vcpu->run;
6361
6362 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6363 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6364 kvm_run->cr8 = kvm_get_cr8(vcpu);
6365 kvm_run->apic_base = kvm_get_apic_base(vcpu);
6366 kvm_run->ready_for_interrupt_injection =
6367 pic_in_kernel(vcpu->kvm) ||
6368 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6369 }
6370
6371 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6372 {
6373 int max_irr, tpr;
6374
6375 if (!kvm_x86_ops->update_cr8_intercept)
6376 return;
6377
6378 if (!lapic_in_kernel(vcpu))
6379 return;
6380
6381 if (vcpu->arch.apicv_active)
6382 return;
6383
6384 if (!vcpu->arch.apic->vapic_addr)
6385 max_irr = kvm_lapic_find_highest_irr(vcpu);
6386 else
6387 max_irr = -1;
6388
6389 if (max_irr != -1)
6390 max_irr >>= 4;
6391
6392 tpr = kvm_lapic_get_cr8(vcpu);
6393
6394 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6395 }
6396
6397 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6398 {
6399 int r;
6400
6401 /* try to reinject previous events if any */
6402 if (vcpu->arch.exception.injected) {
6403 kvm_x86_ops->queue_exception(vcpu);
6404 return 0;
6405 }
6406
6407 /*
6408 * Exceptions must be injected immediately, or the exception
6409 * frame will have the address of the NMI or interrupt handler.
6410 */
6411 if (!vcpu->arch.exception.pending) {
6412 if (vcpu->arch.nmi_injected) {
6413 kvm_x86_ops->set_nmi(vcpu);
6414 return 0;
6415 }
6416
6417 if (vcpu->arch.interrupt.pending) {
6418 kvm_x86_ops->set_irq(vcpu);
6419 return 0;
6420 }
6421 }
6422
6423 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6424 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6425 if (r != 0)
6426 return r;
6427 }
6428
6429 /* try to inject new event if pending */
6430 if (vcpu->arch.exception.pending) {
6431 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6432 vcpu->arch.exception.has_error_code,
6433 vcpu->arch.exception.error_code);
6434
6435 vcpu->arch.exception.pending = false;
6436 vcpu->arch.exception.injected = true;
6437
6438 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6439 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6440 X86_EFLAGS_RF);
6441
6442 if (vcpu->arch.exception.nr == DB_VECTOR &&
6443 (vcpu->arch.dr7 & DR7_GD)) {
6444 vcpu->arch.dr7 &= ~DR7_GD;
6445 kvm_update_dr7(vcpu);
6446 }
6447
6448 kvm_x86_ops->queue_exception(vcpu);
6449 } else if (vcpu->arch.smi_pending && !is_smm(vcpu) && kvm_x86_ops->smi_allowed(vcpu)) {
6450 vcpu->arch.smi_pending = false;
6451 enter_smm(vcpu);
6452 } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6453 --vcpu->arch.nmi_pending;
6454 vcpu->arch.nmi_injected = true;
6455 kvm_x86_ops->set_nmi(vcpu);
6456 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6457 /*
6458 * Because interrupts can be injected asynchronously, we are
6459 * calling check_nested_events again here to avoid a race condition.
6460 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6461 * proposal and current concerns. Perhaps we should be setting
6462 * KVM_REQ_EVENT only on certain events and not unconditionally?
6463 */
6464 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6465 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6466 if (r != 0)
6467 return r;
6468 }
6469 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6470 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6471 false);
6472 kvm_x86_ops->set_irq(vcpu);
6473 }
6474 }
6475
6476 return 0;
6477 }
6478
6479 static void process_nmi(struct kvm_vcpu *vcpu)
6480 {
6481 unsigned limit = 2;
6482
6483 /*
6484 * x86 is limited to one NMI running, and one NMI pending after it.
6485 * If an NMI is already in progress, limit further NMIs to just one.
6486 * Otherwise, allow two (and we'll inject the first one immediately).
6487 */
6488 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6489 limit = 1;
6490
6491 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6492 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6493 kvm_make_request(KVM_REQ_EVENT, vcpu);
6494 }
6495
6496 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6497 {
6498 u32 flags = 0;
6499 flags |= seg->g << 23;
6500 flags |= seg->db << 22;
6501 flags |= seg->l << 21;
6502 flags |= seg->avl << 20;
6503 flags |= seg->present << 15;
6504 flags |= seg->dpl << 13;
6505 flags |= seg->s << 12;
6506 flags |= seg->type << 8;
6507 return flags;
6508 }
6509
6510 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6511 {
6512 struct kvm_segment seg;
6513 int offset;
6514
6515 kvm_get_segment(vcpu, &seg, n);
6516 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6517
6518 if (n < 3)
6519 offset = 0x7f84 + n * 12;
6520 else
6521 offset = 0x7f2c + (n - 3) * 12;
6522
6523 put_smstate(u32, buf, offset + 8, seg.base);
6524 put_smstate(u32, buf, offset + 4, seg.limit);
6525 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6526 }
6527
6528 #ifdef CONFIG_X86_64
6529 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6530 {
6531 struct kvm_segment seg;
6532 int offset;
6533 u16 flags;
6534
6535 kvm_get_segment(vcpu, &seg, n);
6536 offset = 0x7e00 + n * 16;
6537
6538 flags = enter_smm_get_segment_flags(&seg) >> 8;
6539 put_smstate(u16, buf, offset, seg.selector);
6540 put_smstate(u16, buf, offset + 2, flags);
6541 put_smstate(u32, buf, offset + 4, seg.limit);
6542 put_smstate(u64, buf, offset + 8, seg.base);
6543 }
6544 #endif
6545
6546 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6547 {
6548 struct desc_ptr dt;
6549 struct kvm_segment seg;
6550 unsigned long val;
6551 int i;
6552
6553 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6554 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6555 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6556 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6557
6558 for (i = 0; i < 8; i++)
6559 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6560
6561 kvm_get_dr(vcpu, 6, &val);
6562 put_smstate(u32, buf, 0x7fcc, (u32)val);
6563 kvm_get_dr(vcpu, 7, &val);
6564 put_smstate(u32, buf, 0x7fc8, (u32)val);
6565
6566 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6567 put_smstate(u32, buf, 0x7fc4, seg.selector);
6568 put_smstate(u32, buf, 0x7f64, seg.base);
6569 put_smstate(u32, buf, 0x7f60, seg.limit);
6570 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6571
6572 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6573 put_smstate(u32, buf, 0x7fc0, seg.selector);
6574 put_smstate(u32, buf, 0x7f80, seg.base);
6575 put_smstate(u32, buf, 0x7f7c, seg.limit);
6576 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6577
6578 kvm_x86_ops->get_gdt(vcpu, &dt);
6579 put_smstate(u32, buf, 0x7f74, dt.address);
6580 put_smstate(u32, buf, 0x7f70, dt.size);
6581
6582 kvm_x86_ops->get_idt(vcpu, &dt);
6583 put_smstate(u32, buf, 0x7f58, dt.address);
6584 put_smstate(u32, buf, 0x7f54, dt.size);
6585
6586 for (i = 0; i < 6; i++)
6587 enter_smm_save_seg_32(vcpu, buf, i);
6588
6589 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6590
6591 /* revision id */
6592 put_smstate(u32, buf, 0x7efc, 0x00020000);
6593 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6594 }
6595
6596 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6597 {
6598 #ifdef CONFIG_X86_64
6599 struct desc_ptr dt;
6600 struct kvm_segment seg;
6601 unsigned long val;
6602 int i;
6603
6604 for (i = 0; i < 16; i++)
6605 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6606
6607 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6608 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6609
6610 kvm_get_dr(vcpu, 6, &val);
6611 put_smstate(u64, buf, 0x7f68, val);
6612 kvm_get_dr(vcpu, 7, &val);
6613 put_smstate(u64, buf, 0x7f60, val);
6614
6615 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6616 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6617 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6618
6619 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6620
6621 /* revision id */
6622 put_smstate(u32, buf, 0x7efc, 0x00020064);
6623
6624 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6625
6626 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6627 put_smstate(u16, buf, 0x7e90, seg.selector);
6628 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6629 put_smstate(u32, buf, 0x7e94, seg.limit);
6630 put_smstate(u64, buf, 0x7e98, seg.base);
6631
6632 kvm_x86_ops->get_idt(vcpu, &dt);
6633 put_smstate(u32, buf, 0x7e84, dt.size);
6634 put_smstate(u64, buf, 0x7e88, dt.address);
6635
6636 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6637 put_smstate(u16, buf, 0x7e70, seg.selector);
6638 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6639 put_smstate(u32, buf, 0x7e74, seg.limit);
6640 put_smstate(u64, buf, 0x7e78, seg.base);
6641
6642 kvm_x86_ops->get_gdt(vcpu, &dt);
6643 put_smstate(u32, buf, 0x7e64, dt.size);
6644 put_smstate(u64, buf, 0x7e68, dt.address);
6645
6646 for (i = 0; i < 6; i++)
6647 enter_smm_save_seg_64(vcpu, buf, i);
6648 #else
6649 WARN_ON_ONCE(1);
6650 #endif
6651 }
6652
6653 static void enter_smm(struct kvm_vcpu *vcpu)
6654 {
6655 struct kvm_segment cs, ds;
6656 struct desc_ptr dt;
6657 char buf[512];
6658 u32 cr0;
6659
6660 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6661 memset(buf, 0, 512);
6662 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
6663 enter_smm_save_state_64(vcpu, buf);
6664 else
6665 enter_smm_save_state_32(vcpu, buf);
6666
6667 /*
6668 * Give pre_enter_smm() a chance to make ISA-specific changes to the
6669 * vCPU state (e.g. leave guest mode) after we've saved the state into
6670 * the SMM state-save area.
6671 */
6672 kvm_x86_ops->pre_enter_smm(vcpu, buf);
6673
6674 vcpu->arch.hflags |= HF_SMM_MASK;
6675 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6676
6677 if (kvm_x86_ops->get_nmi_mask(vcpu))
6678 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6679 else
6680 kvm_x86_ops->set_nmi_mask(vcpu, true);
6681
6682 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6683 kvm_rip_write(vcpu, 0x8000);
6684
6685 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6686 kvm_x86_ops->set_cr0(vcpu, cr0);
6687 vcpu->arch.cr0 = cr0;
6688
6689 kvm_x86_ops->set_cr4(vcpu, 0);
6690
6691 /* Undocumented: IDT limit is set to zero on entry to SMM. */
6692 dt.address = dt.size = 0;
6693 kvm_x86_ops->set_idt(vcpu, &dt);
6694
6695 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6696
6697 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6698 cs.base = vcpu->arch.smbase;
6699
6700 ds.selector = 0;
6701 ds.base = 0;
6702
6703 cs.limit = ds.limit = 0xffffffff;
6704 cs.type = ds.type = 0x3;
6705 cs.dpl = ds.dpl = 0;
6706 cs.db = ds.db = 0;
6707 cs.s = ds.s = 1;
6708 cs.l = ds.l = 0;
6709 cs.g = ds.g = 1;
6710 cs.avl = ds.avl = 0;
6711 cs.present = ds.present = 1;
6712 cs.unusable = ds.unusable = 0;
6713 cs.padding = ds.padding = 0;
6714
6715 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6716 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6717 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6718 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6719 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6720 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6721
6722 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
6723 kvm_x86_ops->set_efer(vcpu, 0);
6724
6725 kvm_update_cpuid(vcpu);
6726 kvm_mmu_reset_context(vcpu);
6727 }
6728
6729 static void process_smi(struct kvm_vcpu *vcpu)
6730 {
6731 vcpu->arch.smi_pending = true;
6732 kvm_make_request(KVM_REQ_EVENT, vcpu);
6733 }
6734
6735 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6736 {
6737 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6738 }
6739
6740 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6741 {
6742 u64 eoi_exit_bitmap[4];
6743
6744 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6745 return;
6746
6747 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6748
6749 if (irqchip_split(vcpu->kvm))
6750 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6751 else {
6752 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6753 kvm_x86_ops->sync_pir_to_irr(vcpu);
6754 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6755 }
6756 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6757 vcpu_to_synic(vcpu)->vec_bitmap, 256);
6758 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6759 }
6760
6761 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6762 {
6763 ++vcpu->stat.tlb_flush;
6764 kvm_x86_ops->tlb_flush(vcpu);
6765 }
6766
6767 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
6768 unsigned long start, unsigned long end)
6769 {
6770 unsigned long apic_address;
6771
6772 /*
6773 * The physical address of apic access page is stored in the VMCS.
6774 * Update it when it becomes invalid.
6775 */
6776 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6777 if (start <= apic_address && apic_address < end)
6778 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6779 }
6780
6781 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6782 {
6783 struct page *page = NULL;
6784
6785 if (!lapic_in_kernel(vcpu))
6786 return;
6787
6788 if (!kvm_x86_ops->set_apic_access_page_addr)
6789 return;
6790
6791 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6792 if (is_error_page(page))
6793 return;
6794 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6795
6796 /*
6797 * Do not pin apic access page in memory, the MMU notifier
6798 * will call us again if it is migrated or swapped out.
6799 */
6800 put_page(page);
6801 }
6802 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6803
6804 /*
6805 * Returns 1 to let vcpu_run() continue the guest execution loop without
6806 * exiting to the userspace. Otherwise, the value will be returned to the
6807 * userspace.
6808 */
6809 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6810 {
6811 int r;
6812 bool req_int_win =
6813 dm_request_for_irq_injection(vcpu) &&
6814 kvm_cpu_accept_dm_intr(vcpu);
6815
6816 bool req_immediate_exit = false;
6817
6818 if (kvm_request_pending(vcpu)) {
6819 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6820 kvm_mmu_unload(vcpu);
6821 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6822 __kvm_migrate_timers(vcpu);
6823 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6824 kvm_gen_update_masterclock(vcpu->kvm);
6825 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6826 kvm_gen_kvmclock_update(vcpu);
6827 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6828 r = kvm_guest_time_update(vcpu);
6829 if (unlikely(r))
6830 goto out;
6831 }
6832 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6833 kvm_mmu_sync_roots(vcpu);
6834 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6835 kvm_vcpu_flush_tlb(vcpu);
6836 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6837 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6838 r = 0;
6839 goto out;
6840 }
6841 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6842 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6843 vcpu->mmio_needed = 0;
6844 r = 0;
6845 goto out;
6846 }
6847 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6848 /* Page is swapped out. Do synthetic halt */
6849 vcpu->arch.apf.halted = true;
6850 r = 1;
6851 goto out;
6852 }
6853 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6854 record_steal_time(vcpu);
6855 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6856 process_smi(vcpu);
6857 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6858 process_nmi(vcpu);
6859 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6860 kvm_pmu_handle_event(vcpu);
6861 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6862 kvm_pmu_deliver_pmi(vcpu);
6863 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6864 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6865 if (test_bit(vcpu->arch.pending_ioapic_eoi,
6866 vcpu->arch.ioapic_handled_vectors)) {
6867 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6868 vcpu->run->eoi.vector =
6869 vcpu->arch.pending_ioapic_eoi;
6870 r = 0;
6871 goto out;
6872 }
6873 }
6874 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6875 vcpu_scan_ioapic(vcpu);
6876 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6877 kvm_vcpu_reload_apic_access_page(vcpu);
6878 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6879 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6880 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6881 r = 0;
6882 goto out;
6883 }
6884 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6885 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6886 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6887 r = 0;
6888 goto out;
6889 }
6890 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6891 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6892 vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6893 r = 0;
6894 goto out;
6895 }
6896
6897 /*
6898 * KVM_REQ_HV_STIMER has to be processed after
6899 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6900 * depend on the guest clock being up-to-date
6901 */
6902 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6903 kvm_hv_process_stimers(vcpu);
6904 }
6905
6906 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6907 ++vcpu->stat.req_event;
6908 kvm_apic_accept_events(vcpu);
6909 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6910 r = 1;
6911 goto out;
6912 }
6913
6914 if (inject_pending_event(vcpu, req_int_win) != 0)
6915 req_immediate_exit = true;
6916 else {
6917 /* Enable SMI/NMI/IRQ window open exits if needed.
6918 *
6919 * SMIs have three cases:
6920 * 1) They can be nested, and then there is nothing to
6921 * do here because RSM will cause a vmexit anyway.
6922 * 2) There is an ISA-specific reason why SMI cannot be
6923 * injected, and the moment when this changes can be
6924 * intercepted.
6925 * 3) Or the SMI can be pending because
6926 * inject_pending_event has completed the injection
6927 * of an IRQ or NMI from the previous vmexit, and
6928 * then we request an immediate exit to inject the
6929 * SMI.
6930 */
6931 if (vcpu->arch.smi_pending && !is_smm(vcpu))
6932 if (!kvm_x86_ops->enable_smi_window(vcpu))
6933 req_immediate_exit = true;
6934 if (vcpu->arch.nmi_pending)
6935 kvm_x86_ops->enable_nmi_window(vcpu);
6936 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6937 kvm_x86_ops->enable_irq_window(vcpu);
6938 WARN_ON(vcpu->arch.exception.pending);
6939 }
6940
6941 if (kvm_lapic_enabled(vcpu)) {
6942 update_cr8_intercept(vcpu);
6943 kvm_lapic_sync_to_vapic(vcpu);
6944 }
6945 }
6946
6947 r = kvm_mmu_reload(vcpu);
6948 if (unlikely(r)) {
6949 goto cancel_injection;
6950 }
6951
6952 preempt_disable();
6953
6954 kvm_x86_ops->prepare_guest_switch(vcpu);
6955
6956 /*
6957 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
6958 * IPI are then delayed after guest entry, which ensures that they
6959 * result in virtual interrupt delivery.
6960 */
6961 local_irq_disable();
6962 vcpu->mode = IN_GUEST_MODE;
6963
6964 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6965
6966 /*
6967 * 1) We should set ->mode before checking ->requests. Please see
6968 * the comment in kvm_vcpu_exiting_guest_mode().
6969 *
6970 * 2) For APICv, we should set ->mode before checking PIR.ON. This
6971 * pairs with the memory barrier implicit in pi_test_and_set_on
6972 * (see vmx_deliver_posted_interrupt).
6973 *
6974 * 3) This also orders the write to mode from any reads to the page
6975 * tables done while the VCPU is running. Please see the comment
6976 * in kvm_flush_remote_tlbs.
6977 */
6978 smp_mb__after_srcu_read_unlock();
6979
6980 /*
6981 * This handles the case where a posted interrupt was
6982 * notified with kvm_vcpu_kick.
6983 */
6984 if (kvm_lapic_enabled(vcpu)) {
6985 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6986 kvm_x86_ops->sync_pir_to_irr(vcpu);
6987 }
6988
6989 if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
6990 || need_resched() || signal_pending(current)) {
6991 vcpu->mode = OUTSIDE_GUEST_MODE;
6992 smp_wmb();
6993 local_irq_enable();
6994 preempt_enable();
6995 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6996 r = 1;
6997 goto cancel_injection;
6998 }
6999
7000 kvm_load_guest_xcr0(vcpu);
7001
7002 if (req_immediate_exit) {
7003 kvm_make_request(KVM_REQ_EVENT, vcpu);
7004 smp_send_reschedule(vcpu->cpu);
7005 }
7006
7007 trace_kvm_entry(vcpu->vcpu_id);
7008 wait_lapic_expire(vcpu);
7009 guest_enter_irqoff();
7010
7011 if (unlikely(vcpu->arch.switch_db_regs)) {
7012 set_debugreg(0, 7);
7013 set_debugreg(vcpu->arch.eff_db[0], 0);
7014 set_debugreg(vcpu->arch.eff_db[1], 1);
7015 set_debugreg(vcpu->arch.eff_db[2], 2);
7016 set_debugreg(vcpu->arch.eff_db[3], 3);
7017 set_debugreg(vcpu->arch.dr6, 6);
7018 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7019 }
7020
7021 kvm_x86_ops->run(vcpu);
7022
7023 /*
7024 * Do this here before restoring debug registers on the host. And
7025 * since we do this before handling the vmexit, a DR access vmexit
7026 * can (a) read the correct value of the debug registers, (b) set
7027 * KVM_DEBUGREG_WONT_EXIT again.
7028 */
7029 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7030 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7031 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7032 kvm_update_dr0123(vcpu);
7033 kvm_update_dr6(vcpu);
7034 kvm_update_dr7(vcpu);
7035 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7036 }
7037
7038 /*
7039 * If the guest has used debug registers, at least dr7
7040 * will be disabled while returning to the host.
7041 * If we don't have active breakpoints in the host, we don't
7042 * care about the messed up debug address registers. But if
7043 * we have some of them active, restore the old state.
7044 */
7045 if (hw_breakpoint_active())
7046 hw_breakpoint_restore();
7047
7048 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7049
7050 vcpu->mode = OUTSIDE_GUEST_MODE;
7051 smp_wmb();
7052
7053 kvm_put_guest_xcr0(vcpu);
7054
7055 kvm_x86_ops->handle_external_intr(vcpu);
7056
7057 ++vcpu->stat.exits;
7058
7059 guest_exit_irqoff();
7060
7061 local_irq_enable();
7062 preempt_enable();
7063
7064 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7065
7066 /*
7067 * Profile KVM exit RIPs:
7068 */
7069 if (unlikely(prof_on == KVM_PROFILING)) {
7070 unsigned long rip = kvm_rip_read(vcpu);
7071 profile_hit(KVM_PROFILING, (void *)rip);
7072 }
7073
7074 if (unlikely(vcpu->arch.tsc_always_catchup))
7075 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7076
7077 if (vcpu->arch.apic_attention)
7078 kvm_lapic_sync_from_vapic(vcpu);
7079
7080 vcpu->arch.gpa_available = false;
7081 r = kvm_x86_ops->handle_exit(vcpu);
7082 return r;
7083
7084 cancel_injection:
7085 kvm_x86_ops->cancel_injection(vcpu);
7086 if (unlikely(vcpu->arch.apic_attention))
7087 kvm_lapic_sync_from_vapic(vcpu);
7088 out:
7089 return r;
7090 }
7091
7092 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7093 {
7094 if (!kvm_arch_vcpu_runnable(vcpu) &&
7095 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7096 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7097 kvm_vcpu_block(vcpu);
7098 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7099
7100 if (kvm_x86_ops->post_block)
7101 kvm_x86_ops->post_block(vcpu);
7102
7103 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7104 return 1;
7105 }
7106
7107 kvm_apic_accept_events(vcpu);
7108 switch(vcpu->arch.mp_state) {
7109 case KVM_MP_STATE_HALTED:
7110 vcpu->arch.pv.pv_unhalted = false;
7111 vcpu->arch.mp_state =
7112 KVM_MP_STATE_RUNNABLE;
7113 case KVM_MP_STATE_RUNNABLE:
7114 vcpu->arch.apf.halted = false;
7115 break;
7116 case KVM_MP_STATE_INIT_RECEIVED:
7117 break;
7118 default:
7119 return -EINTR;
7120 break;
7121 }
7122 return 1;
7123 }
7124
7125 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7126 {
7127 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7128 kvm_x86_ops->check_nested_events(vcpu, false);
7129
7130 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7131 !vcpu->arch.apf.halted);
7132 }
7133
7134 static int vcpu_run(struct kvm_vcpu *vcpu)
7135 {
7136 int r;
7137 struct kvm *kvm = vcpu->kvm;
7138
7139 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7140
7141 for (;;) {
7142 if (kvm_vcpu_running(vcpu)) {
7143 r = vcpu_enter_guest(vcpu);
7144 } else {
7145 r = vcpu_block(kvm, vcpu);
7146 }
7147
7148 if (r <= 0)
7149 break;
7150
7151 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7152 if (kvm_cpu_has_pending_timer(vcpu))
7153 kvm_inject_pending_timer_irqs(vcpu);
7154
7155 if (dm_request_for_irq_injection(vcpu) &&
7156 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7157 r = 0;
7158 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7159 ++vcpu->stat.request_irq_exits;
7160 break;
7161 }
7162
7163 kvm_check_async_pf_completion(vcpu);
7164
7165 if (signal_pending(current)) {
7166 r = -EINTR;
7167 vcpu->run->exit_reason = KVM_EXIT_INTR;
7168 ++vcpu->stat.signal_exits;
7169 break;
7170 }
7171 if (need_resched()) {
7172 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7173 cond_resched();
7174 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7175 }
7176 }
7177
7178 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7179
7180 return r;
7181 }
7182
7183 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7184 {
7185 int r;
7186 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7187 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7188 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7189 if (r != EMULATE_DONE)
7190 return 0;
7191 return 1;
7192 }
7193
7194 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7195 {
7196 BUG_ON(!vcpu->arch.pio.count);
7197
7198 return complete_emulated_io(vcpu);
7199 }
7200
7201 /*
7202 * Implements the following, as a state machine:
7203 *
7204 * read:
7205 * for each fragment
7206 * for each mmio piece in the fragment
7207 * write gpa, len
7208 * exit
7209 * copy data
7210 * execute insn
7211 *
7212 * write:
7213 * for each fragment
7214 * for each mmio piece in the fragment
7215 * write gpa, len
7216 * copy data
7217 * exit
7218 */
7219 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7220 {
7221 struct kvm_run *run = vcpu->run;
7222 struct kvm_mmio_fragment *frag;
7223 unsigned len;
7224
7225 BUG_ON(!vcpu->mmio_needed);
7226
7227 /* Complete previous fragment */
7228 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7229 len = min(8u, frag->len);
7230 if (!vcpu->mmio_is_write)
7231 memcpy(frag->data, run->mmio.data, len);
7232
7233 if (frag->len <= 8) {
7234 /* Switch to the next fragment. */
7235 frag++;
7236 vcpu->mmio_cur_fragment++;
7237 } else {
7238 /* Go forward to the next mmio piece. */
7239 frag->data += len;
7240 frag->gpa += len;
7241 frag->len -= len;
7242 }
7243
7244 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7245 vcpu->mmio_needed = 0;
7246
7247 /* FIXME: return into emulator if single-stepping. */
7248 if (vcpu->mmio_is_write)
7249 return 1;
7250 vcpu->mmio_read_completed = 1;
7251 return complete_emulated_io(vcpu);
7252 }
7253
7254 run->exit_reason = KVM_EXIT_MMIO;
7255 run->mmio.phys_addr = frag->gpa;
7256 if (vcpu->mmio_is_write)
7257 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7258 run->mmio.len = min(8u, frag->len);
7259 run->mmio.is_write = vcpu->mmio_is_write;
7260 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7261 return 0;
7262 }
7263
7264
7265 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7266 {
7267 int r;
7268
7269 kvm_sigset_activate(vcpu);
7270
7271 kvm_load_guest_fpu(vcpu);
7272
7273 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7274 if (kvm_run->immediate_exit) {
7275 r = -EINTR;
7276 goto out;
7277 }
7278 kvm_vcpu_block(vcpu);
7279 kvm_apic_accept_events(vcpu);
7280 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7281 r = -EAGAIN;
7282 if (signal_pending(current)) {
7283 r = -EINTR;
7284 vcpu->run->exit_reason = KVM_EXIT_INTR;
7285 ++vcpu->stat.signal_exits;
7286 }
7287 goto out;
7288 }
7289
7290 /* re-sync apic's tpr */
7291 if (!lapic_in_kernel(vcpu)) {
7292 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7293 r = -EINVAL;
7294 goto out;
7295 }
7296 }
7297
7298 if (unlikely(vcpu->arch.complete_userspace_io)) {
7299 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7300 vcpu->arch.complete_userspace_io = NULL;
7301 r = cui(vcpu);
7302 if (r <= 0)
7303 goto out;
7304 } else
7305 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7306
7307 if (kvm_run->immediate_exit)
7308 r = -EINTR;
7309 else
7310 r = vcpu_run(vcpu);
7311
7312 out:
7313 kvm_put_guest_fpu(vcpu);
7314 post_kvm_run_save(vcpu);
7315 kvm_sigset_deactivate(vcpu);
7316
7317 return r;
7318 }
7319
7320 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7321 {
7322 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7323 /*
7324 * We are here if userspace calls get_regs() in the middle of
7325 * instruction emulation. Registers state needs to be copied
7326 * back from emulation context to vcpu. Userspace shouldn't do
7327 * that usually, but some bad designed PV devices (vmware
7328 * backdoor interface) need this to work
7329 */
7330 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7331 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7332 }
7333 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7334 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7335 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7336 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7337 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7338 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7339 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7340 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7341 #ifdef CONFIG_X86_64
7342 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7343 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7344 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7345 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7346 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7347 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7348 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7349 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7350 #endif
7351
7352 regs->rip = kvm_rip_read(vcpu);
7353 regs->rflags = kvm_get_rflags(vcpu);
7354
7355 return 0;
7356 }
7357
7358 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7359 {
7360 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7361 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7362
7363 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7364 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7365 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7366 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7367 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7368 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7369 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7370 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7371 #ifdef CONFIG_X86_64
7372 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7373 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7374 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7375 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7376 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7377 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7378 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7379 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7380 #endif
7381
7382 kvm_rip_write(vcpu, regs->rip);
7383 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
7384
7385 vcpu->arch.exception.pending = false;
7386
7387 kvm_make_request(KVM_REQ_EVENT, vcpu);
7388
7389 return 0;
7390 }
7391
7392 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7393 {
7394 struct kvm_segment cs;
7395
7396 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7397 *db = cs.db;
7398 *l = cs.l;
7399 }
7400 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7401
7402 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7403 struct kvm_sregs *sregs)
7404 {
7405 struct desc_ptr dt;
7406
7407 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7408 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7409 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7410 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7411 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7412 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7413
7414 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7415 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7416
7417 kvm_x86_ops->get_idt(vcpu, &dt);
7418 sregs->idt.limit = dt.size;
7419 sregs->idt.base = dt.address;
7420 kvm_x86_ops->get_gdt(vcpu, &dt);
7421 sregs->gdt.limit = dt.size;
7422 sregs->gdt.base = dt.address;
7423
7424 sregs->cr0 = kvm_read_cr0(vcpu);
7425 sregs->cr2 = vcpu->arch.cr2;
7426 sregs->cr3 = kvm_read_cr3(vcpu);
7427 sregs->cr4 = kvm_read_cr4(vcpu);
7428 sregs->cr8 = kvm_get_cr8(vcpu);
7429 sregs->efer = vcpu->arch.efer;
7430 sregs->apic_base = kvm_get_apic_base(vcpu);
7431
7432 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7433
7434 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7435 set_bit(vcpu->arch.interrupt.nr,
7436 (unsigned long *)sregs->interrupt_bitmap);
7437
7438 return 0;
7439 }
7440
7441 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7442 struct kvm_mp_state *mp_state)
7443 {
7444 kvm_apic_accept_events(vcpu);
7445 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7446 vcpu->arch.pv.pv_unhalted)
7447 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7448 else
7449 mp_state->mp_state = vcpu->arch.mp_state;
7450
7451 return 0;
7452 }
7453
7454 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7455 struct kvm_mp_state *mp_state)
7456 {
7457 if (!lapic_in_kernel(vcpu) &&
7458 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7459 return -EINVAL;
7460
7461 /* INITs are latched while in SMM */
7462 if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7463 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7464 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7465 return -EINVAL;
7466
7467 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7468 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7469 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7470 } else
7471 vcpu->arch.mp_state = mp_state->mp_state;
7472 kvm_make_request(KVM_REQ_EVENT, vcpu);
7473 return 0;
7474 }
7475
7476 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7477 int reason, bool has_error_code, u32 error_code)
7478 {
7479 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7480 int ret;
7481
7482 init_emulate_ctxt(vcpu);
7483
7484 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7485 has_error_code, error_code);
7486
7487 if (ret)
7488 return EMULATE_FAIL;
7489
7490 kvm_rip_write(vcpu, ctxt->eip);
7491 kvm_set_rflags(vcpu, ctxt->eflags);
7492 kvm_make_request(KVM_REQ_EVENT, vcpu);
7493 return EMULATE_DONE;
7494 }
7495 EXPORT_SYMBOL_GPL(kvm_task_switch);
7496
7497 int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
7498 {
7499 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG_BIT)) {
7500 /*
7501 * When EFER.LME and CR0.PG are set, the processor is in
7502 * 64-bit mode (though maybe in a 32-bit code segment).
7503 * CR4.PAE and EFER.LMA must be set.
7504 */
7505 if (!(sregs->cr4 & X86_CR4_PAE_BIT)
7506 || !(sregs->efer & EFER_LMA))
7507 return -EINVAL;
7508 } else {
7509 /*
7510 * Not in 64-bit mode: EFER.LMA is clear and the code
7511 * segment cannot be 64-bit.
7512 */
7513 if (sregs->efer & EFER_LMA || sregs->cs.l)
7514 return -EINVAL;
7515 }
7516
7517 return 0;
7518 }
7519
7520 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7521 struct kvm_sregs *sregs)
7522 {
7523 struct msr_data apic_base_msr;
7524 int mmu_reset_needed = 0;
7525 int pending_vec, max_bits, idx;
7526 struct desc_ptr dt;
7527
7528 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
7529 (sregs->cr4 & X86_CR4_OSXSAVE))
7530 return -EINVAL;
7531
7532 if (kvm_valid_sregs(vcpu, sregs))
7533 return -EINVAL;
7534
7535 apic_base_msr.data = sregs->apic_base;
7536 apic_base_msr.host_initiated = true;
7537 if (kvm_set_apic_base(vcpu, &apic_base_msr))
7538 return -EINVAL;
7539
7540 dt.size = sregs->idt.limit;
7541 dt.address = sregs->idt.base;
7542 kvm_x86_ops->set_idt(vcpu, &dt);
7543 dt.size = sregs->gdt.limit;
7544 dt.address = sregs->gdt.base;
7545 kvm_x86_ops->set_gdt(vcpu, &dt);
7546
7547 vcpu->arch.cr2 = sregs->cr2;
7548 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7549 vcpu->arch.cr3 = sregs->cr3;
7550 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7551
7552 kvm_set_cr8(vcpu, sregs->cr8);
7553
7554 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7555 kvm_x86_ops->set_efer(vcpu, sregs->efer);
7556
7557 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7558 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7559 vcpu->arch.cr0 = sregs->cr0;
7560
7561 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7562 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7563 if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7564 kvm_update_cpuid(vcpu);
7565
7566 idx = srcu_read_lock(&vcpu->kvm->srcu);
7567 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7568 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7569 mmu_reset_needed = 1;
7570 }
7571 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7572
7573 if (mmu_reset_needed)
7574 kvm_mmu_reset_context(vcpu);
7575
7576 max_bits = KVM_NR_INTERRUPTS;
7577 pending_vec = find_first_bit(
7578 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7579 if (pending_vec < max_bits) {
7580 kvm_queue_interrupt(vcpu, pending_vec, false);
7581 pr_debug("Set back pending irq %d\n", pending_vec);
7582 }
7583
7584 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7585 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7586 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7587 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7588 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7589 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7590
7591 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7592 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7593
7594 update_cr8_intercept(vcpu);
7595
7596 /* Older userspace won't unhalt the vcpu on reset. */
7597 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7598 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7599 !is_protmode(vcpu))
7600 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7601
7602 kvm_make_request(KVM_REQ_EVENT, vcpu);
7603
7604 return 0;
7605 }
7606
7607 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7608 struct kvm_guest_debug *dbg)
7609 {
7610 unsigned long rflags;
7611 int i, r;
7612
7613 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7614 r = -EBUSY;
7615 if (vcpu->arch.exception.pending)
7616 goto out;
7617 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7618 kvm_queue_exception(vcpu, DB_VECTOR);
7619 else
7620 kvm_queue_exception(vcpu, BP_VECTOR);
7621 }
7622
7623 /*
7624 * Read rflags as long as potentially injected trace flags are still
7625 * filtered out.
7626 */
7627 rflags = kvm_get_rflags(vcpu);
7628
7629 vcpu->guest_debug = dbg->control;
7630 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7631 vcpu->guest_debug = 0;
7632
7633 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7634 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7635 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7636 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7637 } else {
7638 for (i = 0; i < KVM_NR_DB_REGS; i++)
7639 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7640 }
7641 kvm_update_dr7(vcpu);
7642
7643 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7644 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7645 get_segment_base(vcpu, VCPU_SREG_CS);
7646
7647 /*
7648 * Trigger an rflags update that will inject or remove the trace
7649 * flags.
7650 */
7651 kvm_set_rflags(vcpu, rflags);
7652
7653 kvm_x86_ops->update_bp_intercept(vcpu);
7654
7655 r = 0;
7656
7657 out:
7658
7659 return r;
7660 }
7661
7662 /*
7663 * Translate a guest virtual address to a guest physical address.
7664 */
7665 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7666 struct kvm_translation *tr)
7667 {
7668 unsigned long vaddr = tr->linear_address;
7669 gpa_t gpa;
7670 int idx;
7671
7672 idx = srcu_read_lock(&vcpu->kvm->srcu);
7673 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7674 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7675 tr->physical_address = gpa;
7676 tr->valid = gpa != UNMAPPED_GVA;
7677 tr->writeable = 1;
7678 tr->usermode = 0;
7679
7680 return 0;
7681 }
7682
7683 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7684 {
7685 struct fxregs_state *fxsave =
7686 &vcpu->arch.guest_fpu.state.fxsave;
7687
7688 memcpy(fpu->fpr, fxsave->st_space, 128);
7689 fpu->fcw = fxsave->cwd;
7690 fpu->fsw = fxsave->swd;
7691 fpu->ftwx = fxsave->twd;
7692 fpu->last_opcode = fxsave->fop;
7693 fpu->last_ip = fxsave->rip;
7694 fpu->last_dp = fxsave->rdp;
7695 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7696
7697 return 0;
7698 }
7699
7700 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7701 {
7702 struct fxregs_state *fxsave =
7703 &vcpu->arch.guest_fpu.state.fxsave;
7704
7705 memcpy(fxsave->st_space, fpu->fpr, 128);
7706 fxsave->cwd = fpu->fcw;
7707 fxsave->swd = fpu->fsw;
7708 fxsave->twd = fpu->ftwx;
7709 fxsave->fop = fpu->last_opcode;
7710 fxsave->rip = fpu->last_ip;
7711 fxsave->rdp = fpu->last_dp;
7712 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7713
7714 return 0;
7715 }
7716
7717 static void fx_init(struct kvm_vcpu *vcpu)
7718 {
7719 fpstate_init(&vcpu->arch.guest_fpu.state);
7720 if (boot_cpu_has(X86_FEATURE_XSAVES))
7721 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7722 host_xcr0 | XSTATE_COMPACTION_ENABLED;
7723
7724 /*
7725 * Ensure guest xcr0 is valid for loading
7726 */
7727 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7728
7729 vcpu->arch.cr0 |= X86_CR0_ET;
7730 }
7731
7732 /* Swap (qemu) user FPU context for the guest FPU context. */
7733 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7734 {
7735 preempt_disable();
7736 copy_fpregs_to_fpstate(&vcpu->arch.user_fpu);
7737 /* PKRU is separately restored in kvm_x86_ops->run. */
7738 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
7739 ~XFEATURE_MASK_PKRU);
7740 preempt_enable();
7741 trace_kvm_fpu(1);
7742 }
7743
7744 /* When vcpu_run ends, restore user space FPU context. */
7745 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7746 {
7747 preempt_disable();
7748 copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7749 copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state);
7750 preempt_enable();
7751 ++vcpu->stat.fpu_reload;
7752 trace_kvm_fpu(0);
7753 }
7754
7755 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7756 {
7757 void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7758
7759 kvmclock_reset(vcpu);
7760
7761 kvm_x86_ops->vcpu_free(vcpu);
7762 free_cpumask_var(wbinvd_dirty_mask);
7763 }
7764
7765 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7766 unsigned int id)
7767 {
7768 struct kvm_vcpu *vcpu;
7769
7770 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7771 printk_once(KERN_WARNING
7772 "kvm: SMP vm created on host with unstable TSC; "
7773 "guest TSC will not be reliable\n");
7774
7775 vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7776
7777 return vcpu;
7778 }
7779
7780 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7781 {
7782 int r;
7783
7784 kvm_vcpu_mtrr_init(vcpu);
7785 r = vcpu_load(vcpu);
7786 if (r)
7787 return r;
7788 kvm_vcpu_reset(vcpu, false);
7789 kvm_mmu_setup(vcpu);
7790 vcpu_put(vcpu);
7791 return r;
7792 }
7793
7794 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7795 {
7796 struct msr_data msr;
7797 struct kvm *kvm = vcpu->kvm;
7798
7799 kvm_hv_vcpu_postcreate(vcpu);
7800
7801 if (vcpu_load(vcpu))
7802 return;
7803 msr.data = 0x0;
7804 msr.index = MSR_IA32_TSC;
7805 msr.host_initiated = true;
7806 kvm_write_tsc(vcpu, &msr);
7807 vcpu_put(vcpu);
7808
7809 if (!kvmclock_periodic_sync)
7810 return;
7811
7812 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7813 KVMCLOCK_SYNC_PERIOD);
7814 }
7815
7816 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7817 {
7818 int r;
7819 vcpu->arch.apf.msr_val = 0;
7820
7821 r = vcpu_load(vcpu);
7822 BUG_ON(r);
7823 kvm_mmu_unload(vcpu);
7824 vcpu_put(vcpu);
7825
7826 kvm_x86_ops->vcpu_free(vcpu);
7827 }
7828
7829 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7830 {
7831 vcpu->arch.hflags = 0;
7832
7833 vcpu->arch.smi_pending = 0;
7834 atomic_set(&vcpu->arch.nmi_queued, 0);
7835 vcpu->arch.nmi_pending = 0;
7836 vcpu->arch.nmi_injected = false;
7837 kvm_clear_interrupt_queue(vcpu);
7838 kvm_clear_exception_queue(vcpu);
7839 vcpu->arch.exception.pending = false;
7840
7841 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7842 kvm_update_dr0123(vcpu);
7843 vcpu->arch.dr6 = DR6_INIT;
7844 kvm_update_dr6(vcpu);
7845 vcpu->arch.dr7 = DR7_FIXED_1;
7846 kvm_update_dr7(vcpu);
7847
7848 vcpu->arch.cr2 = 0;
7849
7850 kvm_make_request(KVM_REQ_EVENT, vcpu);
7851 vcpu->arch.apf.msr_val = 0;
7852 vcpu->arch.st.msr_val = 0;
7853
7854 kvmclock_reset(vcpu);
7855
7856 kvm_clear_async_pf_completion_queue(vcpu);
7857 kvm_async_pf_hash_reset(vcpu);
7858 vcpu->arch.apf.halted = false;
7859
7860 if (kvm_mpx_supported()) {
7861 void *mpx_state_buffer;
7862
7863 /*
7864 * To avoid have the INIT path from kvm_apic_has_events() that be
7865 * called with loaded FPU and does not let userspace fix the state.
7866 */
7867 if (init_event)
7868 kvm_put_guest_fpu(vcpu);
7869 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
7870 XFEATURE_MASK_BNDREGS);
7871 if (mpx_state_buffer)
7872 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
7873 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
7874 XFEATURE_MASK_BNDCSR);
7875 if (mpx_state_buffer)
7876 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
7877 if (init_event)
7878 kvm_load_guest_fpu(vcpu);
7879 }
7880
7881 if (!init_event) {
7882 kvm_pmu_reset(vcpu);
7883 vcpu->arch.smbase = 0x30000;
7884
7885 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
7886 vcpu->arch.msr_misc_features_enables = 0;
7887
7888 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7889 }
7890
7891 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7892 vcpu->arch.regs_avail = ~0;
7893 vcpu->arch.regs_dirty = ~0;
7894
7895 vcpu->arch.ia32_xss = 0;
7896
7897 kvm_x86_ops->vcpu_reset(vcpu, init_event);
7898 }
7899
7900 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7901 {
7902 struct kvm_segment cs;
7903
7904 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7905 cs.selector = vector << 8;
7906 cs.base = vector << 12;
7907 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7908 kvm_rip_write(vcpu, 0);
7909 }
7910
7911 int kvm_arch_hardware_enable(void)
7912 {
7913 struct kvm *kvm;
7914 struct kvm_vcpu *vcpu;
7915 int i;
7916 int ret;
7917 u64 local_tsc;
7918 u64 max_tsc = 0;
7919 bool stable, backwards_tsc = false;
7920
7921 kvm_shared_msr_cpu_online();
7922 ret = kvm_x86_ops->hardware_enable();
7923 if (ret != 0)
7924 return ret;
7925
7926 local_tsc = rdtsc();
7927 stable = !check_tsc_unstable();
7928 list_for_each_entry(kvm, &vm_list, vm_list) {
7929 kvm_for_each_vcpu(i, vcpu, kvm) {
7930 if (!stable && vcpu->cpu == smp_processor_id())
7931 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7932 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7933 backwards_tsc = true;
7934 if (vcpu->arch.last_host_tsc > max_tsc)
7935 max_tsc = vcpu->arch.last_host_tsc;
7936 }
7937 }
7938 }
7939
7940 /*
7941 * Sometimes, even reliable TSCs go backwards. This happens on
7942 * platforms that reset TSC during suspend or hibernate actions, but
7943 * maintain synchronization. We must compensate. Fortunately, we can
7944 * detect that condition here, which happens early in CPU bringup,
7945 * before any KVM threads can be running. Unfortunately, we can't
7946 * bring the TSCs fully up to date with real time, as we aren't yet far
7947 * enough into CPU bringup that we know how much real time has actually
7948 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
7949 * variables that haven't been updated yet.
7950 *
7951 * So we simply find the maximum observed TSC above, then record the
7952 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
7953 * the adjustment will be applied. Note that we accumulate
7954 * adjustments, in case multiple suspend cycles happen before some VCPU
7955 * gets a chance to run again. In the event that no KVM threads get a
7956 * chance to run, we will miss the entire elapsed period, as we'll have
7957 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7958 * loose cycle time. This isn't too big a deal, since the loss will be
7959 * uniform across all VCPUs (not to mention the scenario is extremely
7960 * unlikely). It is possible that a second hibernate recovery happens
7961 * much faster than a first, causing the observed TSC here to be
7962 * smaller; this would require additional padding adjustment, which is
7963 * why we set last_host_tsc to the local tsc observed here.
7964 *
7965 * N.B. - this code below runs only on platforms with reliable TSC,
7966 * as that is the only way backwards_tsc is set above. Also note
7967 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7968 * have the same delta_cyc adjustment applied if backwards_tsc
7969 * is detected. Note further, this adjustment is only done once,
7970 * as we reset last_host_tsc on all VCPUs to stop this from being
7971 * called multiple times (one for each physical CPU bringup).
7972 *
7973 * Platforms with unreliable TSCs don't have to deal with this, they
7974 * will be compensated by the logic in vcpu_load, which sets the TSC to
7975 * catchup mode. This will catchup all VCPUs to real time, but cannot
7976 * guarantee that they stay in perfect synchronization.
7977 */
7978 if (backwards_tsc) {
7979 u64 delta_cyc = max_tsc - local_tsc;
7980 list_for_each_entry(kvm, &vm_list, vm_list) {
7981 kvm->arch.backwards_tsc_observed = true;
7982 kvm_for_each_vcpu(i, vcpu, kvm) {
7983 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7984 vcpu->arch.last_host_tsc = local_tsc;
7985 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7986 }
7987
7988 /*
7989 * We have to disable TSC offset matching.. if you were
7990 * booting a VM while issuing an S4 host suspend....
7991 * you may have some problem. Solving this issue is
7992 * left as an exercise to the reader.
7993 */
7994 kvm->arch.last_tsc_nsec = 0;
7995 kvm->arch.last_tsc_write = 0;
7996 }
7997
7998 }
7999 return 0;
8000 }
8001
8002 void kvm_arch_hardware_disable(void)
8003 {
8004 kvm_x86_ops->hardware_disable();
8005 drop_user_return_notifiers();
8006 }
8007
8008 int kvm_arch_hardware_setup(void)
8009 {
8010 int r;
8011
8012 r = kvm_x86_ops->hardware_setup();
8013 if (r != 0)
8014 return r;
8015
8016 if (kvm_has_tsc_control) {
8017 /*
8018 * Make sure the user can only configure tsc_khz values that
8019 * fit into a signed integer.
8020 * A min value is not calculated needed because it will always
8021 * be 1 on all machines.
8022 */
8023 u64 max = min(0x7fffffffULL,
8024 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
8025 kvm_max_guest_tsc_khz = max;
8026
8027 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
8028 }
8029
8030 kvm_init_msr_list();
8031 return 0;
8032 }
8033
8034 void kvm_arch_hardware_unsetup(void)
8035 {
8036 kvm_x86_ops->hardware_unsetup();
8037 }
8038
8039 void kvm_arch_check_processor_compat(void *rtn)
8040 {
8041 kvm_x86_ops->check_processor_compatibility(rtn);
8042 }
8043
8044 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
8045 {
8046 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
8047 }
8048 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
8049
8050 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
8051 {
8052 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
8053 }
8054
8055 struct static_key kvm_no_apic_vcpu __read_mostly;
8056 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
8057
8058 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
8059 {
8060 struct page *page;
8061 int r;
8062
8063 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
8064 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
8065 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
8066 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8067 else
8068 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
8069
8070 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
8071 if (!page) {
8072 r = -ENOMEM;
8073 goto fail;
8074 }
8075 vcpu->arch.pio_data = page_address(page);
8076
8077 kvm_set_tsc_khz(vcpu, max_tsc_khz);
8078
8079 r = kvm_mmu_create(vcpu);
8080 if (r < 0)
8081 goto fail_free_pio_data;
8082
8083 if (irqchip_in_kernel(vcpu->kvm)) {
8084 r = kvm_create_lapic(vcpu);
8085 if (r < 0)
8086 goto fail_mmu_destroy;
8087 } else
8088 static_key_slow_inc(&kvm_no_apic_vcpu);
8089
8090 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
8091 GFP_KERNEL);
8092 if (!vcpu->arch.mce_banks) {
8093 r = -ENOMEM;
8094 goto fail_free_lapic;
8095 }
8096 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
8097
8098 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
8099 r = -ENOMEM;
8100 goto fail_free_mce_banks;
8101 }
8102
8103 fx_init(vcpu);
8104
8105 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
8106
8107 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
8108
8109 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
8110
8111 kvm_async_pf_hash_reset(vcpu);
8112 kvm_pmu_init(vcpu);
8113
8114 vcpu->arch.pending_external_vector = -1;
8115 vcpu->arch.preempted_in_kernel = false;
8116
8117 kvm_hv_vcpu_init(vcpu);
8118
8119 return 0;
8120
8121 fail_free_mce_banks:
8122 kfree(vcpu->arch.mce_banks);
8123 fail_free_lapic:
8124 kvm_free_lapic(vcpu);
8125 fail_mmu_destroy:
8126 kvm_mmu_destroy(vcpu);
8127 fail_free_pio_data:
8128 free_page((unsigned long)vcpu->arch.pio_data);
8129 fail:
8130 return r;
8131 }
8132
8133 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8134 {
8135 int idx;
8136
8137 kvm_hv_vcpu_uninit(vcpu);
8138 kvm_pmu_destroy(vcpu);
8139 kfree(vcpu->arch.mce_banks);
8140 kvm_free_lapic(vcpu);
8141 idx = srcu_read_lock(&vcpu->kvm->srcu);
8142 kvm_mmu_destroy(vcpu);
8143 srcu_read_unlock(&vcpu->kvm->srcu, idx);
8144 free_page((unsigned long)vcpu->arch.pio_data);
8145 if (!lapic_in_kernel(vcpu))
8146 static_key_slow_dec(&kvm_no_apic_vcpu);
8147 }
8148
8149 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8150 {
8151 kvm_x86_ops->sched_in(vcpu, cpu);
8152 }
8153
8154 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8155 {
8156 if (type)
8157 return -EINVAL;
8158
8159 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8160 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8161 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8162 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8163 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8164
8165 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8166 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8167 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8168 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8169 &kvm->arch.irq_sources_bitmap);
8170
8171 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8172 mutex_init(&kvm->arch.apic_map_lock);
8173 mutex_init(&kvm->arch.hyperv.hv_lock);
8174 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8175
8176 kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8177 pvclock_update_vm_gtod_copy(kvm);
8178
8179 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8180 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8181
8182 kvm_page_track_init(kvm);
8183 kvm_mmu_init_vm(kvm);
8184
8185 if (kvm_x86_ops->vm_init)
8186 return kvm_x86_ops->vm_init(kvm);
8187
8188 return 0;
8189 }
8190
8191 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8192 {
8193 int r;
8194 r = vcpu_load(vcpu);
8195 BUG_ON(r);
8196 kvm_mmu_unload(vcpu);
8197 vcpu_put(vcpu);
8198 }
8199
8200 static void kvm_free_vcpus(struct kvm *kvm)
8201 {
8202 unsigned int i;
8203 struct kvm_vcpu *vcpu;
8204
8205 /*
8206 * Unpin any mmu pages first.
8207 */
8208 kvm_for_each_vcpu(i, vcpu, kvm) {
8209 kvm_clear_async_pf_completion_queue(vcpu);
8210 kvm_unload_vcpu_mmu(vcpu);
8211 }
8212 kvm_for_each_vcpu(i, vcpu, kvm)
8213 kvm_arch_vcpu_free(vcpu);
8214
8215 mutex_lock(&kvm->lock);
8216 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8217 kvm->vcpus[i] = NULL;
8218
8219 atomic_set(&kvm->online_vcpus, 0);
8220 mutex_unlock(&kvm->lock);
8221 }
8222
8223 void kvm_arch_sync_events(struct kvm *kvm)
8224 {
8225 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8226 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8227 kvm_free_pit(kvm);
8228 }
8229
8230 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8231 {
8232 int i, r;
8233 unsigned long hva;
8234 struct kvm_memslots *slots = kvm_memslots(kvm);
8235 struct kvm_memory_slot *slot, old;
8236
8237 /* Called with kvm->slots_lock held. */
8238 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8239 return -EINVAL;
8240
8241 slot = id_to_memslot(slots, id);
8242 if (size) {
8243 if (slot->npages)
8244 return -EEXIST;
8245
8246 /*
8247 * MAP_SHARED to prevent internal slot pages from being moved
8248 * by fork()/COW.
8249 */
8250 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8251 MAP_SHARED | MAP_ANONYMOUS, 0);
8252 if (IS_ERR((void *)hva))
8253 return PTR_ERR((void *)hva);
8254 } else {
8255 if (!slot->npages)
8256 return 0;
8257
8258 hva = 0;
8259 }
8260
8261 old = *slot;
8262 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8263 struct kvm_userspace_memory_region m;
8264
8265 m.slot = id | (i << 16);
8266 m.flags = 0;
8267 m.guest_phys_addr = gpa;
8268 m.userspace_addr = hva;
8269 m.memory_size = size;
8270 r = __kvm_set_memory_region(kvm, &m);
8271 if (r < 0)
8272 return r;
8273 }
8274
8275 if (!size) {
8276 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8277 WARN_ON(r < 0);
8278 }
8279
8280 return 0;
8281 }
8282 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8283
8284 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8285 {
8286 int r;
8287
8288 mutex_lock(&kvm->slots_lock);
8289 r = __x86_set_memory_region(kvm, id, gpa, size);
8290 mutex_unlock(&kvm->slots_lock);
8291
8292 return r;
8293 }
8294 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8295
8296 void kvm_arch_destroy_vm(struct kvm *kvm)
8297 {
8298 if (current->mm == kvm->mm) {
8299 /*
8300 * Free memory regions allocated on behalf of userspace,
8301 * unless the the memory map has changed due to process exit
8302 * or fd copying.
8303 */
8304 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8305 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8306 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8307 }
8308 if (kvm_x86_ops->vm_destroy)
8309 kvm_x86_ops->vm_destroy(kvm);
8310 kvm_pic_destroy(kvm);
8311 kvm_ioapic_destroy(kvm);
8312 kvm_free_vcpus(kvm);
8313 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8314 kvm_mmu_uninit_vm(kvm);
8315 kvm_page_track_cleanup(kvm);
8316 }
8317
8318 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8319 struct kvm_memory_slot *dont)
8320 {
8321 int i;
8322
8323 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8324 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8325 kvfree(free->arch.rmap[i]);
8326 free->arch.rmap[i] = NULL;
8327 }
8328 if (i == 0)
8329 continue;
8330
8331 if (!dont || free->arch.lpage_info[i - 1] !=
8332 dont->arch.lpage_info[i - 1]) {
8333 kvfree(free->arch.lpage_info[i - 1]);
8334 free->arch.lpage_info[i - 1] = NULL;
8335 }
8336 }
8337
8338 kvm_page_track_free_memslot(free, dont);
8339 }
8340
8341 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8342 unsigned long npages)
8343 {
8344 int i;
8345
8346 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8347 struct kvm_lpage_info *linfo;
8348 unsigned long ugfn;
8349 int lpages;
8350 int level = i + 1;
8351
8352 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8353 slot->base_gfn, level) + 1;
8354
8355 slot->arch.rmap[i] =
8356 kvzalloc(lpages * sizeof(*slot->arch.rmap[i]), GFP_KERNEL);
8357 if (!slot->arch.rmap[i])
8358 goto out_free;
8359 if (i == 0)
8360 continue;
8361
8362 linfo = kvzalloc(lpages * sizeof(*linfo), GFP_KERNEL);
8363 if (!linfo)
8364 goto out_free;
8365
8366 slot->arch.lpage_info[i - 1] = linfo;
8367
8368 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8369 linfo[0].disallow_lpage = 1;
8370 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8371 linfo[lpages - 1].disallow_lpage = 1;
8372 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8373 /*
8374 * If the gfn and userspace address are not aligned wrt each
8375 * other, or if explicitly asked to, disable large page
8376 * support for this slot
8377 */
8378 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8379 !kvm_largepages_enabled()) {
8380 unsigned long j;
8381
8382 for (j = 0; j < lpages; ++j)
8383 linfo[j].disallow_lpage = 1;
8384 }
8385 }
8386
8387 if (kvm_page_track_create_memslot(slot, npages))
8388 goto out_free;
8389
8390 return 0;
8391
8392 out_free:
8393 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8394 kvfree(slot->arch.rmap[i]);
8395 slot->arch.rmap[i] = NULL;
8396 if (i == 0)
8397 continue;
8398
8399 kvfree(slot->arch.lpage_info[i - 1]);
8400 slot->arch.lpage_info[i - 1] = NULL;
8401 }
8402 return -ENOMEM;
8403 }
8404
8405 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8406 {
8407 /*
8408 * memslots->generation has been incremented.
8409 * mmio generation may have reached its maximum value.
8410 */
8411 kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8412 }
8413
8414 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8415 struct kvm_memory_slot *memslot,
8416 const struct kvm_userspace_memory_region *mem,
8417 enum kvm_mr_change change)
8418 {
8419 return 0;
8420 }
8421
8422 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8423 struct kvm_memory_slot *new)
8424 {
8425 /* Still write protect RO slot */
8426 if (new->flags & KVM_MEM_READONLY) {
8427 kvm_mmu_slot_remove_write_access(kvm, new);
8428 return;
8429 }
8430
8431 /*
8432 * Call kvm_x86_ops dirty logging hooks when they are valid.
8433 *
8434 * kvm_x86_ops->slot_disable_log_dirty is called when:
8435 *
8436 * - KVM_MR_CREATE with dirty logging is disabled
8437 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8438 *
8439 * The reason is, in case of PML, we need to set D-bit for any slots
8440 * with dirty logging disabled in order to eliminate unnecessary GPA
8441 * logging in PML buffer (and potential PML buffer full VMEXT). This
8442 * guarantees leaving PML enabled during guest's lifetime won't have
8443 * any additonal overhead from PML when guest is running with dirty
8444 * logging disabled for memory slots.
8445 *
8446 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8447 * to dirty logging mode.
8448 *
8449 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8450 *
8451 * In case of write protect:
8452 *
8453 * Write protect all pages for dirty logging.
8454 *
8455 * All the sptes including the large sptes which point to this
8456 * slot are set to readonly. We can not create any new large
8457 * spte on this slot until the end of the logging.
8458 *
8459 * See the comments in fast_page_fault().
8460 */
8461 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8462 if (kvm_x86_ops->slot_enable_log_dirty)
8463 kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8464 else
8465 kvm_mmu_slot_remove_write_access(kvm, new);
8466 } else {
8467 if (kvm_x86_ops->slot_disable_log_dirty)
8468 kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8469 }
8470 }
8471
8472 void kvm_arch_commit_memory_region(struct kvm *kvm,
8473 const struct kvm_userspace_memory_region *mem,
8474 const struct kvm_memory_slot *old,
8475 const struct kvm_memory_slot *new,
8476 enum kvm_mr_change change)
8477 {
8478 int nr_mmu_pages = 0;
8479
8480 if (!kvm->arch.n_requested_mmu_pages)
8481 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8482
8483 if (nr_mmu_pages)
8484 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8485
8486 /*
8487 * Dirty logging tracks sptes in 4k granularity, meaning that large
8488 * sptes have to be split. If live migration is successful, the guest
8489 * in the source machine will be destroyed and large sptes will be
8490 * created in the destination. However, if the guest continues to run
8491 * in the source machine (for example if live migration fails), small
8492 * sptes will remain around and cause bad performance.
8493 *
8494 * Scan sptes if dirty logging has been stopped, dropping those
8495 * which can be collapsed into a single large-page spte. Later
8496 * page faults will create the large-page sptes.
8497 */
8498 if ((change != KVM_MR_DELETE) &&
8499 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8500 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8501 kvm_mmu_zap_collapsible_sptes(kvm, new);
8502
8503 /*
8504 * Set up write protection and/or dirty logging for the new slot.
8505 *
8506 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8507 * been zapped so no dirty logging staff is needed for old slot. For
8508 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8509 * new and it's also covered when dealing with the new slot.
8510 *
8511 * FIXME: const-ify all uses of struct kvm_memory_slot.
8512 */
8513 if (change != KVM_MR_DELETE)
8514 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8515 }
8516
8517 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8518 {
8519 kvm_mmu_invalidate_zap_all_pages(kvm);
8520 }
8521
8522 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8523 struct kvm_memory_slot *slot)
8524 {
8525 kvm_page_track_flush_slot(kvm, slot);
8526 }
8527
8528 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8529 {
8530 if (!list_empty_careful(&vcpu->async_pf.done))
8531 return true;
8532
8533 if (kvm_apic_has_events(vcpu))
8534 return true;
8535
8536 if (vcpu->arch.pv.pv_unhalted)
8537 return true;
8538
8539 if (vcpu->arch.exception.pending)
8540 return true;
8541
8542 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
8543 (vcpu->arch.nmi_pending &&
8544 kvm_x86_ops->nmi_allowed(vcpu)))
8545 return true;
8546
8547 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
8548 (vcpu->arch.smi_pending && !is_smm(vcpu)))
8549 return true;
8550
8551 if (kvm_arch_interrupt_allowed(vcpu) &&
8552 kvm_cpu_has_interrupt(vcpu))
8553 return true;
8554
8555 if (kvm_hv_has_stimer_pending(vcpu))
8556 return true;
8557
8558 return false;
8559 }
8560
8561 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8562 {
8563 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8564 }
8565
8566 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
8567 {
8568 return vcpu->arch.preempted_in_kernel;
8569 }
8570
8571 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8572 {
8573 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8574 }
8575
8576 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8577 {
8578 return kvm_x86_ops->interrupt_allowed(vcpu);
8579 }
8580
8581 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8582 {
8583 if (is_64_bit_mode(vcpu))
8584 return kvm_rip_read(vcpu);
8585 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8586 kvm_rip_read(vcpu));
8587 }
8588 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8589
8590 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8591 {
8592 return kvm_get_linear_rip(vcpu) == linear_rip;
8593 }
8594 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8595
8596 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8597 {
8598 unsigned long rflags;
8599
8600 rflags = kvm_x86_ops->get_rflags(vcpu);
8601 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8602 rflags &= ~X86_EFLAGS_TF;
8603 return rflags;
8604 }
8605 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8606
8607 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8608 {
8609 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8610 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8611 rflags |= X86_EFLAGS_TF;
8612 kvm_x86_ops->set_rflags(vcpu, rflags);
8613 }
8614
8615 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8616 {
8617 __kvm_set_rflags(vcpu, rflags);
8618 kvm_make_request(KVM_REQ_EVENT, vcpu);
8619 }
8620 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8621
8622 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8623 {
8624 int r;
8625
8626 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8627 work->wakeup_all)
8628 return;
8629
8630 r = kvm_mmu_reload(vcpu);
8631 if (unlikely(r))
8632 return;
8633
8634 if (!vcpu->arch.mmu.direct_map &&
8635 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8636 return;
8637
8638 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8639 }
8640
8641 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8642 {
8643 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8644 }
8645
8646 static inline u32 kvm_async_pf_next_probe(u32 key)
8647 {
8648 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8649 }
8650
8651 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8652 {
8653 u32 key = kvm_async_pf_hash_fn(gfn);
8654
8655 while (vcpu->arch.apf.gfns[key] != ~0)
8656 key = kvm_async_pf_next_probe(key);
8657
8658 vcpu->arch.apf.gfns[key] = gfn;
8659 }
8660
8661 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8662 {
8663 int i;
8664 u32 key = kvm_async_pf_hash_fn(gfn);
8665
8666 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8667 (vcpu->arch.apf.gfns[key] != gfn &&
8668 vcpu->arch.apf.gfns[key] != ~0); i++)
8669 key = kvm_async_pf_next_probe(key);
8670
8671 return key;
8672 }
8673
8674 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8675 {
8676 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8677 }
8678
8679 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8680 {
8681 u32 i, j, k;
8682
8683 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8684 while (true) {
8685 vcpu->arch.apf.gfns[i] = ~0;
8686 do {
8687 j = kvm_async_pf_next_probe(j);
8688 if (vcpu->arch.apf.gfns[j] == ~0)
8689 return;
8690 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8691 /*
8692 * k lies cyclically in ]i,j]
8693 * | i.k.j |
8694 * |....j i.k.| or |.k..j i...|
8695 */
8696 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8697 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8698 i = j;
8699 }
8700 }
8701
8702 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8703 {
8704
8705 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8706 sizeof(val));
8707 }
8708
8709 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
8710 {
8711
8712 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
8713 sizeof(u32));
8714 }
8715
8716 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8717 struct kvm_async_pf *work)
8718 {
8719 struct x86_exception fault;
8720
8721 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8722 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8723
8724 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8725 (vcpu->arch.apf.send_user_only &&
8726 kvm_x86_ops->get_cpl(vcpu) == 0))
8727 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8728 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8729 fault.vector = PF_VECTOR;
8730 fault.error_code_valid = true;
8731 fault.error_code = 0;
8732 fault.nested_page_fault = false;
8733 fault.address = work->arch.token;
8734 fault.async_page_fault = true;
8735 kvm_inject_page_fault(vcpu, &fault);
8736 }
8737 }
8738
8739 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8740 struct kvm_async_pf *work)
8741 {
8742 struct x86_exception fault;
8743 u32 val;
8744
8745 if (work->wakeup_all)
8746 work->arch.token = ~0; /* broadcast wakeup */
8747 else
8748 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8749 trace_kvm_async_pf_ready(work->arch.token, work->gva);
8750
8751 if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
8752 !apf_get_user(vcpu, &val)) {
8753 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
8754 vcpu->arch.exception.pending &&
8755 vcpu->arch.exception.nr == PF_VECTOR &&
8756 !apf_put_user(vcpu, 0)) {
8757 vcpu->arch.exception.injected = false;
8758 vcpu->arch.exception.pending = false;
8759 vcpu->arch.exception.nr = 0;
8760 vcpu->arch.exception.has_error_code = false;
8761 vcpu->arch.exception.error_code = 0;
8762 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8763 fault.vector = PF_VECTOR;
8764 fault.error_code_valid = true;
8765 fault.error_code = 0;
8766 fault.nested_page_fault = false;
8767 fault.address = work->arch.token;
8768 fault.async_page_fault = true;
8769 kvm_inject_page_fault(vcpu, &fault);
8770 }
8771 }
8772 vcpu->arch.apf.halted = false;
8773 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8774 }
8775
8776 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8777 {
8778 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8779 return true;
8780 else
8781 return kvm_can_do_async_pf(vcpu);
8782 }
8783
8784 void kvm_arch_start_assignment(struct kvm *kvm)
8785 {
8786 atomic_inc(&kvm->arch.assigned_device_count);
8787 }
8788 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8789
8790 void kvm_arch_end_assignment(struct kvm *kvm)
8791 {
8792 atomic_dec(&kvm->arch.assigned_device_count);
8793 }
8794 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8795
8796 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8797 {
8798 return atomic_read(&kvm->arch.assigned_device_count);
8799 }
8800 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8801
8802 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8803 {
8804 atomic_inc(&kvm->arch.noncoherent_dma_count);
8805 }
8806 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8807
8808 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8809 {
8810 atomic_dec(&kvm->arch.noncoherent_dma_count);
8811 }
8812 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8813
8814 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8815 {
8816 return atomic_read(&kvm->arch.noncoherent_dma_count);
8817 }
8818 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8819
8820 bool kvm_arch_has_irq_bypass(void)
8821 {
8822 return kvm_x86_ops->update_pi_irte != NULL;
8823 }
8824
8825 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8826 struct irq_bypass_producer *prod)
8827 {
8828 struct kvm_kernel_irqfd *irqfd =
8829 container_of(cons, struct kvm_kernel_irqfd, consumer);
8830
8831 irqfd->producer = prod;
8832
8833 return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8834 prod->irq, irqfd->gsi, 1);
8835 }
8836
8837 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8838 struct irq_bypass_producer *prod)
8839 {
8840 int ret;
8841 struct kvm_kernel_irqfd *irqfd =
8842 container_of(cons, struct kvm_kernel_irqfd, consumer);
8843
8844 WARN_ON(irqfd->producer != prod);
8845 irqfd->producer = NULL;
8846
8847 /*
8848 * When producer of consumer is unregistered, we change back to
8849 * remapped mode, so we can re-use the current implementation
8850 * when the irq is masked/disabled or the consumer side (KVM
8851 * int this case doesn't want to receive the interrupts.
8852 */
8853 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8854 if (ret)
8855 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8856 " fails: %d\n", irqfd->consumer.token, ret);
8857 }
8858
8859 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8860 uint32_t guest_irq, bool set)
8861 {
8862 if (!kvm_x86_ops->update_pi_irte)
8863 return -EINVAL;
8864
8865 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8866 }
8867
8868 bool kvm_vector_hashing_enabled(void)
8869 {
8870 return vector_hashing;
8871 }
8872 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8873
8874 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8875 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8876 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8877 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8878 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8879 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8880 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8881 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8882 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8883 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8884 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8885 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8886 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8887 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8888 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8889 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8890 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8891 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8892 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);