]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kvm/x86.c
Merge tag 'armsoc-drivers' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
58
59 #include <trace/events/kvm.h>
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 #include <asm/mshyperv.h>
71 #include <asm/hypervisor.h>
72 #include <asm/intel_pt.h>
73
74 #define CREATE_TRACE_POINTS
75 #include "trace.h"
76
77 #define MAX_IO_MSRS 256
78 #define KVM_MAX_MCE_BANKS 32
79 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
80 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
81
82 #define emul_to_vcpu(ctxt) \
83 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
84
85 /* EFER defaults:
86 * - enable syscall per default because its emulated by KVM
87 * - enable LME and LMA per default on 64 bit KVM
88 */
89 #ifdef CONFIG_X86_64
90 static
91 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
92 #else
93 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
94 #endif
95
96 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
97 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
98
99 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
100 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
101
102 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
103 static void process_nmi(struct kvm_vcpu *vcpu);
104 static void enter_smm(struct kvm_vcpu *vcpu);
105 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
106 static void store_regs(struct kvm_vcpu *vcpu);
107 static int sync_regs(struct kvm_vcpu *vcpu);
108
109 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
110 EXPORT_SYMBOL_GPL(kvm_x86_ops);
111
112 static bool __read_mostly ignore_msrs = 0;
113 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
114
115 static bool __read_mostly report_ignored_msrs = true;
116 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
117
118 unsigned int min_timer_period_us = 200;
119 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
120
121 static bool __read_mostly kvmclock_periodic_sync = true;
122 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
123
124 bool __read_mostly kvm_has_tsc_control;
125 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
126 u32 __read_mostly kvm_max_guest_tsc_khz;
127 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
128 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
129 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
130 u64 __read_mostly kvm_max_tsc_scaling_ratio;
131 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
132 u64 __read_mostly kvm_default_tsc_scaling_ratio;
133 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
134
135 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
136 static u32 __read_mostly tsc_tolerance_ppm = 250;
137 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
138
139 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
140 unsigned int __read_mostly lapic_timer_advance_ns = 1000;
141 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
142 EXPORT_SYMBOL_GPL(lapic_timer_advance_ns);
143
144 static bool __read_mostly vector_hashing = true;
145 module_param(vector_hashing, bool, S_IRUGO);
146
147 bool __read_mostly enable_vmware_backdoor = false;
148 module_param(enable_vmware_backdoor, bool, S_IRUGO);
149 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
150
151 static bool __read_mostly force_emulation_prefix = false;
152 module_param(force_emulation_prefix, bool, S_IRUGO);
153
154 #define KVM_NR_SHARED_MSRS 16
155
156 struct kvm_shared_msrs_global {
157 int nr;
158 u32 msrs[KVM_NR_SHARED_MSRS];
159 };
160
161 struct kvm_shared_msrs {
162 struct user_return_notifier urn;
163 bool registered;
164 struct kvm_shared_msr_values {
165 u64 host;
166 u64 curr;
167 } values[KVM_NR_SHARED_MSRS];
168 };
169
170 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
171 static struct kvm_shared_msrs __percpu *shared_msrs;
172
173 struct kvm_stats_debugfs_item debugfs_entries[] = {
174 { "pf_fixed", VCPU_STAT(pf_fixed) },
175 { "pf_guest", VCPU_STAT(pf_guest) },
176 { "tlb_flush", VCPU_STAT(tlb_flush) },
177 { "invlpg", VCPU_STAT(invlpg) },
178 { "exits", VCPU_STAT(exits) },
179 { "io_exits", VCPU_STAT(io_exits) },
180 { "mmio_exits", VCPU_STAT(mmio_exits) },
181 { "signal_exits", VCPU_STAT(signal_exits) },
182 { "irq_window", VCPU_STAT(irq_window_exits) },
183 { "nmi_window", VCPU_STAT(nmi_window_exits) },
184 { "halt_exits", VCPU_STAT(halt_exits) },
185 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
186 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
187 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
188 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
189 { "hypercalls", VCPU_STAT(hypercalls) },
190 { "request_irq", VCPU_STAT(request_irq_exits) },
191 { "irq_exits", VCPU_STAT(irq_exits) },
192 { "host_state_reload", VCPU_STAT(host_state_reload) },
193 { "fpu_reload", VCPU_STAT(fpu_reload) },
194 { "insn_emulation", VCPU_STAT(insn_emulation) },
195 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
196 { "irq_injections", VCPU_STAT(irq_injections) },
197 { "nmi_injections", VCPU_STAT(nmi_injections) },
198 { "req_event", VCPU_STAT(req_event) },
199 { "l1d_flush", VCPU_STAT(l1d_flush) },
200 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
201 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
202 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
203 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
204 { "mmu_flooded", VM_STAT(mmu_flooded) },
205 { "mmu_recycled", VM_STAT(mmu_recycled) },
206 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
207 { "mmu_unsync", VM_STAT(mmu_unsync) },
208 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
209 { "largepages", VM_STAT(lpages) },
210 { "max_mmu_page_hash_collisions",
211 VM_STAT(max_mmu_page_hash_collisions) },
212 { NULL }
213 };
214
215 u64 __read_mostly host_xcr0;
216
217 struct kmem_cache *x86_fpu_cache;
218 EXPORT_SYMBOL_GPL(x86_fpu_cache);
219
220 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
221
222 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
223 {
224 int i;
225 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
226 vcpu->arch.apf.gfns[i] = ~0;
227 }
228
229 static void kvm_on_user_return(struct user_return_notifier *urn)
230 {
231 unsigned slot;
232 struct kvm_shared_msrs *locals
233 = container_of(urn, struct kvm_shared_msrs, urn);
234 struct kvm_shared_msr_values *values;
235 unsigned long flags;
236
237 /*
238 * Disabling irqs at this point since the following code could be
239 * interrupted and executed through kvm_arch_hardware_disable()
240 */
241 local_irq_save(flags);
242 if (locals->registered) {
243 locals->registered = false;
244 user_return_notifier_unregister(urn);
245 }
246 local_irq_restore(flags);
247 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
248 values = &locals->values[slot];
249 if (values->host != values->curr) {
250 wrmsrl(shared_msrs_global.msrs[slot], values->host);
251 values->curr = values->host;
252 }
253 }
254 }
255
256 static void shared_msr_update(unsigned slot, u32 msr)
257 {
258 u64 value;
259 unsigned int cpu = smp_processor_id();
260 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
261
262 /* only read, and nobody should modify it at this time,
263 * so don't need lock */
264 if (slot >= shared_msrs_global.nr) {
265 printk(KERN_ERR "kvm: invalid MSR slot!");
266 return;
267 }
268 rdmsrl_safe(msr, &value);
269 smsr->values[slot].host = value;
270 smsr->values[slot].curr = value;
271 }
272
273 void kvm_define_shared_msr(unsigned slot, u32 msr)
274 {
275 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
276 shared_msrs_global.msrs[slot] = msr;
277 if (slot >= shared_msrs_global.nr)
278 shared_msrs_global.nr = slot + 1;
279 }
280 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
281
282 static void kvm_shared_msr_cpu_online(void)
283 {
284 unsigned i;
285
286 for (i = 0; i < shared_msrs_global.nr; ++i)
287 shared_msr_update(i, shared_msrs_global.msrs[i]);
288 }
289
290 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
291 {
292 unsigned int cpu = smp_processor_id();
293 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
294 int err;
295
296 if (((value ^ smsr->values[slot].curr) & mask) == 0)
297 return 0;
298 smsr->values[slot].curr = value;
299 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
300 if (err)
301 return 1;
302
303 if (!smsr->registered) {
304 smsr->urn.on_user_return = kvm_on_user_return;
305 user_return_notifier_register(&smsr->urn);
306 smsr->registered = true;
307 }
308 return 0;
309 }
310 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
311
312 static void drop_user_return_notifiers(void)
313 {
314 unsigned int cpu = smp_processor_id();
315 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
316
317 if (smsr->registered)
318 kvm_on_user_return(&smsr->urn);
319 }
320
321 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
322 {
323 return vcpu->arch.apic_base;
324 }
325 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
326
327 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
328 {
329 return kvm_apic_mode(kvm_get_apic_base(vcpu));
330 }
331 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
332
333 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
334 {
335 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
336 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
337 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
338 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
339
340 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
341 return 1;
342 if (!msr_info->host_initiated) {
343 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
344 return 1;
345 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
346 return 1;
347 }
348
349 kvm_lapic_set_base(vcpu, msr_info->data);
350 return 0;
351 }
352 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
353
354 asmlinkage __visible void kvm_spurious_fault(void)
355 {
356 /* Fault while not rebooting. We want the trace. */
357 BUG();
358 }
359 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
360
361 #define EXCPT_BENIGN 0
362 #define EXCPT_CONTRIBUTORY 1
363 #define EXCPT_PF 2
364
365 static int exception_class(int vector)
366 {
367 switch (vector) {
368 case PF_VECTOR:
369 return EXCPT_PF;
370 case DE_VECTOR:
371 case TS_VECTOR:
372 case NP_VECTOR:
373 case SS_VECTOR:
374 case GP_VECTOR:
375 return EXCPT_CONTRIBUTORY;
376 default:
377 break;
378 }
379 return EXCPT_BENIGN;
380 }
381
382 #define EXCPT_FAULT 0
383 #define EXCPT_TRAP 1
384 #define EXCPT_ABORT 2
385 #define EXCPT_INTERRUPT 3
386
387 static int exception_type(int vector)
388 {
389 unsigned int mask;
390
391 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
392 return EXCPT_INTERRUPT;
393
394 mask = 1 << vector;
395
396 /* #DB is trap, as instruction watchpoints are handled elsewhere */
397 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
398 return EXCPT_TRAP;
399
400 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
401 return EXCPT_ABORT;
402
403 /* Reserved exceptions will result in fault */
404 return EXCPT_FAULT;
405 }
406
407 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
408 {
409 unsigned nr = vcpu->arch.exception.nr;
410 bool has_payload = vcpu->arch.exception.has_payload;
411 unsigned long payload = vcpu->arch.exception.payload;
412
413 if (!has_payload)
414 return;
415
416 switch (nr) {
417 case DB_VECTOR:
418 /*
419 * "Certain debug exceptions may clear bit 0-3. The
420 * remaining contents of the DR6 register are never
421 * cleared by the processor".
422 */
423 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
424 /*
425 * DR6.RTM is set by all #DB exceptions that don't clear it.
426 */
427 vcpu->arch.dr6 |= DR6_RTM;
428 vcpu->arch.dr6 |= payload;
429 /*
430 * Bit 16 should be set in the payload whenever the #DB
431 * exception should clear DR6.RTM. This makes the payload
432 * compatible with the pending debug exceptions under VMX.
433 * Though not currently documented in the SDM, this also
434 * makes the payload compatible with the exit qualification
435 * for #DB exceptions under VMX.
436 */
437 vcpu->arch.dr6 ^= payload & DR6_RTM;
438 break;
439 case PF_VECTOR:
440 vcpu->arch.cr2 = payload;
441 break;
442 }
443
444 vcpu->arch.exception.has_payload = false;
445 vcpu->arch.exception.payload = 0;
446 }
447 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
448
449 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
450 unsigned nr, bool has_error, u32 error_code,
451 bool has_payload, unsigned long payload, bool reinject)
452 {
453 u32 prev_nr;
454 int class1, class2;
455
456 kvm_make_request(KVM_REQ_EVENT, vcpu);
457
458 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
459 queue:
460 if (has_error && !is_protmode(vcpu))
461 has_error = false;
462 if (reinject) {
463 /*
464 * On vmentry, vcpu->arch.exception.pending is only
465 * true if an event injection was blocked by
466 * nested_run_pending. In that case, however,
467 * vcpu_enter_guest requests an immediate exit,
468 * and the guest shouldn't proceed far enough to
469 * need reinjection.
470 */
471 WARN_ON_ONCE(vcpu->arch.exception.pending);
472 vcpu->arch.exception.injected = true;
473 if (WARN_ON_ONCE(has_payload)) {
474 /*
475 * A reinjected event has already
476 * delivered its payload.
477 */
478 has_payload = false;
479 payload = 0;
480 }
481 } else {
482 vcpu->arch.exception.pending = true;
483 vcpu->arch.exception.injected = false;
484 }
485 vcpu->arch.exception.has_error_code = has_error;
486 vcpu->arch.exception.nr = nr;
487 vcpu->arch.exception.error_code = error_code;
488 vcpu->arch.exception.has_payload = has_payload;
489 vcpu->arch.exception.payload = payload;
490 /*
491 * In guest mode, payload delivery should be deferred,
492 * so that the L1 hypervisor can intercept #PF before
493 * CR2 is modified (or intercept #DB before DR6 is
494 * modified under nVMX). However, for ABI
495 * compatibility with KVM_GET_VCPU_EVENTS and
496 * KVM_SET_VCPU_EVENTS, we can't delay payload
497 * delivery unless userspace has enabled this
498 * functionality via the per-VM capability,
499 * KVM_CAP_EXCEPTION_PAYLOAD.
500 */
501 if (!vcpu->kvm->arch.exception_payload_enabled ||
502 !is_guest_mode(vcpu))
503 kvm_deliver_exception_payload(vcpu);
504 return;
505 }
506
507 /* to check exception */
508 prev_nr = vcpu->arch.exception.nr;
509 if (prev_nr == DF_VECTOR) {
510 /* triple fault -> shutdown */
511 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
512 return;
513 }
514 class1 = exception_class(prev_nr);
515 class2 = exception_class(nr);
516 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
517 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
518 /*
519 * Generate double fault per SDM Table 5-5. Set
520 * exception.pending = true so that the double fault
521 * can trigger a nested vmexit.
522 */
523 vcpu->arch.exception.pending = true;
524 vcpu->arch.exception.injected = false;
525 vcpu->arch.exception.has_error_code = true;
526 vcpu->arch.exception.nr = DF_VECTOR;
527 vcpu->arch.exception.error_code = 0;
528 vcpu->arch.exception.has_payload = false;
529 vcpu->arch.exception.payload = 0;
530 } else
531 /* replace previous exception with a new one in a hope
532 that instruction re-execution will regenerate lost
533 exception */
534 goto queue;
535 }
536
537 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
538 {
539 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
540 }
541 EXPORT_SYMBOL_GPL(kvm_queue_exception);
542
543 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
544 {
545 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
546 }
547 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
548
549 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
550 unsigned long payload)
551 {
552 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
553 }
554
555 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
556 u32 error_code, unsigned long payload)
557 {
558 kvm_multiple_exception(vcpu, nr, true, error_code,
559 true, payload, false);
560 }
561
562 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
563 {
564 if (err)
565 kvm_inject_gp(vcpu, 0);
566 else
567 return kvm_skip_emulated_instruction(vcpu);
568
569 return 1;
570 }
571 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
572
573 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
574 {
575 ++vcpu->stat.pf_guest;
576 vcpu->arch.exception.nested_apf =
577 is_guest_mode(vcpu) && fault->async_page_fault;
578 if (vcpu->arch.exception.nested_apf) {
579 vcpu->arch.apf.nested_apf_token = fault->address;
580 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
581 } else {
582 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
583 fault->address);
584 }
585 }
586 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
587
588 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
589 {
590 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
591 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
592 else
593 vcpu->arch.mmu->inject_page_fault(vcpu, fault);
594
595 return fault->nested_page_fault;
596 }
597
598 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
599 {
600 atomic_inc(&vcpu->arch.nmi_queued);
601 kvm_make_request(KVM_REQ_NMI, vcpu);
602 }
603 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
604
605 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
606 {
607 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
608 }
609 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
610
611 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
612 {
613 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
614 }
615 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
616
617 /*
618 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
619 * a #GP and return false.
620 */
621 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
622 {
623 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
624 return true;
625 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
626 return false;
627 }
628 EXPORT_SYMBOL_GPL(kvm_require_cpl);
629
630 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
631 {
632 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
633 return true;
634
635 kvm_queue_exception(vcpu, UD_VECTOR);
636 return false;
637 }
638 EXPORT_SYMBOL_GPL(kvm_require_dr);
639
640 /*
641 * This function will be used to read from the physical memory of the currently
642 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
643 * can read from guest physical or from the guest's guest physical memory.
644 */
645 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
646 gfn_t ngfn, void *data, int offset, int len,
647 u32 access)
648 {
649 struct x86_exception exception;
650 gfn_t real_gfn;
651 gpa_t ngpa;
652
653 ngpa = gfn_to_gpa(ngfn);
654 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
655 if (real_gfn == UNMAPPED_GVA)
656 return -EFAULT;
657
658 real_gfn = gpa_to_gfn(real_gfn);
659
660 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
661 }
662 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
663
664 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
665 void *data, int offset, int len, u32 access)
666 {
667 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
668 data, offset, len, access);
669 }
670
671 /*
672 * Load the pae pdptrs. Return true is they are all valid.
673 */
674 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
675 {
676 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
677 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
678 int i;
679 int ret;
680 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
681
682 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
683 offset * sizeof(u64), sizeof(pdpte),
684 PFERR_USER_MASK|PFERR_WRITE_MASK);
685 if (ret < 0) {
686 ret = 0;
687 goto out;
688 }
689 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
690 if ((pdpte[i] & PT_PRESENT_MASK) &&
691 (pdpte[i] &
692 vcpu->arch.mmu->guest_rsvd_check.rsvd_bits_mask[0][2])) {
693 ret = 0;
694 goto out;
695 }
696 }
697 ret = 1;
698
699 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
700 __set_bit(VCPU_EXREG_PDPTR,
701 (unsigned long *)&vcpu->arch.regs_avail);
702 __set_bit(VCPU_EXREG_PDPTR,
703 (unsigned long *)&vcpu->arch.regs_dirty);
704 out:
705
706 return ret;
707 }
708 EXPORT_SYMBOL_GPL(load_pdptrs);
709
710 bool pdptrs_changed(struct kvm_vcpu *vcpu)
711 {
712 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
713 bool changed = true;
714 int offset;
715 gfn_t gfn;
716 int r;
717
718 if (is_long_mode(vcpu) || !is_pae(vcpu) || !is_paging(vcpu))
719 return false;
720
721 if (!test_bit(VCPU_EXREG_PDPTR,
722 (unsigned long *)&vcpu->arch.regs_avail))
723 return true;
724
725 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
726 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
727 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
728 PFERR_USER_MASK | PFERR_WRITE_MASK);
729 if (r < 0)
730 goto out;
731 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
732 out:
733
734 return changed;
735 }
736 EXPORT_SYMBOL_GPL(pdptrs_changed);
737
738 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
739 {
740 unsigned long old_cr0 = kvm_read_cr0(vcpu);
741 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
742
743 cr0 |= X86_CR0_ET;
744
745 #ifdef CONFIG_X86_64
746 if (cr0 & 0xffffffff00000000UL)
747 return 1;
748 #endif
749
750 cr0 &= ~CR0_RESERVED_BITS;
751
752 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
753 return 1;
754
755 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
756 return 1;
757
758 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
759 #ifdef CONFIG_X86_64
760 if ((vcpu->arch.efer & EFER_LME)) {
761 int cs_db, cs_l;
762
763 if (!is_pae(vcpu))
764 return 1;
765 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
766 if (cs_l)
767 return 1;
768 } else
769 #endif
770 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
771 kvm_read_cr3(vcpu)))
772 return 1;
773 }
774
775 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
776 return 1;
777
778 kvm_x86_ops->set_cr0(vcpu, cr0);
779
780 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
781 kvm_clear_async_pf_completion_queue(vcpu);
782 kvm_async_pf_hash_reset(vcpu);
783 }
784
785 if ((cr0 ^ old_cr0) & update_bits)
786 kvm_mmu_reset_context(vcpu);
787
788 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
789 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
790 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
791 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
792
793 return 0;
794 }
795 EXPORT_SYMBOL_GPL(kvm_set_cr0);
796
797 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
798 {
799 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
800 }
801 EXPORT_SYMBOL_GPL(kvm_lmsw);
802
803 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
804 {
805 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
806 !vcpu->guest_xcr0_loaded) {
807 /* kvm_set_xcr() also depends on this */
808 if (vcpu->arch.xcr0 != host_xcr0)
809 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
810 vcpu->guest_xcr0_loaded = 1;
811 }
812 }
813
814 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
815 {
816 if (vcpu->guest_xcr0_loaded) {
817 if (vcpu->arch.xcr0 != host_xcr0)
818 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
819 vcpu->guest_xcr0_loaded = 0;
820 }
821 }
822
823 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
824 {
825 u64 xcr0 = xcr;
826 u64 old_xcr0 = vcpu->arch.xcr0;
827 u64 valid_bits;
828
829 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
830 if (index != XCR_XFEATURE_ENABLED_MASK)
831 return 1;
832 if (!(xcr0 & XFEATURE_MASK_FP))
833 return 1;
834 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
835 return 1;
836
837 /*
838 * Do not allow the guest to set bits that we do not support
839 * saving. However, xcr0 bit 0 is always set, even if the
840 * emulated CPU does not support XSAVE (see fx_init).
841 */
842 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
843 if (xcr0 & ~valid_bits)
844 return 1;
845
846 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
847 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
848 return 1;
849
850 if (xcr0 & XFEATURE_MASK_AVX512) {
851 if (!(xcr0 & XFEATURE_MASK_YMM))
852 return 1;
853 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
854 return 1;
855 }
856 vcpu->arch.xcr0 = xcr0;
857
858 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
859 kvm_update_cpuid(vcpu);
860 return 0;
861 }
862
863 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
864 {
865 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
866 __kvm_set_xcr(vcpu, index, xcr)) {
867 kvm_inject_gp(vcpu, 0);
868 return 1;
869 }
870 return 0;
871 }
872 EXPORT_SYMBOL_GPL(kvm_set_xcr);
873
874 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
875 {
876 unsigned long old_cr4 = kvm_read_cr4(vcpu);
877 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
878 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
879
880 if (cr4 & CR4_RESERVED_BITS)
881 return 1;
882
883 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
884 return 1;
885
886 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
887 return 1;
888
889 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
890 return 1;
891
892 if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
893 return 1;
894
895 if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
896 return 1;
897
898 if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
899 return 1;
900
901 if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
902 return 1;
903
904 if (is_long_mode(vcpu)) {
905 if (!(cr4 & X86_CR4_PAE))
906 return 1;
907 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
908 && ((cr4 ^ old_cr4) & pdptr_bits)
909 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
910 kvm_read_cr3(vcpu)))
911 return 1;
912
913 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
914 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
915 return 1;
916
917 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
918 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
919 return 1;
920 }
921
922 if (kvm_x86_ops->set_cr4(vcpu, cr4))
923 return 1;
924
925 if (((cr4 ^ old_cr4) & pdptr_bits) ||
926 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
927 kvm_mmu_reset_context(vcpu);
928
929 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
930 kvm_update_cpuid(vcpu);
931
932 return 0;
933 }
934 EXPORT_SYMBOL_GPL(kvm_set_cr4);
935
936 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
937 {
938 bool skip_tlb_flush = false;
939 #ifdef CONFIG_X86_64
940 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
941
942 if (pcid_enabled) {
943 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
944 cr3 &= ~X86_CR3_PCID_NOFLUSH;
945 }
946 #endif
947
948 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
949 if (!skip_tlb_flush) {
950 kvm_mmu_sync_roots(vcpu);
951 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
952 }
953 return 0;
954 }
955
956 if (is_long_mode(vcpu) &&
957 (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
958 return 1;
959 else if (is_pae(vcpu) && is_paging(vcpu) &&
960 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
961 return 1;
962
963 kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
964 vcpu->arch.cr3 = cr3;
965 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
966
967 return 0;
968 }
969 EXPORT_SYMBOL_GPL(kvm_set_cr3);
970
971 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
972 {
973 if (cr8 & CR8_RESERVED_BITS)
974 return 1;
975 if (lapic_in_kernel(vcpu))
976 kvm_lapic_set_tpr(vcpu, cr8);
977 else
978 vcpu->arch.cr8 = cr8;
979 return 0;
980 }
981 EXPORT_SYMBOL_GPL(kvm_set_cr8);
982
983 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
984 {
985 if (lapic_in_kernel(vcpu))
986 return kvm_lapic_get_cr8(vcpu);
987 else
988 return vcpu->arch.cr8;
989 }
990 EXPORT_SYMBOL_GPL(kvm_get_cr8);
991
992 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
993 {
994 int i;
995
996 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
997 for (i = 0; i < KVM_NR_DB_REGS; i++)
998 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
999 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1000 }
1001 }
1002
1003 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
1004 {
1005 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1006 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
1007 }
1008
1009 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
1010 {
1011 unsigned long dr7;
1012
1013 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1014 dr7 = vcpu->arch.guest_debug_dr7;
1015 else
1016 dr7 = vcpu->arch.dr7;
1017 kvm_x86_ops->set_dr7(vcpu, dr7);
1018 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1019 if (dr7 & DR7_BP_EN_MASK)
1020 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1021 }
1022
1023 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1024 {
1025 u64 fixed = DR6_FIXED_1;
1026
1027 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1028 fixed |= DR6_RTM;
1029 return fixed;
1030 }
1031
1032 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1033 {
1034 switch (dr) {
1035 case 0 ... 3:
1036 vcpu->arch.db[dr] = val;
1037 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1038 vcpu->arch.eff_db[dr] = val;
1039 break;
1040 case 4:
1041 /* fall through */
1042 case 6:
1043 if (val & 0xffffffff00000000ULL)
1044 return -1; /* #GP */
1045 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1046 kvm_update_dr6(vcpu);
1047 break;
1048 case 5:
1049 /* fall through */
1050 default: /* 7 */
1051 if (val & 0xffffffff00000000ULL)
1052 return -1; /* #GP */
1053 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1054 kvm_update_dr7(vcpu);
1055 break;
1056 }
1057
1058 return 0;
1059 }
1060
1061 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1062 {
1063 if (__kvm_set_dr(vcpu, dr, val)) {
1064 kvm_inject_gp(vcpu, 0);
1065 return 1;
1066 }
1067 return 0;
1068 }
1069 EXPORT_SYMBOL_GPL(kvm_set_dr);
1070
1071 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1072 {
1073 switch (dr) {
1074 case 0 ... 3:
1075 *val = vcpu->arch.db[dr];
1076 break;
1077 case 4:
1078 /* fall through */
1079 case 6:
1080 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1081 *val = vcpu->arch.dr6;
1082 else
1083 *val = kvm_x86_ops->get_dr6(vcpu);
1084 break;
1085 case 5:
1086 /* fall through */
1087 default: /* 7 */
1088 *val = vcpu->arch.dr7;
1089 break;
1090 }
1091 return 0;
1092 }
1093 EXPORT_SYMBOL_GPL(kvm_get_dr);
1094
1095 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1096 {
1097 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
1098 u64 data;
1099 int err;
1100
1101 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1102 if (err)
1103 return err;
1104 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
1105 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
1106 return err;
1107 }
1108 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1109
1110 /*
1111 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1112 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1113 *
1114 * This list is modified at module load time to reflect the
1115 * capabilities of the host cpu. This capabilities test skips MSRs that are
1116 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1117 * may depend on host virtualization features rather than host cpu features.
1118 */
1119
1120 static u32 msrs_to_save[] = {
1121 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1122 MSR_STAR,
1123 #ifdef CONFIG_X86_64
1124 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1125 #endif
1126 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1127 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1128 MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES,
1129 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1130 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1131 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1132 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1133 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1134 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1135 };
1136
1137 static unsigned num_msrs_to_save;
1138
1139 static u32 emulated_msrs[] = {
1140 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1141 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1142 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1143 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1144 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1145 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1146 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1147 HV_X64_MSR_RESET,
1148 HV_X64_MSR_VP_INDEX,
1149 HV_X64_MSR_VP_RUNTIME,
1150 HV_X64_MSR_SCONTROL,
1151 HV_X64_MSR_STIMER0_CONFIG,
1152 HV_X64_MSR_VP_ASSIST_PAGE,
1153 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1154 HV_X64_MSR_TSC_EMULATION_STATUS,
1155
1156 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1157 MSR_KVM_PV_EOI_EN,
1158
1159 MSR_IA32_TSC_ADJUST,
1160 MSR_IA32_TSCDEADLINE,
1161 MSR_IA32_MISC_ENABLE,
1162 MSR_IA32_MCG_STATUS,
1163 MSR_IA32_MCG_CTL,
1164 MSR_IA32_MCG_EXT_CTL,
1165 MSR_IA32_SMBASE,
1166 MSR_SMI_COUNT,
1167 MSR_PLATFORM_INFO,
1168 MSR_MISC_FEATURES_ENABLES,
1169 MSR_AMD64_VIRT_SPEC_CTRL,
1170 };
1171
1172 static unsigned num_emulated_msrs;
1173
1174 /*
1175 * List of msr numbers which are used to expose MSR-based features that
1176 * can be used by a hypervisor to validate requested CPU features.
1177 */
1178 static u32 msr_based_features[] = {
1179 MSR_IA32_VMX_BASIC,
1180 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1181 MSR_IA32_VMX_PINBASED_CTLS,
1182 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1183 MSR_IA32_VMX_PROCBASED_CTLS,
1184 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1185 MSR_IA32_VMX_EXIT_CTLS,
1186 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1187 MSR_IA32_VMX_ENTRY_CTLS,
1188 MSR_IA32_VMX_MISC,
1189 MSR_IA32_VMX_CR0_FIXED0,
1190 MSR_IA32_VMX_CR0_FIXED1,
1191 MSR_IA32_VMX_CR4_FIXED0,
1192 MSR_IA32_VMX_CR4_FIXED1,
1193 MSR_IA32_VMX_VMCS_ENUM,
1194 MSR_IA32_VMX_PROCBASED_CTLS2,
1195 MSR_IA32_VMX_EPT_VPID_CAP,
1196 MSR_IA32_VMX_VMFUNC,
1197
1198 MSR_F10H_DECFG,
1199 MSR_IA32_UCODE_REV,
1200 MSR_IA32_ARCH_CAPABILITIES,
1201 };
1202
1203 static unsigned int num_msr_based_features;
1204
1205 u64 kvm_get_arch_capabilities(void)
1206 {
1207 u64 data;
1208
1209 rdmsrl_safe(MSR_IA32_ARCH_CAPABILITIES, &data);
1210
1211 /*
1212 * If we're doing cache flushes (either "always" or "cond")
1213 * we will do one whenever the guest does a vmlaunch/vmresume.
1214 * If an outer hypervisor is doing the cache flush for us
1215 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1216 * capability to the guest too, and if EPT is disabled we're not
1217 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1218 * require a nested hypervisor to do a flush of its own.
1219 */
1220 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1221 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1222
1223 return data;
1224 }
1225 EXPORT_SYMBOL_GPL(kvm_get_arch_capabilities);
1226
1227 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1228 {
1229 switch (msr->index) {
1230 case MSR_IA32_ARCH_CAPABILITIES:
1231 msr->data = kvm_get_arch_capabilities();
1232 break;
1233 case MSR_IA32_UCODE_REV:
1234 rdmsrl_safe(msr->index, &msr->data);
1235 break;
1236 default:
1237 if (kvm_x86_ops->get_msr_feature(msr))
1238 return 1;
1239 }
1240 return 0;
1241 }
1242
1243 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1244 {
1245 struct kvm_msr_entry msr;
1246 int r;
1247
1248 msr.index = index;
1249 r = kvm_get_msr_feature(&msr);
1250 if (r)
1251 return r;
1252
1253 *data = msr.data;
1254
1255 return 0;
1256 }
1257
1258 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1259 {
1260 if (efer & efer_reserved_bits)
1261 return false;
1262
1263 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1264 return false;
1265
1266 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1267 return false;
1268
1269 return true;
1270 }
1271 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1272
1273 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1274 {
1275 u64 old_efer = vcpu->arch.efer;
1276
1277 if (!kvm_valid_efer(vcpu, efer))
1278 return 1;
1279
1280 if (is_paging(vcpu)
1281 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1282 return 1;
1283
1284 efer &= ~EFER_LMA;
1285 efer |= vcpu->arch.efer & EFER_LMA;
1286
1287 kvm_x86_ops->set_efer(vcpu, efer);
1288
1289 /* Update reserved bits */
1290 if ((efer ^ old_efer) & EFER_NX)
1291 kvm_mmu_reset_context(vcpu);
1292
1293 return 0;
1294 }
1295
1296 void kvm_enable_efer_bits(u64 mask)
1297 {
1298 efer_reserved_bits &= ~mask;
1299 }
1300 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1301
1302 /*
1303 * Writes msr value into into the appropriate "register".
1304 * Returns 0 on success, non-0 otherwise.
1305 * Assumes vcpu_load() was already called.
1306 */
1307 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1308 {
1309 switch (msr->index) {
1310 case MSR_FS_BASE:
1311 case MSR_GS_BASE:
1312 case MSR_KERNEL_GS_BASE:
1313 case MSR_CSTAR:
1314 case MSR_LSTAR:
1315 if (is_noncanonical_address(msr->data, vcpu))
1316 return 1;
1317 break;
1318 case MSR_IA32_SYSENTER_EIP:
1319 case MSR_IA32_SYSENTER_ESP:
1320 /*
1321 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1322 * non-canonical address is written on Intel but not on
1323 * AMD (which ignores the top 32-bits, because it does
1324 * not implement 64-bit SYSENTER).
1325 *
1326 * 64-bit code should hence be able to write a non-canonical
1327 * value on AMD. Making the address canonical ensures that
1328 * vmentry does not fail on Intel after writing a non-canonical
1329 * value, and that something deterministic happens if the guest
1330 * invokes 64-bit SYSENTER.
1331 */
1332 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1333 }
1334 return kvm_x86_ops->set_msr(vcpu, msr);
1335 }
1336 EXPORT_SYMBOL_GPL(kvm_set_msr);
1337
1338 /*
1339 * Adapt set_msr() to msr_io()'s calling convention
1340 */
1341 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1342 {
1343 struct msr_data msr;
1344 int r;
1345
1346 msr.index = index;
1347 msr.host_initiated = true;
1348 r = kvm_get_msr(vcpu, &msr);
1349 if (r)
1350 return r;
1351
1352 *data = msr.data;
1353 return 0;
1354 }
1355
1356 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1357 {
1358 struct msr_data msr;
1359
1360 msr.data = *data;
1361 msr.index = index;
1362 msr.host_initiated = true;
1363 return kvm_set_msr(vcpu, &msr);
1364 }
1365
1366 #ifdef CONFIG_X86_64
1367 struct pvclock_gtod_data {
1368 seqcount_t seq;
1369
1370 struct { /* extract of a clocksource struct */
1371 int vclock_mode;
1372 u64 cycle_last;
1373 u64 mask;
1374 u32 mult;
1375 u32 shift;
1376 } clock;
1377
1378 u64 boot_ns;
1379 u64 nsec_base;
1380 u64 wall_time_sec;
1381 };
1382
1383 static struct pvclock_gtod_data pvclock_gtod_data;
1384
1385 static void update_pvclock_gtod(struct timekeeper *tk)
1386 {
1387 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1388 u64 boot_ns;
1389
1390 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1391
1392 write_seqcount_begin(&vdata->seq);
1393
1394 /* copy pvclock gtod data */
1395 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
1396 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1397 vdata->clock.mask = tk->tkr_mono.mask;
1398 vdata->clock.mult = tk->tkr_mono.mult;
1399 vdata->clock.shift = tk->tkr_mono.shift;
1400
1401 vdata->boot_ns = boot_ns;
1402 vdata->nsec_base = tk->tkr_mono.xtime_nsec;
1403
1404 vdata->wall_time_sec = tk->xtime_sec;
1405
1406 write_seqcount_end(&vdata->seq);
1407 }
1408 #endif
1409
1410 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1411 {
1412 /*
1413 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1414 * vcpu_enter_guest. This function is only called from
1415 * the physical CPU that is running vcpu.
1416 */
1417 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1418 }
1419
1420 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1421 {
1422 int version;
1423 int r;
1424 struct pvclock_wall_clock wc;
1425 struct timespec64 boot;
1426
1427 if (!wall_clock)
1428 return;
1429
1430 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1431 if (r)
1432 return;
1433
1434 if (version & 1)
1435 ++version; /* first time write, random junk */
1436
1437 ++version;
1438
1439 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1440 return;
1441
1442 /*
1443 * The guest calculates current wall clock time by adding
1444 * system time (updated by kvm_guest_time_update below) to the
1445 * wall clock specified here. guest system time equals host
1446 * system time for us, thus we must fill in host boot time here.
1447 */
1448 getboottime64(&boot);
1449
1450 if (kvm->arch.kvmclock_offset) {
1451 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1452 boot = timespec64_sub(boot, ts);
1453 }
1454 wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1455 wc.nsec = boot.tv_nsec;
1456 wc.version = version;
1457
1458 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1459
1460 version++;
1461 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1462 }
1463
1464 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1465 {
1466 do_shl32_div32(dividend, divisor);
1467 return dividend;
1468 }
1469
1470 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1471 s8 *pshift, u32 *pmultiplier)
1472 {
1473 uint64_t scaled64;
1474 int32_t shift = 0;
1475 uint64_t tps64;
1476 uint32_t tps32;
1477
1478 tps64 = base_hz;
1479 scaled64 = scaled_hz;
1480 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1481 tps64 >>= 1;
1482 shift--;
1483 }
1484
1485 tps32 = (uint32_t)tps64;
1486 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1487 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1488 scaled64 >>= 1;
1489 else
1490 tps32 <<= 1;
1491 shift++;
1492 }
1493
1494 *pshift = shift;
1495 *pmultiplier = div_frac(scaled64, tps32);
1496
1497 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1498 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1499 }
1500
1501 #ifdef CONFIG_X86_64
1502 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1503 #endif
1504
1505 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1506 static unsigned long max_tsc_khz;
1507
1508 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1509 {
1510 u64 v = (u64)khz * (1000000 + ppm);
1511 do_div(v, 1000000);
1512 return v;
1513 }
1514
1515 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1516 {
1517 u64 ratio;
1518
1519 /* Guest TSC same frequency as host TSC? */
1520 if (!scale) {
1521 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1522 return 0;
1523 }
1524
1525 /* TSC scaling supported? */
1526 if (!kvm_has_tsc_control) {
1527 if (user_tsc_khz > tsc_khz) {
1528 vcpu->arch.tsc_catchup = 1;
1529 vcpu->arch.tsc_always_catchup = 1;
1530 return 0;
1531 } else {
1532 WARN(1, "user requested TSC rate below hardware speed\n");
1533 return -1;
1534 }
1535 }
1536
1537 /* TSC scaling required - calculate ratio */
1538 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1539 user_tsc_khz, tsc_khz);
1540
1541 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1542 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1543 user_tsc_khz);
1544 return -1;
1545 }
1546
1547 vcpu->arch.tsc_scaling_ratio = ratio;
1548 return 0;
1549 }
1550
1551 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1552 {
1553 u32 thresh_lo, thresh_hi;
1554 int use_scaling = 0;
1555
1556 /* tsc_khz can be zero if TSC calibration fails */
1557 if (user_tsc_khz == 0) {
1558 /* set tsc_scaling_ratio to a safe value */
1559 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1560 return -1;
1561 }
1562
1563 /* Compute a scale to convert nanoseconds in TSC cycles */
1564 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1565 &vcpu->arch.virtual_tsc_shift,
1566 &vcpu->arch.virtual_tsc_mult);
1567 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1568
1569 /*
1570 * Compute the variation in TSC rate which is acceptable
1571 * within the range of tolerance and decide if the
1572 * rate being applied is within that bounds of the hardware
1573 * rate. If so, no scaling or compensation need be done.
1574 */
1575 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1576 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1577 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1578 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1579 use_scaling = 1;
1580 }
1581 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1582 }
1583
1584 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1585 {
1586 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1587 vcpu->arch.virtual_tsc_mult,
1588 vcpu->arch.virtual_tsc_shift);
1589 tsc += vcpu->arch.this_tsc_write;
1590 return tsc;
1591 }
1592
1593 static inline int gtod_is_based_on_tsc(int mode)
1594 {
1595 return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1596 }
1597
1598 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1599 {
1600 #ifdef CONFIG_X86_64
1601 bool vcpus_matched;
1602 struct kvm_arch *ka = &vcpu->kvm->arch;
1603 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1604
1605 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1606 atomic_read(&vcpu->kvm->online_vcpus));
1607
1608 /*
1609 * Once the masterclock is enabled, always perform request in
1610 * order to update it.
1611 *
1612 * In order to enable masterclock, the host clocksource must be TSC
1613 * and the vcpus need to have matched TSCs. When that happens,
1614 * perform request to enable masterclock.
1615 */
1616 if (ka->use_master_clock ||
1617 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1618 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1619
1620 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1621 atomic_read(&vcpu->kvm->online_vcpus),
1622 ka->use_master_clock, gtod->clock.vclock_mode);
1623 #endif
1624 }
1625
1626 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1627 {
1628 u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1629 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1630 }
1631
1632 /*
1633 * Multiply tsc by a fixed point number represented by ratio.
1634 *
1635 * The most significant 64-N bits (mult) of ratio represent the
1636 * integral part of the fixed point number; the remaining N bits
1637 * (frac) represent the fractional part, ie. ratio represents a fixed
1638 * point number (mult + frac * 2^(-N)).
1639 *
1640 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1641 */
1642 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1643 {
1644 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1645 }
1646
1647 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1648 {
1649 u64 _tsc = tsc;
1650 u64 ratio = vcpu->arch.tsc_scaling_ratio;
1651
1652 if (ratio != kvm_default_tsc_scaling_ratio)
1653 _tsc = __scale_tsc(ratio, tsc);
1654
1655 return _tsc;
1656 }
1657 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1658
1659 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1660 {
1661 u64 tsc;
1662
1663 tsc = kvm_scale_tsc(vcpu, rdtsc());
1664
1665 return target_tsc - tsc;
1666 }
1667
1668 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1669 {
1670 u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1671
1672 return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1673 }
1674 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1675
1676 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1677 {
1678 vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset);
1679 }
1680
1681 static inline bool kvm_check_tsc_unstable(void)
1682 {
1683 #ifdef CONFIG_X86_64
1684 /*
1685 * TSC is marked unstable when we're running on Hyper-V,
1686 * 'TSC page' clocksource is good.
1687 */
1688 if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1689 return false;
1690 #endif
1691 return check_tsc_unstable();
1692 }
1693
1694 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1695 {
1696 struct kvm *kvm = vcpu->kvm;
1697 u64 offset, ns, elapsed;
1698 unsigned long flags;
1699 bool matched;
1700 bool already_matched;
1701 u64 data = msr->data;
1702 bool synchronizing = false;
1703
1704 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1705 offset = kvm_compute_tsc_offset(vcpu, data);
1706 ns = ktime_get_boot_ns();
1707 elapsed = ns - kvm->arch.last_tsc_nsec;
1708
1709 if (vcpu->arch.virtual_tsc_khz) {
1710 if (data == 0 && msr->host_initiated) {
1711 /*
1712 * detection of vcpu initialization -- need to sync
1713 * with other vCPUs. This particularly helps to keep
1714 * kvm_clock stable after CPU hotplug
1715 */
1716 synchronizing = true;
1717 } else {
1718 u64 tsc_exp = kvm->arch.last_tsc_write +
1719 nsec_to_cycles(vcpu, elapsed);
1720 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1721 /*
1722 * Special case: TSC write with a small delta (1 second)
1723 * of virtual cycle time against real time is
1724 * interpreted as an attempt to synchronize the CPU.
1725 */
1726 synchronizing = data < tsc_exp + tsc_hz &&
1727 data + tsc_hz > tsc_exp;
1728 }
1729 }
1730
1731 /*
1732 * For a reliable TSC, we can match TSC offsets, and for an unstable
1733 * TSC, we add elapsed time in this computation. We could let the
1734 * compensation code attempt to catch up if we fall behind, but
1735 * it's better to try to match offsets from the beginning.
1736 */
1737 if (synchronizing &&
1738 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1739 if (!kvm_check_tsc_unstable()) {
1740 offset = kvm->arch.cur_tsc_offset;
1741 pr_debug("kvm: matched tsc offset for %llu\n", data);
1742 } else {
1743 u64 delta = nsec_to_cycles(vcpu, elapsed);
1744 data += delta;
1745 offset = kvm_compute_tsc_offset(vcpu, data);
1746 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1747 }
1748 matched = true;
1749 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1750 } else {
1751 /*
1752 * We split periods of matched TSC writes into generations.
1753 * For each generation, we track the original measured
1754 * nanosecond time, offset, and write, so if TSCs are in
1755 * sync, we can match exact offset, and if not, we can match
1756 * exact software computation in compute_guest_tsc()
1757 *
1758 * These values are tracked in kvm->arch.cur_xxx variables.
1759 */
1760 kvm->arch.cur_tsc_generation++;
1761 kvm->arch.cur_tsc_nsec = ns;
1762 kvm->arch.cur_tsc_write = data;
1763 kvm->arch.cur_tsc_offset = offset;
1764 matched = false;
1765 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1766 kvm->arch.cur_tsc_generation, data);
1767 }
1768
1769 /*
1770 * We also track th most recent recorded KHZ, write and time to
1771 * allow the matching interval to be extended at each write.
1772 */
1773 kvm->arch.last_tsc_nsec = ns;
1774 kvm->arch.last_tsc_write = data;
1775 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1776
1777 vcpu->arch.last_guest_tsc = data;
1778
1779 /* Keep track of which generation this VCPU has synchronized to */
1780 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1781 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1782 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1783
1784 if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1785 update_ia32_tsc_adjust_msr(vcpu, offset);
1786
1787 kvm_vcpu_write_tsc_offset(vcpu, offset);
1788 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1789
1790 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1791 if (!matched) {
1792 kvm->arch.nr_vcpus_matched_tsc = 0;
1793 } else if (!already_matched) {
1794 kvm->arch.nr_vcpus_matched_tsc++;
1795 }
1796
1797 kvm_track_tsc_matching(vcpu);
1798 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1799 }
1800
1801 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1802
1803 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1804 s64 adjustment)
1805 {
1806 u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1807 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
1808 }
1809
1810 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1811 {
1812 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1813 WARN_ON(adjustment < 0);
1814 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1815 adjust_tsc_offset_guest(vcpu, adjustment);
1816 }
1817
1818 #ifdef CONFIG_X86_64
1819
1820 static u64 read_tsc(void)
1821 {
1822 u64 ret = (u64)rdtsc_ordered();
1823 u64 last = pvclock_gtod_data.clock.cycle_last;
1824
1825 if (likely(ret >= last))
1826 return ret;
1827
1828 /*
1829 * GCC likes to generate cmov here, but this branch is extremely
1830 * predictable (it's just a function of time and the likely is
1831 * very likely) and there's a data dependence, so force GCC
1832 * to generate a branch instead. I don't barrier() because
1833 * we don't actually need a barrier, and if this function
1834 * ever gets inlined it will generate worse code.
1835 */
1836 asm volatile ("");
1837 return last;
1838 }
1839
1840 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1841 {
1842 long v;
1843 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1844 u64 tsc_pg_val;
1845
1846 switch (gtod->clock.vclock_mode) {
1847 case VCLOCK_HVCLOCK:
1848 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1849 tsc_timestamp);
1850 if (tsc_pg_val != U64_MAX) {
1851 /* TSC page valid */
1852 *mode = VCLOCK_HVCLOCK;
1853 v = (tsc_pg_val - gtod->clock.cycle_last) &
1854 gtod->clock.mask;
1855 } else {
1856 /* TSC page invalid */
1857 *mode = VCLOCK_NONE;
1858 }
1859 break;
1860 case VCLOCK_TSC:
1861 *mode = VCLOCK_TSC;
1862 *tsc_timestamp = read_tsc();
1863 v = (*tsc_timestamp - gtod->clock.cycle_last) &
1864 gtod->clock.mask;
1865 break;
1866 default:
1867 *mode = VCLOCK_NONE;
1868 }
1869
1870 if (*mode == VCLOCK_NONE)
1871 *tsc_timestamp = v = 0;
1872
1873 return v * gtod->clock.mult;
1874 }
1875
1876 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
1877 {
1878 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1879 unsigned long seq;
1880 int mode;
1881 u64 ns;
1882
1883 do {
1884 seq = read_seqcount_begin(&gtod->seq);
1885 ns = gtod->nsec_base;
1886 ns += vgettsc(tsc_timestamp, &mode);
1887 ns >>= gtod->clock.shift;
1888 ns += gtod->boot_ns;
1889 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1890 *t = ns;
1891
1892 return mode;
1893 }
1894
1895 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
1896 {
1897 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1898 unsigned long seq;
1899 int mode;
1900 u64 ns;
1901
1902 do {
1903 seq = read_seqcount_begin(&gtod->seq);
1904 ts->tv_sec = gtod->wall_time_sec;
1905 ns = gtod->nsec_base;
1906 ns += vgettsc(tsc_timestamp, &mode);
1907 ns >>= gtod->clock.shift;
1908 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1909
1910 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1911 ts->tv_nsec = ns;
1912
1913 return mode;
1914 }
1915
1916 /* returns true if host is using TSC based clocksource */
1917 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
1918 {
1919 /* checked again under seqlock below */
1920 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1921 return false;
1922
1923 return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
1924 tsc_timestamp));
1925 }
1926
1927 /* returns true if host is using TSC based clocksource */
1928 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
1929 u64 *tsc_timestamp)
1930 {
1931 /* checked again under seqlock below */
1932 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1933 return false;
1934
1935 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
1936 }
1937 #endif
1938
1939 /*
1940 *
1941 * Assuming a stable TSC across physical CPUS, and a stable TSC
1942 * across virtual CPUs, the following condition is possible.
1943 * Each numbered line represents an event visible to both
1944 * CPUs at the next numbered event.
1945 *
1946 * "timespecX" represents host monotonic time. "tscX" represents
1947 * RDTSC value.
1948 *
1949 * VCPU0 on CPU0 | VCPU1 on CPU1
1950 *
1951 * 1. read timespec0,tsc0
1952 * 2. | timespec1 = timespec0 + N
1953 * | tsc1 = tsc0 + M
1954 * 3. transition to guest | transition to guest
1955 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1956 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1957 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1958 *
1959 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1960 *
1961 * - ret0 < ret1
1962 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1963 * ...
1964 * - 0 < N - M => M < N
1965 *
1966 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1967 * always the case (the difference between two distinct xtime instances
1968 * might be smaller then the difference between corresponding TSC reads,
1969 * when updating guest vcpus pvclock areas).
1970 *
1971 * To avoid that problem, do not allow visibility of distinct
1972 * system_timestamp/tsc_timestamp values simultaneously: use a master
1973 * copy of host monotonic time values. Update that master copy
1974 * in lockstep.
1975 *
1976 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1977 *
1978 */
1979
1980 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1981 {
1982 #ifdef CONFIG_X86_64
1983 struct kvm_arch *ka = &kvm->arch;
1984 int vclock_mode;
1985 bool host_tsc_clocksource, vcpus_matched;
1986
1987 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1988 atomic_read(&kvm->online_vcpus));
1989
1990 /*
1991 * If the host uses TSC clock, then passthrough TSC as stable
1992 * to the guest.
1993 */
1994 host_tsc_clocksource = kvm_get_time_and_clockread(
1995 &ka->master_kernel_ns,
1996 &ka->master_cycle_now);
1997
1998 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1999 && !ka->backwards_tsc_observed
2000 && !ka->boot_vcpu_runs_old_kvmclock;
2001
2002 if (ka->use_master_clock)
2003 atomic_set(&kvm_guest_has_master_clock, 1);
2004
2005 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2006 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2007 vcpus_matched);
2008 #endif
2009 }
2010
2011 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2012 {
2013 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2014 }
2015
2016 static void kvm_gen_update_masterclock(struct kvm *kvm)
2017 {
2018 #ifdef CONFIG_X86_64
2019 int i;
2020 struct kvm_vcpu *vcpu;
2021 struct kvm_arch *ka = &kvm->arch;
2022
2023 spin_lock(&ka->pvclock_gtod_sync_lock);
2024 kvm_make_mclock_inprogress_request(kvm);
2025 /* no guest entries from this point */
2026 pvclock_update_vm_gtod_copy(kvm);
2027
2028 kvm_for_each_vcpu(i, vcpu, kvm)
2029 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2030
2031 /* guest entries allowed */
2032 kvm_for_each_vcpu(i, vcpu, kvm)
2033 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2034
2035 spin_unlock(&ka->pvclock_gtod_sync_lock);
2036 #endif
2037 }
2038
2039 u64 get_kvmclock_ns(struct kvm *kvm)
2040 {
2041 struct kvm_arch *ka = &kvm->arch;
2042 struct pvclock_vcpu_time_info hv_clock;
2043 u64 ret;
2044
2045 spin_lock(&ka->pvclock_gtod_sync_lock);
2046 if (!ka->use_master_clock) {
2047 spin_unlock(&ka->pvclock_gtod_sync_lock);
2048 return ktime_get_boot_ns() + ka->kvmclock_offset;
2049 }
2050
2051 hv_clock.tsc_timestamp = ka->master_cycle_now;
2052 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2053 spin_unlock(&ka->pvclock_gtod_sync_lock);
2054
2055 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2056 get_cpu();
2057
2058 if (__this_cpu_read(cpu_tsc_khz)) {
2059 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2060 &hv_clock.tsc_shift,
2061 &hv_clock.tsc_to_system_mul);
2062 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2063 } else
2064 ret = ktime_get_boot_ns() + ka->kvmclock_offset;
2065
2066 put_cpu();
2067
2068 return ret;
2069 }
2070
2071 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2072 {
2073 struct kvm_vcpu_arch *vcpu = &v->arch;
2074 struct pvclock_vcpu_time_info guest_hv_clock;
2075
2076 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2077 &guest_hv_clock, sizeof(guest_hv_clock))))
2078 return;
2079
2080 /* This VCPU is paused, but it's legal for a guest to read another
2081 * VCPU's kvmclock, so we really have to follow the specification where
2082 * it says that version is odd if data is being modified, and even after
2083 * it is consistent.
2084 *
2085 * Version field updates must be kept separate. This is because
2086 * kvm_write_guest_cached might use a "rep movs" instruction, and
2087 * writes within a string instruction are weakly ordered. So there
2088 * are three writes overall.
2089 *
2090 * As a small optimization, only write the version field in the first
2091 * and third write. The vcpu->pv_time cache is still valid, because the
2092 * version field is the first in the struct.
2093 */
2094 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2095
2096 if (guest_hv_clock.version & 1)
2097 ++guest_hv_clock.version; /* first time write, random junk */
2098
2099 vcpu->hv_clock.version = guest_hv_clock.version + 1;
2100 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2101 &vcpu->hv_clock,
2102 sizeof(vcpu->hv_clock.version));
2103
2104 smp_wmb();
2105
2106 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2107 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2108
2109 if (vcpu->pvclock_set_guest_stopped_request) {
2110 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2111 vcpu->pvclock_set_guest_stopped_request = false;
2112 }
2113
2114 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2115
2116 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2117 &vcpu->hv_clock,
2118 sizeof(vcpu->hv_clock));
2119
2120 smp_wmb();
2121
2122 vcpu->hv_clock.version++;
2123 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2124 &vcpu->hv_clock,
2125 sizeof(vcpu->hv_clock.version));
2126 }
2127
2128 static int kvm_guest_time_update(struct kvm_vcpu *v)
2129 {
2130 unsigned long flags, tgt_tsc_khz;
2131 struct kvm_vcpu_arch *vcpu = &v->arch;
2132 struct kvm_arch *ka = &v->kvm->arch;
2133 s64 kernel_ns;
2134 u64 tsc_timestamp, host_tsc;
2135 u8 pvclock_flags;
2136 bool use_master_clock;
2137
2138 kernel_ns = 0;
2139 host_tsc = 0;
2140
2141 /*
2142 * If the host uses TSC clock, then passthrough TSC as stable
2143 * to the guest.
2144 */
2145 spin_lock(&ka->pvclock_gtod_sync_lock);
2146 use_master_clock = ka->use_master_clock;
2147 if (use_master_clock) {
2148 host_tsc = ka->master_cycle_now;
2149 kernel_ns = ka->master_kernel_ns;
2150 }
2151 spin_unlock(&ka->pvclock_gtod_sync_lock);
2152
2153 /* Keep irq disabled to prevent changes to the clock */
2154 local_irq_save(flags);
2155 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2156 if (unlikely(tgt_tsc_khz == 0)) {
2157 local_irq_restore(flags);
2158 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2159 return 1;
2160 }
2161 if (!use_master_clock) {
2162 host_tsc = rdtsc();
2163 kernel_ns = ktime_get_boot_ns();
2164 }
2165
2166 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2167
2168 /*
2169 * We may have to catch up the TSC to match elapsed wall clock
2170 * time for two reasons, even if kvmclock is used.
2171 * 1) CPU could have been running below the maximum TSC rate
2172 * 2) Broken TSC compensation resets the base at each VCPU
2173 * entry to avoid unknown leaps of TSC even when running
2174 * again on the same CPU. This may cause apparent elapsed
2175 * time to disappear, and the guest to stand still or run
2176 * very slowly.
2177 */
2178 if (vcpu->tsc_catchup) {
2179 u64 tsc = compute_guest_tsc(v, kernel_ns);
2180 if (tsc > tsc_timestamp) {
2181 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2182 tsc_timestamp = tsc;
2183 }
2184 }
2185
2186 local_irq_restore(flags);
2187
2188 /* With all the info we got, fill in the values */
2189
2190 if (kvm_has_tsc_control)
2191 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2192
2193 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2194 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2195 &vcpu->hv_clock.tsc_shift,
2196 &vcpu->hv_clock.tsc_to_system_mul);
2197 vcpu->hw_tsc_khz = tgt_tsc_khz;
2198 }
2199
2200 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2201 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2202 vcpu->last_guest_tsc = tsc_timestamp;
2203
2204 /* If the host uses TSC clocksource, then it is stable */
2205 pvclock_flags = 0;
2206 if (use_master_clock)
2207 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2208
2209 vcpu->hv_clock.flags = pvclock_flags;
2210
2211 if (vcpu->pv_time_enabled)
2212 kvm_setup_pvclock_page(v);
2213 if (v == kvm_get_vcpu(v->kvm, 0))
2214 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2215 return 0;
2216 }
2217
2218 /*
2219 * kvmclock updates which are isolated to a given vcpu, such as
2220 * vcpu->cpu migration, should not allow system_timestamp from
2221 * the rest of the vcpus to remain static. Otherwise ntp frequency
2222 * correction applies to one vcpu's system_timestamp but not
2223 * the others.
2224 *
2225 * So in those cases, request a kvmclock update for all vcpus.
2226 * We need to rate-limit these requests though, as they can
2227 * considerably slow guests that have a large number of vcpus.
2228 * The time for a remote vcpu to update its kvmclock is bound
2229 * by the delay we use to rate-limit the updates.
2230 */
2231
2232 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2233
2234 static void kvmclock_update_fn(struct work_struct *work)
2235 {
2236 int i;
2237 struct delayed_work *dwork = to_delayed_work(work);
2238 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2239 kvmclock_update_work);
2240 struct kvm *kvm = container_of(ka, struct kvm, arch);
2241 struct kvm_vcpu *vcpu;
2242
2243 kvm_for_each_vcpu(i, vcpu, kvm) {
2244 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2245 kvm_vcpu_kick(vcpu);
2246 }
2247 }
2248
2249 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2250 {
2251 struct kvm *kvm = v->kvm;
2252
2253 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2254 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2255 KVMCLOCK_UPDATE_DELAY);
2256 }
2257
2258 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2259
2260 static void kvmclock_sync_fn(struct work_struct *work)
2261 {
2262 struct delayed_work *dwork = to_delayed_work(work);
2263 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2264 kvmclock_sync_work);
2265 struct kvm *kvm = container_of(ka, struct kvm, arch);
2266
2267 if (!kvmclock_periodic_sync)
2268 return;
2269
2270 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2271 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2272 KVMCLOCK_SYNC_PERIOD);
2273 }
2274
2275 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2276 {
2277 u64 mcg_cap = vcpu->arch.mcg_cap;
2278 unsigned bank_num = mcg_cap & 0xff;
2279 u32 msr = msr_info->index;
2280 u64 data = msr_info->data;
2281
2282 switch (msr) {
2283 case MSR_IA32_MCG_STATUS:
2284 vcpu->arch.mcg_status = data;
2285 break;
2286 case MSR_IA32_MCG_CTL:
2287 if (!(mcg_cap & MCG_CTL_P) &&
2288 (data || !msr_info->host_initiated))
2289 return 1;
2290 if (data != 0 && data != ~(u64)0)
2291 return 1;
2292 vcpu->arch.mcg_ctl = data;
2293 break;
2294 default:
2295 if (msr >= MSR_IA32_MC0_CTL &&
2296 msr < MSR_IA32_MCx_CTL(bank_num)) {
2297 u32 offset = msr - MSR_IA32_MC0_CTL;
2298 /* only 0 or all 1s can be written to IA32_MCi_CTL
2299 * some Linux kernels though clear bit 10 in bank 4 to
2300 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2301 * this to avoid an uncatched #GP in the guest
2302 */
2303 if ((offset & 0x3) == 0 &&
2304 data != 0 && (data | (1 << 10)) != ~(u64)0)
2305 return -1;
2306 if (!msr_info->host_initiated &&
2307 (offset & 0x3) == 1 && data != 0)
2308 return -1;
2309 vcpu->arch.mce_banks[offset] = data;
2310 break;
2311 }
2312 return 1;
2313 }
2314 return 0;
2315 }
2316
2317 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2318 {
2319 struct kvm *kvm = vcpu->kvm;
2320 int lm = is_long_mode(vcpu);
2321 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2322 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2323 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2324 : kvm->arch.xen_hvm_config.blob_size_32;
2325 u32 page_num = data & ~PAGE_MASK;
2326 u64 page_addr = data & PAGE_MASK;
2327 u8 *page;
2328 int r;
2329
2330 r = -E2BIG;
2331 if (page_num >= blob_size)
2332 goto out;
2333 r = -ENOMEM;
2334 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2335 if (IS_ERR(page)) {
2336 r = PTR_ERR(page);
2337 goto out;
2338 }
2339 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2340 goto out_free;
2341 r = 0;
2342 out_free:
2343 kfree(page);
2344 out:
2345 return r;
2346 }
2347
2348 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2349 {
2350 gpa_t gpa = data & ~0x3f;
2351
2352 /* Bits 3:5 are reserved, Should be zero */
2353 if (data & 0x38)
2354 return 1;
2355
2356 vcpu->arch.apf.msr_val = data;
2357
2358 if (!(data & KVM_ASYNC_PF_ENABLED)) {
2359 kvm_clear_async_pf_completion_queue(vcpu);
2360 kvm_async_pf_hash_reset(vcpu);
2361 return 0;
2362 }
2363
2364 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2365 sizeof(u32)))
2366 return 1;
2367
2368 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2369 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2370 kvm_async_pf_wakeup_all(vcpu);
2371 return 0;
2372 }
2373
2374 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2375 {
2376 vcpu->arch.pv_time_enabled = false;
2377 }
2378
2379 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2380 {
2381 ++vcpu->stat.tlb_flush;
2382 kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2383 }
2384
2385 static void record_steal_time(struct kvm_vcpu *vcpu)
2386 {
2387 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2388 return;
2389
2390 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2391 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2392 return;
2393
2394 /*
2395 * Doing a TLB flush here, on the guest's behalf, can avoid
2396 * expensive IPIs.
2397 */
2398 if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2399 kvm_vcpu_flush_tlb(vcpu, false);
2400
2401 if (vcpu->arch.st.steal.version & 1)
2402 vcpu->arch.st.steal.version += 1; /* first time write, random junk */
2403
2404 vcpu->arch.st.steal.version += 1;
2405
2406 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2407 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2408
2409 smp_wmb();
2410
2411 vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2412 vcpu->arch.st.last_steal;
2413 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2414
2415 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2416 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2417
2418 smp_wmb();
2419
2420 vcpu->arch.st.steal.version += 1;
2421
2422 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2423 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2424 }
2425
2426 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2427 {
2428 bool pr = false;
2429 u32 msr = msr_info->index;
2430 u64 data = msr_info->data;
2431
2432 switch (msr) {
2433 case MSR_AMD64_NB_CFG:
2434 case MSR_IA32_UCODE_WRITE:
2435 case MSR_VM_HSAVE_PA:
2436 case MSR_AMD64_PATCH_LOADER:
2437 case MSR_AMD64_BU_CFG2:
2438 case MSR_AMD64_DC_CFG:
2439 case MSR_F15H_EX_CFG:
2440 break;
2441
2442 case MSR_IA32_UCODE_REV:
2443 if (msr_info->host_initiated)
2444 vcpu->arch.microcode_version = data;
2445 break;
2446 case MSR_EFER:
2447 return set_efer(vcpu, data);
2448 case MSR_K7_HWCR:
2449 data &= ~(u64)0x40; /* ignore flush filter disable */
2450 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2451 data &= ~(u64)0x8; /* ignore TLB cache disable */
2452 data &= ~(u64)0x40000; /* ignore Mc status write enable */
2453 if (data != 0) {
2454 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2455 data);
2456 return 1;
2457 }
2458 break;
2459 case MSR_FAM10H_MMIO_CONF_BASE:
2460 if (data != 0) {
2461 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2462 "0x%llx\n", data);
2463 return 1;
2464 }
2465 break;
2466 case MSR_IA32_DEBUGCTLMSR:
2467 if (!data) {
2468 /* We support the non-activated case already */
2469 break;
2470 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2471 /* Values other than LBR and BTF are vendor-specific,
2472 thus reserved and should throw a #GP */
2473 return 1;
2474 }
2475 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2476 __func__, data);
2477 break;
2478 case 0x200 ... 0x2ff:
2479 return kvm_mtrr_set_msr(vcpu, msr, data);
2480 case MSR_IA32_APICBASE:
2481 return kvm_set_apic_base(vcpu, msr_info);
2482 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2483 return kvm_x2apic_msr_write(vcpu, msr, data);
2484 case MSR_IA32_TSCDEADLINE:
2485 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2486 break;
2487 case MSR_IA32_TSC_ADJUST:
2488 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2489 if (!msr_info->host_initiated) {
2490 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2491 adjust_tsc_offset_guest(vcpu, adj);
2492 }
2493 vcpu->arch.ia32_tsc_adjust_msr = data;
2494 }
2495 break;
2496 case MSR_IA32_MISC_ENABLE:
2497 vcpu->arch.ia32_misc_enable_msr = data;
2498 break;
2499 case MSR_IA32_SMBASE:
2500 if (!msr_info->host_initiated)
2501 return 1;
2502 vcpu->arch.smbase = data;
2503 break;
2504 case MSR_IA32_TSC:
2505 kvm_write_tsc(vcpu, msr_info);
2506 break;
2507 case MSR_SMI_COUNT:
2508 if (!msr_info->host_initiated)
2509 return 1;
2510 vcpu->arch.smi_count = data;
2511 break;
2512 case MSR_KVM_WALL_CLOCK_NEW:
2513 case MSR_KVM_WALL_CLOCK:
2514 vcpu->kvm->arch.wall_clock = data;
2515 kvm_write_wall_clock(vcpu->kvm, data);
2516 break;
2517 case MSR_KVM_SYSTEM_TIME_NEW:
2518 case MSR_KVM_SYSTEM_TIME: {
2519 struct kvm_arch *ka = &vcpu->kvm->arch;
2520
2521 kvmclock_reset(vcpu);
2522
2523 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2524 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2525
2526 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2527 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2528
2529 ka->boot_vcpu_runs_old_kvmclock = tmp;
2530 }
2531
2532 vcpu->arch.time = data;
2533 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2534
2535 /* we verify if the enable bit is set... */
2536 if (!(data & 1))
2537 break;
2538
2539 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2540 &vcpu->arch.pv_time, data & ~1ULL,
2541 sizeof(struct pvclock_vcpu_time_info)))
2542 vcpu->arch.pv_time_enabled = false;
2543 else
2544 vcpu->arch.pv_time_enabled = true;
2545
2546 break;
2547 }
2548 case MSR_KVM_ASYNC_PF_EN:
2549 if (kvm_pv_enable_async_pf(vcpu, data))
2550 return 1;
2551 break;
2552 case MSR_KVM_STEAL_TIME:
2553
2554 if (unlikely(!sched_info_on()))
2555 return 1;
2556
2557 if (data & KVM_STEAL_RESERVED_MASK)
2558 return 1;
2559
2560 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2561 data & KVM_STEAL_VALID_BITS,
2562 sizeof(struct kvm_steal_time)))
2563 return 1;
2564
2565 vcpu->arch.st.msr_val = data;
2566
2567 if (!(data & KVM_MSR_ENABLED))
2568 break;
2569
2570 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2571
2572 break;
2573 case MSR_KVM_PV_EOI_EN:
2574 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2575 return 1;
2576 break;
2577
2578 case MSR_IA32_MCG_CTL:
2579 case MSR_IA32_MCG_STATUS:
2580 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2581 return set_msr_mce(vcpu, msr_info);
2582
2583 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2584 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2585 pr = true; /* fall through */
2586 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2587 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2588 if (kvm_pmu_is_valid_msr(vcpu, msr))
2589 return kvm_pmu_set_msr(vcpu, msr_info);
2590
2591 if (pr || data != 0)
2592 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2593 "0x%x data 0x%llx\n", msr, data);
2594 break;
2595 case MSR_K7_CLK_CTL:
2596 /*
2597 * Ignore all writes to this no longer documented MSR.
2598 * Writes are only relevant for old K7 processors,
2599 * all pre-dating SVM, but a recommended workaround from
2600 * AMD for these chips. It is possible to specify the
2601 * affected processor models on the command line, hence
2602 * the need to ignore the workaround.
2603 */
2604 break;
2605 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2606 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2607 case HV_X64_MSR_CRASH_CTL:
2608 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2609 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2610 case HV_X64_MSR_TSC_EMULATION_CONTROL:
2611 case HV_X64_MSR_TSC_EMULATION_STATUS:
2612 return kvm_hv_set_msr_common(vcpu, msr, data,
2613 msr_info->host_initiated);
2614 case MSR_IA32_BBL_CR_CTL3:
2615 /* Drop writes to this legacy MSR -- see rdmsr
2616 * counterpart for further detail.
2617 */
2618 if (report_ignored_msrs)
2619 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2620 msr, data);
2621 break;
2622 case MSR_AMD64_OSVW_ID_LENGTH:
2623 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2624 return 1;
2625 vcpu->arch.osvw.length = data;
2626 break;
2627 case MSR_AMD64_OSVW_STATUS:
2628 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2629 return 1;
2630 vcpu->arch.osvw.status = data;
2631 break;
2632 case MSR_PLATFORM_INFO:
2633 if (!msr_info->host_initiated ||
2634 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2635 cpuid_fault_enabled(vcpu)))
2636 return 1;
2637 vcpu->arch.msr_platform_info = data;
2638 break;
2639 case MSR_MISC_FEATURES_ENABLES:
2640 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2641 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2642 !supports_cpuid_fault(vcpu)))
2643 return 1;
2644 vcpu->arch.msr_misc_features_enables = data;
2645 break;
2646 default:
2647 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2648 return xen_hvm_config(vcpu, data);
2649 if (kvm_pmu_is_valid_msr(vcpu, msr))
2650 return kvm_pmu_set_msr(vcpu, msr_info);
2651 if (!ignore_msrs) {
2652 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2653 msr, data);
2654 return 1;
2655 } else {
2656 if (report_ignored_msrs)
2657 vcpu_unimpl(vcpu,
2658 "ignored wrmsr: 0x%x data 0x%llx\n",
2659 msr, data);
2660 break;
2661 }
2662 }
2663 return 0;
2664 }
2665 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2666
2667
2668 /*
2669 * Reads an msr value (of 'msr_index') into 'pdata'.
2670 * Returns 0 on success, non-0 otherwise.
2671 * Assumes vcpu_load() was already called.
2672 */
2673 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2674 {
2675 return kvm_x86_ops->get_msr(vcpu, msr);
2676 }
2677 EXPORT_SYMBOL_GPL(kvm_get_msr);
2678
2679 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2680 {
2681 u64 data;
2682 u64 mcg_cap = vcpu->arch.mcg_cap;
2683 unsigned bank_num = mcg_cap & 0xff;
2684
2685 switch (msr) {
2686 case MSR_IA32_P5_MC_ADDR:
2687 case MSR_IA32_P5_MC_TYPE:
2688 data = 0;
2689 break;
2690 case MSR_IA32_MCG_CAP:
2691 data = vcpu->arch.mcg_cap;
2692 break;
2693 case MSR_IA32_MCG_CTL:
2694 if (!(mcg_cap & MCG_CTL_P) && !host)
2695 return 1;
2696 data = vcpu->arch.mcg_ctl;
2697 break;
2698 case MSR_IA32_MCG_STATUS:
2699 data = vcpu->arch.mcg_status;
2700 break;
2701 default:
2702 if (msr >= MSR_IA32_MC0_CTL &&
2703 msr < MSR_IA32_MCx_CTL(bank_num)) {
2704 u32 offset = msr - MSR_IA32_MC0_CTL;
2705 data = vcpu->arch.mce_banks[offset];
2706 break;
2707 }
2708 return 1;
2709 }
2710 *pdata = data;
2711 return 0;
2712 }
2713
2714 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2715 {
2716 switch (msr_info->index) {
2717 case MSR_IA32_PLATFORM_ID:
2718 case MSR_IA32_EBL_CR_POWERON:
2719 case MSR_IA32_DEBUGCTLMSR:
2720 case MSR_IA32_LASTBRANCHFROMIP:
2721 case MSR_IA32_LASTBRANCHTOIP:
2722 case MSR_IA32_LASTINTFROMIP:
2723 case MSR_IA32_LASTINTTOIP:
2724 case MSR_K8_SYSCFG:
2725 case MSR_K8_TSEG_ADDR:
2726 case MSR_K8_TSEG_MASK:
2727 case MSR_K7_HWCR:
2728 case MSR_VM_HSAVE_PA:
2729 case MSR_K8_INT_PENDING_MSG:
2730 case MSR_AMD64_NB_CFG:
2731 case MSR_FAM10H_MMIO_CONF_BASE:
2732 case MSR_AMD64_BU_CFG2:
2733 case MSR_IA32_PERF_CTL:
2734 case MSR_AMD64_DC_CFG:
2735 case MSR_F15H_EX_CFG:
2736 msr_info->data = 0;
2737 break;
2738 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2739 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2740 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2741 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2742 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2743 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2744 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2745 msr_info->data = 0;
2746 break;
2747 case MSR_IA32_UCODE_REV:
2748 msr_info->data = vcpu->arch.microcode_version;
2749 break;
2750 case MSR_IA32_TSC:
2751 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2752 break;
2753 case MSR_MTRRcap:
2754 case 0x200 ... 0x2ff:
2755 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2756 case 0xcd: /* fsb frequency */
2757 msr_info->data = 3;
2758 break;
2759 /*
2760 * MSR_EBC_FREQUENCY_ID
2761 * Conservative value valid for even the basic CPU models.
2762 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2763 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2764 * and 266MHz for model 3, or 4. Set Core Clock
2765 * Frequency to System Bus Frequency Ratio to 1 (bits
2766 * 31:24) even though these are only valid for CPU
2767 * models > 2, however guests may end up dividing or
2768 * multiplying by zero otherwise.
2769 */
2770 case MSR_EBC_FREQUENCY_ID:
2771 msr_info->data = 1 << 24;
2772 break;
2773 case MSR_IA32_APICBASE:
2774 msr_info->data = kvm_get_apic_base(vcpu);
2775 break;
2776 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2777 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2778 break;
2779 case MSR_IA32_TSCDEADLINE:
2780 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2781 break;
2782 case MSR_IA32_TSC_ADJUST:
2783 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2784 break;
2785 case MSR_IA32_MISC_ENABLE:
2786 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2787 break;
2788 case MSR_IA32_SMBASE:
2789 if (!msr_info->host_initiated)
2790 return 1;
2791 msr_info->data = vcpu->arch.smbase;
2792 break;
2793 case MSR_SMI_COUNT:
2794 msr_info->data = vcpu->arch.smi_count;
2795 break;
2796 case MSR_IA32_PERF_STATUS:
2797 /* TSC increment by tick */
2798 msr_info->data = 1000ULL;
2799 /* CPU multiplier */
2800 msr_info->data |= (((uint64_t)4ULL) << 40);
2801 break;
2802 case MSR_EFER:
2803 msr_info->data = vcpu->arch.efer;
2804 break;
2805 case MSR_KVM_WALL_CLOCK:
2806 case MSR_KVM_WALL_CLOCK_NEW:
2807 msr_info->data = vcpu->kvm->arch.wall_clock;
2808 break;
2809 case MSR_KVM_SYSTEM_TIME:
2810 case MSR_KVM_SYSTEM_TIME_NEW:
2811 msr_info->data = vcpu->arch.time;
2812 break;
2813 case MSR_KVM_ASYNC_PF_EN:
2814 msr_info->data = vcpu->arch.apf.msr_val;
2815 break;
2816 case MSR_KVM_STEAL_TIME:
2817 msr_info->data = vcpu->arch.st.msr_val;
2818 break;
2819 case MSR_KVM_PV_EOI_EN:
2820 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2821 break;
2822 case MSR_IA32_P5_MC_ADDR:
2823 case MSR_IA32_P5_MC_TYPE:
2824 case MSR_IA32_MCG_CAP:
2825 case MSR_IA32_MCG_CTL:
2826 case MSR_IA32_MCG_STATUS:
2827 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2828 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
2829 msr_info->host_initiated);
2830 case MSR_K7_CLK_CTL:
2831 /*
2832 * Provide expected ramp-up count for K7. All other
2833 * are set to zero, indicating minimum divisors for
2834 * every field.
2835 *
2836 * This prevents guest kernels on AMD host with CPU
2837 * type 6, model 8 and higher from exploding due to
2838 * the rdmsr failing.
2839 */
2840 msr_info->data = 0x20000000;
2841 break;
2842 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2843 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2844 case HV_X64_MSR_CRASH_CTL:
2845 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2846 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2847 case HV_X64_MSR_TSC_EMULATION_CONTROL:
2848 case HV_X64_MSR_TSC_EMULATION_STATUS:
2849 return kvm_hv_get_msr_common(vcpu,
2850 msr_info->index, &msr_info->data,
2851 msr_info->host_initiated);
2852 break;
2853 case MSR_IA32_BBL_CR_CTL3:
2854 /* This legacy MSR exists but isn't fully documented in current
2855 * silicon. It is however accessed by winxp in very narrow
2856 * scenarios where it sets bit #19, itself documented as
2857 * a "reserved" bit. Best effort attempt to source coherent
2858 * read data here should the balance of the register be
2859 * interpreted by the guest:
2860 *
2861 * L2 cache control register 3: 64GB range, 256KB size,
2862 * enabled, latency 0x1, configured
2863 */
2864 msr_info->data = 0xbe702111;
2865 break;
2866 case MSR_AMD64_OSVW_ID_LENGTH:
2867 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2868 return 1;
2869 msr_info->data = vcpu->arch.osvw.length;
2870 break;
2871 case MSR_AMD64_OSVW_STATUS:
2872 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2873 return 1;
2874 msr_info->data = vcpu->arch.osvw.status;
2875 break;
2876 case MSR_PLATFORM_INFO:
2877 if (!msr_info->host_initiated &&
2878 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
2879 return 1;
2880 msr_info->data = vcpu->arch.msr_platform_info;
2881 break;
2882 case MSR_MISC_FEATURES_ENABLES:
2883 msr_info->data = vcpu->arch.msr_misc_features_enables;
2884 break;
2885 default:
2886 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2887 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2888 if (!ignore_msrs) {
2889 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2890 msr_info->index);
2891 return 1;
2892 } else {
2893 if (report_ignored_msrs)
2894 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2895 msr_info->index);
2896 msr_info->data = 0;
2897 }
2898 break;
2899 }
2900 return 0;
2901 }
2902 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2903
2904 /*
2905 * Read or write a bunch of msrs. All parameters are kernel addresses.
2906 *
2907 * @return number of msrs set successfully.
2908 */
2909 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2910 struct kvm_msr_entry *entries,
2911 int (*do_msr)(struct kvm_vcpu *vcpu,
2912 unsigned index, u64 *data))
2913 {
2914 int i;
2915
2916 for (i = 0; i < msrs->nmsrs; ++i)
2917 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2918 break;
2919
2920 return i;
2921 }
2922
2923 /*
2924 * Read or write a bunch of msrs. Parameters are user addresses.
2925 *
2926 * @return number of msrs set successfully.
2927 */
2928 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2929 int (*do_msr)(struct kvm_vcpu *vcpu,
2930 unsigned index, u64 *data),
2931 int writeback)
2932 {
2933 struct kvm_msrs msrs;
2934 struct kvm_msr_entry *entries;
2935 int r, n;
2936 unsigned size;
2937
2938 r = -EFAULT;
2939 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
2940 goto out;
2941
2942 r = -E2BIG;
2943 if (msrs.nmsrs >= MAX_IO_MSRS)
2944 goto out;
2945
2946 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2947 entries = memdup_user(user_msrs->entries, size);
2948 if (IS_ERR(entries)) {
2949 r = PTR_ERR(entries);
2950 goto out;
2951 }
2952
2953 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2954 if (r < 0)
2955 goto out_free;
2956
2957 r = -EFAULT;
2958 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2959 goto out_free;
2960
2961 r = n;
2962
2963 out_free:
2964 kfree(entries);
2965 out:
2966 return r;
2967 }
2968
2969 static inline bool kvm_can_mwait_in_guest(void)
2970 {
2971 return boot_cpu_has(X86_FEATURE_MWAIT) &&
2972 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
2973 boot_cpu_has(X86_FEATURE_ARAT);
2974 }
2975
2976 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2977 {
2978 int r = 0;
2979
2980 switch (ext) {
2981 case KVM_CAP_IRQCHIP:
2982 case KVM_CAP_HLT:
2983 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2984 case KVM_CAP_SET_TSS_ADDR:
2985 case KVM_CAP_EXT_CPUID:
2986 case KVM_CAP_EXT_EMUL_CPUID:
2987 case KVM_CAP_CLOCKSOURCE:
2988 case KVM_CAP_PIT:
2989 case KVM_CAP_NOP_IO_DELAY:
2990 case KVM_CAP_MP_STATE:
2991 case KVM_CAP_SYNC_MMU:
2992 case KVM_CAP_USER_NMI:
2993 case KVM_CAP_REINJECT_CONTROL:
2994 case KVM_CAP_IRQ_INJECT_STATUS:
2995 case KVM_CAP_IOEVENTFD:
2996 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2997 case KVM_CAP_PIT2:
2998 case KVM_CAP_PIT_STATE2:
2999 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3000 case KVM_CAP_XEN_HVM:
3001 case KVM_CAP_VCPU_EVENTS:
3002 case KVM_CAP_HYPERV:
3003 case KVM_CAP_HYPERV_VAPIC:
3004 case KVM_CAP_HYPERV_SPIN:
3005 case KVM_CAP_HYPERV_SYNIC:
3006 case KVM_CAP_HYPERV_SYNIC2:
3007 case KVM_CAP_HYPERV_VP_INDEX:
3008 case KVM_CAP_HYPERV_EVENTFD:
3009 case KVM_CAP_HYPERV_TLBFLUSH:
3010 case KVM_CAP_HYPERV_SEND_IPI:
3011 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3012 case KVM_CAP_HYPERV_CPUID:
3013 case KVM_CAP_PCI_SEGMENT:
3014 case KVM_CAP_DEBUGREGS:
3015 case KVM_CAP_X86_ROBUST_SINGLESTEP:
3016 case KVM_CAP_XSAVE:
3017 case KVM_CAP_ASYNC_PF:
3018 case KVM_CAP_GET_TSC_KHZ:
3019 case KVM_CAP_KVMCLOCK_CTRL:
3020 case KVM_CAP_READONLY_MEM:
3021 case KVM_CAP_HYPERV_TIME:
3022 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3023 case KVM_CAP_TSC_DEADLINE_TIMER:
3024 case KVM_CAP_DISABLE_QUIRKS:
3025 case KVM_CAP_SET_BOOT_CPU_ID:
3026 case KVM_CAP_SPLIT_IRQCHIP:
3027 case KVM_CAP_IMMEDIATE_EXIT:
3028 case KVM_CAP_GET_MSR_FEATURES:
3029 case KVM_CAP_MSR_PLATFORM_INFO:
3030 case KVM_CAP_EXCEPTION_PAYLOAD:
3031 r = 1;
3032 break;
3033 case KVM_CAP_SYNC_REGS:
3034 r = KVM_SYNC_X86_VALID_FIELDS;
3035 break;
3036 case KVM_CAP_ADJUST_CLOCK:
3037 r = KVM_CLOCK_TSC_STABLE;
3038 break;
3039 case KVM_CAP_X86_DISABLE_EXITS:
3040 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE;
3041 if(kvm_can_mwait_in_guest())
3042 r |= KVM_X86_DISABLE_EXITS_MWAIT;
3043 break;
3044 case KVM_CAP_X86_SMM:
3045 /* SMBASE is usually relocated above 1M on modern chipsets,
3046 * and SMM handlers might indeed rely on 4G segment limits,
3047 * so do not report SMM to be available if real mode is
3048 * emulated via vm86 mode. Still, do not go to great lengths
3049 * to avoid userspace's usage of the feature, because it is a
3050 * fringe case that is not enabled except via specific settings
3051 * of the module parameters.
3052 */
3053 r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
3054 break;
3055 case KVM_CAP_VAPIC:
3056 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
3057 break;
3058 case KVM_CAP_NR_VCPUS:
3059 r = KVM_SOFT_MAX_VCPUS;
3060 break;
3061 case KVM_CAP_MAX_VCPUS:
3062 r = KVM_MAX_VCPUS;
3063 break;
3064 case KVM_CAP_NR_MEMSLOTS:
3065 r = KVM_USER_MEM_SLOTS;
3066 break;
3067 case KVM_CAP_PV_MMU: /* obsolete */
3068 r = 0;
3069 break;
3070 case KVM_CAP_MCE:
3071 r = KVM_MAX_MCE_BANKS;
3072 break;
3073 case KVM_CAP_XCRS:
3074 r = boot_cpu_has(X86_FEATURE_XSAVE);
3075 break;
3076 case KVM_CAP_TSC_CONTROL:
3077 r = kvm_has_tsc_control;
3078 break;
3079 case KVM_CAP_X2APIC_API:
3080 r = KVM_X2APIC_API_VALID_FLAGS;
3081 break;
3082 case KVM_CAP_NESTED_STATE:
3083 r = kvm_x86_ops->get_nested_state ?
3084 kvm_x86_ops->get_nested_state(NULL, 0, 0) : 0;
3085 break;
3086 default:
3087 break;
3088 }
3089 return r;
3090
3091 }
3092
3093 long kvm_arch_dev_ioctl(struct file *filp,
3094 unsigned int ioctl, unsigned long arg)
3095 {
3096 void __user *argp = (void __user *)arg;
3097 long r;
3098
3099 switch (ioctl) {
3100 case KVM_GET_MSR_INDEX_LIST: {
3101 struct kvm_msr_list __user *user_msr_list = argp;
3102 struct kvm_msr_list msr_list;
3103 unsigned n;
3104
3105 r = -EFAULT;
3106 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3107 goto out;
3108 n = msr_list.nmsrs;
3109 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3110 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3111 goto out;
3112 r = -E2BIG;
3113 if (n < msr_list.nmsrs)
3114 goto out;
3115 r = -EFAULT;
3116 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3117 num_msrs_to_save * sizeof(u32)))
3118 goto out;
3119 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3120 &emulated_msrs,
3121 num_emulated_msrs * sizeof(u32)))
3122 goto out;
3123 r = 0;
3124 break;
3125 }
3126 case KVM_GET_SUPPORTED_CPUID:
3127 case KVM_GET_EMULATED_CPUID: {
3128 struct kvm_cpuid2 __user *cpuid_arg = argp;
3129 struct kvm_cpuid2 cpuid;
3130
3131 r = -EFAULT;
3132 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3133 goto out;
3134
3135 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3136 ioctl);
3137 if (r)
3138 goto out;
3139
3140 r = -EFAULT;
3141 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3142 goto out;
3143 r = 0;
3144 break;
3145 }
3146 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3147 r = -EFAULT;
3148 if (copy_to_user(argp, &kvm_mce_cap_supported,
3149 sizeof(kvm_mce_cap_supported)))
3150 goto out;
3151 r = 0;
3152 break;
3153 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3154 struct kvm_msr_list __user *user_msr_list = argp;
3155 struct kvm_msr_list msr_list;
3156 unsigned int n;
3157
3158 r = -EFAULT;
3159 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3160 goto out;
3161 n = msr_list.nmsrs;
3162 msr_list.nmsrs = num_msr_based_features;
3163 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3164 goto out;
3165 r = -E2BIG;
3166 if (n < msr_list.nmsrs)
3167 goto out;
3168 r = -EFAULT;
3169 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3170 num_msr_based_features * sizeof(u32)))
3171 goto out;
3172 r = 0;
3173 break;
3174 }
3175 case KVM_GET_MSRS:
3176 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3177 break;
3178 }
3179 default:
3180 r = -EINVAL;
3181 }
3182 out:
3183 return r;
3184 }
3185
3186 static void wbinvd_ipi(void *garbage)
3187 {
3188 wbinvd();
3189 }
3190
3191 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3192 {
3193 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3194 }
3195
3196 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3197 {
3198 /* Address WBINVD may be executed by guest */
3199 if (need_emulate_wbinvd(vcpu)) {
3200 if (kvm_x86_ops->has_wbinvd_exit())
3201 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3202 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3203 smp_call_function_single(vcpu->cpu,
3204 wbinvd_ipi, NULL, 1);
3205 }
3206
3207 kvm_x86_ops->vcpu_load(vcpu, cpu);
3208
3209 /* Apply any externally detected TSC adjustments (due to suspend) */
3210 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3211 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3212 vcpu->arch.tsc_offset_adjustment = 0;
3213 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3214 }
3215
3216 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3217 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3218 rdtsc() - vcpu->arch.last_host_tsc;
3219 if (tsc_delta < 0)
3220 mark_tsc_unstable("KVM discovered backwards TSC");
3221
3222 if (kvm_check_tsc_unstable()) {
3223 u64 offset = kvm_compute_tsc_offset(vcpu,
3224 vcpu->arch.last_guest_tsc);
3225 kvm_vcpu_write_tsc_offset(vcpu, offset);
3226 vcpu->arch.tsc_catchup = 1;
3227 }
3228
3229 if (kvm_lapic_hv_timer_in_use(vcpu))
3230 kvm_lapic_restart_hv_timer(vcpu);
3231
3232 /*
3233 * On a host with synchronized TSC, there is no need to update
3234 * kvmclock on vcpu->cpu migration
3235 */
3236 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3237 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3238 if (vcpu->cpu != cpu)
3239 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3240 vcpu->cpu = cpu;
3241 }
3242
3243 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3244 }
3245
3246 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3247 {
3248 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3249 return;
3250
3251 vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3252
3253 kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3254 &vcpu->arch.st.steal.preempted,
3255 offsetof(struct kvm_steal_time, preempted),
3256 sizeof(vcpu->arch.st.steal.preempted));
3257 }
3258
3259 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3260 {
3261 int idx;
3262
3263 if (vcpu->preempted)
3264 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3265
3266 /*
3267 * Disable page faults because we're in atomic context here.
3268 * kvm_write_guest_offset_cached() would call might_fault()
3269 * that relies on pagefault_disable() to tell if there's a
3270 * bug. NOTE: the write to guest memory may not go through if
3271 * during postcopy live migration or if there's heavy guest
3272 * paging.
3273 */
3274 pagefault_disable();
3275 /*
3276 * kvm_memslots() will be called by
3277 * kvm_write_guest_offset_cached() so take the srcu lock.
3278 */
3279 idx = srcu_read_lock(&vcpu->kvm->srcu);
3280 kvm_steal_time_set_preempted(vcpu);
3281 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3282 pagefault_enable();
3283 kvm_x86_ops->vcpu_put(vcpu);
3284 vcpu->arch.last_host_tsc = rdtsc();
3285 /*
3286 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3287 * on every vmexit, but if not, we might have a stale dr6 from the
3288 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3289 */
3290 set_debugreg(0, 6);
3291 }
3292
3293 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3294 struct kvm_lapic_state *s)
3295 {
3296 if (vcpu->arch.apicv_active)
3297 kvm_x86_ops->sync_pir_to_irr(vcpu);
3298
3299 return kvm_apic_get_state(vcpu, s);
3300 }
3301
3302 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3303 struct kvm_lapic_state *s)
3304 {
3305 int r;
3306
3307 r = kvm_apic_set_state(vcpu, s);
3308 if (r)
3309 return r;
3310 update_cr8_intercept(vcpu);
3311
3312 return 0;
3313 }
3314
3315 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3316 {
3317 return (!lapic_in_kernel(vcpu) ||
3318 kvm_apic_accept_pic_intr(vcpu));
3319 }
3320
3321 /*
3322 * if userspace requested an interrupt window, check that the
3323 * interrupt window is open.
3324 *
3325 * No need to exit to userspace if we already have an interrupt queued.
3326 */
3327 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3328 {
3329 return kvm_arch_interrupt_allowed(vcpu) &&
3330 !kvm_cpu_has_interrupt(vcpu) &&
3331 !kvm_event_needs_reinjection(vcpu) &&
3332 kvm_cpu_accept_dm_intr(vcpu);
3333 }
3334
3335 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3336 struct kvm_interrupt *irq)
3337 {
3338 if (irq->irq >= KVM_NR_INTERRUPTS)
3339 return -EINVAL;
3340
3341 if (!irqchip_in_kernel(vcpu->kvm)) {
3342 kvm_queue_interrupt(vcpu, irq->irq, false);
3343 kvm_make_request(KVM_REQ_EVENT, vcpu);
3344 return 0;
3345 }
3346
3347 /*
3348 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3349 * fail for in-kernel 8259.
3350 */
3351 if (pic_in_kernel(vcpu->kvm))
3352 return -ENXIO;
3353
3354 if (vcpu->arch.pending_external_vector != -1)
3355 return -EEXIST;
3356
3357 vcpu->arch.pending_external_vector = irq->irq;
3358 kvm_make_request(KVM_REQ_EVENT, vcpu);
3359 return 0;
3360 }
3361
3362 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3363 {
3364 kvm_inject_nmi(vcpu);
3365
3366 return 0;
3367 }
3368
3369 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3370 {
3371 kvm_make_request(KVM_REQ_SMI, vcpu);
3372
3373 return 0;
3374 }
3375
3376 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3377 struct kvm_tpr_access_ctl *tac)
3378 {
3379 if (tac->flags)
3380 return -EINVAL;
3381 vcpu->arch.tpr_access_reporting = !!tac->enabled;
3382 return 0;
3383 }
3384
3385 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3386 u64 mcg_cap)
3387 {
3388 int r;
3389 unsigned bank_num = mcg_cap & 0xff, bank;
3390
3391 r = -EINVAL;
3392 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3393 goto out;
3394 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3395 goto out;
3396 r = 0;
3397 vcpu->arch.mcg_cap = mcg_cap;
3398 /* Init IA32_MCG_CTL to all 1s */
3399 if (mcg_cap & MCG_CTL_P)
3400 vcpu->arch.mcg_ctl = ~(u64)0;
3401 /* Init IA32_MCi_CTL to all 1s */
3402 for (bank = 0; bank < bank_num; bank++)
3403 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3404
3405 if (kvm_x86_ops->setup_mce)
3406 kvm_x86_ops->setup_mce(vcpu);
3407 out:
3408 return r;
3409 }
3410
3411 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3412 struct kvm_x86_mce *mce)
3413 {
3414 u64 mcg_cap = vcpu->arch.mcg_cap;
3415 unsigned bank_num = mcg_cap & 0xff;
3416 u64 *banks = vcpu->arch.mce_banks;
3417
3418 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3419 return -EINVAL;
3420 /*
3421 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3422 * reporting is disabled
3423 */
3424 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3425 vcpu->arch.mcg_ctl != ~(u64)0)
3426 return 0;
3427 banks += 4 * mce->bank;
3428 /*
3429 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3430 * reporting is disabled for the bank
3431 */
3432 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3433 return 0;
3434 if (mce->status & MCI_STATUS_UC) {
3435 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3436 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3437 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3438 return 0;
3439 }
3440 if (banks[1] & MCI_STATUS_VAL)
3441 mce->status |= MCI_STATUS_OVER;
3442 banks[2] = mce->addr;
3443 banks[3] = mce->misc;
3444 vcpu->arch.mcg_status = mce->mcg_status;
3445 banks[1] = mce->status;
3446 kvm_queue_exception(vcpu, MC_VECTOR);
3447 } else if (!(banks[1] & MCI_STATUS_VAL)
3448 || !(banks[1] & MCI_STATUS_UC)) {
3449 if (banks[1] & MCI_STATUS_VAL)
3450 mce->status |= MCI_STATUS_OVER;
3451 banks[2] = mce->addr;
3452 banks[3] = mce->misc;
3453 banks[1] = mce->status;
3454 } else
3455 banks[1] |= MCI_STATUS_OVER;
3456 return 0;
3457 }
3458
3459 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3460 struct kvm_vcpu_events *events)
3461 {
3462 process_nmi(vcpu);
3463
3464 /*
3465 * The API doesn't provide the instruction length for software
3466 * exceptions, so don't report them. As long as the guest RIP
3467 * isn't advanced, we should expect to encounter the exception
3468 * again.
3469 */
3470 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3471 events->exception.injected = 0;
3472 events->exception.pending = 0;
3473 } else {
3474 events->exception.injected = vcpu->arch.exception.injected;
3475 events->exception.pending = vcpu->arch.exception.pending;
3476 /*
3477 * For ABI compatibility, deliberately conflate
3478 * pending and injected exceptions when
3479 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3480 */
3481 if (!vcpu->kvm->arch.exception_payload_enabled)
3482 events->exception.injected |=
3483 vcpu->arch.exception.pending;
3484 }
3485 events->exception.nr = vcpu->arch.exception.nr;
3486 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3487 events->exception.error_code = vcpu->arch.exception.error_code;
3488 events->exception_has_payload = vcpu->arch.exception.has_payload;
3489 events->exception_payload = vcpu->arch.exception.payload;
3490
3491 events->interrupt.injected =
3492 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3493 events->interrupt.nr = vcpu->arch.interrupt.nr;
3494 events->interrupt.soft = 0;
3495 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3496
3497 events->nmi.injected = vcpu->arch.nmi_injected;
3498 events->nmi.pending = vcpu->arch.nmi_pending != 0;
3499 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3500 events->nmi.pad = 0;
3501
3502 events->sipi_vector = 0; /* never valid when reporting to user space */
3503
3504 events->smi.smm = is_smm(vcpu);
3505 events->smi.pending = vcpu->arch.smi_pending;
3506 events->smi.smm_inside_nmi =
3507 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3508 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3509
3510 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3511 | KVM_VCPUEVENT_VALID_SHADOW
3512 | KVM_VCPUEVENT_VALID_SMM);
3513 if (vcpu->kvm->arch.exception_payload_enabled)
3514 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3515
3516 memset(&events->reserved, 0, sizeof(events->reserved));
3517 }
3518
3519 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3520
3521 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3522 struct kvm_vcpu_events *events)
3523 {
3524 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3525 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3526 | KVM_VCPUEVENT_VALID_SHADOW
3527 | KVM_VCPUEVENT_VALID_SMM
3528 | KVM_VCPUEVENT_VALID_PAYLOAD))
3529 return -EINVAL;
3530
3531 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3532 if (!vcpu->kvm->arch.exception_payload_enabled)
3533 return -EINVAL;
3534 if (events->exception.pending)
3535 events->exception.injected = 0;
3536 else
3537 events->exception_has_payload = 0;
3538 } else {
3539 events->exception.pending = 0;
3540 events->exception_has_payload = 0;
3541 }
3542
3543 if ((events->exception.injected || events->exception.pending) &&
3544 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3545 return -EINVAL;
3546
3547 /* INITs are latched while in SMM */
3548 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3549 (events->smi.smm || events->smi.pending) &&
3550 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3551 return -EINVAL;
3552
3553 process_nmi(vcpu);
3554 vcpu->arch.exception.injected = events->exception.injected;
3555 vcpu->arch.exception.pending = events->exception.pending;
3556 vcpu->arch.exception.nr = events->exception.nr;
3557 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3558 vcpu->arch.exception.error_code = events->exception.error_code;
3559 vcpu->arch.exception.has_payload = events->exception_has_payload;
3560 vcpu->arch.exception.payload = events->exception_payload;
3561
3562 vcpu->arch.interrupt.injected = events->interrupt.injected;
3563 vcpu->arch.interrupt.nr = events->interrupt.nr;
3564 vcpu->arch.interrupt.soft = events->interrupt.soft;
3565 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3566 kvm_x86_ops->set_interrupt_shadow(vcpu,
3567 events->interrupt.shadow);
3568
3569 vcpu->arch.nmi_injected = events->nmi.injected;
3570 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3571 vcpu->arch.nmi_pending = events->nmi.pending;
3572 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3573
3574 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3575 lapic_in_kernel(vcpu))
3576 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3577
3578 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3579 u32 hflags = vcpu->arch.hflags;
3580 if (events->smi.smm)
3581 hflags |= HF_SMM_MASK;
3582 else
3583 hflags &= ~HF_SMM_MASK;
3584 kvm_set_hflags(vcpu, hflags);
3585
3586 vcpu->arch.smi_pending = events->smi.pending;
3587
3588 if (events->smi.smm) {
3589 if (events->smi.smm_inside_nmi)
3590 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3591 else
3592 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3593 if (lapic_in_kernel(vcpu)) {
3594 if (events->smi.latched_init)
3595 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3596 else
3597 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3598 }
3599 }
3600 }
3601
3602 kvm_make_request(KVM_REQ_EVENT, vcpu);
3603
3604 return 0;
3605 }
3606
3607 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3608 struct kvm_debugregs *dbgregs)
3609 {
3610 unsigned long val;
3611
3612 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3613 kvm_get_dr(vcpu, 6, &val);
3614 dbgregs->dr6 = val;
3615 dbgregs->dr7 = vcpu->arch.dr7;
3616 dbgregs->flags = 0;
3617 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3618 }
3619
3620 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3621 struct kvm_debugregs *dbgregs)
3622 {
3623 if (dbgregs->flags)
3624 return -EINVAL;
3625
3626 if (dbgregs->dr6 & ~0xffffffffull)
3627 return -EINVAL;
3628 if (dbgregs->dr7 & ~0xffffffffull)
3629 return -EINVAL;
3630
3631 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3632 kvm_update_dr0123(vcpu);
3633 vcpu->arch.dr6 = dbgregs->dr6;
3634 kvm_update_dr6(vcpu);
3635 vcpu->arch.dr7 = dbgregs->dr7;
3636 kvm_update_dr7(vcpu);
3637
3638 return 0;
3639 }
3640
3641 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3642
3643 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3644 {
3645 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3646 u64 xstate_bv = xsave->header.xfeatures;
3647 u64 valid;
3648
3649 /*
3650 * Copy legacy XSAVE area, to avoid complications with CPUID
3651 * leaves 0 and 1 in the loop below.
3652 */
3653 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3654
3655 /* Set XSTATE_BV */
3656 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3657 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3658
3659 /*
3660 * Copy each region from the possibly compacted offset to the
3661 * non-compacted offset.
3662 */
3663 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3664 while (valid) {
3665 u64 feature = valid & -valid;
3666 int index = fls64(feature) - 1;
3667 void *src = get_xsave_addr(xsave, feature);
3668
3669 if (src) {
3670 u32 size, offset, ecx, edx;
3671 cpuid_count(XSTATE_CPUID, index,
3672 &size, &offset, &ecx, &edx);
3673 if (feature == XFEATURE_MASK_PKRU)
3674 memcpy(dest + offset, &vcpu->arch.pkru,
3675 sizeof(vcpu->arch.pkru));
3676 else
3677 memcpy(dest + offset, src, size);
3678
3679 }
3680
3681 valid -= feature;
3682 }
3683 }
3684
3685 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3686 {
3687 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3688 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3689 u64 valid;
3690
3691 /*
3692 * Copy legacy XSAVE area, to avoid complications with CPUID
3693 * leaves 0 and 1 in the loop below.
3694 */
3695 memcpy(xsave, src, XSAVE_HDR_OFFSET);
3696
3697 /* Set XSTATE_BV and possibly XCOMP_BV. */
3698 xsave->header.xfeatures = xstate_bv;
3699 if (boot_cpu_has(X86_FEATURE_XSAVES))
3700 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3701
3702 /*
3703 * Copy each region from the non-compacted offset to the
3704 * possibly compacted offset.
3705 */
3706 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3707 while (valid) {
3708 u64 feature = valid & -valid;
3709 int index = fls64(feature) - 1;
3710 void *dest = get_xsave_addr(xsave, feature);
3711
3712 if (dest) {
3713 u32 size, offset, ecx, edx;
3714 cpuid_count(XSTATE_CPUID, index,
3715 &size, &offset, &ecx, &edx);
3716 if (feature == XFEATURE_MASK_PKRU)
3717 memcpy(&vcpu->arch.pkru, src + offset,
3718 sizeof(vcpu->arch.pkru));
3719 else
3720 memcpy(dest, src + offset, size);
3721 }
3722
3723 valid -= feature;
3724 }
3725 }
3726
3727 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3728 struct kvm_xsave *guest_xsave)
3729 {
3730 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3731 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3732 fill_xsave((u8 *) guest_xsave->region, vcpu);
3733 } else {
3734 memcpy(guest_xsave->region,
3735 &vcpu->arch.guest_fpu->state.fxsave,
3736 sizeof(struct fxregs_state));
3737 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3738 XFEATURE_MASK_FPSSE;
3739 }
3740 }
3741
3742 #define XSAVE_MXCSR_OFFSET 24
3743
3744 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3745 struct kvm_xsave *guest_xsave)
3746 {
3747 u64 xstate_bv =
3748 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3749 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3750
3751 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3752 /*
3753 * Here we allow setting states that are not present in
3754 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3755 * with old userspace.
3756 */
3757 if (xstate_bv & ~kvm_supported_xcr0() ||
3758 mxcsr & ~mxcsr_feature_mask)
3759 return -EINVAL;
3760 load_xsave(vcpu, (u8 *)guest_xsave->region);
3761 } else {
3762 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3763 mxcsr & ~mxcsr_feature_mask)
3764 return -EINVAL;
3765 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
3766 guest_xsave->region, sizeof(struct fxregs_state));
3767 }
3768 return 0;
3769 }
3770
3771 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3772 struct kvm_xcrs *guest_xcrs)
3773 {
3774 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3775 guest_xcrs->nr_xcrs = 0;
3776 return;
3777 }
3778
3779 guest_xcrs->nr_xcrs = 1;
3780 guest_xcrs->flags = 0;
3781 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3782 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3783 }
3784
3785 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3786 struct kvm_xcrs *guest_xcrs)
3787 {
3788 int i, r = 0;
3789
3790 if (!boot_cpu_has(X86_FEATURE_XSAVE))
3791 return -EINVAL;
3792
3793 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3794 return -EINVAL;
3795
3796 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3797 /* Only support XCR0 currently */
3798 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3799 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3800 guest_xcrs->xcrs[i].value);
3801 break;
3802 }
3803 if (r)
3804 r = -EINVAL;
3805 return r;
3806 }
3807
3808 /*
3809 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3810 * stopped by the hypervisor. This function will be called from the host only.
3811 * EINVAL is returned when the host attempts to set the flag for a guest that
3812 * does not support pv clocks.
3813 */
3814 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3815 {
3816 if (!vcpu->arch.pv_time_enabled)
3817 return -EINVAL;
3818 vcpu->arch.pvclock_set_guest_stopped_request = true;
3819 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3820 return 0;
3821 }
3822
3823 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3824 struct kvm_enable_cap *cap)
3825 {
3826 int r;
3827 uint16_t vmcs_version;
3828 void __user *user_ptr;
3829
3830 if (cap->flags)
3831 return -EINVAL;
3832
3833 switch (cap->cap) {
3834 case KVM_CAP_HYPERV_SYNIC2:
3835 if (cap->args[0])
3836 return -EINVAL;
3837 case KVM_CAP_HYPERV_SYNIC:
3838 if (!irqchip_in_kernel(vcpu->kvm))
3839 return -EINVAL;
3840 return kvm_hv_activate_synic(vcpu, cap->cap ==
3841 KVM_CAP_HYPERV_SYNIC2);
3842 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3843 if (!kvm_x86_ops->nested_enable_evmcs)
3844 return -ENOTTY;
3845 r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version);
3846 if (!r) {
3847 user_ptr = (void __user *)(uintptr_t)cap->args[0];
3848 if (copy_to_user(user_ptr, &vmcs_version,
3849 sizeof(vmcs_version)))
3850 r = -EFAULT;
3851 }
3852 return r;
3853
3854 default:
3855 return -EINVAL;
3856 }
3857 }
3858
3859 long kvm_arch_vcpu_ioctl(struct file *filp,
3860 unsigned int ioctl, unsigned long arg)
3861 {
3862 struct kvm_vcpu *vcpu = filp->private_data;
3863 void __user *argp = (void __user *)arg;
3864 int r;
3865 union {
3866 struct kvm_lapic_state *lapic;
3867 struct kvm_xsave *xsave;
3868 struct kvm_xcrs *xcrs;
3869 void *buffer;
3870 } u;
3871
3872 vcpu_load(vcpu);
3873
3874 u.buffer = NULL;
3875 switch (ioctl) {
3876 case KVM_GET_LAPIC: {
3877 r = -EINVAL;
3878 if (!lapic_in_kernel(vcpu))
3879 goto out;
3880 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3881
3882 r = -ENOMEM;
3883 if (!u.lapic)
3884 goto out;
3885 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3886 if (r)
3887 goto out;
3888 r = -EFAULT;
3889 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3890 goto out;
3891 r = 0;
3892 break;
3893 }
3894 case KVM_SET_LAPIC: {
3895 r = -EINVAL;
3896 if (!lapic_in_kernel(vcpu))
3897 goto out;
3898 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3899 if (IS_ERR(u.lapic)) {
3900 r = PTR_ERR(u.lapic);
3901 goto out_nofree;
3902 }
3903
3904 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3905 break;
3906 }
3907 case KVM_INTERRUPT: {
3908 struct kvm_interrupt irq;
3909
3910 r = -EFAULT;
3911 if (copy_from_user(&irq, argp, sizeof(irq)))
3912 goto out;
3913 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3914 break;
3915 }
3916 case KVM_NMI: {
3917 r = kvm_vcpu_ioctl_nmi(vcpu);
3918 break;
3919 }
3920 case KVM_SMI: {
3921 r = kvm_vcpu_ioctl_smi(vcpu);
3922 break;
3923 }
3924 case KVM_SET_CPUID: {
3925 struct kvm_cpuid __user *cpuid_arg = argp;
3926 struct kvm_cpuid cpuid;
3927
3928 r = -EFAULT;
3929 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3930 goto out;
3931 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3932 break;
3933 }
3934 case KVM_SET_CPUID2: {
3935 struct kvm_cpuid2 __user *cpuid_arg = argp;
3936 struct kvm_cpuid2 cpuid;
3937
3938 r = -EFAULT;
3939 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3940 goto out;
3941 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3942 cpuid_arg->entries);
3943 break;
3944 }
3945 case KVM_GET_CPUID2: {
3946 struct kvm_cpuid2 __user *cpuid_arg = argp;
3947 struct kvm_cpuid2 cpuid;
3948
3949 r = -EFAULT;
3950 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3951 goto out;
3952 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3953 cpuid_arg->entries);
3954 if (r)
3955 goto out;
3956 r = -EFAULT;
3957 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3958 goto out;
3959 r = 0;
3960 break;
3961 }
3962 case KVM_GET_MSRS: {
3963 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3964 r = msr_io(vcpu, argp, do_get_msr, 1);
3965 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3966 break;
3967 }
3968 case KVM_SET_MSRS: {
3969 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3970 r = msr_io(vcpu, argp, do_set_msr, 0);
3971 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3972 break;
3973 }
3974 case KVM_TPR_ACCESS_REPORTING: {
3975 struct kvm_tpr_access_ctl tac;
3976
3977 r = -EFAULT;
3978 if (copy_from_user(&tac, argp, sizeof(tac)))
3979 goto out;
3980 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3981 if (r)
3982 goto out;
3983 r = -EFAULT;
3984 if (copy_to_user(argp, &tac, sizeof(tac)))
3985 goto out;
3986 r = 0;
3987 break;
3988 };
3989 case KVM_SET_VAPIC_ADDR: {
3990 struct kvm_vapic_addr va;
3991 int idx;
3992
3993 r = -EINVAL;
3994 if (!lapic_in_kernel(vcpu))
3995 goto out;
3996 r = -EFAULT;
3997 if (copy_from_user(&va, argp, sizeof(va)))
3998 goto out;
3999 idx = srcu_read_lock(&vcpu->kvm->srcu);
4000 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4001 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4002 break;
4003 }
4004 case KVM_X86_SETUP_MCE: {
4005 u64 mcg_cap;
4006
4007 r = -EFAULT;
4008 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4009 goto out;
4010 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4011 break;
4012 }
4013 case KVM_X86_SET_MCE: {
4014 struct kvm_x86_mce mce;
4015
4016 r = -EFAULT;
4017 if (copy_from_user(&mce, argp, sizeof(mce)))
4018 goto out;
4019 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4020 break;
4021 }
4022 case KVM_GET_VCPU_EVENTS: {
4023 struct kvm_vcpu_events events;
4024
4025 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4026
4027 r = -EFAULT;
4028 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4029 break;
4030 r = 0;
4031 break;
4032 }
4033 case KVM_SET_VCPU_EVENTS: {
4034 struct kvm_vcpu_events events;
4035
4036 r = -EFAULT;
4037 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4038 break;
4039
4040 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4041 break;
4042 }
4043 case KVM_GET_DEBUGREGS: {
4044 struct kvm_debugregs dbgregs;
4045
4046 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4047
4048 r = -EFAULT;
4049 if (copy_to_user(argp, &dbgregs,
4050 sizeof(struct kvm_debugregs)))
4051 break;
4052 r = 0;
4053 break;
4054 }
4055 case KVM_SET_DEBUGREGS: {
4056 struct kvm_debugregs dbgregs;
4057
4058 r = -EFAULT;
4059 if (copy_from_user(&dbgregs, argp,
4060 sizeof(struct kvm_debugregs)))
4061 break;
4062
4063 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4064 break;
4065 }
4066 case KVM_GET_XSAVE: {
4067 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
4068 r = -ENOMEM;
4069 if (!u.xsave)
4070 break;
4071
4072 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4073
4074 r = -EFAULT;
4075 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4076 break;
4077 r = 0;
4078 break;
4079 }
4080 case KVM_SET_XSAVE: {
4081 u.xsave = memdup_user(argp, sizeof(*u.xsave));
4082 if (IS_ERR(u.xsave)) {
4083 r = PTR_ERR(u.xsave);
4084 goto out_nofree;
4085 }
4086
4087 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4088 break;
4089 }
4090 case KVM_GET_XCRS: {
4091 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
4092 r = -ENOMEM;
4093 if (!u.xcrs)
4094 break;
4095
4096 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4097
4098 r = -EFAULT;
4099 if (copy_to_user(argp, u.xcrs,
4100 sizeof(struct kvm_xcrs)))
4101 break;
4102 r = 0;
4103 break;
4104 }
4105 case KVM_SET_XCRS: {
4106 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4107 if (IS_ERR(u.xcrs)) {
4108 r = PTR_ERR(u.xcrs);
4109 goto out_nofree;
4110 }
4111
4112 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4113 break;
4114 }
4115 case KVM_SET_TSC_KHZ: {
4116 u32 user_tsc_khz;
4117
4118 r = -EINVAL;
4119 user_tsc_khz = (u32)arg;
4120
4121 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
4122 goto out;
4123
4124 if (user_tsc_khz == 0)
4125 user_tsc_khz = tsc_khz;
4126
4127 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4128 r = 0;
4129
4130 goto out;
4131 }
4132 case KVM_GET_TSC_KHZ: {
4133 r = vcpu->arch.virtual_tsc_khz;
4134 goto out;
4135 }
4136 case KVM_KVMCLOCK_CTRL: {
4137 r = kvm_set_guest_paused(vcpu);
4138 goto out;
4139 }
4140 case KVM_ENABLE_CAP: {
4141 struct kvm_enable_cap cap;
4142
4143 r = -EFAULT;
4144 if (copy_from_user(&cap, argp, sizeof(cap)))
4145 goto out;
4146 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4147 break;
4148 }
4149 case KVM_GET_NESTED_STATE: {
4150 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4151 u32 user_data_size;
4152
4153 r = -EINVAL;
4154 if (!kvm_x86_ops->get_nested_state)
4155 break;
4156
4157 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4158 r = -EFAULT;
4159 if (get_user(user_data_size, &user_kvm_nested_state->size))
4160 break;
4161
4162 r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state,
4163 user_data_size);
4164 if (r < 0)
4165 break;
4166
4167 if (r > user_data_size) {
4168 if (put_user(r, &user_kvm_nested_state->size))
4169 r = -EFAULT;
4170 else
4171 r = -E2BIG;
4172 break;
4173 }
4174
4175 r = 0;
4176 break;
4177 }
4178 case KVM_SET_NESTED_STATE: {
4179 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4180 struct kvm_nested_state kvm_state;
4181
4182 r = -EINVAL;
4183 if (!kvm_x86_ops->set_nested_state)
4184 break;
4185
4186 r = -EFAULT;
4187 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4188 break;
4189
4190 r = -EINVAL;
4191 if (kvm_state.size < sizeof(kvm_state))
4192 break;
4193
4194 if (kvm_state.flags &
4195 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4196 | KVM_STATE_NESTED_EVMCS))
4197 break;
4198
4199 /* nested_run_pending implies guest_mode. */
4200 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4201 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4202 break;
4203
4204 r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4205 break;
4206 }
4207 case KVM_GET_SUPPORTED_HV_CPUID: {
4208 struct kvm_cpuid2 __user *cpuid_arg = argp;
4209 struct kvm_cpuid2 cpuid;
4210
4211 r = -EFAULT;
4212 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4213 goto out;
4214
4215 r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4216 cpuid_arg->entries);
4217 if (r)
4218 goto out;
4219
4220 r = -EFAULT;
4221 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4222 goto out;
4223 r = 0;
4224 break;
4225 }
4226 default:
4227 r = -EINVAL;
4228 }
4229 out:
4230 kfree(u.buffer);
4231 out_nofree:
4232 vcpu_put(vcpu);
4233 return r;
4234 }
4235
4236 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4237 {
4238 return VM_FAULT_SIGBUS;
4239 }
4240
4241 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4242 {
4243 int ret;
4244
4245 if (addr > (unsigned int)(-3 * PAGE_SIZE))
4246 return -EINVAL;
4247 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
4248 return ret;
4249 }
4250
4251 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4252 u64 ident_addr)
4253 {
4254 return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
4255 }
4256
4257 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4258 u32 kvm_nr_mmu_pages)
4259 {
4260 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4261 return -EINVAL;
4262
4263 mutex_lock(&kvm->slots_lock);
4264
4265 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4266 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4267
4268 mutex_unlock(&kvm->slots_lock);
4269 return 0;
4270 }
4271
4272 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4273 {
4274 return kvm->arch.n_max_mmu_pages;
4275 }
4276
4277 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4278 {
4279 struct kvm_pic *pic = kvm->arch.vpic;
4280 int r;
4281
4282 r = 0;
4283 switch (chip->chip_id) {
4284 case KVM_IRQCHIP_PIC_MASTER:
4285 memcpy(&chip->chip.pic, &pic->pics[0],
4286 sizeof(struct kvm_pic_state));
4287 break;
4288 case KVM_IRQCHIP_PIC_SLAVE:
4289 memcpy(&chip->chip.pic, &pic->pics[1],
4290 sizeof(struct kvm_pic_state));
4291 break;
4292 case KVM_IRQCHIP_IOAPIC:
4293 kvm_get_ioapic(kvm, &chip->chip.ioapic);
4294 break;
4295 default:
4296 r = -EINVAL;
4297 break;
4298 }
4299 return r;
4300 }
4301
4302 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4303 {
4304 struct kvm_pic *pic = kvm->arch.vpic;
4305 int r;
4306
4307 r = 0;
4308 switch (chip->chip_id) {
4309 case KVM_IRQCHIP_PIC_MASTER:
4310 spin_lock(&pic->lock);
4311 memcpy(&pic->pics[0], &chip->chip.pic,
4312 sizeof(struct kvm_pic_state));
4313 spin_unlock(&pic->lock);
4314 break;
4315 case KVM_IRQCHIP_PIC_SLAVE:
4316 spin_lock(&pic->lock);
4317 memcpy(&pic->pics[1], &chip->chip.pic,
4318 sizeof(struct kvm_pic_state));
4319 spin_unlock(&pic->lock);
4320 break;
4321 case KVM_IRQCHIP_IOAPIC:
4322 kvm_set_ioapic(kvm, &chip->chip.ioapic);
4323 break;
4324 default:
4325 r = -EINVAL;
4326 break;
4327 }
4328 kvm_pic_update_irq(pic);
4329 return r;
4330 }
4331
4332 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4333 {
4334 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4335
4336 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4337
4338 mutex_lock(&kps->lock);
4339 memcpy(ps, &kps->channels, sizeof(*ps));
4340 mutex_unlock(&kps->lock);
4341 return 0;
4342 }
4343
4344 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4345 {
4346 int i;
4347 struct kvm_pit *pit = kvm->arch.vpit;
4348
4349 mutex_lock(&pit->pit_state.lock);
4350 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4351 for (i = 0; i < 3; i++)
4352 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4353 mutex_unlock(&pit->pit_state.lock);
4354 return 0;
4355 }
4356
4357 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4358 {
4359 mutex_lock(&kvm->arch.vpit->pit_state.lock);
4360 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4361 sizeof(ps->channels));
4362 ps->flags = kvm->arch.vpit->pit_state.flags;
4363 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4364 memset(&ps->reserved, 0, sizeof(ps->reserved));
4365 return 0;
4366 }
4367
4368 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4369 {
4370 int start = 0;
4371 int i;
4372 u32 prev_legacy, cur_legacy;
4373 struct kvm_pit *pit = kvm->arch.vpit;
4374
4375 mutex_lock(&pit->pit_state.lock);
4376 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4377 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4378 if (!prev_legacy && cur_legacy)
4379 start = 1;
4380 memcpy(&pit->pit_state.channels, &ps->channels,
4381 sizeof(pit->pit_state.channels));
4382 pit->pit_state.flags = ps->flags;
4383 for (i = 0; i < 3; i++)
4384 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4385 start && i == 0);
4386 mutex_unlock(&pit->pit_state.lock);
4387 return 0;
4388 }
4389
4390 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4391 struct kvm_reinject_control *control)
4392 {
4393 struct kvm_pit *pit = kvm->arch.vpit;
4394
4395 if (!pit)
4396 return -ENXIO;
4397
4398 /* pit->pit_state.lock was overloaded to prevent userspace from getting
4399 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4400 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
4401 */
4402 mutex_lock(&pit->pit_state.lock);
4403 kvm_pit_set_reinject(pit, control->pit_reinject);
4404 mutex_unlock(&pit->pit_state.lock);
4405
4406 return 0;
4407 }
4408
4409 /**
4410 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4411 * @kvm: kvm instance
4412 * @log: slot id and address to which we copy the log
4413 *
4414 * Steps 1-4 below provide general overview of dirty page logging. See
4415 * kvm_get_dirty_log_protect() function description for additional details.
4416 *
4417 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4418 * always flush the TLB (step 4) even if previous step failed and the dirty
4419 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4420 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4421 * writes will be marked dirty for next log read.
4422 *
4423 * 1. Take a snapshot of the bit and clear it if needed.
4424 * 2. Write protect the corresponding page.
4425 * 3. Copy the snapshot to the userspace.
4426 * 4. Flush TLB's if needed.
4427 */
4428 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4429 {
4430 bool flush = false;
4431 int r;
4432
4433 mutex_lock(&kvm->slots_lock);
4434
4435 /*
4436 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4437 */
4438 if (kvm_x86_ops->flush_log_dirty)
4439 kvm_x86_ops->flush_log_dirty(kvm);
4440
4441 r = kvm_get_dirty_log_protect(kvm, log, &flush);
4442
4443 /*
4444 * All the TLBs can be flushed out of mmu lock, see the comments in
4445 * kvm_mmu_slot_remove_write_access().
4446 */
4447 lockdep_assert_held(&kvm->slots_lock);
4448 if (flush)
4449 kvm_flush_remote_tlbs(kvm);
4450
4451 mutex_unlock(&kvm->slots_lock);
4452 return r;
4453 }
4454
4455 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
4456 {
4457 bool flush = false;
4458 int r;
4459
4460 mutex_lock(&kvm->slots_lock);
4461
4462 /*
4463 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4464 */
4465 if (kvm_x86_ops->flush_log_dirty)
4466 kvm_x86_ops->flush_log_dirty(kvm);
4467
4468 r = kvm_clear_dirty_log_protect(kvm, log, &flush);
4469
4470 /*
4471 * All the TLBs can be flushed out of mmu lock, see the comments in
4472 * kvm_mmu_slot_remove_write_access().
4473 */
4474 lockdep_assert_held(&kvm->slots_lock);
4475 if (flush)
4476 kvm_flush_remote_tlbs(kvm);
4477
4478 mutex_unlock(&kvm->slots_lock);
4479 return r;
4480 }
4481
4482 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4483 bool line_status)
4484 {
4485 if (!irqchip_in_kernel(kvm))
4486 return -ENXIO;
4487
4488 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4489 irq_event->irq, irq_event->level,
4490 line_status);
4491 return 0;
4492 }
4493
4494 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4495 struct kvm_enable_cap *cap)
4496 {
4497 int r;
4498
4499 if (cap->flags)
4500 return -EINVAL;
4501
4502 switch (cap->cap) {
4503 case KVM_CAP_DISABLE_QUIRKS:
4504 kvm->arch.disabled_quirks = cap->args[0];
4505 r = 0;
4506 break;
4507 case KVM_CAP_SPLIT_IRQCHIP: {
4508 mutex_lock(&kvm->lock);
4509 r = -EINVAL;
4510 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4511 goto split_irqchip_unlock;
4512 r = -EEXIST;
4513 if (irqchip_in_kernel(kvm))
4514 goto split_irqchip_unlock;
4515 if (kvm->created_vcpus)
4516 goto split_irqchip_unlock;
4517 r = kvm_setup_empty_irq_routing(kvm);
4518 if (r)
4519 goto split_irqchip_unlock;
4520 /* Pairs with irqchip_in_kernel. */
4521 smp_wmb();
4522 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4523 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4524 r = 0;
4525 split_irqchip_unlock:
4526 mutex_unlock(&kvm->lock);
4527 break;
4528 }
4529 case KVM_CAP_X2APIC_API:
4530 r = -EINVAL;
4531 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4532 break;
4533
4534 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4535 kvm->arch.x2apic_format = true;
4536 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4537 kvm->arch.x2apic_broadcast_quirk_disabled = true;
4538
4539 r = 0;
4540 break;
4541 case KVM_CAP_X86_DISABLE_EXITS:
4542 r = -EINVAL;
4543 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4544 break;
4545
4546 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4547 kvm_can_mwait_in_guest())
4548 kvm->arch.mwait_in_guest = true;
4549 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4550 kvm->arch.hlt_in_guest = true;
4551 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4552 kvm->arch.pause_in_guest = true;
4553 r = 0;
4554 break;
4555 case KVM_CAP_MSR_PLATFORM_INFO:
4556 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4557 r = 0;
4558 break;
4559 case KVM_CAP_EXCEPTION_PAYLOAD:
4560 kvm->arch.exception_payload_enabled = cap->args[0];
4561 r = 0;
4562 break;
4563 default:
4564 r = -EINVAL;
4565 break;
4566 }
4567 return r;
4568 }
4569
4570 long kvm_arch_vm_ioctl(struct file *filp,
4571 unsigned int ioctl, unsigned long arg)
4572 {
4573 struct kvm *kvm = filp->private_data;
4574 void __user *argp = (void __user *)arg;
4575 int r = -ENOTTY;
4576 /*
4577 * This union makes it completely explicit to gcc-3.x
4578 * that these two variables' stack usage should be
4579 * combined, not added together.
4580 */
4581 union {
4582 struct kvm_pit_state ps;
4583 struct kvm_pit_state2 ps2;
4584 struct kvm_pit_config pit_config;
4585 } u;
4586
4587 switch (ioctl) {
4588 case KVM_SET_TSS_ADDR:
4589 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4590 break;
4591 case KVM_SET_IDENTITY_MAP_ADDR: {
4592 u64 ident_addr;
4593
4594 mutex_lock(&kvm->lock);
4595 r = -EINVAL;
4596 if (kvm->created_vcpus)
4597 goto set_identity_unlock;
4598 r = -EFAULT;
4599 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
4600 goto set_identity_unlock;
4601 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4602 set_identity_unlock:
4603 mutex_unlock(&kvm->lock);
4604 break;
4605 }
4606 case KVM_SET_NR_MMU_PAGES:
4607 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4608 break;
4609 case KVM_GET_NR_MMU_PAGES:
4610 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4611 break;
4612 case KVM_CREATE_IRQCHIP: {
4613 mutex_lock(&kvm->lock);
4614
4615 r = -EEXIST;
4616 if (irqchip_in_kernel(kvm))
4617 goto create_irqchip_unlock;
4618
4619 r = -EINVAL;
4620 if (kvm->created_vcpus)
4621 goto create_irqchip_unlock;
4622
4623 r = kvm_pic_init(kvm);
4624 if (r)
4625 goto create_irqchip_unlock;
4626
4627 r = kvm_ioapic_init(kvm);
4628 if (r) {
4629 kvm_pic_destroy(kvm);
4630 goto create_irqchip_unlock;
4631 }
4632
4633 r = kvm_setup_default_irq_routing(kvm);
4634 if (r) {
4635 kvm_ioapic_destroy(kvm);
4636 kvm_pic_destroy(kvm);
4637 goto create_irqchip_unlock;
4638 }
4639 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4640 smp_wmb();
4641 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4642 create_irqchip_unlock:
4643 mutex_unlock(&kvm->lock);
4644 break;
4645 }
4646 case KVM_CREATE_PIT:
4647 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4648 goto create_pit;
4649 case KVM_CREATE_PIT2:
4650 r = -EFAULT;
4651 if (copy_from_user(&u.pit_config, argp,
4652 sizeof(struct kvm_pit_config)))
4653 goto out;
4654 create_pit:
4655 mutex_lock(&kvm->lock);
4656 r = -EEXIST;
4657 if (kvm->arch.vpit)
4658 goto create_pit_unlock;
4659 r = -ENOMEM;
4660 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4661 if (kvm->arch.vpit)
4662 r = 0;
4663 create_pit_unlock:
4664 mutex_unlock(&kvm->lock);
4665 break;
4666 case KVM_GET_IRQCHIP: {
4667 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4668 struct kvm_irqchip *chip;
4669
4670 chip = memdup_user(argp, sizeof(*chip));
4671 if (IS_ERR(chip)) {
4672 r = PTR_ERR(chip);
4673 goto out;
4674 }
4675
4676 r = -ENXIO;
4677 if (!irqchip_kernel(kvm))
4678 goto get_irqchip_out;
4679 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4680 if (r)
4681 goto get_irqchip_out;
4682 r = -EFAULT;
4683 if (copy_to_user(argp, chip, sizeof(*chip)))
4684 goto get_irqchip_out;
4685 r = 0;
4686 get_irqchip_out:
4687 kfree(chip);
4688 break;
4689 }
4690 case KVM_SET_IRQCHIP: {
4691 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4692 struct kvm_irqchip *chip;
4693
4694 chip = memdup_user(argp, sizeof(*chip));
4695 if (IS_ERR(chip)) {
4696 r = PTR_ERR(chip);
4697 goto out;
4698 }
4699
4700 r = -ENXIO;
4701 if (!irqchip_kernel(kvm))
4702 goto set_irqchip_out;
4703 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4704 if (r)
4705 goto set_irqchip_out;
4706 r = 0;
4707 set_irqchip_out:
4708 kfree(chip);
4709 break;
4710 }
4711 case KVM_GET_PIT: {
4712 r = -EFAULT;
4713 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4714 goto out;
4715 r = -ENXIO;
4716 if (!kvm->arch.vpit)
4717 goto out;
4718 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4719 if (r)
4720 goto out;
4721 r = -EFAULT;
4722 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4723 goto out;
4724 r = 0;
4725 break;
4726 }
4727 case KVM_SET_PIT: {
4728 r = -EFAULT;
4729 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
4730 goto out;
4731 r = -ENXIO;
4732 if (!kvm->arch.vpit)
4733 goto out;
4734 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4735 break;
4736 }
4737 case KVM_GET_PIT2: {
4738 r = -ENXIO;
4739 if (!kvm->arch.vpit)
4740 goto out;
4741 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4742 if (r)
4743 goto out;
4744 r = -EFAULT;
4745 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4746 goto out;
4747 r = 0;
4748 break;
4749 }
4750 case KVM_SET_PIT2: {
4751 r = -EFAULT;
4752 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4753 goto out;
4754 r = -ENXIO;
4755 if (!kvm->arch.vpit)
4756 goto out;
4757 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4758 break;
4759 }
4760 case KVM_REINJECT_CONTROL: {
4761 struct kvm_reinject_control control;
4762 r = -EFAULT;
4763 if (copy_from_user(&control, argp, sizeof(control)))
4764 goto out;
4765 r = kvm_vm_ioctl_reinject(kvm, &control);
4766 break;
4767 }
4768 case KVM_SET_BOOT_CPU_ID:
4769 r = 0;
4770 mutex_lock(&kvm->lock);
4771 if (kvm->created_vcpus)
4772 r = -EBUSY;
4773 else
4774 kvm->arch.bsp_vcpu_id = arg;
4775 mutex_unlock(&kvm->lock);
4776 break;
4777 case KVM_XEN_HVM_CONFIG: {
4778 struct kvm_xen_hvm_config xhc;
4779 r = -EFAULT;
4780 if (copy_from_user(&xhc, argp, sizeof(xhc)))
4781 goto out;
4782 r = -EINVAL;
4783 if (xhc.flags)
4784 goto out;
4785 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4786 r = 0;
4787 break;
4788 }
4789 case KVM_SET_CLOCK: {
4790 struct kvm_clock_data user_ns;
4791 u64 now_ns;
4792
4793 r = -EFAULT;
4794 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4795 goto out;
4796
4797 r = -EINVAL;
4798 if (user_ns.flags)
4799 goto out;
4800
4801 r = 0;
4802 /*
4803 * TODO: userspace has to take care of races with VCPU_RUN, so
4804 * kvm_gen_update_masterclock() can be cut down to locked
4805 * pvclock_update_vm_gtod_copy().
4806 */
4807 kvm_gen_update_masterclock(kvm);
4808 now_ns = get_kvmclock_ns(kvm);
4809 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4810 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4811 break;
4812 }
4813 case KVM_GET_CLOCK: {
4814 struct kvm_clock_data user_ns;
4815 u64 now_ns;
4816
4817 now_ns = get_kvmclock_ns(kvm);
4818 user_ns.clock = now_ns;
4819 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4820 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4821
4822 r = -EFAULT;
4823 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4824 goto out;
4825 r = 0;
4826 break;
4827 }
4828 case KVM_MEMORY_ENCRYPT_OP: {
4829 r = -ENOTTY;
4830 if (kvm_x86_ops->mem_enc_op)
4831 r = kvm_x86_ops->mem_enc_op(kvm, argp);
4832 break;
4833 }
4834 case KVM_MEMORY_ENCRYPT_REG_REGION: {
4835 struct kvm_enc_region region;
4836
4837 r = -EFAULT;
4838 if (copy_from_user(&region, argp, sizeof(region)))
4839 goto out;
4840
4841 r = -ENOTTY;
4842 if (kvm_x86_ops->mem_enc_reg_region)
4843 r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
4844 break;
4845 }
4846 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
4847 struct kvm_enc_region region;
4848
4849 r = -EFAULT;
4850 if (copy_from_user(&region, argp, sizeof(region)))
4851 goto out;
4852
4853 r = -ENOTTY;
4854 if (kvm_x86_ops->mem_enc_unreg_region)
4855 r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
4856 break;
4857 }
4858 case KVM_HYPERV_EVENTFD: {
4859 struct kvm_hyperv_eventfd hvevfd;
4860
4861 r = -EFAULT;
4862 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
4863 goto out;
4864 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
4865 break;
4866 }
4867 default:
4868 r = -ENOTTY;
4869 }
4870 out:
4871 return r;
4872 }
4873
4874 static void kvm_init_msr_list(void)
4875 {
4876 u32 dummy[2];
4877 unsigned i, j;
4878
4879 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4880 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4881 continue;
4882
4883 /*
4884 * Even MSRs that are valid in the host may not be exposed
4885 * to the guests in some cases.
4886 */
4887 switch (msrs_to_save[i]) {
4888 case MSR_IA32_BNDCFGS:
4889 if (!kvm_mpx_supported())
4890 continue;
4891 break;
4892 case MSR_TSC_AUX:
4893 if (!kvm_x86_ops->rdtscp_supported())
4894 continue;
4895 break;
4896 case MSR_IA32_RTIT_CTL:
4897 case MSR_IA32_RTIT_STATUS:
4898 if (!kvm_x86_ops->pt_supported())
4899 continue;
4900 break;
4901 case MSR_IA32_RTIT_CR3_MATCH:
4902 if (!kvm_x86_ops->pt_supported() ||
4903 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
4904 continue;
4905 break;
4906 case MSR_IA32_RTIT_OUTPUT_BASE:
4907 case MSR_IA32_RTIT_OUTPUT_MASK:
4908 if (!kvm_x86_ops->pt_supported() ||
4909 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
4910 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
4911 continue;
4912 break;
4913 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: {
4914 if (!kvm_x86_ops->pt_supported() ||
4915 msrs_to_save[i] - MSR_IA32_RTIT_ADDR0_A >=
4916 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
4917 continue;
4918 break;
4919 }
4920 default:
4921 break;
4922 }
4923
4924 if (j < i)
4925 msrs_to_save[j] = msrs_to_save[i];
4926 j++;
4927 }
4928 num_msrs_to_save = j;
4929
4930 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4931 if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
4932 continue;
4933
4934 if (j < i)
4935 emulated_msrs[j] = emulated_msrs[i];
4936 j++;
4937 }
4938 num_emulated_msrs = j;
4939
4940 for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
4941 struct kvm_msr_entry msr;
4942
4943 msr.index = msr_based_features[i];
4944 if (kvm_get_msr_feature(&msr))
4945 continue;
4946
4947 if (j < i)
4948 msr_based_features[j] = msr_based_features[i];
4949 j++;
4950 }
4951 num_msr_based_features = j;
4952 }
4953
4954 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4955 const void *v)
4956 {
4957 int handled = 0;
4958 int n;
4959
4960 do {
4961 n = min(len, 8);
4962 if (!(lapic_in_kernel(vcpu) &&
4963 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4964 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4965 break;
4966 handled += n;
4967 addr += n;
4968 len -= n;
4969 v += n;
4970 } while (len);
4971
4972 return handled;
4973 }
4974
4975 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4976 {
4977 int handled = 0;
4978 int n;
4979
4980 do {
4981 n = min(len, 8);
4982 if (!(lapic_in_kernel(vcpu) &&
4983 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4984 addr, n, v))
4985 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4986 break;
4987 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
4988 handled += n;
4989 addr += n;
4990 len -= n;
4991 v += n;
4992 } while (len);
4993
4994 return handled;
4995 }
4996
4997 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4998 struct kvm_segment *var, int seg)
4999 {
5000 kvm_x86_ops->set_segment(vcpu, var, seg);
5001 }
5002
5003 void kvm_get_segment(struct kvm_vcpu *vcpu,
5004 struct kvm_segment *var, int seg)
5005 {
5006 kvm_x86_ops->get_segment(vcpu, var, seg);
5007 }
5008
5009 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5010 struct x86_exception *exception)
5011 {
5012 gpa_t t_gpa;
5013
5014 BUG_ON(!mmu_is_nested(vcpu));
5015
5016 /* NPT walks are always user-walks */
5017 access |= PFERR_USER_MASK;
5018 t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5019
5020 return t_gpa;
5021 }
5022
5023 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5024 struct x86_exception *exception)
5025 {
5026 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5027 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5028 }
5029
5030 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5031 struct x86_exception *exception)
5032 {
5033 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5034 access |= PFERR_FETCH_MASK;
5035 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5036 }
5037
5038 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5039 struct x86_exception *exception)
5040 {
5041 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5042 access |= PFERR_WRITE_MASK;
5043 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5044 }
5045
5046 /* uses this to access any guest's mapped memory without checking CPL */
5047 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5048 struct x86_exception *exception)
5049 {
5050 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5051 }
5052
5053 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5054 struct kvm_vcpu *vcpu, u32 access,
5055 struct x86_exception *exception)
5056 {
5057 void *data = val;
5058 int r = X86EMUL_CONTINUE;
5059
5060 while (bytes) {
5061 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5062 exception);
5063 unsigned offset = addr & (PAGE_SIZE-1);
5064 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5065 int ret;
5066
5067 if (gpa == UNMAPPED_GVA)
5068 return X86EMUL_PROPAGATE_FAULT;
5069 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5070 offset, toread);
5071 if (ret < 0) {
5072 r = X86EMUL_IO_NEEDED;
5073 goto out;
5074 }
5075
5076 bytes -= toread;
5077 data += toread;
5078 addr += toread;
5079 }
5080 out:
5081 return r;
5082 }
5083
5084 /* used for instruction fetching */
5085 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5086 gva_t addr, void *val, unsigned int bytes,
5087 struct x86_exception *exception)
5088 {
5089 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5090 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5091 unsigned offset;
5092 int ret;
5093
5094 /* Inline kvm_read_guest_virt_helper for speed. */
5095 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5096 exception);
5097 if (unlikely(gpa == UNMAPPED_GVA))
5098 return X86EMUL_PROPAGATE_FAULT;
5099
5100 offset = addr & (PAGE_SIZE-1);
5101 if (WARN_ON(offset + bytes > PAGE_SIZE))
5102 bytes = (unsigned)PAGE_SIZE - offset;
5103 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5104 offset, bytes);
5105 if (unlikely(ret < 0))
5106 return X86EMUL_IO_NEEDED;
5107
5108 return X86EMUL_CONTINUE;
5109 }
5110
5111 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5112 gva_t addr, void *val, unsigned int bytes,
5113 struct x86_exception *exception)
5114 {
5115 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5116
5117 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5118 exception);
5119 }
5120 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5121
5122 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5123 gva_t addr, void *val, unsigned int bytes,
5124 struct x86_exception *exception, bool system)
5125 {
5126 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5127 u32 access = 0;
5128
5129 if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5130 access |= PFERR_USER_MASK;
5131
5132 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5133 }
5134
5135 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5136 unsigned long addr, void *val, unsigned int bytes)
5137 {
5138 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5139 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5140
5141 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5142 }
5143
5144 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5145 struct kvm_vcpu *vcpu, u32 access,
5146 struct x86_exception *exception)
5147 {
5148 void *data = val;
5149 int r = X86EMUL_CONTINUE;
5150
5151 while (bytes) {
5152 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5153 access,
5154 exception);
5155 unsigned offset = addr & (PAGE_SIZE-1);
5156 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5157 int ret;
5158
5159 if (gpa == UNMAPPED_GVA)
5160 return X86EMUL_PROPAGATE_FAULT;
5161 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5162 if (ret < 0) {
5163 r = X86EMUL_IO_NEEDED;
5164 goto out;
5165 }
5166
5167 bytes -= towrite;
5168 data += towrite;
5169 addr += towrite;
5170 }
5171 out:
5172 return r;
5173 }
5174
5175 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5176 unsigned int bytes, struct x86_exception *exception,
5177 bool system)
5178 {
5179 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5180 u32 access = PFERR_WRITE_MASK;
5181
5182 if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5183 access |= PFERR_USER_MASK;
5184
5185 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5186 access, exception);
5187 }
5188
5189 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5190 unsigned int bytes, struct x86_exception *exception)
5191 {
5192 /* kvm_write_guest_virt_system can pull in tons of pages. */
5193 vcpu->arch.l1tf_flush_l1d = true;
5194
5195 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5196 PFERR_WRITE_MASK, exception);
5197 }
5198 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5199
5200 int handle_ud(struct kvm_vcpu *vcpu)
5201 {
5202 int emul_type = EMULTYPE_TRAP_UD;
5203 enum emulation_result er;
5204 char sig[5]; /* ud2; .ascii "kvm" */
5205 struct x86_exception e;
5206
5207 if (force_emulation_prefix &&
5208 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5209 sig, sizeof(sig), &e) == 0 &&
5210 memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) {
5211 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5212 emul_type = 0;
5213 }
5214
5215 er = kvm_emulate_instruction(vcpu, emul_type);
5216 if (er == EMULATE_USER_EXIT)
5217 return 0;
5218 if (er != EMULATE_DONE)
5219 kvm_queue_exception(vcpu, UD_VECTOR);
5220 return 1;
5221 }
5222 EXPORT_SYMBOL_GPL(handle_ud);
5223
5224 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5225 gpa_t gpa, bool write)
5226 {
5227 /* For APIC access vmexit */
5228 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5229 return 1;
5230
5231 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5232 trace_vcpu_match_mmio(gva, gpa, write, true);
5233 return 1;
5234 }
5235
5236 return 0;
5237 }
5238
5239 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5240 gpa_t *gpa, struct x86_exception *exception,
5241 bool write)
5242 {
5243 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5244 | (write ? PFERR_WRITE_MASK : 0);
5245
5246 /*
5247 * currently PKRU is only applied to ept enabled guest so
5248 * there is no pkey in EPT page table for L1 guest or EPT
5249 * shadow page table for L2 guest.
5250 */
5251 if (vcpu_match_mmio_gva(vcpu, gva)
5252 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5253 vcpu->arch.access, 0, access)) {
5254 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5255 (gva & (PAGE_SIZE - 1));
5256 trace_vcpu_match_mmio(gva, *gpa, write, false);
5257 return 1;
5258 }
5259
5260 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5261
5262 if (*gpa == UNMAPPED_GVA)
5263 return -1;
5264
5265 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5266 }
5267
5268 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5269 const void *val, int bytes)
5270 {
5271 int ret;
5272
5273 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5274 if (ret < 0)
5275 return 0;
5276 kvm_page_track_write(vcpu, gpa, val, bytes);
5277 return 1;
5278 }
5279
5280 struct read_write_emulator_ops {
5281 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5282 int bytes);
5283 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5284 void *val, int bytes);
5285 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5286 int bytes, void *val);
5287 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5288 void *val, int bytes);
5289 bool write;
5290 };
5291
5292 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5293 {
5294 if (vcpu->mmio_read_completed) {
5295 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5296 vcpu->mmio_fragments[0].gpa, val);
5297 vcpu->mmio_read_completed = 0;
5298 return 1;
5299 }
5300
5301 return 0;
5302 }
5303
5304 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5305 void *val, int bytes)
5306 {
5307 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5308 }
5309
5310 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5311 void *val, int bytes)
5312 {
5313 return emulator_write_phys(vcpu, gpa, val, bytes);
5314 }
5315
5316 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5317 {
5318 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5319 return vcpu_mmio_write(vcpu, gpa, bytes, val);
5320 }
5321
5322 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5323 void *val, int bytes)
5324 {
5325 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5326 return X86EMUL_IO_NEEDED;
5327 }
5328
5329 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5330 void *val, int bytes)
5331 {
5332 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5333
5334 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5335 return X86EMUL_CONTINUE;
5336 }
5337
5338 static const struct read_write_emulator_ops read_emultor = {
5339 .read_write_prepare = read_prepare,
5340 .read_write_emulate = read_emulate,
5341 .read_write_mmio = vcpu_mmio_read,
5342 .read_write_exit_mmio = read_exit_mmio,
5343 };
5344
5345 static const struct read_write_emulator_ops write_emultor = {
5346 .read_write_emulate = write_emulate,
5347 .read_write_mmio = write_mmio,
5348 .read_write_exit_mmio = write_exit_mmio,
5349 .write = true,
5350 };
5351
5352 static int emulator_read_write_onepage(unsigned long addr, void *val,
5353 unsigned int bytes,
5354 struct x86_exception *exception,
5355 struct kvm_vcpu *vcpu,
5356 const struct read_write_emulator_ops *ops)
5357 {
5358 gpa_t gpa;
5359 int handled, ret;
5360 bool write = ops->write;
5361 struct kvm_mmio_fragment *frag;
5362 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5363
5364 /*
5365 * If the exit was due to a NPF we may already have a GPA.
5366 * If the GPA is present, use it to avoid the GVA to GPA table walk.
5367 * Note, this cannot be used on string operations since string
5368 * operation using rep will only have the initial GPA from the NPF
5369 * occurred.
5370 */
5371 if (vcpu->arch.gpa_available &&
5372 emulator_can_use_gpa(ctxt) &&
5373 (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5374 gpa = vcpu->arch.gpa_val;
5375 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5376 } else {
5377 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5378 if (ret < 0)
5379 return X86EMUL_PROPAGATE_FAULT;
5380 }
5381
5382 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5383 return X86EMUL_CONTINUE;
5384
5385 /*
5386 * Is this MMIO handled locally?
5387 */
5388 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5389 if (handled == bytes)
5390 return X86EMUL_CONTINUE;
5391
5392 gpa += handled;
5393 bytes -= handled;
5394 val += handled;
5395
5396 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5397 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5398 frag->gpa = gpa;
5399 frag->data = val;
5400 frag->len = bytes;
5401 return X86EMUL_CONTINUE;
5402 }
5403
5404 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5405 unsigned long addr,
5406 void *val, unsigned int bytes,
5407 struct x86_exception *exception,
5408 const struct read_write_emulator_ops *ops)
5409 {
5410 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5411 gpa_t gpa;
5412 int rc;
5413
5414 if (ops->read_write_prepare &&
5415 ops->read_write_prepare(vcpu, val, bytes))
5416 return X86EMUL_CONTINUE;
5417
5418 vcpu->mmio_nr_fragments = 0;
5419
5420 /* Crossing a page boundary? */
5421 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5422 int now;
5423
5424 now = -addr & ~PAGE_MASK;
5425 rc = emulator_read_write_onepage(addr, val, now, exception,
5426 vcpu, ops);
5427
5428 if (rc != X86EMUL_CONTINUE)
5429 return rc;
5430 addr += now;
5431 if (ctxt->mode != X86EMUL_MODE_PROT64)
5432 addr = (u32)addr;
5433 val += now;
5434 bytes -= now;
5435 }
5436
5437 rc = emulator_read_write_onepage(addr, val, bytes, exception,
5438 vcpu, ops);
5439 if (rc != X86EMUL_CONTINUE)
5440 return rc;
5441
5442 if (!vcpu->mmio_nr_fragments)
5443 return rc;
5444
5445 gpa = vcpu->mmio_fragments[0].gpa;
5446
5447 vcpu->mmio_needed = 1;
5448 vcpu->mmio_cur_fragment = 0;
5449
5450 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5451 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5452 vcpu->run->exit_reason = KVM_EXIT_MMIO;
5453 vcpu->run->mmio.phys_addr = gpa;
5454
5455 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5456 }
5457
5458 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5459 unsigned long addr,
5460 void *val,
5461 unsigned int bytes,
5462 struct x86_exception *exception)
5463 {
5464 return emulator_read_write(ctxt, addr, val, bytes,
5465 exception, &read_emultor);
5466 }
5467
5468 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5469 unsigned long addr,
5470 const void *val,
5471 unsigned int bytes,
5472 struct x86_exception *exception)
5473 {
5474 return emulator_read_write(ctxt, addr, (void *)val, bytes,
5475 exception, &write_emultor);
5476 }
5477
5478 #define CMPXCHG_TYPE(t, ptr, old, new) \
5479 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5480
5481 #ifdef CONFIG_X86_64
5482 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5483 #else
5484 # define CMPXCHG64(ptr, old, new) \
5485 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5486 #endif
5487
5488 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5489 unsigned long addr,
5490 const void *old,
5491 const void *new,
5492 unsigned int bytes,
5493 struct x86_exception *exception)
5494 {
5495 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5496 gpa_t gpa;
5497 struct page *page;
5498 char *kaddr;
5499 bool exchanged;
5500
5501 /* guests cmpxchg8b have to be emulated atomically */
5502 if (bytes > 8 || (bytes & (bytes - 1)))
5503 goto emul_write;
5504
5505 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5506
5507 if (gpa == UNMAPPED_GVA ||
5508 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5509 goto emul_write;
5510
5511 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5512 goto emul_write;
5513
5514 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
5515 if (is_error_page(page))
5516 goto emul_write;
5517
5518 kaddr = kmap_atomic(page);
5519 kaddr += offset_in_page(gpa);
5520 switch (bytes) {
5521 case 1:
5522 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5523 break;
5524 case 2:
5525 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5526 break;
5527 case 4:
5528 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5529 break;
5530 case 8:
5531 exchanged = CMPXCHG64(kaddr, old, new);
5532 break;
5533 default:
5534 BUG();
5535 }
5536 kunmap_atomic(kaddr);
5537 kvm_release_page_dirty(page);
5538
5539 if (!exchanged)
5540 return X86EMUL_CMPXCHG_FAILED;
5541
5542 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5543 kvm_page_track_write(vcpu, gpa, new, bytes);
5544
5545 return X86EMUL_CONTINUE;
5546
5547 emul_write:
5548 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5549
5550 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5551 }
5552
5553 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5554 {
5555 int r = 0, i;
5556
5557 for (i = 0; i < vcpu->arch.pio.count; i++) {
5558 if (vcpu->arch.pio.in)
5559 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5560 vcpu->arch.pio.size, pd);
5561 else
5562 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5563 vcpu->arch.pio.port, vcpu->arch.pio.size,
5564 pd);
5565 if (r)
5566 break;
5567 pd += vcpu->arch.pio.size;
5568 }
5569 return r;
5570 }
5571
5572 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5573 unsigned short port, void *val,
5574 unsigned int count, bool in)
5575 {
5576 vcpu->arch.pio.port = port;
5577 vcpu->arch.pio.in = in;
5578 vcpu->arch.pio.count = count;
5579 vcpu->arch.pio.size = size;
5580
5581 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5582 vcpu->arch.pio.count = 0;
5583 return 1;
5584 }
5585
5586 vcpu->run->exit_reason = KVM_EXIT_IO;
5587 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5588 vcpu->run->io.size = size;
5589 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5590 vcpu->run->io.count = count;
5591 vcpu->run->io.port = port;
5592
5593 return 0;
5594 }
5595
5596 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5597 int size, unsigned short port, void *val,
5598 unsigned int count)
5599 {
5600 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5601 int ret;
5602
5603 if (vcpu->arch.pio.count)
5604 goto data_avail;
5605
5606 memset(vcpu->arch.pio_data, 0, size * count);
5607
5608 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5609 if (ret) {
5610 data_avail:
5611 memcpy(val, vcpu->arch.pio_data, size * count);
5612 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5613 vcpu->arch.pio.count = 0;
5614 return 1;
5615 }
5616
5617 return 0;
5618 }
5619
5620 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5621 int size, unsigned short port,
5622 const void *val, unsigned int count)
5623 {
5624 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5625
5626 memcpy(vcpu->arch.pio_data, val, size * count);
5627 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5628 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5629 }
5630
5631 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5632 {
5633 return kvm_x86_ops->get_segment_base(vcpu, seg);
5634 }
5635
5636 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5637 {
5638 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5639 }
5640
5641 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5642 {
5643 if (!need_emulate_wbinvd(vcpu))
5644 return X86EMUL_CONTINUE;
5645
5646 if (kvm_x86_ops->has_wbinvd_exit()) {
5647 int cpu = get_cpu();
5648
5649 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5650 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5651 wbinvd_ipi, NULL, 1);
5652 put_cpu();
5653 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5654 } else
5655 wbinvd();
5656 return X86EMUL_CONTINUE;
5657 }
5658
5659 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5660 {
5661 kvm_emulate_wbinvd_noskip(vcpu);
5662 return kvm_skip_emulated_instruction(vcpu);
5663 }
5664 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5665
5666
5667
5668 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5669 {
5670 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5671 }
5672
5673 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5674 unsigned long *dest)
5675 {
5676 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5677 }
5678
5679 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5680 unsigned long value)
5681 {
5682
5683 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5684 }
5685
5686 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5687 {
5688 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5689 }
5690
5691 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5692 {
5693 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5694 unsigned long value;
5695
5696 switch (cr) {
5697 case 0:
5698 value = kvm_read_cr0(vcpu);
5699 break;
5700 case 2:
5701 value = vcpu->arch.cr2;
5702 break;
5703 case 3:
5704 value = kvm_read_cr3(vcpu);
5705 break;
5706 case 4:
5707 value = kvm_read_cr4(vcpu);
5708 break;
5709 case 8:
5710 value = kvm_get_cr8(vcpu);
5711 break;
5712 default:
5713 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5714 return 0;
5715 }
5716
5717 return value;
5718 }
5719
5720 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5721 {
5722 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5723 int res = 0;
5724
5725 switch (cr) {
5726 case 0:
5727 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5728 break;
5729 case 2:
5730 vcpu->arch.cr2 = val;
5731 break;
5732 case 3:
5733 res = kvm_set_cr3(vcpu, val);
5734 break;
5735 case 4:
5736 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5737 break;
5738 case 8:
5739 res = kvm_set_cr8(vcpu, val);
5740 break;
5741 default:
5742 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5743 res = -1;
5744 }
5745
5746 return res;
5747 }
5748
5749 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5750 {
5751 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5752 }
5753
5754 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5755 {
5756 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5757 }
5758
5759 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5760 {
5761 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5762 }
5763
5764 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5765 {
5766 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5767 }
5768
5769 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5770 {
5771 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5772 }
5773
5774 static unsigned long emulator_get_cached_segment_base(
5775 struct x86_emulate_ctxt *ctxt, int seg)
5776 {
5777 return get_segment_base(emul_to_vcpu(ctxt), seg);
5778 }
5779
5780 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5781 struct desc_struct *desc, u32 *base3,
5782 int seg)
5783 {
5784 struct kvm_segment var;
5785
5786 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5787 *selector = var.selector;
5788
5789 if (var.unusable) {
5790 memset(desc, 0, sizeof(*desc));
5791 if (base3)
5792 *base3 = 0;
5793 return false;
5794 }
5795
5796 if (var.g)
5797 var.limit >>= 12;
5798 set_desc_limit(desc, var.limit);
5799 set_desc_base(desc, (unsigned long)var.base);
5800 #ifdef CONFIG_X86_64
5801 if (base3)
5802 *base3 = var.base >> 32;
5803 #endif
5804 desc->type = var.type;
5805 desc->s = var.s;
5806 desc->dpl = var.dpl;
5807 desc->p = var.present;
5808 desc->avl = var.avl;
5809 desc->l = var.l;
5810 desc->d = var.db;
5811 desc->g = var.g;
5812
5813 return true;
5814 }
5815
5816 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5817 struct desc_struct *desc, u32 base3,
5818 int seg)
5819 {
5820 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5821 struct kvm_segment var;
5822
5823 var.selector = selector;
5824 var.base = get_desc_base(desc);
5825 #ifdef CONFIG_X86_64
5826 var.base |= ((u64)base3) << 32;
5827 #endif
5828 var.limit = get_desc_limit(desc);
5829 if (desc->g)
5830 var.limit = (var.limit << 12) | 0xfff;
5831 var.type = desc->type;
5832 var.dpl = desc->dpl;
5833 var.db = desc->d;
5834 var.s = desc->s;
5835 var.l = desc->l;
5836 var.g = desc->g;
5837 var.avl = desc->avl;
5838 var.present = desc->p;
5839 var.unusable = !var.present;
5840 var.padding = 0;
5841
5842 kvm_set_segment(vcpu, &var, seg);
5843 return;
5844 }
5845
5846 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5847 u32 msr_index, u64 *pdata)
5848 {
5849 struct msr_data msr;
5850 int r;
5851
5852 msr.index = msr_index;
5853 msr.host_initiated = false;
5854 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5855 if (r)
5856 return r;
5857
5858 *pdata = msr.data;
5859 return 0;
5860 }
5861
5862 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5863 u32 msr_index, u64 data)
5864 {
5865 struct msr_data msr;
5866
5867 msr.data = data;
5868 msr.index = msr_index;
5869 msr.host_initiated = false;
5870 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5871 }
5872
5873 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5874 {
5875 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5876
5877 return vcpu->arch.smbase;
5878 }
5879
5880 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5881 {
5882 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5883
5884 vcpu->arch.smbase = smbase;
5885 }
5886
5887 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5888 u32 pmc)
5889 {
5890 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5891 }
5892
5893 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5894 u32 pmc, u64 *pdata)
5895 {
5896 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5897 }
5898
5899 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5900 {
5901 emul_to_vcpu(ctxt)->arch.halt_request = 1;
5902 }
5903
5904 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5905 struct x86_instruction_info *info,
5906 enum x86_intercept_stage stage)
5907 {
5908 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5909 }
5910
5911 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5912 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5913 {
5914 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5915 }
5916
5917 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5918 {
5919 return kvm_register_read(emul_to_vcpu(ctxt), reg);
5920 }
5921
5922 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5923 {
5924 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5925 }
5926
5927 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5928 {
5929 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5930 }
5931
5932 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5933 {
5934 return emul_to_vcpu(ctxt)->arch.hflags;
5935 }
5936
5937 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5938 {
5939 kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5940 }
5941
5942 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase)
5943 {
5944 return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase);
5945 }
5946
5947 static const struct x86_emulate_ops emulate_ops = {
5948 .read_gpr = emulator_read_gpr,
5949 .write_gpr = emulator_write_gpr,
5950 .read_std = emulator_read_std,
5951 .write_std = emulator_write_std,
5952 .read_phys = kvm_read_guest_phys_system,
5953 .fetch = kvm_fetch_guest_virt,
5954 .read_emulated = emulator_read_emulated,
5955 .write_emulated = emulator_write_emulated,
5956 .cmpxchg_emulated = emulator_cmpxchg_emulated,
5957 .invlpg = emulator_invlpg,
5958 .pio_in_emulated = emulator_pio_in_emulated,
5959 .pio_out_emulated = emulator_pio_out_emulated,
5960 .get_segment = emulator_get_segment,
5961 .set_segment = emulator_set_segment,
5962 .get_cached_segment_base = emulator_get_cached_segment_base,
5963 .get_gdt = emulator_get_gdt,
5964 .get_idt = emulator_get_idt,
5965 .set_gdt = emulator_set_gdt,
5966 .set_idt = emulator_set_idt,
5967 .get_cr = emulator_get_cr,
5968 .set_cr = emulator_set_cr,
5969 .cpl = emulator_get_cpl,
5970 .get_dr = emulator_get_dr,
5971 .set_dr = emulator_set_dr,
5972 .get_smbase = emulator_get_smbase,
5973 .set_smbase = emulator_set_smbase,
5974 .set_msr = emulator_set_msr,
5975 .get_msr = emulator_get_msr,
5976 .check_pmc = emulator_check_pmc,
5977 .read_pmc = emulator_read_pmc,
5978 .halt = emulator_halt,
5979 .wbinvd = emulator_wbinvd,
5980 .fix_hypercall = emulator_fix_hypercall,
5981 .intercept = emulator_intercept,
5982 .get_cpuid = emulator_get_cpuid,
5983 .set_nmi_mask = emulator_set_nmi_mask,
5984 .get_hflags = emulator_get_hflags,
5985 .set_hflags = emulator_set_hflags,
5986 .pre_leave_smm = emulator_pre_leave_smm,
5987 };
5988
5989 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5990 {
5991 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5992 /*
5993 * an sti; sti; sequence only disable interrupts for the first
5994 * instruction. So, if the last instruction, be it emulated or
5995 * not, left the system with the INT_STI flag enabled, it
5996 * means that the last instruction is an sti. We should not
5997 * leave the flag on in this case. The same goes for mov ss
5998 */
5999 if (int_shadow & mask)
6000 mask = 0;
6001 if (unlikely(int_shadow || mask)) {
6002 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
6003 if (!mask)
6004 kvm_make_request(KVM_REQ_EVENT, vcpu);
6005 }
6006 }
6007
6008 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6009 {
6010 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6011 if (ctxt->exception.vector == PF_VECTOR)
6012 return kvm_propagate_fault(vcpu, &ctxt->exception);
6013
6014 if (ctxt->exception.error_code_valid)
6015 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6016 ctxt->exception.error_code);
6017 else
6018 kvm_queue_exception(vcpu, ctxt->exception.vector);
6019 return false;
6020 }
6021
6022 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6023 {
6024 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6025 int cs_db, cs_l;
6026
6027 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6028
6029 ctxt->eflags = kvm_get_rflags(vcpu);
6030 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6031
6032 ctxt->eip = kvm_rip_read(vcpu);
6033 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
6034 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
6035 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
6036 cs_db ? X86EMUL_MODE_PROT32 :
6037 X86EMUL_MODE_PROT16;
6038 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6039 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6040 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6041
6042 init_decode_cache(ctxt);
6043 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6044 }
6045
6046 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6047 {
6048 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6049 int ret;
6050
6051 init_emulate_ctxt(vcpu);
6052
6053 ctxt->op_bytes = 2;
6054 ctxt->ad_bytes = 2;
6055 ctxt->_eip = ctxt->eip + inc_eip;
6056 ret = emulate_int_real(ctxt, irq);
6057
6058 if (ret != X86EMUL_CONTINUE)
6059 return EMULATE_FAIL;
6060
6061 ctxt->eip = ctxt->_eip;
6062 kvm_rip_write(vcpu, ctxt->eip);
6063 kvm_set_rflags(vcpu, ctxt->eflags);
6064
6065 return EMULATE_DONE;
6066 }
6067 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6068
6069 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6070 {
6071 int r = EMULATE_DONE;
6072
6073 ++vcpu->stat.insn_emulation_fail;
6074 trace_kvm_emulate_insn_failed(vcpu);
6075
6076 if (emulation_type & EMULTYPE_NO_UD_ON_FAIL)
6077 return EMULATE_FAIL;
6078
6079 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
6080 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6081 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6082 vcpu->run->internal.ndata = 0;
6083 r = EMULATE_USER_EXIT;
6084 }
6085
6086 kvm_queue_exception(vcpu, UD_VECTOR);
6087
6088 return r;
6089 }
6090
6091 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
6092 bool write_fault_to_shadow_pgtable,
6093 int emulation_type)
6094 {
6095 gpa_t gpa = cr2;
6096 kvm_pfn_t pfn;
6097
6098 if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6099 return false;
6100
6101 if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6102 return false;
6103
6104 if (!vcpu->arch.mmu->direct_map) {
6105 /*
6106 * Write permission should be allowed since only
6107 * write access need to be emulated.
6108 */
6109 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6110
6111 /*
6112 * If the mapping is invalid in guest, let cpu retry
6113 * it to generate fault.
6114 */
6115 if (gpa == UNMAPPED_GVA)
6116 return true;
6117 }
6118
6119 /*
6120 * Do not retry the unhandleable instruction if it faults on the
6121 * readonly host memory, otherwise it will goto a infinite loop:
6122 * retry instruction -> write #PF -> emulation fail -> retry
6123 * instruction -> ...
6124 */
6125 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6126
6127 /*
6128 * If the instruction failed on the error pfn, it can not be fixed,
6129 * report the error to userspace.
6130 */
6131 if (is_error_noslot_pfn(pfn))
6132 return false;
6133
6134 kvm_release_pfn_clean(pfn);
6135
6136 /* The instructions are well-emulated on direct mmu. */
6137 if (vcpu->arch.mmu->direct_map) {
6138 unsigned int indirect_shadow_pages;
6139
6140 spin_lock(&vcpu->kvm->mmu_lock);
6141 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6142 spin_unlock(&vcpu->kvm->mmu_lock);
6143
6144 if (indirect_shadow_pages)
6145 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6146
6147 return true;
6148 }
6149
6150 /*
6151 * if emulation was due to access to shadowed page table
6152 * and it failed try to unshadow page and re-enter the
6153 * guest to let CPU execute the instruction.
6154 */
6155 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6156
6157 /*
6158 * If the access faults on its page table, it can not
6159 * be fixed by unprotecting shadow page and it should
6160 * be reported to userspace.
6161 */
6162 return !write_fault_to_shadow_pgtable;
6163 }
6164
6165 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6166 unsigned long cr2, int emulation_type)
6167 {
6168 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6169 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
6170
6171 last_retry_eip = vcpu->arch.last_retry_eip;
6172 last_retry_addr = vcpu->arch.last_retry_addr;
6173
6174 /*
6175 * If the emulation is caused by #PF and it is non-page_table
6176 * writing instruction, it means the VM-EXIT is caused by shadow
6177 * page protected, we can zap the shadow page and retry this
6178 * instruction directly.
6179 *
6180 * Note: if the guest uses a non-page-table modifying instruction
6181 * on the PDE that points to the instruction, then we will unmap
6182 * the instruction and go to an infinite loop. So, we cache the
6183 * last retried eip and the last fault address, if we meet the eip
6184 * and the address again, we can break out of the potential infinite
6185 * loop.
6186 */
6187 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6188
6189 if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6190 return false;
6191
6192 if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6193 return false;
6194
6195 if (x86_page_table_writing_insn(ctxt))
6196 return false;
6197
6198 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
6199 return false;
6200
6201 vcpu->arch.last_retry_eip = ctxt->eip;
6202 vcpu->arch.last_retry_addr = cr2;
6203
6204 if (!vcpu->arch.mmu->direct_map)
6205 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6206
6207 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6208
6209 return true;
6210 }
6211
6212 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6213 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6214
6215 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6216 {
6217 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6218 /* This is a good place to trace that we are exiting SMM. */
6219 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6220
6221 /* Process a latched INIT or SMI, if any. */
6222 kvm_make_request(KVM_REQ_EVENT, vcpu);
6223 }
6224
6225 kvm_mmu_reset_context(vcpu);
6226 }
6227
6228 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
6229 {
6230 unsigned changed = vcpu->arch.hflags ^ emul_flags;
6231
6232 vcpu->arch.hflags = emul_flags;
6233
6234 if (changed & HF_SMM_MASK)
6235 kvm_smm_changed(vcpu);
6236 }
6237
6238 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6239 unsigned long *db)
6240 {
6241 u32 dr6 = 0;
6242 int i;
6243 u32 enable, rwlen;
6244
6245 enable = dr7;
6246 rwlen = dr7 >> 16;
6247 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6248 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6249 dr6 |= (1 << i);
6250 return dr6;
6251 }
6252
6253 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
6254 {
6255 struct kvm_run *kvm_run = vcpu->run;
6256
6257 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6258 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6259 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6260 kvm_run->debug.arch.exception = DB_VECTOR;
6261 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6262 *r = EMULATE_USER_EXIT;
6263 } else {
6264 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6265 }
6266 }
6267
6268 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6269 {
6270 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6271 int r = EMULATE_DONE;
6272
6273 kvm_x86_ops->skip_emulated_instruction(vcpu);
6274
6275 /*
6276 * rflags is the old, "raw" value of the flags. The new value has
6277 * not been saved yet.
6278 *
6279 * This is correct even for TF set by the guest, because "the
6280 * processor will not generate this exception after the instruction
6281 * that sets the TF flag".
6282 */
6283 if (unlikely(rflags & X86_EFLAGS_TF))
6284 kvm_vcpu_do_singlestep(vcpu, &r);
6285 return r == EMULATE_DONE;
6286 }
6287 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6288
6289 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6290 {
6291 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6292 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6293 struct kvm_run *kvm_run = vcpu->run;
6294 unsigned long eip = kvm_get_linear_rip(vcpu);
6295 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6296 vcpu->arch.guest_debug_dr7,
6297 vcpu->arch.eff_db);
6298
6299 if (dr6 != 0) {
6300 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6301 kvm_run->debug.arch.pc = eip;
6302 kvm_run->debug.arch.exception = DB_VECTOR;
6303 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6304 *r = EMULATE_USER_EXIT;
6305 return true;
6306 }
6307 }
6308
6309 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6310 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6311 unsigned long eip = kvm_get_linear_rip(vcpu);
6312 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6313 vcpu->arch.dr7,
6314 vcpu->arch.db);
6315
6316 if (dr6 != 0) {
6317 vcpu->arch.dr6 &= ~15;
6318 vcpu->arch.dr6 |= dr6 | DR6_RTM;
6319 kvm_queue_exception(vcpu, DB_VECTOR);
6320 *r = EMULATE_DONE;
6321 return true;
6322 }
6323 }
6324
6325 return false;
6326 }
6327
6328 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6329 {
6330 switch (ctxt->opcode_len) {
6331 case 1:
6332 switch (ctxt->b) {
6333 case 0xe4: /* IN */
6334 case 0xe5:
6335 case 0xec:
6336 case 0xed:
6337 case 0xe6: /* OUT */
6338 case 0xe7:
6339 case 0xee:
6340 case 0xef:
6341 case 0x6c: /* INS */
6342 case 0x6d:
6343 case 0x6e: /* OUTS */
6344 case 0x6f:
6345 return true;
6346 }
6347 break;
6348 case 2:
6349 switch (ctxt->b) {
6350 case 0x33: /* RDPMC */
6351 return true;
6352 }
6353 break;
6354 }
6355
6356 return false;
6357 }
6358
6359 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6360 unsigned long cr2,
6361 int emulation_type,
6362 void *insn,
6363 int insn_len)
6364 {
6365 int r;
6366 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6367 bool writeback = true;
6368 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6369
6370 vcpu->arch.l1tf_flush_l1d = true;
6371
6372 /*
6373 * Clear write_fault_to_shadow_pgtable here to ensure it is
6374 * never reused.
6375 */
6376 vcpu->arch.write_fault_to_shadow_pgtable = false;
6377 kvm_clear_exception_queue(vcpu);
6378
6379 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6380 init_emulate_ctxt(vcpu);
6381
6382 /*
6383 * We will reenter on the same instruction since
6384 * we do not set complete_userspace_io. This does not
6385 * handle watchpoints yet, those would be handled in
6386 * the emulate_ops.
6387 */
6388 if (!(emulation_type & EMULTYPE_SKIP) &&
6389 kvm_vcpu_check_breakpoint(vcpu, &r))
6390 return r;
6391
6392 ctxt->interruptibility = 0;
6393 ctxt->have_exception = false;
6394 ctxt->exception.vector = -1;
6395 ctxt->perm_ok = false;
6396
6397 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6398
6399 r = x86_decode_insn(ctxt, insn, insn_len);
6400
6401 trace_kvm_emulate_insn_start(vcpu);
6402 ++vcpu->stat.insn_emulation;
6403 if (r != EMULATION_OK) {
6404 if (emulation_type & EMULTYPE_TRAP_UD)
6405 return EMULATE_FAIL;
6406 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6407 emulation_type))
6408 return EMULATE_DONE;
6409 if (ctxt->have_exception && inject_emulated_exception(vcpu))
6410 return EMULATE_DONE;
6411 if (emulation_type & EMULTYPE_SKIP)
6412 return EMULATE_FAIL;
6413 return handle_emulation_failure(vcpu, emulation_type);
6414 }
6415 }
6416
6417 if ((emulation_type & EMULTYPE_VMWARE) &&
6418 !is_vmware_backdoor_opcode(ctxt))
6419 return EMULATE_FAIL;
6420
6421 if (emulation_type & EMULTYPE_SKIP) {
6422 kvm_rip_write(vcpu, ctxt->_eip);
6423 if (ctxt->eflags & X86_EFLAGS_RF)
6424 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6425 return EMULATE_DONE;
6426 }
6427
6428 if (retry_instruction(ctxt, cr2, emulation_type))
6429 return EMULATE_DONE;
6430
6431 /* this is needed for vmware backdoor interface to work since it
6432 changes registers values during IO operation */
6433 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6434 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6435 emulator_invalidate_register_cache(ctxt);
6436 }
6437
6438 restart:
6439 /* Save the faulting GPA (cr2) in the address field */
6440 ctxt->exception.address = cr2;
6441
6442 r = x86_emulate_insn(ctxt);
6443
6444 if (r == EMULATION_INTERCEPTED)
6445 return EMULATE_DONE;
6446
6447 if (r == EMULATION_FAILED) {
6448 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6449 emulation_type))
6450 return EMULATE_DONE;
6451
6452 return handle_emulation_failure(vcpu, emulation_type);
6453 }
6454
6455 if (ctxt->have_exception) {
6456 r = EMULATE_DONE;
6457 if (inject_emulated_exception(vcpu))
6458 return r;
6459 } else if (vcpu->arch.pio.count) {
6460 if (!vcpu->arch.pio.in) {
6461 /* FIXME: return into emulator if single-stepping. */
6462 vcpu->arch.pio.count = 0;
6463 } else {
6464 writeback = false;
6465 vcpu->arch.complete_userspace_io = complete_emulated_pio;
6466 }
6467 r = EMULATE_USER_EXIT;
6468 } else if (vcpu->mmio_needed) {
6469 if (!vcpu->mmio_is_write)
6470 writeback = false;
6471 r = EMULATE_USER_EXIT;
6472 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6473 } else if (r == EMULATION_RESTART)
6474 goto restart;
6475 else
6476 r = EMULATE_DONE;
6477
6478 if (writeback) {
6479 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6480 toggle_interruptibility(vcpu, ctxt->interruptibility);
6481 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6482 kvm_rip_write(vcpu, ctxt->eip);
6483 if (r == EMULATE_DONE &&
6484 (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
6485 kvm_vcpu_do_singlestep(vcpu, &r);
6486 if (!ctxt->have_exception ||
6487 exception_type(ctxt->exception.vector) == EXCPT_TRAP)
6488 __kvm_set_rflags(vcpu, ctxt->eflags);
6489
6490 /*
6491 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6492 * do nothing, and it will be requested again as soon as
6493 * the shadow expires. But we still need to check here,
6494 * because POPF has no interrupt shadow.
6495 */
6496 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6497 kvm_make_request(KVM_REQ_EVENT, vcpu);
6498 } else
6499 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6500
6501 return r;
6502 }
6503
6504 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6505 {
6506 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6507 }
6508 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6509
6510 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6511 void *insn, int insn_len)
6512 {
6513 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6514 }
6515 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6516
6517 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6518 unsigned short port)
6519 {
6520 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
6521 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6522 size, port, &val, 1);
6523 /* do not return to emulator after return from userspace */
6524 vcpu->arch.pio.count = 0;
6525 return ret;
6526 }
6527
6528 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6529 {
6530 unsigned long val;
6531
6532 /* We should only ever be called with arch.pio.count equal to 1 */
6533 BUG_ON(vcpu->arch.pio.count != 1);
6534
6535 /* For size less than 4 we merge, else we zero extend */
6536 val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
6537 : 0;
6538
6539 /*
6540 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6541 * the copy and tracing
6542 */
6543 emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6544 vcpu->arch.pio.port, &val, 1);
6545 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6546
6547 return 1;
6548 }
6549
6550 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6551 unsigned short port)
6552 {
6553 unsigned long val;
6554 int ret;
6555
6556 /* For size less than 4 we merge, else we zero extend */
6557 val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
6558
6559 ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6560 &val, 1);
6561 if (ret) {
6562 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6563 return ret;
6564 }
6565
6566 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6567
6568 return 0;
6569 }
6570
6571 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6572 {
6573 int ret = kvm_skip_emulated_instruction(vcpu);
6574
6575 /*
6576 * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
6577 * KVM_EXIT_DEBUG here.
6578 */
6579 if (in)
6580 return kvm_fast_pio_in(vcpu, size, port) && ret;
6581 else
6582 return kvm_fast_pio_out(vcpu, size, port) && ret;
6583 }
6584 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6585
6586 static int kvmclock_cpu_down_prep(unsigned int cpu)
6587 {
6588 __this_cpu_write(cpu_tsc_khz, 0);
6589 return 0;
6590 }
6591
6592 static void tsc_khz_changed(void *data)
6593 {
6594 struct cpufreq_freqs *freq = data;
6595 unsigned long khz = 0;
6596
6597 if (data)
6598 khz = freq->new;
6599 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6600 khz = cpufreq_quick_get(raw_smp_processor_id());
6601 if (!khz)
6602 khz = tsc_khz;
6603 __this_cpu_write(cpu_tsc_khz, khz);
6604 }
6605
6606 #ifdef CONFIG_X86_64
6607 static void kvm_hyperv_tsc_notifier(void)
6608 {
6609 struct kvm *kvm;
6610 struct kvm_vcpu *vcpu;
6611 int cpu;
6612
6613 spin_lock(&kvm_lock);
6614 list_for_each_entry(kvm, &vm_list, vm_list)
6615 kvm_make_mclock_inprogress_request(kvm);
6616
6617 hyperv_stop_tsc_emulation();
6618
6619 /* TSC frequency always matches when on Hyper-V */
6620 for_each_present_cpu(cpu)
6621 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6622 kvm_max_guest_tsc_khz = tsc_khz;
6623
6624 list_for_each_entry(kvm, &vm_list, vm_list) {
6625 struct kvm_arch *ka = &kvm->arch;
6626
6627 spin_lock(&ka->pvclock_gtod_sync_lock);
6628
6629 pvclock_update_vm_gtod_copy(kvm);
6630
6631 kvm_for_each_vcpu(cpu, vcpu, kvm)
6632 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6633
6634 kvm_for_each_vcpu(cpu, vcpu, kvm)
6635 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6636
6637 spin_unlock(&ka->pvclock_gtod_sync_lock);
6638 }
6639 spin_unlock(&kvm_lock);
6640 }
6641 #endif
6642
6643 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6644 void *data)
6645 {
6646 struct cpufreq_freqs *freq = data;
6647 struct kvm *kvm;
6648 struct kvm_vcpu *vcpu;
6649 int i, send_ipi = 0;
6650
6651 /*
6652 * We allow guests to temporarily run on slowing clocks,
6653 * provided we notify them after, or to run on accelerating
6654 * clocks, provided we notify them before. Thus time never
6655 * goes backwards.
6656 *
6657 * However, we have a problem. We can't atomically update
6658 * the frequency of a given CPU from this function; it is
6659 * merely a notifier, which can be called from any CPU.
6660 * Changing the TSC frequency at arbitrary points in time
6661 * requires a recomputation of local variables related to
6662 * the TSC for each VCPU. We must flag these local variables
6663 * to be updated and be sure the update takes place with the
6664 * new frequency before any guests proceed.
6665 *
6666 * Unfortunately, the combination of hotplug CPU and frequency
6667 * change creates an intractable locking scenario; the order
6668 * of when these callouts happen is undefined with respect to
6669 * CPU hotplug, and they can race with each other. As such,
6670 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6671 * undefined; you can actually have a CPU frequency change take
6672 * place in between the computation of X and the setting of the
6673 * variable. To protect against this problem, all updates of
6674 * the per_cpu tsc_khz variable are done in an interrupt
6675 * protected IPI, and all callers wishing to update the value
6676 * must wait for a synchronous IPI to complete (which is trivial
6677 * if the caller is on the CPU already). This establishes the
6678 * necessary total order on variable updates.
6679 *
6680 * Note that because a guest time update may take place
6681 * anytime after the setting of the VCPU's request bit, the
6682 * correct TSC value must be set before the request. However,
6683 * to ensure the update actually makes it to any guest which
6684 * starts running in hardware virtualization between the set
6685 * and the acquisition of the spinlock, we must also ping the
6686 * CPU after setting the request bit.
6687 *
6688 */
6689
6690 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6691 return 0;
6692 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6693 return 0;
6694
6695 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6696
6697 spin_lock(&kvm_lock);
6698 list_for_each_entry(kvm, &vm_list, vm_list) {
6699 kvm_for_each_vcpu(i, vcpu, kvm) {
6700 if (vcpu->cpu != freq->cpu)
6701 continue;
6702 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6703 if (vcpu->cpu != smp_processor_id())
6704 send_ipi = 1;
6705 }
6706 }
6707 spin_unlock(&kvm_lock);
6708
6709 if (freq->old < freq->new && send_ipi) {
6710 /*
6711 * We upscale the frequency. Must make the guest
6712 * doesn't see old kvmclock values while running with
6713 * the new frequency, otherwise we risk the guest sees
6714 * time go backwards.
6715 *
6716 * In case we update the frequency for another cpu
6717 * (which might be in guest context) send an interrupt
6718 * to kick the cpu out of guest context. Next time
6719 * guest context is entered kvmclock will be updated,
6720 * so the guest will not see stale values.
6721 */
6722 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6723 }
6724 return 0;
6725 }
6726
6727 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6728 .notifier_call = kvmclock_cpufreq_notifier
6729 };
6730
6731 static int kvmclock_cpu_online(unsigned int cpu)
6732 {
6733 tsc_khz_changed(NULL);
6734 return 0;
6735 }
6736
6737 static void kvm_timer_init(void)
6738 {
6739 max_tsc_khz = tsc_khz;
6740
6741 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6742 #ifdef CONFIG_CPU_FREQ
6743 struct cpufreq_policy policy;
6744 int cpu;
6745
6746 memset(&policy, 0, sizeof(policy));
6747 cpu = get_cpu();
6748 cpufreq_get_policy(&policy, cpu);
6749 if (policy.cpuinfo.max_freq)
6750 max_tsc_khz = policy.cpuinfo.max_freq;
6751 put_cpu();
6752 #endif
6753 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6754 CPUFREQ_TRANSITION_NOTIFIER);
6755 }
6756 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6757
6758 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6759 kvmclock_cpu_online, kvmclock_cpu_down_prep);
6760 }
6761
6762 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6763 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
6764
6765 int kvm_is_in_guest(void)
6766 {
6767 return __this_cpu_read(current_vcpu) != NULL;
6768 }
6769
6770 static int kvm_is_user_mode(void)
6771 {
6772 int user_mode = 3;
6773
6774 if (__this_cpu_read(current_vcpu))
6775 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6776
6777 return user_mode != 0;
6778 }
6779
6780 static unsigned long kvm_get_guest_ip(void)
6781 {
6782 unsigned long ip = 0;
6783
6784 if (__this_cpu_read(current_vcpu))
6785 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6786
6787 return ip;
6788 }
6789
6790 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6791 .is_in_guest = kvm_is_in_guest,
6792 .is_user_mode = kvm_is_user_mode,
6793 .get_guest_ip = kvm_get_guest_ip,
6794 };
6795
6796 static void kvm_set_mmio_spte_mask(void)
6797 {
6798 u64 mask;
6799 int maxphyaddr = boot_cpu_data.x86_phys_bits;
6800
6801 /*
6802 * Set the reserved bits and the present bit of an paging-structure
6803 * entry to generate page fault with PFER.RSV = 1.
6804 */
6805
6806 /*
6807 * Mask the uppermost physical address bit, which would be reserved as
6808 * long as the supported physical address width is less than 52.
6809 */
6810 mask = 1ull << 51;
6811
6812 /* Set the present bit. */
6813 mask |= 1ull;
6814
6815 /*
6816 * If reserved bit is not supported, clear the present bit to disable
6817 * mmio page fault.
6818 */
6819 if (IS_ENABLED(CONFIG_X86_64) && maxphyaddr == 52)
6820 mask &= ~1ull;
6821
6822 kvm_mmu_set_mmio_spte_mask(mask, mask);
6823 }
6824
6825 #ifdef CONFIG_X86_64
6826 static void pvclock_gtod_update_fn(struct work_struct *work)
6827 {
6828 struct kvm *kvm;
6829
6830 struct kvm_vcpu *vcpu;
6831 int i;
6832
6833 spin_lock(&kvm_lock);
6834 list_for_each_entry(kvm, &vm_list, vm_list)
6835 kvm_for_each_vcpu(i, vcpu, kvm)
6836 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6837 atomic_set(&kvm_guest_has_master_clock, 0);
6838 spin_unlock(&kvm_lock);
6839 }
6840
6841 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6842
6843 /*
6844 * Notification about pvclock gtod data update.
6845 */
6846 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6847 void *priv)
6848 {
6849 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6850 struct timekeeper *tk = priv;
6851
6852 update_pvclock_gtod(tk);
6853
6854 /* disable master clock if host does not trust, or does not
6855 * use, TSC based clocksource.
6856 */
6857 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
6858 atomic_read(&kvm_guest_has_master_clock) != 0)
6859 queue_work(system_long_wq, &pvclock_gtod_work);
6860
6861 return 0;
6862 }
6863
6864 static struct notifier_block pvclock_gtod_notifier = {
6865 .notifier_call = pvclock_gtod_notify,
6866 };
6867 #endif
6868
6869 int kvm_arch_init(void *opaque)
6870 {
6871 int r;
6872 struct kvm_x86_ops *ops = opaque;
6873
6874 if (kvm_x86_ops) {
6875 printk(KERN_ERR "kvm: already loaded the other module\n");
6876 r = -EEXIST;
6877 goto out;
6878 }
6879
6880 if (!ops->cpu_has_kvm_support()) {
6881 printk(KERN_ERR "kvm: no hardware support\n");
6882 r = -EOPNOTSUPP;
6883 goto out;
6884 }
6885 if (ops->disabled_by_bios()) {
6886 printk(KERN_ERR "kvm: disabled by bios\n");
6887 r = -EOPNOTSUPP;
6888 goto out;
6889 }
6890
6891 /*
6892 * KVM explicitly assumes that the guest has an FPU and
6893 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
6894 * vCPU's FPU state as a fxregs_state struct.
6895 */
6896 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
6897 printk(KERN_ERR "kvm: inadequate fpu\n");
6898 r = -EOPNOTSUPP;
6899 goto out;
6900 }
6901
6902 r = -ENOMEM;
6903 x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
6904 __alignof__(struct fpu), SLAB_ACCOUNT,
6905 NULL);
6906 if (!x86_fpu_cache) {
6907 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
6908 goto out;
6909 }
6910
6911 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6912 if (!shared_msrs) {
6913 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6914 goto out_free_x86_fpu_cache;
6915 }
6916
6917 r = kvm_mmu_module_init();
6918 if (r)
6919 goto out_free_percpu;
6920
6921 kvm_set_mmio_spte_mask();
6922
6923 kvm_x86_ops = ops;
6924
6925 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6926 PT_DIRTY_MASK, PT64_NX_MASK, 0,
6927 PT_PRESENT_MASK, 0, sme_me_mask);
6928 kvm_timer_init();
6929
6930 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6931
6932 if (boot_cpu_has(X86_FEATURE_XSAVE))
6933 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6934
6935 kvm_lapic_init();
6936 #ifdef CONFIG_X86_64
6937 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6938
6939 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6940 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
6941 #endif
6942
6943 return 0;
6944
6945 out_free_percpu:
6946 free_percpu(shared_msrs);
6947 out_free_x86_fpu_cache:
6948 kmem_cache_destroy(x86_fpu_cache);
6949 out:
6950 return r;
6951 }
6952
6953 void kvm_arch_exit(void)
6954 {
6955 #ifdef CONFIG_X86_64
6956 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6957 clear_hv_tscchange_cb();
6958 #endif
6959 kvm_lapic_exit();
6960 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6961
6962 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6963 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6964 CPUFREQ_TRANSITION_NOTIFIER);
6965 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6966 #ifdef CONFIG_X86_64
6967 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6968 #endif
6969 kvm_x86_ops = NULL;
6970 kvm_mmu_module_exit();
6971 free_percpu(shared_msrs);
6972 kmem_cache_destroy(x86_fpu_cache);
6973 }
6974
6975 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6976 {
6977 ++vcpu->stat.halt_exits;
6978 if (lapic_in_kernel(vcpu)) {
6979 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6980 return 1;
6981 } else {
6982 vcpu->run->exit_reason = KVM_EXIT_HLT;
6983 return 0;
6984 }
6985 }
6986 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6987
6988 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6989 {
6990 int ret = kvm_skip_emulated_instruction(vcpu);
6991 /*
6992 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6993 * KVM_EXIT_DEBUG here.
6994 */
6995 return kvm_vcpu_halt(vcpu) && ret;
6996 }
6997 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6998
6999 #ifdef CONFIG_X86_64
7000 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7001 unsigned long clock_type)
7002 {
7003 struct kvm_clock_pairing clock_pairing;
7004 struct timespec64 ts;
7005 u64 cycle;
7006 int ret;
7007
7008 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7009 return -KVM_EOPNOTSUPP;
7010
7011 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7012 return -KVM_EOPNOTSUPP;
7013
7014 clock_pairing.sec = ts.tv_sec;
7015 clock_pairing.nsec = ts.tv_nsec;
7016 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7017 clock_pairing.flags = 0;
7018 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7019
7020 ret = 0;
7021 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7022 sizeof(struct kvm_clock_pairing)))
7023 ret = -KVM_EFAULT;
7024
7025 return ret;
7026 }
7027 #endif
7028
7029 /*
7030 * kvm_pv_kick_cpu_op: Kick a vcpu.
7031 *
7032 * @apicid - apicid of vcpu to be kicked.
7033 */
7034 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7035 {
7036 struct kvm_lapic_irq lapic_irq;
7037
7038 lapic_irq.shorthand = 0;
7039 lapic_irq.dest_mode = 0;
7040 lapic_irq.level = 0;
7041 lapic_irq.dest_id = apicid;
7042 lapic_irq.msi_redir_hint = false;
7043
7044 lapic_irq.delivery_mode = APIC_DM_REMRD;
7045 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
7046 }
7047
7048 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
7049 {
7050 vcpu->arch.apicv_active = false;
7051 kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
7052 }
7053
7054 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
7055 {
7056 unsigned long nr, a0, a1, a2, a3, ret;
7057 int op_64_bit;
7058
7059 if (kvm_hv_hypercall_enabled(vcpu->kvm))
7060 return kvm_hv_hypercall(vcpu);
7061
7062 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
7063 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
7064 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
7065 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
7066 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
7067
7068 trace_kvm_hypercall(nr, a0, a1, a2, a3);
7069
7070 op_64_bit = is_64_bit_mode(vcpu);
7071 if (!op_64_bit) {
7072 nr &= 0xFFFFFFFF;
7073 a0 &= 0xFFFFFFFF;
7074 a1 &= 0xFFFFFFFF;
7075 a2 &= 0xFFFFFFFF;
7076 a3 &= 0xFFFFFFFF;
7077 }
7078
7079 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
7080 ret = -KVM_EPERM;
7081 goto out;
7082 }
7083
7084 switch (nr) {
7085 case KVM_HC_VAPIC_POLL_IRQ:
7086 ret = 0;
7087 break;
7088 case KVM_HC_KICK_CPU:
7089 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7090 ret = 0;
7091 break;
7092 #ifdef CONFIG_X86_64
7093 case KVM_HC_CLOCK_PAIRING:
7094 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7095 break;
7096 case KVM_HC_SEND_IPI:
7097 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7098 break;
7099 #endif
7100 default:
7101 ret = -KVM_ENOSYS;
7102 break;
7103 }
7104 out:
7105 if (!op_64_bit)
7106 ret = (u32)ret;
7107 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
7108
7109 ++vcpu->stat.hypercalls;
7110 return kvm_skip_emulated_instruction(vcpu);
7111 }
7112 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7113
7114 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7115 {
7116 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7117 char instruction[3];
7118 unsigned long rip = kvm_rip_read(vcpu);
7119
7120 kvm_x86_ops->patch_hypercall(vcpu, instruction);
7121
7122 return emulator_write_emulated(ctxt, rip, instruction, 3,
7123 &ctxt->exception);
7124 }
7125
7126 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7127 {
7128 return vcpu->run->request_interrupt_window &&
7129 likely(!pic_in_kernel(vcpu->kvm));
7130 }
7131
7132 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7133 {
7134 struct kvm_run *kvm_run = vcpu->run;
7135
7136 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7137 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7138 kvm_run->cr8 = kvm_get_cr8(vcpu);
7139 kvm_run->apic_base = kvm_get_apic_base(vcpu);
7140 kvm_run->ready_for_interrupt_injection =
7141 pic_in_kernel(vcpu->kvm) ||
7142 kvm_vcpu_ready_for_interrupt_injection(vcpu);
7143 }
7144
7145 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7146 {
7147 int max_irr, tpr;
7148
7149 if (!kvm_x86_ops->update_cr8_intercept)
7150 return;
7151
7152 if (!lapic_in_kernel(vcpu))
7153 return;
7154
7155 if (vcpu->arch.apicv_active)
7156 return;
7157
7158 if (!vcpu->arch.apic->vapic_addr)
7159 max_irr = kvm_lapic_find_highest_irr(vcpu);
7160 else
7161 max_irr = -1;
7162
7163 if (max_irr != -1)
7164 max_irr >>= 4;
7165
7166 tpr = kvm_lapic_get_cr8(vcpu);
7167
7168 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
7169 }
7170
7171 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
7172 {
7173 int r;
7174
7175 /* try to reinject previous events if any */
7176
7177 if (vcpu->arch.exception.injected)
7178 kvm_x86_ops->queue_exception(vcpu);
7179 /*
7180 * Do not inject an NMI or interrupt if there is a pending
7181 * exception. Exceptions and interrupts are recognized at
7182 * instruction boundaries, i.e. the start of an instruction.
7183 * Trap-like exceptions, e.g. #DB, have higher priority than
7184 * NMIs and interrupts, i.e. traps are recognized before an
7185 * NMI/interrupt that's pending on the same instruction.
7186 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7187 * priority, but are only generated (pended) during instruction
7188 * execution, i.e. a pending fault-like exception means the
7189 * fault occurred on the *previous* instruction and must be
7190 * serviced prior to recognizing any new events in order to
7191 * fully complete the previous instruction.
7192 */
7193 else if (!vcpu->arch.exception.pending) {
7194 if (vcpu->arch.nmi_injected)
7195 kvm_x86_ops->set_nmi(vcpu);
7196 else if (vcpu->arch.interrupt.injected)
7197 kvm_x86_ops->set_irq(vcpu);
7198 }
7199
7200 /*
7201 * Call check_nested_events() even if we reinjected a previous event
7202 * in order for caller to determine if it should require immediate-exit
7203 * from L2 to L1 due to pending L1 events which require exit
7204 * from L2 to L1.
7205 */
7206 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7207 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7208 if (r != 0)
7209 return r;
7210 }
7211
7212 /* try to inject new event if pending */
7213 if (vcpu->arch.exception.pending) {
7214 trace_kvm_inj_exception(vcpu->arch.exception.nr,
7215 vcpu->arch.exception.has_error_code,
7216 vcpu->arch.exception.error_code);
7217
7218 WARN_ON_ONCE(vcpu->arch.exception.injected);
7219 vcpu->arch.exception.pending = false;
7220 vcpu->arch.exception.injected = true;
7221
7222 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7223 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7224 X86_EFLAGS_RF);
7225
7226 if (vcpu->arch.exception.nr == DB_VECTOR) {
7227 /*
7228 * This code assumes that nSVM doesn't use
7229 * check_nested_events(). If it does, the
7230 * DR6/DR7 changes should happen before L1
7231 * gets a #VMEXIT for an intercepted #DB in
7232 * L2. (Under VMX, on the other hand, the
7233 * DR6/DR7 changes should not happen in the
7234 * event of a VM-exit to L1 for an intercepted
7235 * #DB in L2.)
7236 */
7237 kvm_deliver_exception_payload(vcpu);
7238 if (vcpu->arch.dr7 & DR7_GD) {
7239 vcpu->arch.dr7 &= ~DR7_GD;
7240 kvm_update_dr7(vcpu);
7241 }
7242 }
7243
7244 kvm_x86_ops->queue_exception(vcpu);
7245 }
7246
7247 /* Don't consider new event if we re-injected an event */
7248 if (kvm_event_needs_reinjection(vcpu))
7249 return 0;
7250
7251 if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7252 kvm_x86_ops->smi_allowed(vcpu)) {
7253 vcpu->arch.smi_pending = false;
7254 ++vcpu->arch.smi_count;
7255 enter_smm(vcpu);
7256 } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
7257 --vcpu->arch.nmi_pending;
7258 vcpu->arch.nmi_injected = true;
7259 kvm_x86_ops->set_nmi(vcpu);
7260 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
7261 /*
7262 * Because interrupts can be injected asynchronously, we are
7263 * calling check_nested_events again here to avoid a race condition.
7264 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7265 * proposal and current concerns. Perhaps we should be setting
7266 * KVM_REQ_EVENT only on certain events and not unconditionally?
7267 */
7268 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7269 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7270 if (r != 0)
7271 return r;
7272 }
7273 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
7274 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7275 false);
7276 kvm_x86_ops->set_irq(vcpu);
7277 }
7278 }
7279
7280 return 0;
7281 }
7282
7283 static void process_nmi(struct kvm_vcpu *vcpu)
7284 {
7285 unsigned limit = 2;
7286
7287 /*
7288 * x86 is limited to one NMI running, and one NMI pending after it.
7289 * If an NMI is already in progress, limit further NMIs to just one.
7290 * Otherwise, allow two (and we'll inject the first one immediately).
7291 */
7292 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7293 limit = 1;
7294
7295 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7296 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7297 kvm_make_request(KVM_REQ_EVENT, vcpu);
7298 }
7299
7300 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7301 {
7302 u32 flags = 0;
7303 flags |= seg->g << 23;
7304 flags |= seg->db << 22;
7305 flags |= seg->l << 21;
7306 flags |= seg->avl << 20;
7307 flags |= seg->present << 15;
7308 flags |= seg->dpl << 13;
7309 flags |= seg->s << 12;
7310 flags |= seg->type << 8;
7311 return flags;
7312 }
7313
7314 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7315 {
7316 struct kvm_segment seg;
7317 int offset;
7318
7319 kvm_get_segment(vcpu, &seg, n);
7320 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7321
7322 if (n < 3)
7323 offset = 0x7f84 + n * 12;
7324 else
7325 offset = 0x7f2c + (n - 3) * 12;
7326
7327 put_smstate(u32, buf, offset + 8, seg.base);
7328 put_smstate(u32, buf, offset + 4, seg.limit);
7329 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7330 }
7331
7332 #ifdef CONFIG_X86_64
7333 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7334 {
7335 struct kvm_segment seg;
7336 int offset;
7337 u16 flags;
7338
7339 kvm_get_segment(vcpu, &seg, n);
7340 offset = 0x7e00 + n * 16;
7341
7342 flags = enter_smm_get_segment_flags(&seg) >> 8;
7343 put_smstate(u16, buf, offset, seg.selector);
7344 put_smstate(u16, buf, offset + 2, flags);
7345 put_smstate(u32, buf, offset + 4, seg.limit);
7346 put_smstate(u64, buf, offset + 8, seg.base);
7347 }
7348 #endif
7349
7350 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7351 {
7352 struct desc_ptr dt;
7353 struct kvm_segment seg;
7354 unsigned long val;
7355 int i;
7356
7357 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7358 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7359 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7360 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7361
7362 for (i = 0; i < 8; i++)
7363 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7364
7365 kvm_get_dr(vcpu, 6, &val);
7366 put_smstate(u32, buf, 0x7fcc, (u32)val);
7367 kvm_get_dr(vcpu, 7, &val);
7368 put_smstate(u32, buf, 0x7fc8, (u32)val);
7369
7370 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7371 put_smstate(u32, buf, 0x7fc4, seg.selector);
7372 put_smstate(u32, buf, 0x7f64, seg.base);
7373 put_smstate(u32, buf, 0x7f60, seg.limit);
7374 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7375
7376 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7377 put_smstate(u32, buf, 0x7fc0, seg.selector);
7378 put_smstate(u32, buf, 0x7f80, seg.base);
7379 put_smstate(u32, buf, 0x7f7c, seg.limit);
7380 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7381
7382 kvm_x86_ops->get_gdt(vcpu, &dt);
7383 put_smstate(u32, buf, 0x7f74, dt.address);
7384 put_smstate(u32, buf, 0x7f70, dt.size);
7385
7386 kvm_x86_ops->get_idt(vcpu, &dt);
7387 put_smstate(u32, buf, 0x7f58, dt.address);
7388 put_smstate(u32, buf, 0x7f54, dt.size);
7389
7390 for (i = 0; i < 6; i++)
7391 enter_smm_save_seg_32(vcpu, buf, i);
7392
7393 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7394
7395 /* revision id */
7396 put_smstate(u32, buf, 0x7efc, 0x00020000);
7397 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7398 }
7399
7400 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7401 {
7402 #ifdef CONFIG_X86_64
7403 struct desc_ptr dt;
7404 struct kvm_segment seg;
7405 unsigned long val;
7406 int i;
7407
7408 for (i = 0; i < 16; i++)
7409 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7410
7411 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7412 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7413
7414 kvm_get_dr(vcpu, 6, &val);
7415 put_smstate(u64, buf, 0x7f68, val);
7416 kvm_get_dr(vcpu, 7, &val);
7417 put_smstate(u64, buf, 0x7f60, val);
7418
7419 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7420 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7421 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7422
7423 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7424
7425 /* revision id */
7426 put_smstate(u32, buf, 0x7efc, 0x00020064);
7427
7428 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7429
7430 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7431 put_smstate(u16, buf, 0x7e90, seg.selector);
7432 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7433 put_smstate(u32, buf, 0x7e94, seg.limit);
7434 put_smstate(u64, buf, 0x7e98, seg.base);
7435
7436 kvm_x86_ops->get_idt(vcpu, &dt);
7437 put_smstate(u32, buf, 0x7e84, dt.size);
7438 put_smstate(u64, buf, 0x7e88, dt.address);
7439
7440 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7441 put_smstate(u16, buf, 0x7e70, seg.selector);
7442 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7443 put_smstate(u32, buf, 0x7e74, seg.limit);
7444 put_smstate(u64, buf, 0x7e78, seg.base);
7445
7446 kvm_x86_ops->get_gdt(vcpu, &dt);
7447 put_smstate(u32, buf, 0x7e64, dt.size);
7448 put_smstate(u64, buf, 0x7e68, dt.address);
7449
7450 for (i = 0; i < 6; i++)
7451 enter_smm_save_seg_64(vcpu, buf, i);
7452 #else
7453 WARN_ON_ONCE(1);
7454 #endif
7455 }
7456
7457 static void enter_smm(struct kvm_vcpu *vcpu)
7458 {
7459 struct kvm_segment cs, ds;
7460 struct desc_ptr dt;
7461 char buf[512];
7462 u32 cr0;
7463
7464 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7465 memset(buf, 0, 512);
7466 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7467 enter_smm_save_state_64(vcpu, buf);
7468 else
7469 enter_smm_save_state_32(vcpu, buf);
7470
7471 /*
7472 * Give pre_enter_smm() a chance to make ISA-specific changes to the
7473 * vCPU state (e.g. leave guest mode) after we've saved the state into
7474 * the SMM state-save area.
7475 */
7476 kvm_x86_ops->pre_enter_smm(vcpu, buf);
7477
7478 vcpu->arch.hflags |= HF_SMM_MASK;
7479 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7480
7481 if (kvm_x86_ops->get_nmi_mask(vcpu))
7482 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7483 else
7484 kvm_x86_ops->set_nmi_mask(vcpu, true);
7485
7486 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7487 kvm_rip_write(vcpu, 0x8000);
7488
7489 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7490 kvm_x86_ops->set_cr0(vcpu, cr0);
7491 vcpu->arch.cr0 = cr0;
7492
7493 kvm_x86_ops->set_cr4(vcpu, 0);
7494
7495 /* Undocumented: IDT limit is set to zero on entry to SMM. */
7496 dt.address = dt.size = 0;
7497 kvm_x86_ops->set_idt(vcpu, &dt);
7498
7499 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7500
7501 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7502 cs.base = vcpu->arch.smbase;
7503
7504 ds.selector = 0;
7505 ds.base = 0;
7506
7507 cs.limit = ds.limit = 0xffffffff;
7508 cs.type = ds.type = 0x3;
7509 cs.dpl = ds.dpl = 0;
7510 cs.db = ds.db = 0;
7511 cs.s = ds.s = 1;
7512 cs.l = ds.l = 0;
7513 cs.g = ds.g = 1;
7514 cs.avl = ds.avl = 0;
7515 cs.present = ds.present = 1;
7516 cs.unusable = ds.unusable = 0;
7517 cs.padding = ds.padding = 0;
7518
7519 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7520 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7521 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7522 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7523 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7524 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7525
7526 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7527 kvm_x86_ops->set_efer(vcpu, 0);
7528
7529 kvm_update_cpuid(vcpu);
7530 kvm_mmu_reset_context(vcpu);
7531 }
7532
7533 static void process_smi(struct kvm_vcpu *vcpu)
7534 {
7535 vcpu->arch.smi_pending = true;
7536 kvm_make_request(KVM_REQ_EVENT, vcpu);
7537 }
7538
7539 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7540 {
7541 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7542 }
7543
7544 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7545 {
7546 if (!kvm_apic_present(vcpu))
7547 return;
7548
7549 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7550
7551 if (irqchip_split(vcpu->kvm))
7552 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7553 else {
7554 if (vcpu->arch.apicv_active)
7555 kvm_x86_ops->sync_pir_to_irr(vcpu);
7556 if (ioapic_in_kernel(vcpu->kvm))
7557 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7558 }
7559
7560 if (is_guest_mode(vcpu))
7561 vcpu->arch.load_eoi_exitmap_pending = true;
7562 else
7563 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7564 }
7565
7566 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7567 {
7568 u64 eoi_exit_bitmap[4];
7569
7570 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7571 return;
7572
7573 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7574 vcpu_to_synic(vcpu)->vec_bitmap, 256);
7575 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7576 }
7577
7578 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7579 unsigned long start, unsigned long end,
7580 bool blockable)
7581 {
7582 unsigned long apic_address;
7583
7584 /*
7585 * The physical address of apic access page is stored in the VMCS.
7586 * Update it when it becomes invalid.
7587 */
7588 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7589 if (start <= apic_address && apic_address < end)
7590 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7591
7592 return 0;
7593 }
7594
7595 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7596 {
7597 struct page *page = NULL;
7598
7599 if (!lapic_in_kernel(vcpu))
7600 return;
7601
7602 if (!kvm_x86_ops->set_apic_access_page_addr)
7603 return;
7604
7605 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7606 if (is_error_page(page))
7607 return;
7608 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7609
7610 /*
7611 * Do not pin apic access page in memory, the MMU notifier
7612 * will call us again if it is migrated or swapped out.
7613 */
7614 put_page(page);
7615 }
7616 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7617
7618 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
7619 {
7620 smp_send_reschedule(vcpu->cpu);
7621 }
7622 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
7623
7624 /*
7625 * Returns 1 to let vcpu_run() continue the guest execution loop without
7626 * exiting to the userspace. Otherwise, the value will be returned to the
7627 * userspace.
7628 */
7629 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7630 {
7631 int r;
7632 bool req_int_win =
7633 dm_request_for_irq_injection(vcpu) &&
7634 kvm_cpu_accept_dm_intr(vcpu);
7635
7636 bool req_immediate_exit = false;
7637
7638 if (kvm_request_pending(vcpu)) {
7639 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu))
7640 kvm_x86_ops->get_vmcs12_pages(vcpu);
7641 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7642 kvm_mmu_unload(vcpu);
7643 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7644 __kvm_migrate_timers(vcpu);
7645 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7646 kvm_gen_update_masterclock(vcpu->kvm);
7647 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7648 kvm_gen_kvmclock_update(vcpu);
7649 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7650 r = kvm_guest_time_update(vcpu);
7651 if (unlikely(r))
7652 goto out;
7653 }
7654 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7655 kvm_mmu_sync_roots(vcpu);
7656 if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu))
7657 kvm_mmu_load_cr3(vcpu);
7658 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7659 kvm_vcpu_flush_tlb(vcpu, true);
7660 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7661 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7662 r = 0;
7663 goto out;
7664 }
7665 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7666 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7667 vcpu->mmio_needed = 0;
7668 r = 0;
7669 goto out;
7670 }
7671 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7672 /* Page is swapped out. Do synthetic halt */
7673 vcpu->arch.apf.halted = true;
7674 r = 1;
7675 goto out;
7676 }
7677 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7678 record_steal_time(vcpu);
7679 if (kvm_check_request(KVM_REQ_SMI, vcpu))
7680 process_smi(vcpu);
7681 if (kvm_check_request(KVM_REQ_NMI, vcpu))
7682 process_nmi(vcpu);
7683 if (kvm_check_request(KVM_REQ_PMU, vcpu))
7684 kvm_pmu_handle_event(vcpu);
7685 if (kvm_check_request(KVM_REQ_PMI, vcpu))
7686 kvm_pmu_deliver_pmi(vcpu);
7687 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7688 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7689 if (test_bit(vcpu->arch.pending_ioapic_eoi,
7690 vcpu->arch.ioapic_handled_vectors)) {
7691 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7692 vcpu->run->eoi.vector =
7693 vcpu->arch.pending_ioapic_eoi;
7694 r = 0;
7695 goto out;
7696 }
7697 }
7698 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7699 vcpu_scan_ioapic(vcpu);
7700 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
7701 vcpu_load_eoi_exitmap(vcpu);
7702 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7703 kvm_vcpu_reload_apic_access_page(vcpu);
7704 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7705 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7706 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7707 r = 0;
7708 goto out;
7709 }
7710 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7711 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7712 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7713 r = 0;
7714 goto out;
7715 }
7716 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7717 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7718 vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7719 r = 0;
7720 goto out;
7721 }
7722
7723 /*
7724 * KVM_REQ_HV_STIMER has to be processed after
7725 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7726 * depend on the guest clock being up-to-date
7727 */
7728 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7729 kvm_hv_process_stimers(vcpu);
7730 }
7731
7732 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7733 ++vcpu->stat.req_event;
7734 kvm_apic_accept_events(vcpu);
7735 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7736 r = 1;
7737 goto out;
7738 }
7739
7740 if (inject_pending_event(vcpu, req_int_win) != 0)
7741 req_immediate_exit = true;
7742 else {
7743 /* Enable SMI/NMI/IRQ window open exits if needed.
7744 *
7745 * SMIs have three cases:
7746 * 1) They can be nested, and then there is nothing to
7747 * do here because RSM will cause a vmexit anyway.
7748 * 2) There is an ISA-specific reason why SMI cannot be
7749 * injected, and the moment when this changes can be
7750 * intercepted.
7751 * 3) Or the SMI can be pending because
7752 * inject_pending_event has completed the injection
7753 * of an IRQ or NMI from the previous vmexit, and
7754 * then we request an immediate exit to inject the
7755 * SMI.
7756 */
7757 if (vcpu->arch.smi_pending && !is_smm(vcpu))
7758 if (!kvm_x86_ops->enable_smi_window(vcpu))
7759 req_immediate_exit = true;
7760 if (vcpu->arch.nmi_pending)
7761 kvm_x86_ops->enable_nmi_window(vcpu);
7762 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7763 kvm_x86_ops->enable_irq_window(vcpu);
7764 WARN_ON(vcpu->arch.exception.pending);
7765 }
7766
7767 if (kvm_lapic_enabled(vcpu)) {
7768 update_cr8_intercept(vcpu);
7769 kvm_lapic_sync_to_vapic(vcpu);
7770 }
7771 }
7772
7773 r = kvm_mmu_reload(vcpu);
7774 if (unlikely(r)) {
7775 goto cancel_injection;
7776 }
7777
7778 preempt_disable();
7779
7780 kvm_x86_ops->prepare_guest_switch(vcpu);
7781
7782 /*
7783 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
7784 * IPI are then delayed after guest entry, which ensures that they
7785 * result in virtual interrupt delivery.
7786 */
7787 local_irq_disable();
7788 vcpu->mode = IN_GUEST_MODE;
7789
7790 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7791
7792 /*
7793 * 1) We should set ->mode before checking ->requests. Please see
7794 * the comment in kvm_vcpu_exiting_guest_mode().
7795 *
7796 * 2) For APICv, we should set ->mode before checking PIR.ON. This
7797 * pairs with the memory barrier implicit in pi_test_and_set_on
7798 * (see vmx_deliver_posted_interrupt).
7799 *
7800 * 3) This also orders the write to mode from any reads to the page
7801 * tables done while the VCPU is running. Please see the comment
7802 * in kvm_flush_remote_tlbs.
7803 */
7804 smp_mb__after_srcu_read_unlock();
7805
7806 /*
7807 * This handles the case where a posted interrupt was
7808 * notified with kvm_vcpu_kick.
7809 */
7810 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
7811 kvm_x86_ops->sync_pir_to_irr(vcpu);
7812
7813 if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7814 || need_resched() || signal_pending(current)) {
7815 vcpu->mode = OUTSIDE_GUEST_MODE;
7816 smp_wmb();
7817 local_irq_enable();
7818 preempt_enable();
7819 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7820 r = 1;
7821 goto cancel_injection;
7822 }
7823
7824 kvm_load_guest_xcr0(vcpu);
7825
7826 if (req_immediate_exit) {
7827 kvm_make_request(KVM_REQ_EVENT, vcpu);
7828 kvm_x86_ops->request_immediate_exit(vcpu);
7829 }
7830
7831 trace_kvm_entry(vcpu->vcpu_id);
7832 if (lapic_timer_advance_ns)
7833 wait_lapic_expire(vcpu);
7834 guest_enter_irqoff();
7835
7836 if (unlikely(vcpu->arch.switch_db_regs)) {
7837 set_debugreg(0, 7);
7838 set_debugreg(vcpu->arch.eff_db[0], 0);
7839 set_debugreg(vcpu->arch.eff_db[1], 1);
7840 set_debugreg(vcpu->arch.eff_db[2], 2);
7841 set_debugreg(vcpu->arch.eff_db[3], 3);
7842 set_debugreg(vcpu->arch.dr6, 6);
7843 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7844 }
7845
7846 kvm_x86_ops->run(vcpu);
7847
7848 /*
7849 * Do this here before restoring debug registers on the host. And
7850 * since we do this before handling the vmexit, a DR access vmexit
7851 * can (a) read the correct value of the debug registers, (b) set
7852 * KVM_DEBUGREG_WONT_EXIT again.
7853 */
7854 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7855 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7856 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7857 kvm_update_dr0123(vcpu);
7858 kvm_update_dr6(vcpu);
7859 kvm_update_dr7(vcpu);
7860 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7861 }
7862
7863 /*
7864 * If the guest has used debug registers, at least dr7
7865 * will be disabled while returning to the host.
7866 * If we don't have active breakpoints in the host, we don't
7867 * care about the messed up debug address registers. But if
7868 * we have some of them active, restore the old state.
7869 */
7870 if (hw_breakpoint_active())
7871 hw_breakpoint_restore();
7872
7873 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7874
7875 vcpu->mode = OUTSIDE_GUEST_MODE;
7876 smp_wmb();
7877
7878 kvm_put_guest_xcr0(vcpu);
7879
7880 kvm_before_interrupt(vcpu);
7881 kvm_x86_ops->handle_external_intr(vcpu);
7882 kvm_after_interrupt(vcpu);
7883
7884 ++vcpu->stat.exits;
7885
7886 guest_exit_irqoff();
7887
7888 local_irq_enable();
7889 preempt_enable();
7890
7891 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7892
7893 /*
7894 * Profile KVM exit RIPs:
7895 */
7896 if (unlikely(prof_on == KVM_PROFILING)) {
7897 unsigned long rip = kvm_rip_read(vcpu);
7898 profile_hit(KVM_PROFILING, (void *)rip);
7899 }
7900
7901 if (unlikely(vcpu->arch.tsc_always_catchup))
7902 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7903
7904 if (vcpu->arch.apic_attention)
7905 kvm_lapic_sync_from_vapic(vcpu);
7906
7907 vcpu->arch.gpa_available = false;
7908 r = kvm_x86_ops->handle_exit(vcpu);
7909 return r;
7910
7911 cancel_injection:
7912 kvm_x86_ops->cancel_injection(vcpu);
7913 if (unlikely(vcpu->arch.apic_attention))
7914 kvm_lapic_sync_from_vapic(vcpu);
7915 out:
7916 return r;
7917 }
7918
7919 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7920 {
7921 if (!kvm_arch_vcpu_runnable(vcpu) &&
7922 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7923 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7924 kvm_vcpu_block(vcpu);
7925 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7926
7927 if (kvm_x86_ops->post_block)
7928 kvm_x86_ops->post_block(vcpu);
7929
7930 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7931 return 1;
7932 }
7933
7934 kvm_apic_accept_events(vcpu);
7935 switch(vcpu->arch.mp_state) {
7936 case KVM_MP_STATE_HALTED:
7937 vcpu->arch.pv.pv_unhalted = false;
7938 vcpu->arch.mp_state =
7939 KVM_MP_STATE_RUNNABLE;
7940 case KVM_MP_STATE_RUNNABLE:
7941 vcpu->arch.apf.halted = false;
7942 break;
7943 case KVM_MP_STATE_INIT_RECEIVED:
7944 break;
7945 default:
7946 return -EINTR;
7947 break;
7948 }
7949 return 1;
7950 }
7951
7952 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7953 {
7954 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7955 kvm_x86_ops->check_nested_events(vcpu, false);
7956
7957 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7958 !vcpu->arch.apf.halted);
7959 }
7960
7961 static int vcpu_run(struct kvm_vcpu *vcpu)
7962 {
7963 int r;
7964 struct kvm *kvm = vcpu->kvm;
7965
7966 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7967 vcpu->arch.l1tf_flush_l1d = true;
7968
7969 for (;;) {
7970 if (kvm_vcpu_running(vcpu)) {
7971 r = vcpu_enter_guest(vcpu);
7972 } else {
7973 r = vcpu_block(kvm, vcpu);
7974 }
7975
7976 if (r <= 0)
7977 break;
7978
7979 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7980 if (kvm_cpu_has_pending_timer(vcpu))
7981 kvm_inject_pending_timer_irqs(vcpu);
7982
7983 if (dm_request_for_irq_injection(vcpu) &&
7984 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7985 r = 0;
7986 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7987 ++vcpu->stat.request_irq_exits;
7988 break;
7989 }
7990
7991 kvm_check_async_pf_completion(vcpu);
7992
7993 if (signal_pending(current)) {
7994 r = -EINTR;
7995 vcpu->run->exit_reason = KVM_EXIT_INTR;
7996 ++vcpu->stat.signal_exits;
7997 break;
7998 }
7999 if (need_resched()) {
8000 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8001 cond_resched();
8002 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8003 }
8004 }
8005
8006 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8007
8008 return r;
8009 }
8010
8011 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
8012 {
8013 int r;
8014 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8015 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
8016 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8017 if (r != EMULATE_DONE)
8018 return 0;
8019 return 1;
8020 }
8021
8022 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
8023 {
8024 BUG_ON(!vcpu->arch.pio.count);
8025
8026 return complete_emulated_io(vcpu);
8027 }
8028
8029 /*
8030 * Implements the following, as a state machine:
8031 *
8032 * read:
8033 * for each fragment
8034 * for each mmio piece in the fragment
8035 * write gpa, len
8036 * exit
8037 * copy data
8038 * execute insn
8039 *
8040 * write:
8041 * for each fragment
8042 * for each mmio piece in the fragment
8043 * write gpa, len
8044 * copy data
8045 * exit
8046 */
8047 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
8048 {
8049 struct kvm_run *run = vcpu->run;
8050 struct kvm_mmio_fragment *frag;
8051 unsigned len;
8052
8053 BUG_ON(!vcpu->mmio_needed);
8054
8055 /* Complete previous fragment */
8056 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
8057 len = min(8u, frag->len);
8058 if (!vcpu->mmio_is_write)
8059 memcpy(frag->data, run->mmio.data, len);
8060
8061 if (frag->len <= 8) {
8062 /* Switch to the next fragment. */
8063 frag++;
8064 vcpu->mmio_cur_fragment++;
8065 } else {
8066 /* Go forward to the next mmio piece. */
8067 frag->data += len;
8068 frag->gpa += len;
8069 frag->len -= len;
8070 }
8071
8072 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
8073 vcpu->mmio_needed = 0;
8074
8075 /* FIXME: return into emulator if single-stepping. */
8076 if (vcpu->mmio_is_write)
8077 return 1;
8078 vcpu->mmio_read_completed = 1;
8079 return complete_emulated_io(vcpu);
8080 }
8081
8082 run->exit_reason = KVM_EXIT_MMIO;
8083 run->mmio.phys_addr = frag->gpa;
8084 if (vcpu->mmio_is_write)
8085 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8086 run->mmio.len = min(8u, frag->len);
8087 run->mmio.is_write = vcpu->mmio_is_write;
8088 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8089 return 0;
8090 }
8091
8092 /* Swap (qemu) user FPU context for the guest FPU context. */
8093 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8094 {
8095 preempt_disable();
8096 copy_fpregs_to_fpstate(&current->thread.fpu);
8097 /* PKRU is separately restored in kvm_x86_ops->run. */
8098 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
8099 ~XFEATURE_MASK_PKRU);
8100 preempt_enable();
8101 trace_kvm_fpu(1);
8102 }
8103
8104 /* When vcpu_run ends, restore user space FPU context. */
8105 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8106 {
8107 preempt_disable();
8108 copy_fpregs_to_fpstate(vcpu->arch.guest_fpu);
8109 copy_kernel_to_fpregs(&current->thread.fpu.state);
8110 preempt_enable();
8111 ++vcpu->stat.fpu_reload;
8112 trace_kvm_fpu(0);
8113 }
8114
8115 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
8116 {
8117 int r;
8118
8119 vcpu_load(vcpu);
8120 kvm_sigset_activate(vcpu);
8121 kvm_load_guest_fpu(vcpu);
8122
8123 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8124 if (kvm_run->immediate_exit) {
8125 r = -EINTR;
8126 goto out;
8127 }
8128 kvm_vcpu_block(vcpu);
8129 kvm_apic_accept_events(vcpu);
8130 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8131 r = -EAGAIN;
8132 if (signal_pending(current)) {
8133 r = -EINTR;
8134 vcpu->run->exit_reason = KVM_EXIT_INTR;
8135 ++vcpu->stat.signal_exits;
8136 }
8137 goto out;
8138 }
8139
8140 if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8141 r = -EINVAL;
8142 goto out;
8143 }
8144
8145 if (vcpu->run->kvm_dirty_regs) {
8146 r = sync_regs(vcpu);
8147 if (r != 0)
8148 goto out;
8149 }
8150
8151 /* re-sync apic's tpr */
8152 if (!lapic_in_kernel(vcpu)) {
8153 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8154 r = -EINVAL;
8155 goto out;
8156 }
8157 }
8158
8159 if (unlikely(vcpu->arch.complete_userspace_io)) {
8160 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8161 vcpu->arch.complete_userspace_io = NULL;
8162 r = cui(vcpu);
8163 if (r <= 0)
8164 goto out;
8165 } else
8166 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8167
8168 if (kvm_run->immediate_exit)
8169 r = -EINTR;
8170 else
8171 r = vcpu_run(vcpu);
8172
8173 out:
8174 kvm_put_guest_fpu(vcpu);
8175 if (vcpu->run->kvm_valid_regs)
8176 store_regs(vcpu);
8177 post_kvm_run_save(vcpu);
8178 kvm_sigset_deactivate(vcpu);
8179
8180 vcpu_put(vcpu);
8181 return r;
8182 }
8183
8184 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8185 {
8186 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8187 /*
8188 * We are here if userspace calls get_regs() in the middle of
8189 * instruction emulation. Registers state needs to be copied
8190 * back from emulation context to vcpu. Userspace shouldn't do
8191 * that usually, but some bad designed PV devices (vmware
8192 * backdoor interface) need this to work
8193 */
8194 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
8195 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8196 }
8197 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
8198 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
8199 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
8200 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
8201 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
8202 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
8203 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
8204 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
8205 #ifdef CONFIG_X86_64
8206 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
8207 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
8208 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
8209 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
8210 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
8211 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
8212 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
8213 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
8214 #endif
8215
8216 regs->rip = kvm_rip_read(vcpu);
8217 regs->rflags = kvm_get_rflags(vcpu);
8218 }
8219
8220 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8221 {
8222 vcpu_load(vcpu);
8223 __get_regs(vcpu, regs);
8224 vcpu_put(vcpu);
8225 return 0;
8226 }
8227
8228 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8229 {
8230 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8231 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8232
8233 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
8234 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
8235 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
8236 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
8237 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
8238 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
8239 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
8240 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
8241 #ifdef CONFIG_X86_64
8242 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
8243 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
8244 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
8245 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
8246 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
8247 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
8248 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
8249 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
8250 #endif
8251
8252 kvm_rip_write(vcpu, regs->rip);
8253 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8254
8255 vcpu->arch.exception.pending = false;
8256
8257 kvm_make_request(KVM_REQ_EVENT, vcpu);
8258 }
8259
8260 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8261 {
8262 vcpu_load(vcpu);
8263 __set_regs(vcpu, regs);
8264 vcpu_put(vcpu);
8265 return 0;
8266 }
8267
8268 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8269 {
8270 struct kvm_segment cs;
8271
8272 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8273 *db = cs.db;
8274 *l = cs.l;
8275 }
8276 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8277
8278 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8279 {
8280 struct desc_ptr dt;
8281
8282 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8283 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8284 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8285 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8286 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8287 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8288
8289 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8290 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8291
8292 kvm_x86_ops->get_idt(vcpu, &dt);
8293 sregs->idt.limit = dt.size;
8294 sregs->idt.base = dt.address;
8295 kvm_x86_ops->get_gdt(vcpu, &dt);
8296 sregs->gdt.limit = dt.size;
8297 sregs->gdt.base = dt.address;
8298
8299 sregs->cr0 = kvm_read_cr0(vcpu);
8300 sregs->cr2 = vcpu->arch.cr2;
8301 sregs->cr3 = kvm_read_cr3(vcpu);
8302 sregs->cr4 = kvm_read_cr4(vcpu);
8303 sregs->cr8 = kvm_get_cr8(vcpu);
8304 sregs->efer = vcpu->arch.efer;
8305 sregs->apic_base = kvm_get_apic_base(vcpu);
8306
8307 memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
8308
8309 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8310 set_bit(vcpu->arch.interrupt.nr,
8311 (unsigned long *)sregs->interrupt_bitmap);
8312 }
8313
8314 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8315 struct kvm_sregs *sregs)
8316 {
8317 vcpu_load(vcpu);
8318 __get_sregs(vcpu, sregs);
8319 vcpu_put(vcpu);
8320 return 0;
8321 }
8322
8323 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8324 struct kvm_mp_state *mp_state)
8325 {
8326 vcpu_load(vcpu);
8327
8328 kvm_apic_accept_events(vcpu);
8329 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8330 vcpu->arch.pv.pv_unhalted)
8331 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8332 else
8333 mp_state->mp_state = vcpu->arch.mp_state;
8334
8335 vcpu_put(vcpu);
8336 return 0;
8337 }
8338
8339 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8340 struct kvm_mp_state *mp_state)
8341 {
8342 int ret = -EINVAL;
8343
8344 vcpu_load(vcpu);
8345
8346 if (!lapic_in_kernel(vcpu) &&
8347 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8348 goto out;
8349
8350 /* INITs are latched while in SMM */
8351 if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
8352 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8353 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8354 goto out;
8355
8356 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8357 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8358 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8359 } else
8360 vcpu->arch.mp_state = mp_state->mp_state;
8361 kvm_make_request(KVM_REQ_EVENT, vcpu);
8362
8363 ret = 0;
8364 out:
8365 vcpu_put(vcpu);
8366 return ret;
8367 }
8368
8369 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8370 int reason, bool has_error_code, u32 error_code)
8371 {
8372 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
8373 int ret;
8374
8375 init_emulate_ctxt(vcpu);
8376
8377 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8378 has_error_code, error_code);
8379
8380 if (ret)
8381 return EMULATE_FAIL;
8382
8383 kvm_rip_write(vcpu, ctxt->eip);
8384 kvm_set_rflags(vcpu, ctxt->eflags);
8385 kvm_make_request(KVM_REQ_EVENT, vcpu);
8386 return EMULATE_DONE;
8387 }
8388 EXPORT_SYMBOL_GPL(kvm_task_switch);
8389
8390 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8391 {
8392 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
8393 (sregs->cr4 & X86_CR4_OSXSAVE))
8394 return -EINVAL;
8395
8396 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8397 /*
8398 * When EFER.LME and CR0.PG are set, the processor is in
8399 * 64-bit mode (though maybe in a 32-bit code segment).
8400 * CR4.PAE and EFER.LMA must be set.
8401 */
8402 if (!(sregs->cr4 & X86_CR4_PAE)
8403 || !(sregs->efer & EFER_LMA))
8404 return -EINVAL;
8405 } else {
8406 /*
8407 * Not in 64-bit mode: EFER.LMA is clear and the code
8408 * segment cannot be 64-bit.
8409 */
8410 if (sregs->efer & EFER_LMA || sregs->cs.l)
8411 return -EINVAL;
8412 }
8413
8414 return 0;
8415 }
8416
8417 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8418 {
8419 struct msr_data apic_base_msr;
8420 int mmu_reset_needed = 0;
8421 int cpuid_update_needed = 0;
8422 int pending_vec, max_bits, idx;
8423 struct desc_ptr dt;
8424 int ret = -EINVAL;
8425
8426 if (kvm_valid_sregs(vcpu, sregs))
8427 goto out;
8428
8429 apic_base_msr.data = sregs->apic_base;
8430 apic_base_msr.host_initiated = true;
8431 if (kvm_set_apic_base(vcpu, &apic_base_msr))
8432 goto out;
8433
8434 dt.size = sregs->idt.limit;
8435 dt.address = sregs->idt.base;
8436 kvm_x86_ops->set_idt(vcpu, &dt);
8437 dt.size = sregs->gdt.limit;
8438 dt.address = sregs->gdt.base;
8439 kvm_x86_ops->set_gdt(vcpu, &dt);
8440
8441 vcpu->arch.cr2 = sregs->cr2;
8442 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8443 vcpu->arch.cr3 = sregs->cr3;
8444 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
8445
8446 kvm_set_cr8(vcpu, sregs->cr8);
8447
8448 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8449 kvm_x86_ops->set_efer(vcpu, sregs->efer);
8450
8451 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8452 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8453 vcpu->arch.cr0 = sregs->cr0;
8454
8455 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8456 cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
8457 (X86_CR4_OSXSAVE | X86_CR4_PKE));
8458 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8459 if (cpuid_update_needed)
8460 kvm_update_cpuid(vcpu);
8461
8462 idx = srcu_read_lock(&vcpu->kvm->srcu);
8463 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu)) {
8464 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8465 mmu_reset_needed = 1;
8466 }
8467 srcu_read_unlock(&vcpu->kvm->srcu, idx);
8468
8469 if (mmu_reset_needed)
8470 kvm_mmu_reset_context(vcpu);
8471
8472 max_bits = KVM_NR_INTERRUPTS;
8473 pending_vec = find_first_bit(
8474 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
8475 if (pending_vec < max_bits) {
8476 kvm_queue_interrupt(vcpu, pending_vec, false);
8477 pr_debug("Set back pending irq %d\n", pending_vec);
8478 }
8479
8480 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8481 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8482 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8483 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8484 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8485 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8486
8487 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8488 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8489
8490 update_cr8_intercept(vcpu);
8491
8492 /* Older userspace won't unhalt the vcpu on reset. */
8493 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8494 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8495 !is_protmode(vcpu))
8496 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8497
8498 kvm_make_request(KVM_REQ_EVENT, vcpu);
8499
8500 ret = 0;
8501 out:
8502 return ret;
8503 }
8504
8505 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8506 struct kvm_sregs *sregs)
8507 {
8508 int ret;
8509
8510 vcpu_load(vcpu);
8511 ret = __set_sregs(vcpu, sregs);
8512 vcpu_put(vcpu);
8513 return ret;
8514 }
8515
8516 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8517 struct kvm_guest_debug *dbg)
8518 {
8519 unsigned long rflags;
8520 int i, r;
8521
8522 vcpu_load(vcpu);
8523
8524 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8525 r = -EBUSY;
8526 if (vcpu->arch.exception.pending)
8527 goto out;
8528 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8529 kvm_queue_exception(vcpu, DB_VECTOR);
8530 else
8531 kvm_queue_exception(vcpu, BP_VECTOR);
8532 }
8533
8534 /*
8535 * Read rflags as long as potentially injected trace flags are still
8536 * filtered out.
8537 */
8538 rflags = kvm_get_rflags(vcpu);
8539
8540 vcpu->guest_debug = dbg->control;
8541 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8542 vcpu->guest_debug = 0;
8543
8544 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8545 for (i = 0; i < KVM_NR_DB_REGS; ++i)
8546 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8547 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8548 } else {
8549 for (i = 0; i < KVM_NR_DB_REGS; i++)
8550 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8551 }
8552 kvm_update_dr7(vcpu);
8553
8554 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8555 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8556 get_segment_base(vcpu, VCPU_SREG_CS);
8557
8558 /*
8559 * Trigger an rflags update that will inject or remove the trace
8560 * flags.
8561 */
8562 kvm_set_rflags(vcpu, rflags);
8563
8564 kvm_x86_ops->update_bp_intercept(vcpu);
8565
8566 r = 0;
8567
8568 out:
8569 vcpu_put(vcpu);
8570 return r;
8571 }
8572
8573 /*
8574 * Translate a guest virtual address to a guest physical address.
8575 */
8576 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8577 struct kvm_translation *tr)
8578 {
8579 unsigned long vaddr = tr->linear_address;
8580 gpa_t gpa;
8581 int idx;
8582
8583 vcpu_load(vcpu);
8584
8585 idx = srcu_read_lock(&vcpu->kvm->srcu);
8586 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8587 srcu_read_unlock(&vcpu->kvm->srcu, idx);
8588 tr->physical_address = gpa;
8589 tr->valid = gpa != UNMAPPED_GVA;
8590 tr->writeable = 1;
8591 tr->usermode = 0;
8592
8593 vcpu_put(vcpu);
8594 return 0;
8595 }
8596
8597 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8598 {
8599 struct fxregs_state *fxsave;
8600
8601 vcpu_load(vcpu);
8602
8603 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8604 memcpy(fpu->fpr, fxsave->st_space, 128);
8605 fpu->fcw = fxsave->cwd;
8606 fpu->fsw = fxsave->swd;
8607 fpu->ftwx = fxsave->twd;
8608 fpu->last_opcode = fxsave->fop;
8609 fpu->last_ip = fxsave->rip;
8610 fpu->last_dp = fxsave->rdp;
8611 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
8612
8613 vcpu_put(vcpu);
8614 return 0;
8615 }
8616
8617 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8618 {
8619 struct fxregs_state *fxsave;
8620
8621 vcpu_load(vcpu);
8622
8623 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8624
8625 memcpy(fxsave->st_space, fpu->fpr, 128);
8626 fxsave->cwd = fpu->fcw;
8627 fxsave->swd = fpu->fsw;
8628 fxsave->twd = fpu->ftwx;
8629 fxsave->fop = fpu->last_opcode;
8630 fxsave->rip = fpu->last_ip;
8631 fxsave->rdp = fpu->last_dp;
8632 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
8633
8634 vcpu_put(vcpu);
8635 return 0;
8636 }
8637
8638 static void store_regs(struct kvm_vcpu *vcpu)
8639 {
8640 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
8641
8642 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
8643 __get_regs(vcpu, &vcpu->run->s.regs.regs);
8644
8645 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
8646 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
8647
8648 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
8649 kvm_vcpu_ioctl_x86_get_vcpu_events(
8650 vcpu, &vcpu->run->s.regs.events);
8651 }
8652
8653 static int sync_regs(struct kvm_vcpu *vcpu)
8654 {
8655 if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
8656 return -EINVAL;
8657
8658 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
8659 __set_regs(vcpu, &vcpu->run->s.regs.regs);
8660 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
8661 }
8662 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
8663 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
8664 return -EINVAL;
8665 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
8666 }
8667 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
8668 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
8669 vcpu, &vcpu->run->s.regs.events))
8670 return -EINVAL;
8671 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
8672 }
8673
8674 return 0;
8675 }
8676
8677 static void fx_init(struct kvm_vcpu *vcpu)
8678 {
8679 fpstate_init(&vcpu->arch.guest_fpu->state);
8680 if (boot_cpu_has(X86_FEATURE_XSAVES))
8681 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
8682 host_xcr0 | XSTATE_COMPACTION_ENABLED;
8683
8684 /*
8685 * Ensure guest xcr0 is valid for loading
8686 */
8687 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8688
8689 vcpu->arch.cr0 |= X86_CR0_ET;
8690 }
8691
8692 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
8693 {
8694 void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
8695
8696 kvmclock_reset(vcpu);
8697
8698 kvm_x86_ops->vcpu_free(vcpu);
8699 free_cpumask_var(wbinvd_dirty_mask);
8700 }
8701
8702 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
8703 unsigned int id)
8704 {
8705 struct kvm_vcpu *vcpu;
8706
8707 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
8708 printk_once(KERN_WARNING
8709 "kvm: SMP vm created on host with unstable TSC; "
8710 "guest TSC will not be reliable\n");
8711
8712 vcpu = kvm_x86_ops->vcpu_create(kvm, id);
8713
8714 return vcpu;
8715 }
8716
8717 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
8718 {
8719 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8720 kvm_vcpu_mtrr_init(vcpu);
8721 vcpu_load(vcpu);
8722 kvm_vcpu_reset(vcpu, false);
8723 kvm_init_mmu(vcpu, false);
8724 vcpu_put(vcpu);
8725 return 0;
8726 }
8727
8728 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
8729 {
8730 struct msr_data msr;
8731 struct kvm *kvm = vcpu->kvm;
8732
8733 kvm_hv_vcpu_postcreate(vcpu);
8734
8735 if (mutex_lock_killable(&vcpu->mutex))
8736 return;
8737 vcpu_load(vcpu);
8738 msr.data = 0x0;
8739 msr.index = MSR_IA32_TSC;
8740 msr.host_initiated = true;
8741 kvm_write_tsc(vcpu, &msr);
8742 vcpu_put(vcpu);
8743 mutex_unlock(&vcpu->mutex);
8744
8745 if (!kvmclock_periodic_sync)
8746 return;
8747
8748 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8749 KVMCLOCK_SYNC_PERIOD);
8750 }
8751
8752 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8753 {
8754 vcpu->arch.apf.msr_val = 0;
8755
8756 vcpu_load(vcpu);
8757 kvm_mmu_unload(vcpu);
8758 vcpu_put(vcpu);
8759
8760 kvm_x86_ops->vcpu_free(vcpu);
8761 }
8762
8763 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8764 {
8765 kvm_lapic_reset(vcpu, init_event);
8766
8767 vcpu->arch.hflags = 0;
8768
8769 vcpu->arch.smi_pending = 0;
8770 vcpu->arch.smi_count = 0;
8771 atomic_set(&vcpu->arch.nmi_queued, 0);
8772 vcpu->arch.nmi_pending = 0;
8773 vcpu->arch.nmi_injected = false;
8774 kvm_clear_interrupt_queue(vcpu);
8775 kvm_clear_exception_queue(vcpu);
8776 vcpu->arch.exception.pending = false;
8777
8778 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8779 kvm_update_dr0123(vcpu);
8780 vcpu->arch.dr6 = DR6_INIT;
8781 kvm_update_dr6(vcpu);
8782 vcpu->arch.dr7 = DR7_FIXED_1;
8783 kvm_update_dr7(vcpu);
8784
8785 vcpu->arch.cr2 = 0;
8786
8787 kvm_make_request(KVM_REQ_EVENT, vcpu);
8788 vcpu->arch.apf.msr_val = 0;
8789 vcpu->arch.st.msr_val = 0;
8790
8791 kvmclock_reset(vcpu);
8792
8793 kvm_clear_async_pf_completion_queue(vcpu);
8794 kvm_async_pf_hash_reset(vcpu);
8795 vcpu->arch.apf.halted = false;
8796
8797 if (kvm_mpx_supported()) {
8798 void *mpx_state_buffer;
8799
8800 /*
8801 * To avoid have the INIT path from kvm_apic_has_events() that be
8802 * called with loaded FPU and does not let userspace fix the state.
8803 */
8804 if (init_event)
8805 kvm_put_guest_fpu(vcpu);
8806 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
8807 XFEATURE_MASK_BNDREGS);
8808 if (mpx_state_buffer)
8809 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
8810 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
8811 XFEATURE_MASK_BNDCSR);
8812 if (mpx_state_buffer)
8813 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
8814 if (init_event)
8815 kvm_load_guest_fpu(vcpu);
8816 }
8817
8818 if (!init_event) {
8819 kvm_pmu_reset(vcpu);
8820 vcpu->arch.smbase = 0x30000;
8821
8822 vcpu->arch.msr_misc_features_enables = 0;
8823
8824 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8825 }
8826
8827 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
8828 vcpu->arch.regs_avail = ~0;
8829 vcpu->arch.regs_dirty = ~0;
8830
8831 vcpu->arch.ia32_xss = 0;
8832
8833 kvm_x86_ops->vcpu_reset(vcpu, init_event);
8834 }
8835
8836 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
8837 {
8838 struct kvm_segment cs;
8839
8840 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8841 cs.selector = vector << 8;
8842 cs.base = vector << 12;
8843 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8844 kvm_rip_write(vcpu, 0);
8845 }
8846
8847 int kvm_arch_hardware_enable(void)
8848 {
8849 struct kvm *kvm;
8850 struct kvm_vcpu *vcpu;
8851 int i;
8852 int ret;
8853 u64 local_tsc;
8854 u64 max_tsc = 0;
8855 bool stable, backwards_tsc = false;
8856
8857 kvm_shared_msr_cpu_online();
8858 ret = kvm_x86_ops->hardware_enable();
8859 if (ret != 0)
8860 return ret;
8861
8862 local_tsc = rdtsc();
8863 stable = !kvm_check_tsc_unstable();
8864 list_for_each_entry(kvm, &vm_list, vm_list) {
8865 kvm_for_each_vcpu(i, vcpu, kvm) {
8866 if (!stable && vcpu->cpu == smp_processor_id())
8867 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8868 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
8869 backwards_tsc = true;
8870 if (vcpu->arch.last_host_tsc > max_tsc)
8871 max_tsc = vcpu->arch.last_host_tsc;
8872 }
8873 }
8874 }
8875
8876 /*
8877 * Sometimes, even reliable TSCs go backwards. This happens on
8878 * platforms that reset TSC during suspend or hibernate actions, but
8879 * maintain synchronization. We must compensate. Fortunately, we can
8880 * detect that condition here, which happens early in CPU bringup,
8881 * before any KVM threads can be running. Unfortunately, we can't
8882 * bring the TSCs fully up to date with real time, as we aren't yet far
8883 * enough into CPU bringup that we know how much real time has actually
8884 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
8885 * variables that haven't been updated yet.
8886 *
8887 * So we simply find the maximum observed TSC above, then record the
8888 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
8889 * the adjustment will be applied. Note that we accumulate
8890 * adjustments, in case multiple suspend cycles happen before some VCPU
8891 * gets a chance to run again. In the event that no KVM threads get a
8892 * chance to run, we will miss the entire elapsed period, as we'll have
8893 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
8894 * loose cycle time. This isn't too big a deal, since the loss will be
8895 * uniform across all VCPUs (not to mention the scenario is extremely
8896 * unlikely). It is possible that a second hibernate recovery happens
8897 * much faster than a first, causing the observed TSC here to be
8898 * smaller; this would require additional padding adjustment, which is
8899 * why we set last_host_tsc to the local tsc observed here.
8900 *
8901 * N.B. - this code below runs only on platforms with reliable TSC,
8902 * as that is the only way backwards_tsc is set above. Also note
8903 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
8904 * have the same delta_cyc adjustment applied if backwards_tsc
8905 * is detected. Note further, this adjustment is only done once,
8906 * as we reset last_host_tsc on all VCPUs to stop this from being
8907 * called multiple times (one for each physical CPU bringup).
8908 *
8909 * Platforms with unreliable TSCs don't have to deal with this, they
8910 * will be compensated by the logic in vcpu_load, which sets the TSC to
8911 * catchup mode. This will catchup all VCPUs to real time, but cannot
8912 * guarantee that they stay in perfect synchronization.
8913 */
8914 if (backwards_tsc) {
8915 u64 delta_cyc = max_tsc - local_tsc;
8916 list_for_each_entry(kvm, &vm_list, vm_list) {
8917 kvm->arch.backwards_tsc_observed = true;
8918 kvm_for_each_vcpu(i, vcpu, kvm) {
8919 vcpu->arch.tsc_offset_adjustment += delta_cyc;
8920 vcpu->arch.last_host_tsc = local_tsc;
8921 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8922 }
8923
8924 /*
8925 * We have to disable TSC offset matching.. if you were
8926 * booting a VM while issuing an S4 host suspend....
8927 * you may have some problem. Solving this issue is
8928 * left as an exercise to the reader.
8929 */
8930 kvm->arch.last_tsc_nsec = 0;
8931 kvm->arch.last_tsc_write = 0;
8932 }
8933
8934 }
8935 return 0;
8936 }
8937
8938 void kvm_arch_hardware_disable(void)
8939 {
8940 kvm_x86_ops->hardware_disable();
8941 drop_user_return_notifiers();
8942 }
8943
8944 int kvm_arch_hardware_setup(void)
8945 {
8946 int r;
8947
8948 r = kvm_x86_ops->hardware_setup();
8949 if (r != 0)
8950 return r;
8951
8952 if (kvm_has_tsc_control) {
8953 /*
8954 * Make sure the user can only configure tsc_khz values that
8955 * fit into a signed integer.
8956 * A min value is not calculated because it will always
8957 * be 1 on all machines.
8958 */
8959 u64 max = min(0x7fffffffULL,
8960 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
8961 kvm_max_guest_tsc_khz = max;
8962
8963 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
8964 }
8965
8966 kvm_init_msr_list();
8967 return 0;
8968 }
8969
8970 void kvm_arch_hardware_unsetup(void)
8971 {
8972 kvm_x86_ops->hardware_unsetup();
8973 }
8974
8975 void kvm_arch_check_processor_compat(void *rtn)
8976 {
8977 kvm_x86_ops->check_processor_compatibility(rtn);
8978 }
8979
8980 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
8981 {
8982 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
8983 }
8984 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
8985
8986 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
8987 {
8988 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
8989 }
8990
8991 struct static_key kvm_no_apic_vcpu __read_mostly;
8992 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
8993
8994 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
8995 {
8996 struct page *page;
8997 int r;
8998
8999 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
9000 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
9001 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9002 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9003 else
9004 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9005
9006 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9007 if (!page) {
9008 r = -ENOMEM;
9009 goto fail;
9010 }
9011 vcpu->arch.pio_data = page_address(page);
9012
9013 kvm_set_tsc_khz(vcpu, max_tsc_khz);
9014
9015 r = kvm_mmu_create(vcpu);
9016 if (r < 0)
9017 goto fail_free_pio_data;
9018
9019 if (irqchip_in_kernel(vcpu->kvm)) {
9020 r = kvm_create_lapic(vcpu);
9021 if (r < 0)
9022 goto fail_mmu_destroy;
9023 } else
9024 static_key_slow_inc(&kvm_no_apic_vcpu);
9025
9026 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9027 GFP_KERNEL);
9028 if (!vcpu->arch.mce_banks) {
9029 r = -ENOMEM;
9030 goto fail_free_lapic;
9031 }
9032 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9033
9034 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
9035 r = -ENOMEM;
9036 goto fail_free_mce_banks;
9037 }
9038
9039 fx_init(vcpu);
9040
9041 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
9042
9043 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9044
9045 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9046
9047 kvm_async_pf_hash_reset(vcpu);
9048 kvm_pmu_init(vcpu);
9049
9050 vcpu->arch.pending_external_vector = -1;
9051 vcpu->arch.preempted_in_kernel = false;
9052
9053 kvm_hv_vcpu_init(vcpu);
9054
9055 return 0;
9056
9057 fail_free_mce_banks:
9058 kfree(vcpu->arch.mce_banks);
9059 fail_free_lapic:
9060 kvm_free_lapic(vcpu);
9061 fail_mmu_destroy:
9062 kvm_mmu_destroy(vcpu);
9063 fail_free_pio_data:
9064 free_page((unsigned long)vcpu->arch.pio_data);
9065 fail:
9066 return r;
9067 }
9068
9069 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
9070 {
9071 int idx;
9072
9073 kvm_hv_vcpu_uninit(vcpu);
9074 kvm_pmu_destroy(vcpu);
9075 kfree(vcpu->arch.mce_banks);
9076 kvm_free_lapic(vcpu);
9077 idx = srcu_read_lock(&vcpu->kvm->srcu);
9078 kvm_mmu_destroy(vcpu);
9079 srcu_read_unlock(&vcpu->kvm->srcu, idx);
9080 free_page((unsigned long)vcpu->arch.pio_data);
9081 if (!lapic_in_kernel(vcpu))
9082 static_key_slow_dec(&kvm_no_apic_vcpu);
9083 }
9084
9085 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9086 {
9087 vcpu->arch.l1tf_flush_l1d = true;
9088 kvm_x86_ops->sched_in(vcpu, cpu);
9089 }
9090
9091 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9092 {
9093 if (type)
9094 return -EINVAL;
9095
9096 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9097 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9098 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
9099 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9100 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9101
9102 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9103 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9104 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9105 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9106 &kvm->arch.irq_sources_bitmap);
9107
9108 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9109 mutex_init(&kvm->arch.apic_map_lock);
9110 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9111
9112 kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
9113 pvclock_update_vm_gtod_copy(kvm);
9114
9115 kvm->arch.guest_can_read_msr_platform_info = true;
9116
9117 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9118 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9119
9120 kvm_hv_init_vm(kvm);
9121 kvm_page_track_init(kvm);
9122 kvm_mmu_init_vm(kvm);
9123
9124 if (kvm_x86_ops->vm_init)
9125 return kvm_x86_ops->vm_init(kvm);
9126
9127 return 0;
9128 }
9129
9130 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9131 {
9132 vcpu_load(vcpu);
9133 kvm_mmu_unload(vcpu);
9134 vcpu_put(vcpu);
9135 }
9136
9137 static void kvm_free_vcpus(struct kvm *kvm)
9138 {
9139 unsigned int i;
9140 struct kvm_vcpu *vcpu;
9141
9142 /*
9143 * Unpin any mmu pages first.
9144 */
9145 kvm_for_each_vcpu(i, vcpu, kvm) {
9146 kvm_clear_async_pf_completion_queue(vcpu);
9147 kvm_unload_vcpu_mmu(vcpu);
9148 }
9149 kvm_for_each_vcpu(i, vcpu, kvm)
9150 kvm_arch_vcpu_free(vcpu);
9151
9152 mutex_lock(&kvm->lock);
9153 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9154 kvm->vcpus[i] = NULL;
9155
9156 atomic_set(&kvm->online_vcpus, 0);
9157 mutex_unlock(&kvm->lock);
9158 }
9159
9160 void kvm_arch_sync_events(struct kvm *kvm)
9161 {
9162 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9163 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9164 kvm_free_pit(kvm);
9165 }
9166
9167 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9168 {
9169 int i, r;
9170 unsigned long hva;
9171 struct kvm_memslots *slots = kvm_memslots(kvm);
9172 struct kvm_memory_slot *slot, old;
9173
9174 /* Called with kvm->slots_lock held. */
9175 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9176 return -EINVAL;
9177
9178 slot = id_to_memslot(slots, id);
9179 if (size) {
9180 if (slot->npages)
9181 return -EEXIST;
9182
9183 /*
9184 * MAP_SHARED to prevent internal slot pages from being moved
9185 * by fork()/COW.
9186 */
9187 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9188 MAP_SHARED | MAP_ANONYMOUS, 0);
9189 if (IS_ERR((void *)hva))
9190 return PTR_ERR((void *)hva);
9191 } else {
9192 if (!slot->npages)
9193 return 0;
9194
9195 hva = 0;
9196 }
9197
9198 old = *slot;
9199 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9200 struct kvm_userspace_memory_region m;
9201
9202 m.slot = id | (i << 16);
9203 m.flags = 0;
9204 m.guest_phys_addr = gpa;
9205 m.userspace_addr = hva;
9206 m.memory_size = size;
9207 r = __kvm_set_memory_region(kvm, &m);
9208 if (r < 0)
9209 return r;
9210 }
9211
9212 if (!size)
9213 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
9214
9215 return 0;
9216 }
9217 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9218
9219 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9220 {
9221 int r;
9222
9223 mutex_lock(&kvm->slots_lock);
9224 r = __x86_set_memory_region(kvm, id, gpa, size);
9225 mutex_unlock(&kvm->slots_lock);
9226
9227 return r;
9228 }
9229 EXPORT_SYMBOL_GPL(x86_set_memory_region);
9230
9231 void kvm_arch_destroy_vm(struct kvm *kvm)
9232 {
9233 if (current->mm == kvm->mm) {
9234 /*
9235 * Free memory regions allocated on behalf of userspace,
9236 * unless the the memory map has changed due to process exit
9237 * or fd copying.
9238 */
9239 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
9240 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
9241 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9242 }
9243 if (kvm_x86_ops->vm_destroy)
9244 kvm_x86_ops->vm_destroy(kvm);
9245 kvm_pic_destroy(kvm);
9246 kvm_ioapic_destroy(kvm);
9247 kvm_free_vcpus(kvm);
9248 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9249 kvm_mmu_uninit_vm(kvm);
9250 kvm_page_track_cleanup(kvm);
9251 kvm_hv_destroy_vm(kvm);
9252 }
9253
9254 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
9255 struct kvm_memory_slot *dont)
9256 {
9257 int i;
9258
9259 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9260 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
9261 kvfree(free->arch.rmap[i]);
9262 free->arch.rmap[i] = NULL;
9263 }
9264 if (i == 0)
9265 continue;
9266
9267 if (!dont || free->arch.lpage_info[i - 1] !=
9268 dont->arch.lpage_info[i - 1]) {
9269 kvfree(free->arch.lpage_info[i - 1]);
9270 free->arch.lpage_info[i - 1] = NULL;
9271 }
9272 }
9273
9274 kvm_page_track_free_memslot(free, dont);
9275 }
9276
9277 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
9278 unsigned long npages)
9279 {
9280 int i;
9281
9282 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9283 struct kvm_lpage_info *linfo;
9284 unsigned long ugfn;
9285 int lpages;
9286 int level = i + 1;
9287
9288 lpages = gfn_to_index(slot->base_gfn + npages - 1,
9289 slot->base_gfn, level) + 1;
9290
9291 slot->arch.rmap[i] =
9292 kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9293 GFP_KERNEL);
9294 if (!slot->arch.rmap[i])
9295 goto out_free;
9296 if (i == 0)
9297 continue;
9298
9299 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL);
9300 if (!linfo)
9301 goto out_free;
9302
9303 slot->arch.lpage_info[i - 1] = linfo;
9304
9305 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9306 linfo[0].disallow_lpage = 1;
9307 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9308 linfo[lpages - 1].disallow_lpage = 1;
9309 ugfn = slot->userspace_addr >> PAGE_SHIFT;
9310 /*
9311 * If the gfn and userspace address are not aligned wrt each
9312 * other, or if explicitly asked to, disable large page
9313 * support for this slot
9314 */
9315 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
9316 !kvm_largepages_enabled()) {
9317 unsigned long j;
9318
9319 for (j = 0; j < lpages; ++j)
9320 linfo[j].disallow_lpage = 1;
9321 }
9322 }
9323
9324 if (kvm_page_track_create_memslot(slot, npages))
9325 goto out_free;
9326
9327 return 0;
9328
9329 out_free:
9330 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9331 kvfree(slot->arch.rmap[i]);
9332 slot->arch.rmap[i] = NULL;
9333 if (i == 0)
9334 continue;
9335
9336 kvfree(slot->arch.lpage_info[i - 1]);
9337 slot->arch.lpage_info[i - 1] = NULL;
9338 }
9339 return -ENOMEM;
9340 }
9341
9342 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
9343 {
9344 /*
9345 * memslots->generation has been incremented.
9346 * mmio generation may have reached its maximum value.
9347 */
9348 kvm_mmu_invalidate_mmio_sptes(kvm, slots);
9349 }
9350
9351 int kvm_arch_prepare_memory_region(struct kvm *kvm,
9352 struct kvm_memory_slot *memslot,
9353 const struct kvm_userspace_memory_region *mem,
9354 enum kvm_mr_change change)
9355 {
9356 return 0;
9357 }
9358
9359 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
9360 struct kvm_memory_slot *new)
9361 {
9362 /* Still write protect RO slot */
9363 if (new->flags & KVM_MEM_READONLY) {
9364 kvm_mmu_slot_remove_write_access(kvm, new);
9365 return;
9366 }
9367
9368 /*
9369 * Call kvm_x86_ops dirty logging hooks when they are valid.
9370 *
9371 * kvm_x86_ops->slot_disable_log_dirty is called when:
9372 *
9373 * - KVM_MR_CREATE with dirty logging is disabled
9374 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9375 *
9376 * The reason is, in case of PML, we need to set D-bit for any slots
9377 * with dirty logging disabled in order to eliminate unnecessary GPA
9378 * logging in PML buffer (and potential PML buffer full VMEXT). This
9379 * guarantees leaving PML enabled during guest's lifetime won't have
9380 * any additional overhead from PML when guest is running with dirty
9381 * logging disabled for memory slots.
9382 *
9383 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9384 * to dirty logging mode.
9385 *
9386 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9387 *
9388 * In case of write protect:
9389 *
9390 * Write protect all pages for dirty logging.
9391 *
9392 * All the sptes including the large sptes which point to this
9393 * slot are set to readonly. We can not create any new large
9394 * spte on this slot until the end of the logging.
9395 *
9396 * See the comments in fast_page_fault().
9397 */
9398 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9399 if (kvm_x86_ops->slot_enable_log_dirty)
9400 kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9401 else
9402 kvm_mmu_slot_remove_write_access(kvm, new);
9403 } else {
9404 if (kvm_x86_ops->slot_disable_log_dirty)
9405 kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9406 }
9407 }
9408
9409 void kvm_arch_commit_memory_region(struct kvm *kvm,
9410 const struct kvm_userspace_memory_region *mem,
9411 const struct kvm_memory_slot *old,
9412 const struct kvm_memory_slot *new,
9413 enum kvm_mr_change change)
9414 {
9415 int nr_mmu_pages = 0;
9416
9417 if (!kvm->arch.n_requested_mmu_pages)
9418 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
9419
9420 if (nr_mmu_pages)
9421 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
9422
9423 /*
9424 * Dirty logging tracks sptes in 4k granularity, meaning that large
9425 * sptes have to be split. If live migration is successful, the guest
9426 * in the source machine will be destroyed and large sptes will be
9427 * created in the destination. However, if the guest continues to run
9428 * in the source machine (for example if live migration fails), small
9429 * sptes will remain around and cause bad performance.
9430 *
9431 * Scan sptes if dirty logging has been stopped, dropping those
9432 * which can be collapsed into a single large-page spte. Later
9433 * page faults will create the large-page sptes.
9434 */
9435 if ((change != KVM_MR_DELETE) &&
9436 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9437 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9438 kvm_mmu_zap_collapsible_sptes(kvm, new);
9439
9440 /*
9441 * Set up write protection and/or dirty logging for the new slot.
9442 *
9443 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9444 * been zapped so no dirty logging staff is needed for old slot. For
9445 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9446 * new and it's also covered when dealing with the new slot.
9447 *
9448 * FIXME: const-ify all uses of struct kvm_memory_slot.
9449 */
9450 if (change != KVM_MR_DELETE)
9451 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9452 }
9453
9454 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9455 {
9456 kvm_mmu_invalidate_zap_all_pages(kvm);
9457 }
9458
9459 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9460 struct kvm_memory_slot *slot)
9461 {
9462 kvm_page_track_flush_slot(kvm, slot);
9463 }
9464
9465 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
9466 {
9467 return (is_guest_mode(vcpu) &&
9468 kvm_x86_ops->guest_apic_has_interrupt &&
9469 kvm_x86_ops->guest_apic_has_interrupt(vcpu));
9470 }
9471
9472 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9473 {
9474 if (!list_empty_careful(&vcpu->async_pf.done))
9475 return true;
9476
9477 if (kvm_apic_has_events(vcpu))
9478 return true;
9479
9480 if (vcpu->arch.pv.pv_unhalted)
9481 return true;
9482
9483 if (vcpu->arch.exception.pending)
9484 return true;
9485
9486 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9487 (vcpu->arch.nmi_pending &&
9488 kvm_x86_ops->nmi_allowed(vcpu)))
9489 return true;
9490
9491 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9492 (vcpu->arch.smi_pending && !is_smm(vcpu)))
9493 return true;
9494
9495 if (kvm_arch_interrupt_allowed(vcpu) &&
9496 (kvm_cpu_has_interrupt(vcpu) ||
9497 kvm_guest_apic_has_interrupt(vcpu)))
9498 return true;
9499
9500 if (kvm_hv_has_stimer_pending(vcpu))
9501 return true;
9502
9503 return false;
9504 }
9505
9506 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9507 {
9508 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9509 }
9510
9511 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9512 {
9513 return vcpu->arch.preempted_in_kernel;
9514 }
9515
9516 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9517 {
9518 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9519 }
9520
9521 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9522 {
9523 return kvm_x86_ops->interrupt_allowed(vcpu);
9524 }
9525
9526 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9527 {
9528 if (is_64_bit_mode(vcpu))
9529 return kvm_rip_read(vcpu);
9530 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9531 kvm_rip_read(vcpu));
9532 }
9533 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9534
9535 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9536 {
9537 return kvm_get_linear_rip(vcpu) == linear_rip;
9538 }
9539 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9540
9541 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9542 {
9543 unsigned long rflags;
9544
9545 rflags = kvm_x86_ops->get_rflags(vcpu);
9546 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9547 rflags &= ~X86_EFLAGS_TF;
9548 return rflags;
9549 }
9550 EXPORT_SYMBOL_GPL(kvm_get_rflags);
9551
9552 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9553 {
9554 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9555 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9556 rflags |= X86_EFLAGS_TF;
9557 kvm_x86_ops->set_rflags(vcpu, rflags);
9558 }
9559
9560 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9561 {
9562 __kvm_set_rflags(vcpu, rflags);
9563 kvm_make_request(KVM_REQ_EVENT, vcpu);
9564 }
9565 EXPORT_SYMBOL_GPL(kvm_set_rflags);
9566
9567 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
9568 {
9569 int r;
9570
9571 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
9572 work->wakeup_all)
9573 return;
9574
9575 r = kvm_mmu_reload(vcpu);
9576 if (unlikely(r))
9577 return;
9578
9579 if (!vcpu->arch.mmu->direct_map &&
9580 work->arch.cr3 != vcpu->arch.mmu->get_cr3(vcpu))
9581 return;
9582
9583 vcpu->arch.mmu->page_fault(vcpu, work->gva, 0, true);
9584 }
9585
9586 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
9587 {
9588 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
9589 }
9590
9591 static inline u32 kvm_async_pf_next_probe(u32 key)
9592 {
9593 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
9594 }
9595
9596 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9597 {
9598 u32 key = kvm_async_pf_hash_fn(gfn);
9599
9600 while (vcpu->arch.apf.gfns[key] != ~0)
9601 key = kvm_async_pf_next_probe(key);
9602
9603 vcpu->arch.apf.gfns[key] = gfn;
9604 }
9605
9606 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
9607 {
9608 int i;
9609 u32 key = kvm_async_pf_hash_fn(gfn);
9610
9611 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
9612 (vcpu->arch.apf.gfns[key] != gfn &&
9613 vcpu->arch.apf.gfns[key] != ~0); i++)
9614 key = kvm_async_pf_next_probe(key);
9615
9616 return key;
9617 }
9618
9619 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9620 {
9621 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
9622 }
9623
9624 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9625 {
9626 u32 i, j, k;
9627
9628 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
9629 while (true) {
9630 vcpu->arch.apf.gfns[i] = ~0;
9631 do {
9632 j = kvm_async_pf_next_probe(j);
9633 if (vcpu->arch.apf.gfns[j] == ~0)
9634 return;
9635 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
9636 /*
9637 * k lies cyclically in ]i,j]
9638 * | i.k.j |
9639 * |....j i.k.| or |.k..j i...|
9640 */
9641 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
9642 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
9643 i = j;
9644 }
9645 }
9646
9647 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
9648 {
9649
9650 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
9651 sizeof(val));
9652 }
9653
9654 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
9655 {
9656
9657 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
9658 sizeof(u32));
9659 }
9660
9661 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
9662 struct kvm_async_pf *work)
9663 {
9664 struct x86_exception fault;
9665
9666 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
9667 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
9668
9669 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
9670 (vcpu->arch.apf.send_user_only &&
9671 kvm_x86_ops->get_cpl(vcpu) == 0))
9672 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
9673 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
9674 fault.vector = PF_VECTOR;
9675 fault.error_code_valid = true;
9676 fault.error_code = 0;
9677 fault.nested_page_fault = false;
9678 fault.address = work->arch.token;
9679 fault.async_page_fault = true;
9680 kvm_inject_page_fault(vcpu, &fault);
9681 }
9682 }
9683
9684 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
9685 struct kvm_async_pf *work)
9686 {
9687 struct x86_exception fault;
9688 u32 val;
9689
9690 if (work->wakeup_all)
9691 work->arch.token = ~0; /* broadcast wakeup */
9692 else
9693 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
9694 trace_kvm_async_pf_ready(work->arch.token, work->gva);
9695
9696 if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
9697 !apf_get_user(vcpu, &val)) {
9698 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
9699 vcpu->arch.exception.pending &&
9700 vcpu->arch.exception.nr == PF_VECTOR &&
9701 !apf_put_user(vcpu, 0)) {
9702 vcpu->arch.exception.injected = false;
9703 vcpu->arch.exception.pending = false;
9704 vcpu->arch.exception.nr = 0;
9705 vcpu->arch.exception.has_error_code = false;
9706 vcpu->arch.exception.error_code = 0;
9707 vcpu->arch.exception.has_payload = false;
9708 vcpu->arch.exception.payload = 0;
9709 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
9710 fault.vector = PF_VECTOR;
9711 fault.error_code_valid = true;
9712 fault.error_code = 0;
9713 fault.nested_page_fault = false;
9714 fault.address = work->arch.token;
9715 fault.async_page_fault = true;
9716 kvm_inject_page_fault(vcpu, &fault);
9717 }
9718 }
9719 vcpu->arch.apf.halted = false;
9720 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9721 }
9722
9723 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
9724 {
9725 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
9726 return true;
9727 else
9728 return kvm_can_do_async_pf(vcpu);
9729 }
9730
9731 void kvm_arch_start_assignment(struct kvm *kvm)
9732 {
9733 atomic_inc(&kvm->arch.assigned_device_count);
9734 }
9735 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
9736
9737 void kvm_arch_end_assignment(struct kvm *kvm)
9738 {
9739 atomic_dec(&kvm->arch.assigned_device_count);
9740 }
9741 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
9742
9743 bool kvm_arch_has_assigned_device(struct kvm *kvm)
9744 {
9745 return atomic_read(&kvm->arch.assigned_device_count);
9746 }
9747 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
9748
9749 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
9750 {
9751 atomic_inc(&kvm->arch.noncoherent_dma_count);
9752 }
9753 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
9754
9755 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
9756 {
9757 atomic_dec(&kvm->arch.noncoherent_dma_count);
9758 }
9759 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
9760
9761 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
9762 {
9763 return atomic_read(&kvm->arch.noncoherent_dma_count);
9764 }
9765 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
9766
9767 bool kvm_arch_has_irq_bypass(void)
9768 {
9769 return kvm_x86_ops->update_pi_irte != NULL;
9770 }
9771
9772 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
9773 struct irq_bypass_producer *prod)
9774 {
9775 struct kvm_kernel_irqfd *irqfd =
9776 container_of(cons, struct kvm_kernel_irqfd, consumer);
9777
9778 irqfd->producer = prod;
9779
9780 return kvm_x86_ops->update_pi_irte(irqfd->kvm,
9781 prod->irq, irqfd->gsi, 1);
9782 }
9783
9784 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
9785 struct irq_bypass_producer *prod)
9786 {
9787 int ret;
9788 struct kvm_kernel_irqfd *irqfd =
9789 container_of(cons, struct kvm_kernel_irqfd, consumer);
9790
9791 WARN_ON(irqfd->producer != prod);
9792 irqfd->producer = NULL;
9793
9794 /*
9795 * When producer of consumer is unregistered, we change back to
9796 * remapped mode, so we can re-use the current implementation
9797 * when the irq is masked/disabled or the consumer side (KVM
9798 * int this case doesn't want to receive the interrupts.
9799 */
9800 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
9801 if (ret)
9802 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
9803 " fails: %d\n", irqfd->consumer.token, ret);
9804 }
9805
9806 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
9807 uint32_t guest_irq, bool set)
9808 {
9809 if (!kvm_x86_ops->update_pi_irte)
9810 return -EINVAL;
9811
9812 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
9813 }
9814
9815 bool kvm_vector_hashing_enabled(void)
9816 {
9817 return vector_hashing;
9818 }
9819 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
9820
9821 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
9822 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
9823 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
9824 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
9825 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
9826 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
9827 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
9828 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
9829 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
9830 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
9831 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
9832 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
9833 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
9834 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
9835 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
9836 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
9837 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
9838 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
9839 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);