]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kvm/x86.c
KVM: move EXIT_FASTPATH_REENTER_GUEST to common code
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * derived from drivers/kvm/kvm_main.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
17 */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/sched/isolation.h>
58 #include <linux/mem_encrypt.h>
59 #include <linux/entry-kvm.h>
60
61 #include <trace/events/kvm.h>
62
63 #include <asm/debugreg.h>
64 #include <asm/msr.h>
65 #include <asm/desc.h>
66 #include <asm/mce.h>
67 #include <linux/kernel_stat.h>
68 #include <asm/fpu/internal.h> /* Ugh! */
69 #include <asm/pvclock.h>
70 #include <asm/div64.h>
71 #include <asm/irq_remapping.h>
72 #include <asm/mshyperv.h>
73 #include <asm/hypervisor.h>
74 #include <asm/tlbflush.h>
75 #include <asm/intel_pt.h>
76 #include <asm/emulate_prefix.h>
77 #include <clocksource/hyperv_timer.h>
78
79 #define CREATE_TRACE_POINTS
80 #include "trace.h"
81
82 #define MAX_IO_MSRS 256
83 #define KVM_MAX_MCE_BANKS 32
84 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
85 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
86
87 #define emul_to_vcpu(ctxt) \
88 ((struct kvm_vcpu *)(ctxt)->vcpu)
89
90 /* EFER defaults:
91 * - enable syscall per default because its emulated by KVM
92 * - enable LME and LMA per default on 64 bit KVM
93 */
94 #ifdef CONFIG_X86_64
95 static
96 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
97 #else
98 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
99 #endif
100
101 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
102
103 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
104 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
105
106 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
107 static void process_nmi(struct kvm_vcpu *vcpu);
108 static void process_smi(struct kvm_vcpu *vcpu);
109 static void enter_smm(struct kvm_vcpu *vcpu);
110 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
111 static void store_regs(struct kvm_vcpu *vcpu);
112 static int sync_regs(struct kvm_vcpu *vcpu);
113
114 struct kvm_x86_ops kvm_x86_ops __read_mostly;
115 EXPORT_SYMBOL_GPL(kvm_x86_ops);
116
117 #define KVM_X86_OP(func) \
118 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
119 *(((struct kvm_x86_ops *)0)->func));
120 #define KVM_X86_OP_NULL KVM_X86_OP
121 #include <asm/kvm-x86-ops.h>
122 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
123 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
124 EXPORT_STATIC_CALL_GPL(kvm_x86_tlb_flush_current);
125
126 static bool __read_mostly ignore_msrs = 0;
127 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
128
129 bool __read_mostly report_ignored_msrs = true;
130 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
131 EXPORT_SYMBOL_GPL(report_ignored_msrs);
132
133 unsigned int min_timer_period_us = 200;
134 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
135
136 static bool __read_mostly kvmclock_periodic_sync = true;
137 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
138
139 bool __read_mostly kvm_has_tsc_control;
140 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
141 u32 __read_mostly kvm_max_guest_tsc_khz;
142 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
143 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
144 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
145 u64 __read_mostly kvm_max_tsc_scaling_ratio;
146 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
147 u64 __read_mostly kvm_default_tsc_scaling_ratio;
148 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
149 bool __read_mostly kvm_has_bus_lock_exit;
150 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
151
152 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
153 static u32 __read_mostly tsc_tolerance_ppm = 250;
154 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
155
156 /*
157 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables
158 * adaptive tuning starting from default advancment of 1000ns. '0' disables
159 * advancement entirely. Any other value is used as-is and disables adaptive
160 * tuning, i.e. allows priveleged userspace to set an exact advancement time.
161 */
162 static int __read_mostly lapic_timer_advance_ns = -1;
163 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
164
165 static bool __read_mostly vector_hashing = true;
166 module_param(vector_hashing, bool, S_IRUGO);
167
168 bool __read_mostly enable_vmware_backdoor = false;
169 module_param(enable_vmware_backdoor, bool, S_IRUGO);
170 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
171
172 static bool __read_mostly force_emulation_prefix = false;
173 module_param(force_emulation_prefix, bool, S_IRUGO);
174
175 int __read_mostly pi_inject_timer = -1;
176 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
177
178 /*
179 * Restoring the host value for MSRs that are only consumed when running in
180 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
181 * returns to userspace, i.e. the kernel can run with the guest's value.
182 */
183 #define KVM_MAX_NR_USER_RETURN_MSRS 16
184
185 struct kvm_user_return_msrs_global {
186 int nr;
187 u32 msrs[KVM_MAX_NR_USER_RETURN_MSRS];
188 };
189
190 struct kvm_user_return_msrs {
191 struct user_return_notifier urn;
192 bool registered;
193 struct kvm_user_return_msr_values {
194 u64 host;
195 u64 curr;
196 } values[KVM_MAX_NR_USER_RETURN_MSRS];
197 };
198
199 static struct kvm_user_return_msrs_global __read_mostly user_return_msrs_global;
200 static struct kvm_user_return_msrs __percpu *user_return_msrs;
201
202 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
203 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
204 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
205 | XFEATURE_MASK_PKRU)
206
207 u64 __read_mostly host_efer;
208 EXPORT_SYMBOL_GPL(host_efer);
209
210 bool __read_mostly allow_smaller_maxphyaddr = 0;
211 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
212
213 u64 __read_mostly host_xss;
214 EXPORT_SYMBOL_GPL(host_xss);
215 u64 __read_mostly supported_xss;
216 EXPORT_SYMBOL_GPL(supported_xss);
217
218 struct kvm_stats_debugfs_item debugfs_entries[] = {
219 VCPU_STAT("pf_fixed", pf_fixed),
220 VCPU_STAT("pf_guest", pf_guest),
221 VCPU_STAT("tlb_flush", tlb_flush),
222 VCPU_STAT("invlpg", invlpg),
223 VCPU_STAT("exits", exits),
224 VCPU_STAT("io_exits", io_exits),
225 VCPU_STAT("mmio_exits", mmio_exits),
226 VCPU_STAT("signal_exits", signal_exits),
227 VCPU_STAT("irq_window", irq_window_exits),
228 VCPU_STAT("nmi_window", nmi_window_exits),
229 VCPU_STAT("halt_exits", halt_exits),
230 VCPU_STAT("halt_successful_poll", halt_successful_poll),
231 VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
232 VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
233 VCPU_STAT("halt_wakeup", halt_wakeup),
234 VCPU_STAT("hypercalls", hypercalls),
235 VCPU_STAT("request_irq", request_irq_exits),
236 VCPU_STAT("irq_exits", irq_exits),
237 VCPU_STAT("host_state_reload", host_state_reload),
238 VCPU_STAT("fpu_reload", fpu_reload),
239 VCPU_STAT("insn_emulation", insn_emulation),
240 VCPU_STAT("insn_emulation_fail", insn_emulation_fail),
241 VCPU_STAT("irq_injections", irq_injections),
242 VCPU_STAT("nmi_injections", nmi_injections),
243 VCPU_STAT("req_event", req_event),
244 VCPU_STAT("l1d_flush", l1d_flush),
245 VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
246 VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
247 VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped),
248 VM_STAT("mmu_pte_write", mmu_pte_write),
249 VM_STAT("mmu_pde_zapped", mmu_pde_zapped),
250 VM_STAT("mmu_flooded", mmu_flooded),
251 VM_STAT("mmu_recycled", mmu_recycled),
252 VM_STAT("mmu_cache_miss", mmu_cache_miss),
253 VM_STAT("mmu_unsync", mmu_unsync),
254 VM_STAT("remote_tlb_flush", remote_tlb_flush),
255 VM_STAT("largepages", lpages, .mode = 0444),
256 VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444),
257 VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions),
258 { NULL }
259 };
260
261 u64 __read_mostly host_xcr0;
262 u64 __read_mostly supported_xcr0;
263 EXPORT_SYMBOL_GPL(supported_xcr0);
264
265 static struct kmem_cache *x86_fpu_cache;
266
267 static struct kmem_cache *x86_emulator_cache;
268
269 /*
270 * When called, it means the previous get/set msr reached an invalid msr.
271 * Return true if we want to ignore/silent this failed msr access.
272 */
273 static bool kvm_msr_ignored_check(struct kvm_vcpu *vcpu, u32 msr,
274 u64 data, bool write)
275 {
276 const char *op = write ? "wrmsr" : "rdmsr";
277
278 if (ignore_msrs) {
279 if (report_ignored_msrs)
280 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
281 op, msr, data);
282 /* Mask the error */
283 return true;
284 } else {
285 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
286 op, msr, data);
287 return false;
288 }
289 }
290
291 static struct kmem_cache *kvm_alloc_emulator_cache(void)
292 {
293 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
294 unsigned int size = sizeof(struct x86_emulate_ctxt);
295
296 return kmem_cache_create_usercopy("x86_emulator", size,
297 __alignof__(struct x86_emulate_ctxt),
298 SLAB_ACCOUNT, useroffset,
299 size - useroffset, NULL);
300 }
301
302 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
303
304 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
305 {
306 int i;
307 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
308 vcpu->arch.apf.gfns[i] = ~0;
309 }
310
311 static void kvm_on_user_return(struct user_return_notifier *urn)
312 {
313 unsigned slot;
314 struct kvm_user_return_msrs *msrs
315 = container_of(urn, struct kvm_user_return_msrs, urn);
316 struct kvm_user_return_msr_values *values;
317 unsigned long flags;
318
319 /*
320 * Disabling irqs at this point since the following code could be
321 * interrupted and executed through kvm_arch_hardware_disable()
322 */
323 local_irq_save(flags);
324 if (msrs->registered) {
325 msrs->registered = false;
326 user_return_notifier_unregister(urn);
327 }
328 local_irq_restore(flags);
329 for (slot = 0; slot < user_return_msrs_global.nr; ++slot) {
330 values = &msrs->values[slot];
331 if (values->host != values->curr) {
332 wrmsrl(user_return_msrs_global.msrs[slot], values->host);
333 values->curr = values->host;
334 }
335 }
336 }
337
338 void kvm_define_user_return_msr(unsigned slot, u32 msr)
339 {
340 BUG_ON(slot >= KVM_MAX_NR_USER_RETURN_MSRS);
341 user_return_msrs_global.msrs[slot] = msr;
342 if (slot >= user_return_msrs_global.nr)
343 user_return_msrs_global.nr = slot + 1;
344 }
345 EXPORT_SYMBOL_GPL(kvm_define_user_return_msr);
346
347 static void kvm_user_return_msr_cpu_online(void)
348 {
349 unsigned int cpu = smp_processor_id();
350 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
351 u64 value;
352 int i;
353
354 for (i = 0; i < user_return_msrs_global.nr; ++i) {
355 rdmsrl_safe(user_return_msrs_global.msrs[i], &value);
356 msrs->values[i].host = value;
357 msrs->values[i].curr = value;
358 }
359 }
360
361 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
362 {
363 unsigned int cpu = smp_processor_id();
364 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
365 int err;
366
367 value = (value & mask) | (msrs->values[slot].host & ~mask);
368 if (value == msrs->values[slot].curr)
369 return 0;
370 err = wrmsrl_safe(user_return_msrs_global.msrs[slot], value);
371 if (err)
372 return 1;
373
374 msrs->values[slot].curr = value;
375 if (!msrs->registered) {
376 msrs->urn.on_user_return = kvm_on_user_return;
377 user_return_notifier_register(&msrs->urn);
378 msrs->registered = true;
379 }
380 return 0;
381 }
382 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
383
384 static void drop_user_return_notifiers(void)
385 {
386 unsigned int cpu = smp_processor_id();
387 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
388
389 if (msrs->registered)
390 kvm_on_user_return(&msrs->urn);
391 }
392
393 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
394 {
395 return vcpu->arch.apic_base;
396 }
397 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
398
399 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
400 {
401 return kvm_apic_mode(kvm_get_apic_base(vcpu));
402 }
403 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
404
405 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
406 {
407 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
408 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
409 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
410 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
411
412 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
413 return 1;
414 if (!msr_info->host_initiated) {
415 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
416 return 1;
417 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
418 return 1;
419 }
420
421 kvm_lapic_set_base(vcpu, msr_info->data);
422 kvm_recalculate_apic_map(vcpu->kvm);
423 return 0;
424 }
425 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
426
427 asmlinkage __visible noinstr void kvm_spurious_fault(void)
428 {
429 /* Fault while not rebooting. We want the trace. */
430 BUG_ON(!kvm_rebooting);
431 }
432 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
433
434 #define EXCPT_BENIGN 0
435 #define EXCPT_CONTRIBUTORY 1
436 #define EXCPT_PF 2
437
438 static int exception_class(int vector)
439 {
440 switch (vector) {
441 case PF_VECTOR:
442 return EXCPT_PF;
443 case DE_VECTOR:
444 case TS_VECTOR:
445 case NP_VECTOR:
446 case SS_VECTOR:
447 case GP_VECTOR:
448 return EXCPT_CONTRIBUTORY;
449 default:
450 break;
451 }
452 return EXCPT_BENIGN;
453 }
454
455 #define EXCPT_FAULT 0
456 #define EXCPT_TRAP 1
457 #define EXCPT_ABORT 2
458 #define EXCPT_INTERRUPT 3
459
460 static int exception_type(int vector)
461 {
462 unsigned int mask;
463
464 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
465 return EXCPT_INTERRUPT;
466
467 mask = 1 << vector;
468
469 /* #DB is trap, as instruction watchpoints are handled elsewhere */
470 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
471 return EXCPT_TRAP;
472
473 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
474 return EXCPT_ABORT;
475
476 /* Reserved exceptions will result in fault */
477 return EXCPT_FAULT;
478 }
479
480 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
481 {
482 unsigned nr = vcpu->arch.exception.nr;
483 bool has_payload = vcpu->arch.exception.has_payload;
484 unsigned long payload = vcpu->arch.exception.payload;
485
486 if (!has_payload)
487 return;
488
489 switch (nr) {
490 case DB_VECTOR:
491 /*
492 * "Certain debug exceptions may clear bit 0-3. The
493 * remaining contents of the DR6 register are never
494 * cleared by the processor".
495 */
496 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
497 /*
498 * In order to reflect the #DB exception payload in guest
499 * dr6, three components need to be considered: active low
500 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
501 * DR6_BS and DR6_BT)
502 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
503 * In the target guest dr6:
504 * FIXED_1 bits should always be set.
505 * Active low bits should be cleared if 1-setting in payload.
506 * Active high bits should be set if 1-setting in payload.
507 *
508 * Note, the payload is compatible with the pending debug
509 * exceptions/exit qualification under VMX, that active_low bits
510 * are active high in payload.
511 * So they need to be flipped for DR6.
512 */
513 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
514 vcpu->arch.dr6 |= payload;
515 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
516
517 /*
518 * The #DB payload is defined as compatible with the 'pending
519 * debug exceptions' field under VMX, not DR6. While bit 12 is
520 * defined in the 'pending debug exceptions' field (enabled
521 * breakpoint), it is reserved and must be zero in DR6.
522 */
523 vcpu->arch.dr6 &= ~BIT(12);
524 break;
525 case PF_VECTOR:
526 vcpu->arch.cr2 = payload;
527 break;
528 }
529
530 vcpu->arch.exception.has_payload = false;
531 vcpu->arch.exception.payload = 0;
532 }
533 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
534
535 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
536 unsigned nr, bool has_error, u32 error_code,
537 bool has_payload, unsigned long payload, bool reinject)
538 {
539 u32 prev_nr;
540 int class1, class2;
541
542 kvm_make_request(KVM_REQ_EVENT, vcpu);
543
544 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
545 queue:
546 if (has_error && !is_protmode(vcpu))
547 has_error = false;
548 if (reinject) {
549 /*
550 * On vmentry, vcpu->arch.exception.pending is only
551 * true if an event injection was blocked by
552 * nested_run_pending. In that case, however,
553 * vcpu_enter_guest requests an immediate exit,
554 * and the guest shouldn't proceed far enough to
555 * need reinjection.
556 */
557 WARN_ON_ONCE(vcpu->arch.exception.pending);
558 vcpu->arch.exception.injected = true;
559 if (WARN_ON_ONCE(has_payload)) {
560 /*
561 * A reinjected event has already
562 * delivered its payload.
563 */
564 has_payload = false;
565 payload = 0;
566 }
567 } else {
568 vcpu->arch.exception.pending = true;
569 vcpu->arch.exception.injected = false;
570 }
571 vcpu->arch.exception.has_error_code = has_error;
572 vcpu->arch.exception.nr = nr;
573 vcpu->arch.exception.error_code = error_code;
574 vcpu->arch.exception.has_payload = has_payload;
575 vcpu->arch.exception.payload = payload;
576 if (!is_guest_mode(vcpu))
577 kvm_deliver_exception_payload(vcpu);
578 return;
579 }
580
581 /* to check exception */
582 prev_nr = vcpu->arch.exception.nr;
583 if (prev_nr == DF_VECTOR) {
584 /* triple fault -> shutdown */
585 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
586 return;
587 }
588 class1 = exception_class(prev_nr);
589 class2 = exception_class(nr);
590 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
591 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
592 /*
593 * Generate double fault per SDM Table 5-5. Set
594 * exception.pending = true so that the double fault
595 * can trigger a nested vmexit.
596 */
597 vcpu->arch.exception.pending = true;
598 vcpu->arch.exception.injected = false;
599 vcpu->arch.exception.has_error_code = true;
600 vcpu->arch.exception.nr = DF_VECTOR;
601 vcpu->arch.exception.error_code = 0;
602 vcpu->arch.exception.has_payload = false;
603 vcpu->arch.exception.payload = 0;
604 } else
605 /* replace previous exception with a new one in a hope
606 that instruction re-execution will regenerate lost
607 exception */
608 goto queue;
609 }
610
611 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
612 {
613 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
614 }
615 EXPORT_SYMBOL_GPL(kvm_queue_exception);
616
617 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
618 {
619 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
620 }
621 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
622
623 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
624 unsigned long payload)
625 {
626 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
627 }
628 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
629
630 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
631 u32 error_code, unsigned long payload)
632 {
633 kvm_multiple_exception(vcpu, nr, true, error_code,
634 true, payload, false);
635 }
636
637 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
638 {
639 if (err)
640 kvm_inject_gp(vcpu, 0);
641 else
642 return kvm_skip_emulated_instruction(vcpu);
643
644 return 1;
645 }
646 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
647
648 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
649 {
650 ++vcpu->stat.pf_guest;
651 vcpu->arch.exception.nested_apf =
652 is_guest_mode(vcpu) && fault->async_page_fault;
653 if (vcpu->arch.exception.nested_apf) {
654 vcpu->arch.apf.nested_apf_token = fault->address;
655 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
656 } else {
657 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
658 fault->address);
659 }
660 }
661 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
662
663 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
664 struct x86_exception *fault)
665 {
666 struct kvm_mmu *fault_mmu;
667 WARN_ON_ONCE(fault->vector != PF_VECTOR);
668
669 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
670 vcpu->arch.walk_mmu;
671
672 /*
673 * Invalidate the TLB entry for the faulting address, if it exists,
674 * else the access will fault indefinitely (and to emulate hardware).
675 */
676 if ((fault->error_code & PFERR_PRESENT_MASK) &&
677 !(fault->error_code & PFERR_RSVD_MASK))
678 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
679 fault_mmu->root_hpa);
680
681 fault_mmu->inject_page_fault(vcpu, fault);
682 return fault->nested_page_fault;
683 }
684 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
685
686 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
687 {
688 atomic_inc(&vcpu->arch.nmi_queued);
689 kvm_make_request(KVM_REQ_NMI, vcpu);
690 }
691 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
692
693 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
694 {
695 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
696 }
697 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
698
699 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
700 {
701 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
702 }
703 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
704
705 /*
706 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
707 * a #GP and return false.
708 */
709 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
710 {
711 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
712 return true;
713 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
714 return false;
715 }
716 EXPORT_SYMBOL_GPL(kvm_require_cpl);
717
718 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
719 {
720 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
721 return true;
722
723 kvm_queue_exception(vcpu, UD_VECTOR);
724 return false;
725 }
726 EXPORT_SYMBOL_GPL(kvm_require_dr);
727
728 /*
729 * This function will be used to read from the physical memory of the currently
730 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
731 * can read from guest physical or from the guest's guest physical memory.
732 */
733 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
734 gfn_t ngfn, void *data, int offset, int len,
735 u32 access)
736 {
737 struct x86_exception exception;
738 gfn_t real_gfn;
739 gpa_t ngpa;
740
741 ngpa = gfn_to_gpa(ngfn);
742 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
743 if (real_gfn == UNMAPPED_GVA)
744 return -EFAULT;
745
746 real_gfn = gpa_to_gfn(real_gfn);
747
748 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
749 }
750 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
751
752 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
753 void *data, int offset, int len, u32 access)
754 {
755 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
756 data, offset, len, access);
757 }
758
759 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
760 {
761 return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
762 rsvd_bits(1, 2);
763 }
764
765 /*
766 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
767 */
768 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
769 {
770 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
771 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
772 int i;
773 int ret;
774 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
775
776 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
777 offset * sizeof(u64), sizeof(pdpte),
778 PFERR_USER_MASK|PFERR_WRITE_MASK);
779 if (ret < 0) {
780 ret = 0;
781 goto out;
782 }
783 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
784 if ((pdpte[i] & PT_PRESENT_MASK) &&
785 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
786 ret = 0;
787 goto out;
788 }
789 }
790 ret = 1;
791
792 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
793 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
794
795 out:
796
797 return ret;
798 }
799 EXPORT_SYMBOL_GPL(load_pdptrs);
800
801 bool pdptrs_changed(struct kvm_vcpu *vcpu)
802 {
803 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
804 int offset;
805 gfn_t gfn;
806 int r;
807
808 if (!is_pae_paging(vcpu))
809 return false;
810
811 if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
812 return true;
813
814 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
815 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
816 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
817 PFERR_USER_MASK | PFERR_WRITE_MASK);
818 if (r < 0)
819 return true;
820
821 return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
822 }
823 EXPORT_SYMBOL_GPL(pdptrs_changed);
824
825 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
826 {
827 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
828
829 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
830 kvm_clear_async_pf_completion_queue(vcpu);
831 kvm_async_pf_hash_reset(vcpu);
832 }
833
834 if ((cr0 ^ old_cr0) & update_bits)
835 kvm_mmu_reset_context(vcpu);
836
837 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
838 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
839 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
840 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
841 }
842 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
843
844 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
845 {
846 unsigned long old_cr0 = kvm_read_cr0(vcpu);
847 unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
848
849 cr0 |= X86_CR0_ET;
850
851 #ifdef CONFIG_X86_64
852 if (cr0 & 0xffffffff00000000UL)
853 return 1;
854 #endif
855
856 cr0 &= ~CR0_RESERVED_BITS;
857
858 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
859 return 1;
860
861 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
862 return 1;
863
864 #ifdef CONFIG_X86_64
865 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
866 (cr0 & X86_CR0_PG)) {
867 int cs_db, cs_l;
868
869 if (!is_pae(vcpu))
870 return 1;
871 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
872 if (cs_l)
873 return 1;
874 }
875 #endif
876 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
877 is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
878 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
879 return 1;
880
881 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
882 return 1;
883
884 static_call(kvm_x86_set_cr0)(vcpu, cr0);
885
886 kvm_post_set_cr0(vcpu, old_cr0, cr0);
887
888 return 0;
889 }
890 EXPORT_SYMBOL_GPL(kvm_set_cr0);
891
892 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
893 {
894 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
895 }
896 EXPORT_SYMBOL_GPL(kvm_lmsw);
897
898 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
899 {
900 if (vcpu->arch.guest_state_protected)
901 return;
902
903 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
904
905 if (vcpu->arch.xcr0 != host_xcr0)
906 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
907
908 if (vcpu->arch.xsaves_enabled &&
909 vcpu->arch.ia32_xss != host_xss)
910 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
911 }
912
913 if (static_cpu_has(X86_FEATURE_PKU) &&
914 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
915 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
916 vcpu->arch.pkru != vcpu->arch.host_pkru)
917 __write_pkru(vcpu->arch.pkru);
918 }
919 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
920
921 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
922 {
923 if (vcpu->arch.guest_state_protected)
924 return;
925
926 if (static_cpu_has(X86_FEATURE_PKU) &&
927 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
928 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
929 vcpu->arch.pkru = rdpkru();
930 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
931 __write_pkru(vcpu->arch.host_pkru);
932 }
933
934 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
935
936 if (vcpu->arch.xcr0 != host_xcr0)
937 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
938
939 if (vcpu->arch.xsaves_enabled &&
940 vcpu->arch.ia32_xss != host_xss)
941 wrmsrl(MSR_IA32_XSS, host_xss);
942 }
943
944 }
945 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
946
947 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
948 {
949 u64 xcr0 = xcr;
950 u64 old_xcr0 = vcpu->arch.xcr0;
951 u64 valid_bits;
952
953 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
954 if (index != XCR_XFEATURE_ENABLED_MASK)
955 return 1;
956 if (!(xcr0 & XFEATURE_MASK_FP))
957 return 1;
958 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
959 return 1;
960
961 /*
962 * Do not allow the guest to set bits that we do not support
963 * saving. However, xcr0 bit 0 is always set, even if the
964 * emulated CPU does not support XSAVE (see fx_init).
965 */
966 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
967 if (xcr0 & ~valid_bits)
968 return 1;
969
970 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
971 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
972 return 1;
973
974 if (xcr0 & XFEATURE_MASK_AVX512) {
975 if (!(xcr0 & XFEATURE_MASK_YMM))
976 return 1;
977 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
978 return 1;
979 }
980 vcpu->arch.xcr0 = xcr0;
981
982 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
983 kvm_update_cpuid_runtime(vcpu);
984 return 0;
985 }
986
987 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
988 {
989 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
990 __kvm_set_xcr(vcpu, index, xcr)) {
991 kvm_inject_gp(vcpu, 0);
992 return 1;
993 }
994 return 0;
995 }
996 EXPORT_SYMBOL_GPL(kvm_set_xcr);
997
998 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
999 {
1000 if (cr4 & cr4_reserved_bits)
1001 return false;
1002
1003 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1004 return false;
1005
1006 return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1007 }
1008 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1009
1010 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1011 {
1012 unsigned long mmu_role_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1013 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
1014
1015 if (((cr4 ^ old_cr4) & mmu_role_bits) ||
1016 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1017 kvm_mmu_reset_context(vcpu);
1018 }
1019 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1020
1021 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1022 {
1023 unsigned long old_cr4 = kvm_read_cr4(vcpu);
1024 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1025 X86_CR4_SMEP;
1026
1027 if (!kvm_is_valid_cr4(vcpu, cr4))
1028 return 1;
1029
1030 if (is_long_mode(vcpu)) {
1031 if (!(cr4 & X86_CR4_PAE))
1032 return 1;
1033 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1034 return 1;
1035 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1036 && ((cr4 ^ old_cr4) & pdptr_bits)
1037 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1038 kvm_read_cr3(vcpu)))
1039 return 1;
1040
1041 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1042 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1043 return 1;
1044
1045 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1046 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1047 return 1;
1048 }
1049
1050 static_call(kvm_x86_set_cr4)(vcpu, cr4);
1051
1052 kvm_post_set_cr4(vcpu, old_cr4, cr4);
1053
1054 return 0;
1055 }
1056 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1057
1058 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1059 {
1060 bool skip_tlb_flush = false;
1061 #ifdef CONFIG_X86_64
1062 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1063
1064 if (pcid_enabled) {
1065 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1066 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1067 }
1068 #endif
1069
1070 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
1071 if (!skip_tlb_flush) {
1072 kvm_mmu_sync_roots(vcpu);
1073 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1074 }
1075 return 0;
1076 }
1077
1078 if (is_long_mode(vcpu) &&
1079 (cr3 & vcpu->arch.cr3_lm_rsvd_bits))
1080 return 1;
1081 else if (is_pae_paging(vcpu) &&
1082 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1083 return 1;
1084
1085 kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush);
1086 vcpu->arch.cr3 = cr3;
1087 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1088
1089 return 0;
1090 }
1091 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1092
1093 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1094 {
1095 if (cr8 & CR8_RESERVED_BITS)
1096 return 1;
1097 if (lapic_in_kernel(vcpu))
1098 kvm_lapic_set_tpr(vcpu, cr8);
1099 else
1100 vcpu->arch.cr8 = cr8;
1101 return 0;
1102 }
1103 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1104
1105 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1106 {
1107 if (lapic_in_kernel(vcpu))
1108 return kvm_lapic_get_cr8(vcpu);
1109 else
1110 return vcpu->arch.cr8;
1111 }
1112 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1113
1114 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1115 {
1116 int i;
1117
1118 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1119 for (i = 0; i < KVM_NR_DB_REGS; i++)
1120 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1121 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1122 }
1123 }
1124
1125 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1126 {
1127 unsigned long dr7;
1128
1129 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1130 dr7 = vcpu->arch.guest_debug_dr7;
1131 else
1132 dr7 = vcpu->arch.dr7;
1133 static_call(kvm_x86_set_dr7)(vcpu, dr7);
1134 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1135 if (dr7 & DR7_BP_EN_MASK)
1136 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1137 }
1138 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1139
1140 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1141 {
1142 u64 fixed = DR6_FIXED_1;
1143
1144 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1145 fixed |= DR6_RTM;
1146 return fixed;
1147 }
1148
1149 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1150 {
1151 size_t size = ARRAY_SIZE(vcpu->arch.db);
1152
1153 switch (dr) {
1154 case 0 ... 3:
1155 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1156 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1157 vcpu->arch.eff_db[dr] = val;
1158 break;
1159 case 4:
1160 case 6:
1161 if (!kvm_dr6_valid(val))
1162 return -1; /* #GP */
1163 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1164 break;
1165 case 5:
1166 default: /* 7 */
1167 if (!kvm_dr7_valid(val))
1168 return -1; /* #GP */
1169 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1170 kvm_update_dr7(vcpu);
1171 break;
1172 }
1173
1174 return 0;
1175 }
1176
1177 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1178 {
1179 if (__kvm_set_dr(vcpu, dr, val)) {
1180 kvm_inject_gp(vcpu, 0);
1181 return 1;
1182 }
1183 return 0;
1184 }
1185 EXPORT_SYMBOL_GPL(kvm_set_dr);
1186
1187 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1188 {
1189 size_t size = ARRAY_SIZE(vcpu->arch.db);
1190
1191 switch (dr) {
1192 case 0 ... 3:
1193 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1194 break;
1195 case 4:
1196 case 6:
1197 *val = vcpu->arch.dr6;
1198 break;
1199 case 5:
1200 default: /* 7 */
1201 *val = vcpu->arch.dr7;
1202 break;
1203 }
1204 return 0;
1205 }
1206 EXPORT_SYMBOL_GPL(kvm_get_dr);
1207
1208 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1209 {
1210 u32 ecx = kvm_rcx_read(vcpu);
1211 u64 data;
1212 int err;
1213
1214 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1215 if (err)
1216 return err;
1217 kvm_rax_write(vcpu, (u32)data);
1218 kvm_rdx_write(vcpu, data >> 32);
1219 return err;
1220 }
1221 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1222
1223 /*
1224 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1225 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1226 *
1227 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1228 * extract the supported MSRs from the related const lists.
1229 * msrs_to_save is selected from the msrs_to_save_all to reflect the
1230 * capabilities of the host cpu. This capabilities test skips MSRs that are
1231 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1232 * may depend on host virtualization features rather than host cpu features.
1233 */
1234
1235 static const u32 msrs_to_save_all[] = {
1236 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1237 MSR_STAR,
1238 #ifdef CONFIG_X86_64
1239 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1240 #endif
1241 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1242 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1243 MSR_IA32_SPEC_CTRL,
1244 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1245 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1246 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1247 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1248 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1249 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1250 MSR_IA32_UMWAIT_CONTROL,
1251
1252 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1253 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1254 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1255 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1256 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1257 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1258 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1259 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1260 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1261 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1262 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1263 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1264 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1265 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1266 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1267 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1268 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1269 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1270 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1271 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1272 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1273 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1274 };
1275
1276 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1277 static unsigned num_msrs_to_save;
1278
1279 static const u32 emulated_msrs_all[] = {
1280 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1281 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1282 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1283 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1284 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1285 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1286 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1287 HV_X64_MSR_RESET,
1288 HV_X64_MSR_VP_INDEX,
1289 HV_X64_MSR_VP_RUNTIME,
1290 HV_X64_MSR_SCONTROL,
1291 HV_X64_MSR_STIMER0_CONFIG,
1292 HV_X64_MSR_VP_ASSIST_PAGE,
1293 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1294 HV_X64_MSR_TSC_EMULATION_STATUS,
1295 HV_X64_MSR_SYNDBG_OPTIONS,
1296 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1297 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1298 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1299
1300 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1301 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1302
1303 MSR_IA32_TSC_ADJUST,
1304 MSR_IA32_TSCDEADLINE,
1305 MSR_IA32_ARCH_CAPABILITIES,
1306 MSR_IA32_PERF_CAPABILITIES,
1307 MSR_IA32_MISC_ENABLE,
1308 MSR_IA32_MCG_STATUS,
1309 MSR_IA32_MCG_CTL,
1310 MSR_IA32_MCG_EXT_CTL,
1311 MSR_IA32_SMBASE,
1312 MSR_SMI_COUNT,
1313 MSR_PLATFORM_INFO,
1314 MSR_MISC_FEATURES_ENABLES,
1315 MSR_AMD64_VIRT_SPEC_CTRL,
1316 MSR_IA32_POWER_CTL,
1317 MSR_IA32_UCODE_REV,
1318
1319 /*
1320 * The following list leaves out MSRs whose values are determined
1321 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1322 * We always support the "true" VMX control MSRs, even if the host
1323 * processor does not, so I am putting these registers here rather
1324 * than in msrs_to_save_all.
1325 */
1326 MSR_IA32_VMX_BASIC,
1327 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1328 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1329 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1330 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1331 MSR_IA32_VMX_MISC,
1332 MSR_IA32_VMX_CR0_FIXED0,
1333 MSR_IA32_VMX_CR4_FIXED0,
1334 MSR_IA32_VMX_VMCS_ENUM,
1335 MSR_IA32_VMX_PROCBASED_CTLS2,
1336 MSR_IA32_VMX_EPT_VPID_CAP,
1337 MSR_IA32_VMX_VMFUNC,
1338
1339 MSR_K7_HWCR,
1340 MSR_KVM_POLL_CONTROL,
1341 };
1342
1343 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1344 static unsigned num_emulated_msrs;
1345
1346 /*
1347 * List of msr numbers which are used to expose MSR-based features that
1348 * can be used by a hypervisor to validate requested CPU features.
1349 */
1350 static const u32 msr_based_features_all[] = {
1351 MSR_IA32_VMX_BASIC,
1352 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1353 MSR_IA32_VMX_PINBASED_CTLS,
1354 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1355 MSR_IA32_VMX_PROCBASED_CTLS,
1356 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1357 MSR_IA32_VMX_EXIT_CTLS,
1358 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1359 MSR_IA32_VMX_ENTRY_CTLS,
1360 MSR_IA32_VMX_MISC,
1361 MSR_IA32_VMX_CR0_FIXED0,
1362 MSR_IA32_VMX_CR0_FIXED1,
1363 MSR_IA32_VMX_CR4_FIXED0,
1364 MSR_IA32_VMX_CR4_FIXED1,
1365 MSR_IA32_VMX_VMCS_ENUM,
1366 MSR_IA32_VMX_PROCBASED_CTLS2,
1367 MSR_IA32_VMX_EPT_VPID_CAP,
1368 MSR_IA32_VMX_VMFUNC,
1369
1370 MSR_F10H_DECFG,
1371 MSR_IA32_UCODE_REV,
1372 MSR_IA32_ARCH_CAPABILITIES,
1373 MSR_IA32_PERF_CAPABILITIES,
1374 };
1375
1376 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1377 static unsigned int num_msr_based_features;
1378
1379 static u64 kvm_get_arch_capabilities(void)
1380 {
1381 u64 data = 0;
1382
1383 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1384 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1385
1386 /*
1387 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1388 * the nested hypervisor runs with NX huge pages. If it is not,
1389 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1390 * L1 guests, so it need not worry about its own (L2) guests.
1391 */
1392 data |= ARCH_CAP_PSCHANGE_MC_NO;
1393
1394 /*
1395 * If we're doing cache flushes (either "always" or "cond")
1396 * we will do one whenever the guest does a vmlaunch/vmresume.
1397 * If an outer hypervisor is doing the cache flush for us
1398 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1399 * capability to the guest too, and if EPT is disabled we're not
1400 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1401 * require a nested hypervisor to do a flush of its own.
1402 */
1403 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1404 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1405
1406 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1407 data |= ARCH_CAP_RDCL_NO;
1408 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1409 data |= ARCH_CAP_SSB_NO;
1410 if (!boot_cpu_has_bug(X86_BUG_MDS))
1411 data |= ARCH_CAP_MDS_NO;
1412
1413 if (!boot_cpu_has(X86_FEATURE_RTM)) {
1414 /*
1415 * If RTM=0 because the kernel has disabled TSX, the host might
1416 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1417 * and therefore knows that there cannot be TAA) but keep
1418 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1419 * and we want to allow migrating those guests to tsx=off hosts.
1420 */
1421 data &= ~ARCH_CAP_TAA_NO;
1422 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1423 data |= ARCH_CAP_TAA_NO;
1424 } else {
1425 /*
1426 * Nothing to do here; we emulate TSX_CTRL if present on the
1427 * host so the guest can choose between disabling TSX or
1428 * using VERW to clear CPU buffers.
1429 */
1430 }
1431
1432 return data;
1433 }
1434
1435 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1436 {
1437 switch (msr->index) {
1438 case MSR_IA32_ARCH_CAPABILITIES:
1439 msr->data = kvm_get_arch_capabilities();
1440 break;
1441 case MSR_IA32_UCODE_REV:
1442 rdmsrl_safe(msr->index, &msr->data);
1443 break;
1444 default:
1445 return static_call(kvm_x86_get_msr_feature)(msr);
1446 }
1447 return 0;
1448 }
1449
1450 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1451 {
1452 struct kvm_msr_entry msr;
1453 int r;
1454
1455 msr.index = index;
1456 r = kvm_get_msr_feature(&msr);
1457
1458 if (r == KVM_MSR_RET_INVALID) {
1459 /* Unconditionally clear the output for simplicity */
1460 *data = 0;
1461 if (kvm_msr_ignored_check(vcpu, index, 0, false))
1462 r = 0;
1463 }
1464
1465 if (r)
1466 return r;
1467
1468 *data = msr.data;
1469
1470 return 0;
1471 }
1472
1473 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1474 {
1475 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1476 return false;
1477
1478 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1479 return false;
1480
1481 if (efer & (EFER_LME | EFER_LMA) &&
1482 !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1483 return false;
1484
1485 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1486 return false;
1487
1488 return true;
1489
1490 }
1491 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1492 {
1493 if (efer & efer_reserved_bits)
1494 return false;
1495
1496 return __kvm_valid_efer(vcpu, efer);
1497 }
1498 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1499
1500 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1501 {
1502 u64 old_efer = vcpu->arch.efer;
1503 u64 efer = msr_info->data;
1504 int r;
1505
1506 if (efer & efer_reserved_bits)
1507 return 1;
1508
1509 if (!msr_info->host_initiated) {
1510 if (!__kvm_valid_efer(vcpu, efer))
1511 return 1;
1512
1513 if (is_paging(vcpu) &&
1514 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1515 return 1;
1516 }
1517
1518 efer &= ~EFER_LMA;
1519 efer |= vcpu->arch.efer & EFER_LMA;
1520
1521 r = static_call(kvm_x86_set_efer)(vcpu, efer);
1522 if (r) {
1523 WARN_ON(r > 0);
1524 return r;
1525 }
1526
1527 /* Update reserved bits */
1528 if ((efer ^ old_efer) & EFER_NX)
1529 kvm_mmu_reset_context(vcpu);
1530
1531 return 0;
1532 }
1533
1534 void kvm_enable_efer_bits(u64 mask)
1535 {
1536 efer_reserved_bits &= ~mask;
1537 }
1538 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1539
1540 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1541 {
1542 struct kvm *kvm = vcpu->kvm;
1543 struct msr_bitmap_range *ranges = kvm->arch.msr_filter.ranges;
1544 u32 count = kvm->arch.msr_filter.count;
1545 u32 i;
1546 bool r = kvm->arch.msr_filter.default_allow;
1547 int idx;
1548
1549 /* MSR filtering not set up or x2APIC enabled, allow everything */
1550 if (!count || (index >= 0x800 && index <= 0x8ff))
1551 return true;
1552
1553 /* Prevent collision with set_msr_filter */
1554 idx = srcu_read_lock(&kvm->srcu);
1555
1556 for (i = 0; i < count; i++) {
1557 u32 start = ranges[i].base;
1558 u32 end = start + ranges[i].nmsrs;
1559 u32 flags = ranges[i].flags;
1560 unsigned long *bitmap = ranges[i].bitmap;
1561
1562 if ((index >= start) && (index < end) && (flags & type)) {
1563 r = !!test_bit(index - start, bitmap);
1564 break;
1565 }
1566 }
1567
1568 srcu_read_unlock(&kvm->srcu, idx);
1569
1570 return r;
1571 }
1572 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1573
1574 /*
1575 * Write @data into the MSR specified by @index. Select MSR specific fault
1576 * checks are bypassed if @host_initiated is %true.
1577 * Returns 0 on success, non-0 otherwise.
1578 * Assumes vcpu_load() was already called.
1579 */
1580 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1581 bool host_initiated)
1582 {
1583 struct msr_data msr;
1584
1585 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1586 return KVM_MSR_RET_FILTERED;
1587
1588 switch (index) {
1589 case MSR_FS_BASE:
1590 case MSR_GS_BASE:
1591 case MSR_KERNEL_GS_BASE:
1592 case MSR_CSTAR:
1593 case MSR_LSTAR:
1594 if (is_noncanonical_address(data, vcpu))
1595 return 1;
1596 break;
1597 case MSR_IA32_SYSENTER_EIP:
1598 case MSR_IA32_SYSENTER_ESP:
1599 /*
1600 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1601 * non-canonical address is written on Intel but not on
1602 * AMD (which ignores the top 32-bits, because it does
1603 * not implement 64-bit SYSENTER).
1604 *
1605 * 64-bit code should hence be able to write a non-canonical
1606 * value on AMD. Making the address canonical ensures that
1607 * vmentry does not fail on Intel after writing a non-canonical
1608 * value, and that something deterministic happens if the guest
1609 * invokes 64-bit SYSENTER.
1610 */
1611 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1612 }
1613
1614 msr.data = data;
1615 msr.index = index;
1616 msr.host_initiated = host_initiated;
1617
1618 return static_call(kvm_x86_set_msr)(vcpu, &msr);
1619 }
1620
1621 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1622 u32 index, u64 data, bool host_initiated)
1623 {
1624 int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1625
1626 if (ret == KVM_MSR_RET_INVALID)
1627 if (kvm_msr_ignored_check(vcpu, index, data, true))
1628 ret = 0;
1629
1630 return ret;
1631 }
1632
1633 /*
1634 * Read the MSR specified by @index into @data. Select MSR specific fault
1635 * checks are bypassed if @host_initiated is %true.
1636 * Returns 0 on success, non-0 otherwise.
1637 * Assumes vcpu_load() was already called.
1638 */
1639 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1640 bool host_initiated)
1641 {
1642 struct msr_data msr;
1643 int ret;
1644
1645 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1646 return KVM_MSR_RET_FILTERED;
1647
1648 msr.index = index;
1649 msr.host_initiated = host_initiated;
1650
1651 ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1652 if (!ret)
1653 *data = msr.data;
1654 return ret;
1655 }
1656
1657 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1658 u32 index, u64 *data, bool host_initiated)
1659 {
1660 int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1661
1662 if (ret == KVM_MSR_RET_INVALID) {
1663 /* Unconditionally clear *data for simplicity */
1664 *data = 0;
1665 if (kvm_msr_ignored_check(vcpu, index, 0, false))
1666 ret = 0;
1667 }
1668
1669 return ret;
1670 }
1671
1672 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1673 {
1674 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1675 }
1676 EXPORT_SYMBOL_GPL(kvm_get_msr);
1677
1678 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1679 {
1680 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1681 }
1682 EXPORT_SYMBOL_GPL(kvm_set_msr);
1683
1684 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1685 {
1686 int err = vcpu->run->msr.error;
1687 if (!err) {
1688 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1689 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1690 }
1691
1692 return static_call(kvm_x86_complete_emulated_msr)(vcpu, err);
1693 }
1694
1695 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1696 {
1697 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1698 }
1699
1700 static u64 kvm_msr_reason(int r)
1701 {
1702 switch (r) {
1703 case KVM_MSR_RET_INVALID:
1704 return KVM_MSR_EXIT_REASON_UNKNOWN;
1705 case KVM_MSR_RET_FILTERED:
1706 return KVM_MSR_EXIT_REASON_FILTER;
1707 default:
1708 return KVM_MSR_EXIT_REASON_INVAL;
1709 }
1710 }
1711
1712 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1713 u32 exit_reason, u64 data,
1714 int (*completion)(struct kvm_vcpu *vcpu),
1715 int r)
1716 {
1717 u64 msr_reason = kvm_msr_reason(r);
1718
1719 /* Check if the user wanted to know about this MSR fault */
1720 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1721 return 0;
1722
1723 vcpu->run->exit_reason = exit_reason;
1724 vcpu->run->msr.error = 0;
1725 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1726 vcpu->run->msr.reason = msr_reason;
1727 vcpu->run->msr.index = index;
1728 vcpu->run->msr.data = data;
1729 vcpu->arch.complete_userspace_io = completion;
1730
1731 return 1;
1732 }
1733
1734 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1735 {
1736 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1737 complete_emulated_rdmsr, r);
1738 }
1739
1740 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1741 {
1742 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1743 complete_emulated_wrmsr, r);
1744 }
1745
1746 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1747 {
1748 u32 ecx = kvm_rcx_read(vcpu);
1749 u64 data;
1750 int r;
1751
1752 r = kvm_get_msr(vcpu, ecx, &data);
1753
1754 /* MSR read failed? See if we should ask user space */
1755 if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1756 /* Bounce to user space */
1757 return 0;
1758 }
1759
1760 if (!r) {
1761 trace_kvm_msr_read(ecx, data);
1762
1763 kvm_rax_write(vcpu, data & -1u);
1764 kvm_rdx_write(vcpu, (data >> 32) & -1u);
1765 } else {
1766 trace_kvm_msr_read_ex(ecx);
1767 }
1768
1769 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1770 }
1771 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1772
1773 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1774 {
1775 u32 ecx = kvm_rcx_read(vcpu);
1776 u64 data = kvm_read_edx_eax(vcpu);
1777 int r;
1778
1779 r = kvm_set_msr(vcpu, ecx, data);
1780
1781 /* MSR write failed? See if we should ask user space */
1782 if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1783 /* Bounce to user space */
1784 return 0;
1785
1786 /* Signal all other negative errors to userspace */
1787 if (r < 0)
1788 return r;
1789
1790 if (!r)
1791 trace_kvm_msr_write(ecx, data);
1792 else
1793 trace_kvm_msr_write_ex(ecx, data);
1794
1795 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1796 }
1797 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1798
1799 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1800 {
1801 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1802 xfer_to_guest_mode_work_pending();
1803 }
1804
1805 /*
1806 * The fast path for frequent and performance sensitive wrmsr emulation,
1807 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1808 * the latency of virtual IPI by avoiding the expensive bits of transitioning
1809 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1810 * other cases which must be called after interrupts are enabled on the host.
1811 */
1812 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1813 {
1814 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1815 return 1;
1816
1817 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1818 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1819 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1820 ((u32)(data >> 32) != X2APIC_BROADCAST)) {
1821
1822 data &= ~(1 << 12);
1823 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1824 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1825 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1826 trace_kvm_apic_write(APIC_ICR, (u32)data);
1827 return 0;
1828 }
1829
1830 return 1;
1831 }
1832
1833 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1834 {
1835 if (!kvm_can_use_hv_timer(vcpu))
1836 return 1;
1837
1838 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1839 return 0;
1840 }
1841
1842 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1843 {
1844 u32 msr = kvm_rcx_read(vcpu);
1845 u64 data;
1846 fastpath_t ret = EXIT_FASTPATH_NONE;
1847
1848 switch (msr) {
1849 case APIC_BASE_MSR + (APIC_ICR >> 4):
1850 data = kvm_read_edx_eax(vcpu);
1851 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
1852 kvm_skip_emulated_instruction(vcpu);
1853 ret = EXIT_FASTPATH_EXIT_HANDLED;
1854 }
1855 break;
1856 case MSR_IA32_TSCDEADLINE:
1857 data = kvm_read_edx_eax(vcpu);
1858 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
1859 kvm_skip_emulated_instruction(vcpu);
1860 ret = EXIT_FASTPATH_REENTER_GUEST;
1861 }
1862 break;
1863 default:
1864 break;
1865 }
1866
1867 if (ret != EXIT_FASTPATH_NONE)
1868 trace_kvm_msr_write(msr, data);
1869
1870 return ret;
1871 }
1872 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1873
1874 /*
1875 * Adapt set_msr() to msr_io()'s calling convention
1876 */
1877 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1878 {
1879 return kvm_get_msr_ignored_check(vcpu, index, data, true);
1880 }
1881
1882 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1883 {
1884 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
1885 }
1886
1887 #ifdef CONFIG_X86_64
1888 struct pvclock_clock {
1889 int vclock_mode;
1890 u64 cycle_last;
1891 u64 mask;
1892 u32 mult;
1893 u32 shift;
1894 u64 base_cycles;
1895 u64 offset;
1896 };
1897
1898 struct pvclock_gtod_data {
1899 seqcount_t seq;
1900
1901 struct pvclock_clock clock; /* extract of a clocksource struct */
1902 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1903
1904 ktime_t offs_boot;
1905 u64 wall_time_sec;
1906 };
1907
1908 static struct pvclock_gtod_data pvclock_gtod_data;
1909
1910 static void update_pvclock_gtod(struct timekeeper *tk)
1911 {
1912 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1913
1914 write_seqcount_begin(&vdata->seq);
1915
1916 /* copy pvclock gtod data */
1917 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
1918 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1919 vdata->clock.mask = tk->tkr_mono.mask;
1920 vdata->clock.mult = tk->tkr_mono.mult;
1921 vdata->clock.shift = tk->tkr_mono.shift;
1922 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
1923 vdata->clock.offset = tk->tkr_mono.base;
1924
1925 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
1926 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
1927 vdata->raw_clock.mask = tk->tkr_raw.mask;
1928 vdata->raw_clock.mult = tk->tkr_raw.mult;
1929 vdata->raw_clock.shift = tk->tkr_raw.shift;
1930 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
1931 vdata->raw_clock.offset = tk->tkr_raw.base;
1932
1933 vdata->wall_time_sec = tk->xtime_sec;
1934
1935 vdata->offs_boot = tk->offs_boot;
1936
1937 write_seqcount_end(&vdata->seq);
1938 }
1939
1940 static s64 get_kvmclock_base_ns(void)
1941 {
1942 /* Count up from boot time, but with the frequency of the raw clock. */
1943 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
1944 }
1945 #else
1946 static s64 get_kvmclock_base_ns(void)
1947 {
1948 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
1949 return ktime_get_boottime_ns();
1950 }
1951 #endif
1952
1953 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1954 {
1955 int version;
1956 int r;
1957 struct pvclock_wall_clock wc;
1958 u64 wall_nsec;
1959
1960 kvm->arch.wall_clock = wall_clock;
1961
1962 if (!wall_clock)
1963 return;
1964
1965 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1966 if (r)
1967 return;
1968
1969 if (version & 1)
1970 ++version; /* first time write, random junk */
1971
1972 ++version;
1973
1974 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1975 return;
1976
1977 /*
1978 * The guest calculates current wall clock time by adding
1979 * system time (updated by kvm_guest_time_update below) to the
1980 * wall clock specified here. We do the reverse here.
1981 */
1982 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
1983
1984 wc.nsec = do_div(wall_nsec, 1000000000);
1985 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
1986 wc.version = version;
1987
1988 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1989
1990 version++;
1991 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1992 }
1993
1994 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
1995 bool old_msr, bool host_initiated)
1996 {
1997 struct kvm_arch *ka = &vcpu->kvm->arch;
1998
1999 if (vcpu->vcpu_id == 0 && !host_initiated) {
2000 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2001 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2002
2003 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2004 }
2005
2006 vcpu->arch.time = system_time;
2007 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2008
2009 /* we verify if the enable bit is set... */
2010 vcpu->arch.pv_time_enabled = false;
2011 if (!(system_time & 1))
2012 return;
2013
2014 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2015 &vcpu->arch.pv_time, system_time & ~1ULL,
2016 sizeof(struct pvclock_vcpu_time_info)))
2017 vcpu->arch.pv_time_enabled = true;
2018
2019 return;
2020 }
2021
2022 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2023 {
2024 do_shl32_div32(dividend, divisor);
2025 return dividend;
2026 }
2027
2028 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2029 s8 *pshift, u32 *pmultiplier)
2030 {
2031 uint64_t scaled64;
2032 int32_t shift = 0;
2033 uint64_t tps64;
2034 uint32_t tps32;
2035
2036 tps64 = base_hz;
2037 scaled64 = scaled_hz;
2038 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2039 tps64 >>= 1;
2040 shift--;
2041 }
2042
2043 tps32 = (uint32_t)tps64;
2044 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2045 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2046 scaled64 >>= 1;
2047 else
2048 tps32 <<= 1;
2049 shift++;
2050 }
2051
2052 *pshift = shift;
2053 *pmultiplier = div_frac(scaled64, tps32);
2054 }
2055
2056 #ifdef CONFIG_X86_64
2057 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2058 #endif
2059
2060 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2061 static unsigned long max_tsc_khz;
2062
2063 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2064 {
2065 u64 v = (u64)khz * (1000000 + ppm);
2066 do_div(v, 1000000);
2067 return v;
2068 }
2069
2070 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2071 {
2072 u64 ratio;
2073
2074 /* Guest TSC same frequency as host TSC? */
2075 if (!scale) {
2076 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2077 return 0;
2078 }
2079
2080 /* TSC scaling supported? */
2081 if (!kvm_has_tsc_control) {
2082 if (user_tsc_khz > tsc_khz) {
2083 vcpu->arch.tsc_catchup = 1;
2084 vcpu->arch.tsc_always_catchup = 1;
2085 return 0;
2086 } else {
2087 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2088 return -1;
2089 }
2090 }
2091
2092 /* TSC scaling required - calculate ratio */
2093 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2094 user_tsc_khz, tsc_khz);
2095
2096 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2097 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2098 user_tsc_khz);
2099 return -1;
2100 }
2101
2102 vcpu->arch.tsc_scaling_ratio = ratio;
2103 return 0;
2104 }
2105
2106 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2107 {
2108 u32 thresh_lo, thresh_hi;
2109 int use_scaling = 0;
2110
2111 /* tsc_khz can be zero if TSC calibration fails */
2112 if (user_tsc_khz == 0) {
2113 /* set tsc_scaling_ratio to a safe value */
2114 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2115 return -1;
2116 }
2117
2118 /* Compute a scale to convert nanoseconds in TSC cycles */
2119 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2120 &vcpu->arch.virtual_tsc_shift,
2121 &vcpu->arch.virtual_tsc_mult);
2122 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2123
2124 /*
2125 * Compute the variation in TSC rate which is acceptable
2126 * within the range of tolerance and decide if the
2127 * rate being applied is within that bounds of the hardware
2128 * rate. If so, no scaling or compensation need be done.
2129 */
2130 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2131 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2132 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2133 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2134 use_scaling = 1;
2135 }
2136 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2137 }
2138
2139 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2140 {
2141 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2142 vcpu->arch.virtual_tsc_mult,
2143 vcpu->arch.virtual_tsc_shift);
2144 tsc += vcpu->arch.this_tsc_write;
2145 return tsc;
2146 }
2147
2148 static inline int gtod_is_based_on_tsc(int mode)
2149 {
2150 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2151 }
2152
2153 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2154 {
2155 #ifdef CONFIG_X86_64
2156 bool vcpus_matched;
2157 struct kvm_arch *ka = &vcpu->kvm->arch;
2158 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2159
2160 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2161 atomic_read(&vcpu->kvm->online_vcpus));
2162
2163 /*
2164 * Once the masterclock is enabled, always perform request in
2165 * order to update it.
2166 *
2167 * In order to enable masterclock, the host clocksource must be TSC
2168 * and the vcpus need to have matched TSCs. When that happens,
2169 * perform request to enable masterclock.
2170 */
2171 if (ka->use_master_clock ||
2172 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2173 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2174
2175 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2176 atomic_read(&vcpu->kvm->online_vcpus),
2177 ka->use_master_clock, gtod->clock.vclock_mode);
2178 #endif
2179 }
2180
2181 /*
2182 * Multiply tsc by a fixed point number represented by ratio.
2183 *
2184 * The most significant 64-N bits (mult) of ratio represent the
2185 * integral part of the fixed point number; the remaining N bits
2186 * (frac) represent the fractional part, ie. ratio represents a fixed
2187 * point number (mult + frac * 2^(-N)).
2188 *
2189 * N equals to kvm_tsc_scaling_ratio_frac_bits.
2190 */
2191 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2192 {
2193 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2194 }
2195
2196 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
2197 {
2198 u64 _tsc = tsc;
2199 u64 ratio = vcpu->arch.tsc_scaling_ratio;
2200
2201 if (ratio != kvm_default_tsc_scaling_ratio)
2202 _tsc = __scale_tsc(ratio, tsc);
2203
2204 return _tsc;
2205 }
2206 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2207
2208 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2209 {
2210 u64 tsc;
2211
2212 tsc = kvm_scale_tsc(vcpu, rdtsc());
2213
2214 return target_tsc - tsc;
2215 }
2216
2217 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2218 {
2219 return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
2220 }
2221 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2222
2223 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2224 {
2225 vcpu->arch.l1_tsc_offset = offset;
2226 vcpu->arch.tsc_offset = static_call(kvm_x86_write_l1_tsc_offset)(vcpu, offset);
2227 }
2228
2229 static inline bool kvm_check_tsc_unstable(void)
2230 {
2231 #ifdef CONFIG_X86_64
2232 /*
2233 * TSC is marked unstable when we're running on Hyper-V,
2234 * 'TSC page' clocksource is good.
2235 */
2236 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2237 return false;
2238 #endif
2239 return check_tsc_unstable();
2240 }
2241
2242 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2243 {
2244 struct kvm *kvm = vcpu->kvm;
2245 u64 offset, ns, elapsed;
2246 unsigned long flags;
2247 bool matched;
2248 bool already_matched;
2249 bool synchronizing = false;
2250
2251 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2252 offset = kvm_compute_tsc_offset(vcpu, data);
2253 ns = get_kvmclock_base_ns();
2254 elapsed = ns - kvm->arch.last_tsc_nsec;
2255
2256 if (vcpu->arch.virtual_tsc_khz) {
2257 if (data == 0) {
2258 /*
2259 * detection of vcpu initialization -- need to sync
2260 * with other vCPUs. This particularly helps to keep
2261 * kvm_clock stable after CPU hotplug
2262 */
2263 synchronizing = true;
2264 } else {
2265 u64 tsc_exp = kvm->arch.last_tsc_write +
2266 nsec_to_cycles(vcpu, elapsed);
2267 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2268 /*
2269 * Special case: TSC write with a small delta (1 second)
2270 * of virtual cycle time against real time is
2271 * interpreted as an attempt to synchronize the CPU.
2272 */
2273 synchronizing = data < tsc_exp + tsc_hz &&
2274 data + tsc_hz > tsc_exp;
2275 }
2276 }
2277
2278 /*
2279 * For a reliable TSC, we can match TSC offsets, and for an unstable
2280 * TSC, we add elapsed time in this computation. We could let the
2281 * compensation code attempt to catch up if we fall behind, but
2282 * it's better to try to match offsets from the beginning.
2283 */
2284 if (synchronizing &&
2285 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2286 if (!kvm_check_tsc_unstable()) {
2287 offset = kvm->arch.cur_tsc_offset;
2288 } else {
2289 u64 delta = nsec_to_cycles(vcpu, elapsed);
2290 data += delta;
2291 offset = kvm_compute_tsc_offset(vcpu, data);
2292 }
2293 matched = true;
2294 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2295 } else {
2296 /*
2297 * We split periods of matched TSC writes into generations.
2298 * For each generation, we track the original measured
2299 * nanosecond time, offset, and write, so if TSCs are in
2300 * sync, we can match exact offset, and if not, we can match
2301 * exact software computation in compute_guest_tsc()
2302 *
2303 * These values are tracked in kvm->arch.cur_xxx variables.
2304 */
2305 kvm->arch.cur_tsc_generation++;
2306 kvm->arch.cur_tsc_nsec = ns;
2307 kvm->arch.cur_tsc_write = data;
2308 kvm->arch.cur_tsc_offset = offset;
2309 matched = false;
2310 }
2311
2312 /*
2313 * We also track th most recent recorded KHZ, write and time to
2314 * allow the matching interval to be extended at each write.
2315 */
2316 kvm->arch.last_tsc_nsec = ns;
2317 kvm->arch.last_tsc_write = data;
2318 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2319
2320 vcpu->arch.last_guest_tsc = data;
2321
2322 /* Keep track of which generation this VCPU has synchronized to */
2323 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2324 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2325 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2326
2327 kvm_vcpu_write_tsc_offset(vcpu, offset);
2328 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2329
2330 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
2331 if (!matched) {
2332 kvm->arch.nr_vcpus_matched_tsc = 0;
2333 } else if (!already_matched) {
2334 kvm->arch.nr_vcpus_matched_tsc++;
2335 }
2336
2337 kvm_track_tsc_matching(vcpu);
2338 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
2339 }
2340
2341 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2342 s64 adjustment)
2343 {
2344 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2345 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2346 }
2347
2348 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2349 {
2350 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2351 WARN_ON(adjustment < 0);
2352 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2353 adjust_tsc_offset_guest(vcpu, adjustment);
2354 }
2355
2356 #ifdef CONFIG_X86_64
2357
2358 static u64 read_tsc(void)
2359 {
2360 u64 ret = (u64)rdtsc_ordered();
2361 u64 last = pvclock_gtod_data.clock.cycle_last;
2362
2363 if (likely(ret >= last))
2364 return ret;
2365
2366 /*
2367 * GCC likes to generate cmov here, but this branch is extremely
2368 * predictable (it's just a function of time and the likely is
2369 * very likely) and there's a data dependence, so force GCC
2370 * to generate a branch instead. I don't barrier() because
2371 * we don't actually need a barrier, and if this function
2372 * ever gets inlined it will generate worse code.
2373 */
2374 asm volatile ("");
2375 return last;
2376 }
2377
2378 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2379 int *mode)
2380 {
2381 long v;
2382 u64 tsc_pg_val;
2383
2384 switch (clock->vclock_mode) {
2385 case VDSO_CLOCKMODE_HVCLOCK:
2386 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2387 tsc_timestamp);
2388 if (tsc_pg_val != U64_MAX) {
2389 /* TSC page valid */
2390 *mode = VDSO_CLOCKMODE_HVCLOCK;
2391 v = (tsc_pg_val - clock->cycle_last) &
2392 clock->mask;
2393 } else {
2394 /* TSC page invalid */
2395 *mode = VDSO_CLOCKMODE_NONE;
2396 }
2397 break;
2398 case VDSO_CLOCKMODE_TSC:
2399 *mode = VDSO_CLOCKMODE_TSC;
2400 *tsc_timestamp = read_tsc();
2401 v = (*tsc_timestamp - clock->cycle_last) &
2402 clock->mask;
2403 break;
2404 default:
2405 *mode = VDSO_CLOCKMODE_NONE;
2406 }
2407
2408 if (*mode == VDSO_CLOCKMODE_NONE)
2409 *tsc_timestamp = v = 0;
2410
2411 return v * clock->mult;
2412 }
2413
2414 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2415 {
2416 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2417 unsigned long seq;
2418 int mode;
2419 u64 ns;
2420
2421 do {
2422 seq = read_seqcount_begin(&gtod->seq);
2423 ns = gtod->raw_clock.base_cycles;
2424 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2425 ns >>= gtod->raw_clock.shift;
2426 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2427 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2428 *t = ns;
2429
2430 return mode;
2431 }
2432
2433 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2434 {
2435 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2436 unsigned long seq;
2437 int mode;
2438 u64 ns;
2439
2440 do {
2441 seq = read_seqcount_begin(&gtod->seq);
2442 ts->tv_sec = gtod->wall_time_sec;
2443 ns = gtod->clock.base_cycles;
2444 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2445 ns >>= gtod->clock.shift;
2446 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2447
2448 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2449 ts->tv_nsec = ns;
2450
2451 return mode;
2452 }
2453
2454 /* returns true if host is using TSC based clocksource */
2455 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2456 {
2457 /* checked again under seqlock below */
2458 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2459 return false;
2460
2461 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2462 tsc_timestamp));
2463 }
2464
2465 /* returns true if host is using TSC based clocksource */
2466 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2467 u64 *tsc_timestamp)
2468 {
2469 /* checked again under seqlock below */
2470 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2471 return false;
2472
2473 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2474 }
2475 #endif
2476
2477 /*
2478 *
2479 * Assuming a stable TSC across physical CPUS, and a stable TSC
2480 * across virtual CPUs, the following condition is possible.
2481 * Each numbered line represents an event visible to both
2482 * CPUs at the next numbered event.
2483 *
2484 * "timespecX" represents host monotonic time. "tscX" represents
2485 * RDTSC value.
2486 *
2487 * VCPU0 on CPU0 | VCPU1 on CPU1
2488 *
2489 * 1. read timespec0,tsc0
2490 * 2. | timespec1 = timespec0 + N
2491 * | tsc1 = tsc0 + M
2492 * 3. transition to guest | transition to guest
2493 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2494 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2495 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2496 *
2497 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2498 *
2499 * - ret0 < ret1
2500 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2501 * ...
2502 * - 0 < N - M => M < N
2503 *
2504 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2505 * always the case (the difference between two distinct xtime instances
2506 * might be smaller then the difference between corresponding TSC reads,
2507 * when updating guest vcpus pvclock areas).
2508 *
2509 * To avoid that problem, do not allow visibility of distinct
2510 * system_timestamp/tsc_timestamp values simultaneously: use a master
2511 * copy of host monotonic time values. Update that master copy
2512 * in lockstep.
2513 *
2514 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2515 *
2516 */
2517
2518 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2519 {
2520 #ifdef CONFIG_X86_64
2521 struct kvm_arch *ka = &kvm->arch;
2522 int vclock_mode;
2523 bool host_tsc_clocksource, vcpus_matched;
2524
2525 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2526 atomic_read(&kvm->online_vcpus));
2527
2528 /*
2529 * If the host uses TSC clock, then passthrough TSC as stable
2530 * to the guest.
2531 */
2532 host_tsc_clocksource = kvm_get_time_and_clockread(
2533 &ka->master_kernel_ns,
2534 &ka->master_cycle_now);
2535
2536 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2537 && !ka->backwards_tsc_observed
2538 && !ka->boot_vcpu_runs_old_kvmclock;
2539
2540 if (ka->use_master_clock)
2541 atomic_set(&kvm_guest_has_master_clock, 1);
2542
2543 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2544 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2545 vcpus_matched);
2546 #endif
2547 }
2548
2549 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2550 {
2551 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2552 }
2553
2554 static void kvm_gen_update_masterclock(struct kvm *kvm)
2555 {
2556 #ifdef CONFIG_X86_64
2557 int i;
2558 struct kvm_vcpu *vcpu;
2559 struct kvm_arch *ka = &kvm->arch;
2560
2561 spin_lock(&ka->pvclock_gtod_sync_lock);
2562 kvm_make_mclock_inprogress_request(kvm);
2563 /* no guest entries from this point */
2564 pvclock_update_vm_gtod_copy(kvm);
2565
2566 kvm_for_each_vcpu(i, vcpu, kvm)
2567 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2568
2569 /* guest entries allowed */
2570 kvm_for_each_vcpu(i, vcpu, kvm)
2571 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2572
2573 spin_unlock(&ka->pvclock_gtod_sync_lock);
2574 #endif
2575 }
2576
2577 u64 get_kvmclock_ns(struct kvm *kvm)
2578 {
2579 struct kvm_arch *ka = &kvm->arch;
2580 struct pvclock_vcpu_time_info hv_clock;
2581 u64 ret;
2582
2583 spin_lock(&ka->pvclock_gtod_sync_lock);
2584 if (!ka->use_master_clock) {
2585 spin_unlock(&ka->pvclock_gtod_sync_lock);
2586 return get_kvmclock_base_ns() + ka->kvmclock_offset;
2587 }
2588
2589 hv_clock.tsc_timestamp = ka->master_cycle_now;
2590 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2591 spin_unlock(&ka->pvclock_gtod_sync_lock);
2592
2593 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2594 get_cpu();
2595
2596 if (__this_cpu_read(cpu_tsc_khz)) {
2597 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2598 &hv_clock.tsc_shift,
2599 &hv_clock.tsc_to_system_mul);
2600 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2601 } else
2602 ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2603
2604 put_cpu();
2605
2606 return ret;
2607 }
2608
2609 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2610 {
2611 struct kvm_vcpu_arch *vcpu = &v->arch;
2612 struct pvclock_vcpu_time_info guest_hv_clock;
2613
2614 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2615 &guest_hv_clock, sizeof(guest_hv_clock))))
2616 return;
2617
2618 /* This VCPU is paused, but it's legal for a guest to read another
2619 * VCPU's kvmclock, so we really have to follow the specification where
2620 * it says that version is odd if data is being modified, and even after
2621 * it is consistent.
2622 *
2623 * Version field updates must be kept separate. This is because
2624 * kvm_write_guest_cached might use a "rep movs" instruction, and
2625 * writes within a string instruction are weakly ordered. So there
2626 * are three writes overall.
2627 *
2628 * As a small optimization, only write the version field in the first
2629 * and third write. The vcpu->pv_time cache is still valid, because the
2630 * version field is the first in the struct.
2631 */
2632 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2633
2634 if (guest_hv_clock.version & 1)
2635 ++guest_hv_clock.version; /* first time write, random junk */
2636
2637 vcpu->hv_clock.version = guest_hv_clock.version + 1;
2638 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2639 &vcpu->hv_clock,
2640 sizeof(vcpu->hv_clock.version));
2641
2642 smp_wmb();
2643
2644 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2645 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2646
2647 if (vcpu->pvclock_set_guest_stopped_request) {
2648 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2649 vcpu->pvclock_set_guest_stopped_request = false;
2650 }
2651
2652 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2653
2654 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2655 &vcpu->hv_clock,
2656 sizeof(vcpu->hv_clock));
2657
2658 smp_wmb();
2659
2660 vcpu->hv_clock.version++;
2661 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2662 &vcpu->hv_clock,
2663 sizeof(vcpu->hv_clock.version));
2664 }
2665
2666 static int kvm_guest_time_update(struct kvm_vcpu *v)
2667 {
2668 unsigned long flags, tgt_tsc_khz;
2669 struct kvm_vcpu_arch *vcpu = &v->arch;
2670 struct kvm_arch *ka = &v->kvm->arch;
2671 s64 kernel_ns;
2672 u64 tsc_timestamp, host_tsc;
2673 u8 pvclock_flags;
2674 bool use_master_clock;
2675
2676 kernel_ns = 0;
2677 host_tsc = 0;
2678
2679 /*
2680 * If the host uses TSC clock, then passthrough TSC as stable
2681 * to the guest.
2682 */
2683 spin_lock(&ka->pvclock_gtod_sync_lock);
2684 use_master_clock = ka->use_master_clock;
2685 if (use_master_clock) {
2686 host_tsc = ka->master_cycle_now;
2687 kernel_ns = ka->master_kernel_ns;
2688 }
2689 spin_unlock(&ka->pvclock_gtod_sync_lock);
2690
2691 /* Keep irq disabled to prevent changes to the clock */
2692 local_irq_save(flags);
2693 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2694 if (unlikely(tgt_tsc_khz == 0)) {
2695 local_irq_restore(flags);
2696 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2697 return 1;
2698 }
2699 if (!use_master_clock) {
2700 host_tsc = rdtsc();
2701 kernel_ns = get_kvmclock_base_ns();
2702 }
2703
2704 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2705
2706 /*
2707 * We may have to catch up the TSC to match elapsed wall clock
2708 * time for two reasons, even if kvmclock is used.
2709 * 1) CPU could have been running below the maximum TSC rate
2710 * 2) Broken TSC compensation resets the base at each VCPU
2711 * entry to avoid unknown leaps of TSC even when running
2712 * again on the same CPU. This may cause apparent elapsed
2713 * time to disappear, and the guest to stand still or run
2714 * very slowly.
2715 */
2716 if (vcpu->tsc_catchup) {
2717 u64 tsc = compute_guest_tsc(v, kernel_ns);
2718 if (tsc > tsc_timestamp) {
2719 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2720 tsc_timestamp = tsc;
2721 }
2722 }
2723
2724 local_irq_restore(flags);
2725
2726 /* With all the info we got, fill in the values */
2727
2728 if (kvm_has_tsc_control)
2729 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2730
2731 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2732 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2733 &vcpu->hv_clock.tsc_shift,
2734 &vcpu->hv_clock.tsc_to_system_mul);
2735 vcpu->hw_tsc_khz = tgt_tsc_khz;
2736 }
2737
2738 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2739 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2740 vcpu->last_guest_tsc = tsc_timestamp;
2741
2742 /* If the host uses TSC clocksource, then it is stable */
2743 pvclock_flags = 0;
2744 if (use_master_clock)
2745 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2746
2747 vcpu->hv_clock.flags = pvclock_flags;
2748
2749 if (vcpu->pv_time_enabled)
2750 kvm_setup_pvclock_page(v);
2751 if (v == kvm_get_vcpu(v->kvm, 0))
2752 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2753 return 0;
2754 }
2755
2756 /*
2757 * kvmclock updates which are isolated to a given vcpu, such as
2758 * vcpu->cpu migration, should not allow system_timestamp from
2759 * the rest of the vcpus to remain static. Otherwise ntp frequency
2760 * correction applies to one vcpu's system_timestamp but not
2761 * the others.
2762 *
2763 * So in those cases, request a kvmclock update for all vcpus.
2764 * We need to rate-limit these requests though, as they can
2765 * considerably slow guests that have a large number of vcpus.
2766 * The time for a remote vcpu to update its kvmclock is bound
2767 * by the delay we use to rate-limit the updates.
2768 */
2769
2770 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2771
2772 static void kvmclock_update_fn(struct work_struct *work)
2773 {
2774 int i;
2775 struct delayed_work *dwork = to_delayed_work(work);
2776 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2777 kvmclock_update_work);
2778 struct kvm *kvm = container_of(ka, struct kvm, arch);
2779 struct kvm_vcpu *vcpu;
2780
2781 kvm_for_each_vcpu(i, vcpu, kvm) {
2782 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2783 kvm_vcpu_kick(vcpu);
2784 }
2785 }
2786
2787 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2788 {
2789 struct kvm *kvm = v->kvm;
2790
2791 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2792 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2793 KVMCLOCK_UPDATE_DELAY);
2794 }
2795
2796 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2797
2798 static void kvmclock_sync_fn(struct work_struct *work)
2799 {
2800 struct delayed_work *dwork = to_delayed_work(work);
2801 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2802 kvmclock_sync_work);
2803 struct kvm *kvm = container_of(ka, struct kvm, arch);
2804
2805 if (!kvmclock_periodic_sync)
2806 return;
2807
2808 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2809 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2810 KVMCLOCK_SYNC_PERIOD);
2811 }
2812
2813 /*
2814 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2815 */
2816 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2817 {
2818 /* McStatusWrEn enabled? */
2819 if (guest_cpuid_is_amd_or_hygon(vcpu))
2820 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2821
2822 return false;
2823 }
2824
2825 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2826 {
2827 u64 mcg_cap = vcpu->arch.mcg_cap;
2828 unsigned bank_num = mcg_cap & 0xff;
2829 u32 msr = msr_info->index;
2830 u64 data = msr_info->data;
2831
2832 switch (msr) {
2833 case MSR_IA32_MCG_STATUS:
2834 vcpu->arch.mcg_status = data;
2835 break;
2836 case MSR_IA32_MCG_CTL:
2837 if (!(mcg_cap & MCG_CTL_P) &&
2838 (data || !msr_info->host_initiated))
2839 return 1;
2840 if (data != 0 && data != ~(u64)0)
2841 return 1;
2842 vcpu->arch.mcg_ctl = data;
2843 break;
2844 default:
2845 if (msr >= MSR_IA32_MC0_CTL &&
2846 msr < MSR_IA32_MCx_CTL(bank_num)) {
2847 u32 offset = array_index_nospec(
2848 msr - MSR_IA32_MC0_CTL,
2849 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2850
2851 /* only 0 or all 1s can be written to IA32_MCi_CTL
2852 * some Linux kernels though clear bit 10 in bank 4 to
2853 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2854 * this to avoid an uncatched #GP in the guest
2855 */
2856 if ((offset & 0x3) == 0 &&
2857 data != 0 && (data | (1 << 10)) != ~(u64)0)
2858 return -1;
2859
2860 /* MCi_STATUS */
2861 if (!msr_info->host_initiated &&
2862 (offset & 0x3) == 1 && data != 0) {
2863 if (!can_set_mci_status(vcpu))
2864 return -1;
2865 }
2866
2867 vcpu->arch.mce_banks[offset] = data;
2868 break;
2869 }
2870 return 1;
2871 }
2872 return 0;
2873 }
2874
2875 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2876 {
2877 struct kvm *kvm = vcpu->kvm;
2878 int lm = is_long_mode(vcpu);
2879 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2880 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2881 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2882 : kvm->arch.xen_hvm_config.blob_size_32;
2883 u32 page_num = data & ~PAGE_MASK;
2884 u64 page_addr = data & PAGE_MASK;
2885 u8 *page;
2886
2887 if (page_num >= blob_size)
2888 return 1;
2889
2890 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2891 if (IS_ERR(page))
2892 return PTR_ERR(page);
2893
2894 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) {
2895 kfree(page);
2896 return 1;
2897 }
2898 return 0;
2899 }
2900
2901 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
2902 {
2903 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
2904
2905 return (vcpu->arch.apf.msr_en_val & mask) == mask;
2906 }
2907
2908 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2909 {
2910 gpa_t gpa = data & ~0x3f;
2911
2912 /* Bits 4:5 are reserved, Should be zero */
2913 if (data & 0x30)
2914 return 1;
2915
2916 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
2917 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
2918 return 1;
2919
2920 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
2921 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
2922 return 1;
2923
2924 if (!lapic_in_kernel(vcpu))
2925 return data ? 1 : 0;
2926
2927 vcpu->arch.apf.msr_en_val = data;
2928
2929 if (!kvm_pv_async_pf_enabled(vcpu)) {
2930 kvm_clear_async_pf_completion_queue(vcpu);
2931 kvm_async_pf_hash_reset(vcpu);
2932 return 0;
2933 }
2934
2935 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2936 sizeof(u64)))
2937 return 1;
2938
2939 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2940 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2941
2942 kvm_async_pf_wakeup_all(vcpu);
2943
2944 return 0;
2945 }
2946
2947 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
2948 {
2949 /* Bits 8-63 are reserved */
2950 if (data >> 8)
2951 return 1;
2952
2953 if (!lapic_in_kernel(vcpu))
2954 return 1;
2955
2956 vcpu->arch.apf.msr_int_val = data;
2957
2958 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
2959
2960 return 0;
2961 }
2962
2963 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2964 {
2965 vcpu->arch.pv_time_enabled = false;
2966 vcpu->arch.time = 0;
2967 }
2968
2969 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
2970 {
2971 ++vcpu->stat.tlb_flush;
2972 static_call(kvm_x86_tlb_flush_all)(vcpu);
2973 }
2974
2975 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
2976 {
2977 ++vcpu->stat.tlb_flush;
2978 static_call(kvm_x86_tlb_flush_guest)(vcpu);
2979 }
2980
2981 static void record_steal_time(struct kvm_vcpu *vcpu)
2982 {
2983 struct kvm_host_map map;
2984 struct kvm_steal_time *st;
2985
2986 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2987 return;
2988
2989 /* -EAGAIN is returned in atomic context so we can just return. */
2990 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
2991 &map, &vcpu->arch.st.cache, false))
2992 return;
2993
2994 st = map.hva +
2995 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
2996
2997 /*
2998 * Doing a TLB flush here, on the guest's behalf, can avoid
2999 * expensive IPIs.
3000 */
3001 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3002 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3003 st->preempted & KVM_VCPU_FLUSH_TLB);
3004 if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB)
3005 kvm_vcpu_flush_tlb_guest(vcpu);
3006 }
3007
3008 vcpu->arch.st.preempted = 0;
3009
3010 if (st->version & 1)
3011 st->version += 1; /* first time write, random junk */
3012
3013 st->version += 1;
3014
3015 smp_wmb();
3016
3017 st->steal += current->sched_info.run_delay -
3018 vcpu->arch.st.last_steal;
3019 vcpu->arch.st.last_steal = current->sched_info.run_delay;
3020
3021 smp_wmb();
3022
3023 st->version += 1;
3024
3025 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
3026 }
3027
3028 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3029 {
3030 bool pr = false;
3031 u32 msr = msr_info->index;
3032 u64 data = msr_info->data;
3033
3034 switch (msr) {
3035 case MSR_AMD64_NB_CFG:
3036 case MSR_IA32_UCODE_WRITE:
3037 case MSR_VM_HSAVE_PA:
3038 case MSR_AMD64_PATCH_LOADER:
3039 case MSR_AMD64_BU_CFG2:
3040 case MSR_AMD64_DC_CFG:
3041 case MSR_F15H_EX_CFG:
3042 break;
3043
3044 case MSR_IA32_UCODE_REV:
3045 if (msr_info->host_initiated)
3046 vcpu->arch.microcode_version = data;
3047 break;
3048 case MSR_IA32_ARCH_CAPABILITIES:
3049 if (!msr_info->host_initiated)
3050 return 1;
3051 vcpu->arch.arch_capabilities = data;
3052 break;
3053 case MSR_IA32_PERF_CAPABILITIES: {
3054 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3055
3056 if (!msr_info->host_initiated)
3057 return 1;
3058 if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent))
3059 return 1;
3060 if (data & ~msr_ent.data)
3061 return 1;
3062
3063 vcpu->arch.perf_capabilities = data;
3064
3065 return 0;
3066 }
3067 case MSR_EFER:
3068 return set_efer(vcpu, msr_info);
3069 case MSR_K7_HWCR:
3070 data &= ~(u64)0x40; /* ignore flush filter disable */
3071 data &= ~(u64)0x100; /* ignore ignne emulation enable */
3072 data &= ~(u64)0x8; /* ignore TLB cache disable */
3073
3074 /* Handle McStatusWrEn */
3075 if (data == BIT_ULL(18)) {
3076 vcpu->arch.msr_hwcr = data;
3077 } else if (data != 0) {
3078 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3079 data);
3080 return 1;
3081 }
3082 break;
3083 case MSR_FAM10H_MMIO_CONF_BASE:
3084 if (data != 0) {
3085 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3086 "0x%llx\n", data);
3087 return 1;
3088 }
3089 break;
3090 case 0x200 ... 0x2ff:
3091 return kvm_mtrr_set_msr(vcpu, msr, data);
3092 case MSR_IA32_APICBASE:
3093 return kvm_set_apic_base(vcpu, msr_info);
3094 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3095 return kvm_x2apic_msr_write(vcpu, msr, data);
3096 case MSR_IA32_TSCDEADLINE:
3097 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3098 break;
3099 case MSR_IA32_TSC_ADJUST:
3100 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3101 if (!msr_info->host_initiated) {
3102 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3103 adjust_tsc_offset_guest(vcpu, adj);
3104 }
3105 vcpu->arch.ia32_tsc_adjust_msr = data;
3106 }
3107 break;
3108 case MSR_IA32_MISC_ENABLE:
3109 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3110 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3111 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3112 return 1;
3113 vcpu->arch.ia32_misc_enable_msr = data;
3114 kvm_update_cpuid_runtime(vcpu);
3115 } else {
3116 vcpu->arch.ia32_misc_enable_msr = data;
3117 }
3118 break;
3119 case MSR_IA32_SMBASE:
3120 if (!msr_info->host_initiated)
3121 return 1;
3122 vcpu->arch.smbase = data;
3123 break;
3124 case MSR_IA32_POWER_CTL:
3125 vcpu->arch.msr_ia32_power_ctl = data;
3126 break;
3127 case MSR_IA32_TSC:
3128 if (msr_info->host_initiated) {
3129 kvm_synchronize_tsc(vcpu, data);
3130 } else {
3131 u64 adj = kvm_compute_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3132 adjust_tsc_offset_guest(vcpu, adj);
3133 vcpu->arch.ia32_tsc_adjust_msr += adj;
3134 }
3135 break;
3136 case MSR_IA32_XSS:
3137 if (!msr_info->host_initiated &&
3138 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3139 return 1;
3140 /*
3141 * KVM supports exposing PT to the guest, but does not support
3142 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3143 * XSAVES/XRSTORS to save/restore PT MSRs.
3144 */
3145 if (data & ~supported_xss)
3146 return 1;
3147 vcpu->arch.ia32_xss = data;
3148 break;
3149 case MSR_SMI_COUNT:
3150 if (!msr_info->host_initiated)
3151 return 1;
3152 vcpu->arch.smi_count = data;
3153 break;
3154 case MSR_KVM_WALL_CLOCK_NEW:
3155 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3156 return 1;
3157
3158 kvm_write_wall_clock(vcpu->kvm, data);
3159 break;
3160 case MSR_KVM_WALL_CLOCK:
3161 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3162 return 1;
3163
3164 kvm_write_wall_clock(vcpu->kvm, data);
3165 break;
3166 case MSR_KVM_SYSTEM_TIME_NEW:
3167 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3168 return 1;
3169
3170 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3171 break;
3172 case MSR_KVM_SYSTEM_TIME:
3173 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3174 return 1;
3175
3176 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
3177 break;
3178 case MSR_KVM_ASYNC_PF_EN:
3179 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3180 return 1;
3181
3182 if (kvm_pv_enable_async_pf(vcpu, data))
3183 return 1;
3184 break;
3185 case MSR_KVM_ASYNC_PF_INT:
3186 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3187 return 1;
3188
3189 if (kvm_pv_enable_async_pf_int(vcpu, data))
3190 return 1;
3191 break;
3192 case MSR_KVM_ASYNC_PF_ACK:
3193 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3194 return 1;
3195 if (data & 0x1) {
3196 vcpu->arch.apf.pageready_pending = false;
3197 kvm_check_async_pf_completion(vcpu);
3198 }
3199 break;
3200 case MSR_KVM_STEAL_TIME:
3201 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3202 return 1;
3203
3204 if (unlikely(!sched_info_on()))
3205 return 1;
3206
3207 if (data & KVM_STEAL_RESERVED_MASK)
3208 return 1;
3209
3210 vcpu->arch.st.msr_val = data;
3211
3212 if (!(data & KVM_MSR_ENABLED))
3213 break;
3214
3215 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3216
3217 break;
3218 case MSR_KVM_PV_EOI_EN:
3219 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3220 return 1;
3221
3222 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3223 return 1;
3224 break;
3225
3226 case MSR_KVM_POLL_CONTROL:
3227 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3228 return 1;
3229
3230 /* only enable bit supported */
3231 if (data & (-1ULL << 1))
3232 return 1;
3233
3234 vcpu->arch.msr_kvm_poll_control = data;
3235 break;
3236
3237 case MSR_IA32_MCG_CTL:
3238 case MSR_IA32_MCG_STATUS:
3239 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3240 return set_msr_mce(vcpu, msr_info);
3241
3242 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3243 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3244 pr = true;
3245 fallthrough;
3246 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3247 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3248 if (kvm_pmu_is_valid_msr(vcpu, msr))
3249 return kvm_pmu_set_msr(vcpu, msr_info);
3250
3251 if (pr || data != 0)
3252 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3253 "0x%x data 0x%llx\n", msr, data);
3254 break;
3255 case MSR_K7_CLK_CTL:
3256 /*
3257 * Ignore all writes to this no longer documented MSR.
3258 * Writes are only relevant for old K7 processors,
3259 * all pre-dating SVM, but a recommended workaround from
3260 * AMD for these chips. It is possible to specify the
3261 * affected processor models on the command line, hence
3262 * the need to ignore the workaround.
3263 */
3264 break;
3265 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3266 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3267 case HV_X64_MSR_SYNDBG_OPTIONS:
3268 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3269 case HV_X64_MSR_CRASH_CTL:
3270 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3271 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3272 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3273 case HV_X64_MSR_TSC_EMULATION_STATUS:
3274 return kvm_hv_set_msr_common(vcpu, msr, data,
3275 msr_info->host_initiated);
3276 case MSR_IA32_BBL_CR_CTL3:
3277 /* Drop writes to this legacy MSR -- see rdmsr
3278 * counterpart for further detail.
3279 */
3280 if (report_ignored_msrs)
3281 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3282 msr, data);
3283 break;
3284 case MSR_AMD64_OSVW_ID_LENGTH:
3285 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3286 return 1;
3287 vcpu->arch.osvw.length = data;
3288 break;
3289 case MSR_AMD64_OSVW_STATUS:
3290 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3291 return 1;
3292 vcpu->arch.osvw.status = data;
3293 break;
3294 case MSR_PLATFORM_INFO:
3295 if (!msr_info->host_initiated ||
3296 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3297 cpuid_fault_enabled(vcpu)))
3298 return 1;
3299 vcpu->arch.msr_platform_info = data;
3300 break;
3301 case MSR_MISC_FEATURES_ENABLES:
3302 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3303 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3304 !supports_cpuid_fault(vcpu)))
3305 return 1;
3306 vcpu->arch.msr_misc_features_enables = data;
3307 break;
3308 default:
3309 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
3310 return xen_hvm_config(vcpu, data);
3311 if (kvm_pmu_is_valid_msr(vcpu, msr))
3312 return kvm_pmu_set_msr(vcpu, msr_info);
3313 return KVM_MSR_RET_INVALID;
3314 }
3315 return 0;
3316 }
3317 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3318
3319 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3320 {
3321 u64 data;
3322 u64 mcg_cap = vcpu->arch.mcg_cap;
3323 unsigned bank_num = mcg_cap & 0xff;
3324
3325 switch (msr) {
3326 case MSR_IA32_P5_MC_ADDR:
3327 case MSR_IA32_P5_MC_TYPE:
3328 data = 0;
3329 break;
3330 case MSR_IA32_MCG_CAP:
3331 data = vcpu->arch.mcg_cap;
3332 break;
3333 case MSR_IA32_MCG_CTL:
3334 if (!(mcg_cap & MCG_CTL_P) && !host)
3335 return 1;
3336 data = vcpu->arch.mcg_ctl;
3337 break;
3338 case MSR_IA32_MCG_STATUS:
3339 data = vcpu->arch.mcg_status;
3340 break;
3341 default:
3342 if (msr >= MSR_IA32_MC0_CTL &&
3343 msr < MSR_IA32_MCx_CTL(bank_num)) {
3344 u32 offset = array_index_nospec(
3345 msr - MSR_IA32_MC0_CTL,
3346 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3347
3348 data = vcpu->arch.mce_banks[offset];
3349 break;
3350 }
3351 return 1;
3352 }
3353 *pdata = data;
3354 return 0;
3355 }
3356
3357 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3358 {
3359 switch (msr_info->index) {
3360 case MSR_IA32_PLATFORM_ID:
3361 case MSR_IA32_EBL_CR_POWERON:
3362 case MSR_IA32_LASTBRANCHFROMIP:
3363 case MSR_IA32_LASTBRANCHTOIP:
3364 case MSR_IA32_LASTINTFROMIP:
3365 case MSR_IA32_LASTINTTOIP:
3366 case MSR_K8_SYSCFG:
3367 case MSR_K8_TSEG_ADDR:
3368 case MSR_K8_TSEG_MASK:
3369 case MSR_VM_HSAVE_PA:
3370 case MSR_K8_INT_PENDING_MSG:
3371 case MSR_AMD64_NB_CFG:
3372 case MSR_FAM10H_MMIO_CONF_BASE:
3373 case MSR_AMD64_BU_CFG2:
3374 case MSR_IA32_PERF_CTL:
3375 case MSR_AMD64_DC_CFG:
3376 case MSR_F15H_EX_CFG:
3377 /*
3378 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3379 * limit) MSRs. Just return 0, as we do not want to expose the host
3380 * data here. Do not conditionalize this on CPUID, as KVM does not do
3381 * so for existing CPU-specific MSRs.
3382 */
3383 case MSR_RAPL_POWER_UNIT:
3384 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
3385 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
3386 case MSR_PKG_ENERGY_STATUS: /* Total package */
3387 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
3388 msr_info->data = 0;
3389 break;
3390 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3391 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3392 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3393 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3394 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3395 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3396 return kvm_pmu_get_msr(vcpu, msr_info);
3397 msr_info->data = 0;
3398 break;
3399 case MSR_IA32_UCODE_REV:
3400 msr_info->data = vcpu->arch.microcode_version;
3401 break;
3402 case MSR_IA32_ARCH_CAPABILITIES:
3403 if (!msr_info->host_initiated &&
3404 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3405 return 1;
3406 msr_info->data = vcpu->arch.arch_capabilities;
3407 break;
3408 case MSR_IA32_PERF_CAPABILITIES:
3409 if (!msr_info->host_initiated &&
3410 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3411 return 1;
3412 msr_info->data = vcpu->arch.perf_capabilities;
3413 break;
3414 case MSR_IA32_POWER_CTL:
3415 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3416 break;
3417 case MSR_IA32_TSC: {
3418 /*
3419 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3420 * even when not intercepted. AMD manual doesn't explicitly
3421 * state this but appears to behave the same.
3422 *
3423 * On userspace reads and writes, however, we unconditionally
3424 * return L1's TSC value to ensure backwards-compatible
3425 * behavior for migration.
3426 */
3427 u64 tsc_offset = msr_info->host_initiated ? vcpu->arch.l1_tsc_offset :
3428 vcpu->arch.tsc_offset;
3429
3430 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + tsc_offset;
3431 break;
3432 }
3433 case MSR_MTRRcap:
3434 case 0x200 ... 0x2ff:
3435 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3436 case 0xcd: /* fsb frequency */
3437 msr_info->data = 3;
3438 break;
3439 /*
3440 * MSR_EBC_FREQUENCY_ID
3441 * Conservative value valid for even the basic CPU models.
3442 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3443 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3444 * and 266MHz for model 3, or 4. Set Core Clock
3445 * Frequency to System Bus Frequency Ratio to 1 (bits
3446 * 31:24) even though these are only valid for CPU
3447 * models > 2, however guests may end up dividing or
3448 * multiplying by zero otherwise.
3449 */
3450 case MSR_EBC_FREQUENCY_ID:
3451 msr_info->data = 1 << 24;
3452 break;
3453 case MSR_IA32_APICBASE:
3454 msr_info->data = kvm_get_apic_base(vcpu);
3455 break;
3456 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3457 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3458 case MSR_IA32_TSCDEADLINE:
3459 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3460 break;
3461 case MSR_IA32_TSC_ADJUST:
3462 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3463 break;
3464 case MSR_IA32_MISC_ENABLE:
3465 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3466 break;
3467 case MSR_IA32_SMBASE:
3468 if (!msr_info->host_initiated)
3469 return 1;
3470 msr_info->data = vcpu->arch.smbase;
3471 break;
3472 case MSR_SMI_COUNT:
3473 msr_info->data = vcpu->arch.smi_count;
3474 break;
3475 case MSR_IA32_PERF_STATUS:
3476 /* TSC increment by tick */
3477 msr_info->data = 1000ULL;
3478 /* CPU multiplier */
3479 msr_info->data |= (((uint64_t)4ULL) << 40);
3480 break;
3481 case MSR_EFER:
3482 msr_info->data = vcpu->arch.efer;
3483 break;
3484 case MSR_KVM_WALL_CLOCK:
3485 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3486 return 1;
3487
3488 msr_info->data = vcpu->kvm->arch.wall_clock;
3489 break;
3490 case MSR_KVM_WALL_CLOCK_NEW:
3491 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3492 return 1;
3493
3494 msr_info->data = vcpu->kvm->arch.wall_clock;
3495 break;
3496 case MSR_KVM_SYSTEM_TIME:
3497 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3498 return 1;
3499
3500 msr_info->data = vcpu->arch.time;
3501 break;
3502 case MSR_KVM_SYSTEM_TIME_NEW:
3503 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3504 return 1;
3505
3506 msr_info->data = vcpu->arch.time;
3507 break;
3508 case MSR_KVM_ASYNC_PF_EN:
3509 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3510 return 1;
3511
3512 msr_info->data = vcpu->arch.apf.msr_en_val;
3513 break;
3514 case MSR_KVM_ASYNC_PF_INT:
3515 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3516 return 1;
3517
3518 msr_info->data = vcpu->arch.apf.msr_int_val;
3519 break;
3520 case MSR_KVM_ASYNC_PF_ACK:
3521 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3522 return 1;
3523
3524 msr_info->data = 0;
3525 break;
3526 case MSR_KVM_STEAL_TIME:
3527 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3528 return 1;
3529
3530 msr_info->data = vcpu->arch.st.msr_val;
3531 break;
3532 case MSR_KVM_PV_EOI_EN:
3533 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3534 return 1;
3535
3536 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3537 break;
3538 case MSR_KVM_POLL_CONTROL:
3539 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3540 return 1;
3541
3542 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3543 break;
3544 case MSR_IA32_P5_MC_ADDR:
3545 case MSR_IA32_P5_MC_TYPE:
3546 case MSR_IA32_MCG_CAP:
3547 case MSR_IA32_MCG_CTL:
3548 case MSR_IA32_MCG_STATUS:
3549 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3550 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3551 msr_info->host_initiated);
3552 case MSR_IA32_XSS:
3553 if (!msr_info->host_initiated &&
3554 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3555 return 1;
3556 msr_info->data = vcpu->arch.ia32_xss;
3557 break;
3558 case MSR_K7_CLK_CTL:
3559 /*
3560 * Provide expected ramp-up count for K7. All other
3561 * are set to zero, indicating minimum divisors for
3562 * every field.
3563 *
3564 * This prevents guest kernels on AMD host with CPU
3565 * type 6, model 8 and higher from exploding due to
3566 * the rdmsr failing.
3567 */
3568 msr_info->data = 0x20000000;
3569 break;
3570 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3571 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3572 case HV_X64_MSR_SYNDBG_OPTIONS:
3573 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3574 case HV_X64_MSR_CRASH_CTL:
3575 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3576 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3577 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3578 case HV_X64_MSR_TSC_EMULATION_STATUS:
3579 return kvm_hv_get_msr_common(vcpu,
3580 msr_info->index, &msr_info->data,
3581 msr_info->host_initiated);
3582 case MSR_IA32_BBL_CR_CTL3:
3583 /* This legacy MSR exists but isn't fully documented in current
3584 * silicon. It is however accessed by winxp in very narrow
3585 * scenarios where it sets bit #19, itself documented as
3586 * a "reserved" bit. Best effort attempt to source coherent
3587 * read data here should the balance of the register be
3588 * interpreted by the guest:
3589 *
3590 * L2 cache control register 3: 64GB range, 256KB size,
3591 * enabled, latency 0x1, configured
3592 */
3593 msr_info->data = 0xbe702111;
3594 break;
3595 case MSR_AMD64_OSVW_ID_LENGTH:
3596 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3597 return 1;
3598 msr_info->data = vcpu->arch.osvw.length;
3599 break;
3600 case MSR_AMD64_OSVW_STATUS:
3601 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3602 return 1;
3603 msr_info->data = vcpu->arch.osvw.status;
3604 break;
3605 case MSR_PLATFORM_INFO:
3606 if (!msr_info->host_initiated &&
3607 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3608 return 1;
3609 msr_info->data = vcpu->arch.msr_platform_info;
3610 break;
3611 case MSR_MISC_FEATURES_ENABLES:
3612 msr_info->data = vcpu->arch.msr_misc_features_enables;
3613 break;
3614 case MSR_K7_HWCR:
3615 msr_info->data = vcpu->arch.msr_hwcr;
3616 break;
3617 default:
3618 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3619 return kvm_pmu_get_msr(vcpu, msr_info);
3620 return KVM_MSR_RET_INVALID;
3621 }
3622 return 0;
3623 }
3624 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3625
3626 /*
3627 * Read or write a bunch of msrs. All parameters are kernel addresses.
3628 *
3629 * @return number of msrs set successfully.
3630 */
3631 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3632 struct kvm_msr_entry *entries,
3633 int (*do_msr)(struct kvm_vcpu *vcpu,
3634 unsigned index, u64 *data))
3635 {
3636 int i;
3637
3638 for (i = 0; i < msrs->nmsrs; ++i)
3639 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3640 break;
3641
3642 return i;
3643 }
3644
3645 /*
3646 * Read or write a bunch of msrs. Parameters are user addresses.
3647 *
3648 * @return number of msrs set successfully.
3649 */
3650 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3651 int (*do_msr)(struct kvm_vcpu *vcpu,
3652 unsigned index, u64 *data),
3653 int writeback)
3654 {
3655 struct kvm_msrs msrs;
3656 struct kvm_msr_entry *entries;
3657 int r, n;
3658 unsigned size;
3659
3660 r = -EFAULT;
3661 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3662 goto out;
3663
3664 r = -E2BIG;
3665 if (msrs.nmsrs >= MAX_IO_MSRS)
3666 goto out;
3667
3668 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3669 entries = memdup_user(user_msrs->entries, size);
3670 if (IS_ERR(entries)) {
3671 r = PTR_ERR(entries);
3672 goto out;
3673 }
3674
3675 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3676 if (r < 0)
3677 goto out_free;
3678
3679 r = -EFAULT;
3680 if (writeback && copy_to_user(user_msrs->entries, entries, size))
3681 goto out_free;
3682
3683 r = n;
3684
3685 out_free:
3686 kfree(entries);
3687 out:
3688 return r;
3689 }
3690
3691 static inline bool kvm_can_mwait_in_guest(void)
3692 {
3693 return boot_cpu_has(X86_FEATURE_MWAIT) &&
3694 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3695 boot_cpu_has(X86_FEATURE_ARAT);
3696 }
3697
3698 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
3699 struct kvm_cpuid2 __user *cpuid_arg)
3700 {
3701 struct kvm_cpuid2 cpuid;
3702 int r;
3703
3704 r = -EFAULT;
3705 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3706 return r;
3707
3708 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3709 if (r)
3710 return r;
3711
3712 r = -EFAULT;
3713 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3714 return r;
3715
3716 return 0;
3717 }
3718
3719 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3720 {
3721 int r = 0;
3722
3723 switch (ext) {
3724 case KVM_CAP_IRQCHIP:
3725 case KVM_CAP_HLT:
3726 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3727 case KVM_CAP_SET_TSS_ADDR:
3728 case KVM_CAP_EXT_CPUID:
3729 case KVM_CAP_EXT_EMUL_CPUID:
3730 case KVM_CAP_CLOCKSOURCE:
3731 case KVM_CAP_PIT:
3732 case KVM_CAP_NOP_IO_DELAY:
3733 case KVM_CAP_MP_STATE:
3734 case KVM_CAP_SYNC_MMU:
3735 case KVM_CAP_USER_NMI:
3736 case KVM_CAP_REINJECT_CONTROL:
3737 case KVM_CAP_IRQ_INJECT_STATUS:
3738 case KVM_CAP_IOEVENTFD:
3739 case KVM_CAP_IOEVENTFD_NO_LENGTH:
3740 case KVM_CAP_PIT2:
3741 case KVM_CAP_PIT_STATE2:
3742 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3743 case KVM_CAP_XEN_HVM:
3744 case KVM_CAP_VCPU_EVENTS:
3745 case KVM_CAP_HYPERV:
3746 case KVM_CAP_HYPERV_VAPIC:
3747 case KVM_CAP_HYPERV_SPIN:
3748 case KVM_CAP_HYPERV_SYNIC:
3749 case KVM_CAP_HYPERV_SYNIC2:
3750 case KVM_CAP_HYPERV_VP_INDEX:
3751 case KVM_CAP_HYPERV_EVENTFD:
3752 case KVM_CAP_HYPERV_TLBFLUSH:
3753 case KVM_CAP_HYPERV_SEND_IPI:
3754 case KVM_CAP_HYPERV_CPUID:
3755 case KVM_CAP_SYS_HYPERV_CPUID:
3756 case KVM_CAP_PCI_SEGMENT:
3757 case KVM_CAP_DEBUGREGS:
3758 case KVM_CAP_X86_ROBUST_SINGLESTEP:
3759 case KVM_CAP_XSAVE:
3760 case KVM_CAP_ASYNC_PF:
3761 case KVM_CAP_ASYNC_PF_INT:
3762 case KVM_CAP_GET_TSC_KHZ:
3763 case KVM_CAP_KVMCLOCK_CTRL:
3764 case KVM_CAP_READONLY_MEM:
3765 case KVM_CAP_HYPERV_TIME:
3766 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3767 case KVM_CAP_TSC_DEADLINE_TIMER:
3768 case KVM_CAP_DISABLE_QUIRKS:
3769 case KVM_CAP_SET_BOOT_CPU_ID:
3770 case KVM_CAP_SPLIT_IRQCHIP:
3771 case KVM_CAP_IMMEDIATE_EXIT:
3772 case KVM_CAP_PMU_EVENT_FILTER:
3773 case KVM_CAP_GET_MSR_FEATURES:
3774 case KVM_CAP_MSR_PLATFORM_INFO:
3775 case KVM_CAP_EXCEPTION_PAYLOAD:
3776 case KVM_CAP_SET_GUEST_DEBUG:
3777 case KVM_CAP_LAST_CPU:
3778 case KVM_CAP_X86_USER_SPACE_MSR:
3779 case KVM_CAP_X86_MSR_FILTER:
3780 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
3781 r = 1;
3782 break;
3783 case KVM_CAP_SYNC_REGS:
3784 r = KVM_SYNC_X86_VALID_FIELDS;
3785 break;
3786 case KVM_CAP_ADJUST_CLOCK:
3787 r = KVM_CLOCK_TSC_STABLE;
3788 break;
3789 case KVM_CAP_X86_DISABLE_EXITS:
3790 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3791 KVM_X86_DISABLE_EXITS_CSTATE;
3792 if(kvm_can_mwait_in_guest())
3793 r |= KVM_X86_DISABLE_EXITS_MWAIT;
3794 break;
3795 case KVM_CAP_X86_SMM:
3796 /* SMBASE is usually relocated above 1M on modern chipsets,
3797 * and SMM handlers might indeed rely on 4G segment limits,
3798 * so do not report SMM to be available if real mode is
3799 * emulated via vm86 mode. Still, do not go to great lengths
3800 * to avoid userspace's usage of the feature, because it is a
3801 * fringe case that is not enabled except via specific settings
3802 * of the module parameters.
3803 */
3804 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
3805 break;
3806 case KVM_CAP_VAPIC:
3807 r = !static_call(kvm_x86_cpu_has_accelerated_tpr)();
3808 break;
3809 case KVM_CAP_NR_VCPUS:
3810 r = KVM_SOFT_MAX_VCPUS;
3811 break;
3812 case KVM_CAP_MAX_VCPUS:
3813 r = KVM_MAX_VCPUS;
3814 break;
3815 case KVM_CAP_MAX_VCPU_ID:
3816 r = KVM_MAX_VCPU_ID;
3817 break;
3818 case KVM_CAP_PV_MMU: /* obsolete */
3819 r = 0;
3820 break;
3821 case KVM_CAP_MCE:
3822 r = KVM_MAX_MCE_BANKS;
3823 break;
3824 case KVM_CAP_XCRS:
3825 r = boot_cpu_has(X86_FEATURE_XSAVE);
3826 break;
3827 case KVM_CAP_TSC_CONTROL:
3828 r = kvm_has_tsc_control;
3829 break;
3830 case KVM_CAP_X2APIC_API:
3831 r = KVM_X2APIC_API_VALID_FLAGS;
3832 break;
3833 case KVM_CAP_NESTED_STATE:
3834 r = kvm_x86_ops.nested_ops->get_state ?
3835 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
3836 break;
3837 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3838 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
3839 break;
3840 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3841 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
3842 break;
3843 case KVM_CAP_SMALLER_MAXPHYADDR:
3844 r = (int) allow_smaller_maxphyaddr;
3845 break;
3846 case KVM_CAP_STEAL_TIME:
3847 r = sched_info_on();
3848 break;
3849 case KVM_CAP_X86_BUS_LOCK_EXIT:
3850 if (kvm_has_bus_lock_exit)
3851 r = KVM_BUS_LOCK_DETECTION_OFF |
3852 KVM_BUS_LOCK_DETECTION_EXIT;
3853 else
3854 r = 0;
3855 break;
3856 default:
3857 break;
3858 }
3859 return r;
3860
3861 }
3862
3863 long kvm_arch_dev_ioctl(struct file *filp,
3864 unsigned int ioctl, unsigned long arg)
3865 {
3866 void __user *argp = (void __user *)arg;
3867 long r;
3868
3869 switch (ioctl) {
3870 case KVM_GET_MSR_INDEX_LIST: {
3871 struct kvm_msr_list __user *user_msr_list = argp;
3872 struct kvm_msr_list msr_list;
3873 unsigned n;
3874
3875 r = -EFAULT;
3876 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3877 goto out;
3878 n = msr_list.nmsrs;
3879 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3880 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3881 goto out;
3882 r = -E2BIG;
3883 if (n < msr_list.nmsrs)
3884 goto out;
3885 r = -EFAULT;
3886 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3887 num_msrs_to_save * sizeof(u32)))
3888 goto out;
3889 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3890 &emulated_msrs,
3891 num_emulated_msrs * sizeof(u32)))
3892 goto out;
3893 r = 0;
3894 break;
3895 }
3896 case KVM_GET_SUPPORTED_CPUID:
3897 case KVM_GET_EMULATED_CPUID: {
3898 struct kvm_cpuid2 __user *cpuid_arg = argp;
3899 struct kvm_cpuid2 cpuid;
3900
3901 r = -EFAULT;
3902 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3903 goto out;
3904
3905 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3906 ioctl);
3907 if (r)
3908 goto out;
3909
3910 r = -EFAULT;
3911 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3912 goto out;
3913 r = 0;
3914 break;
3915 }
3916 case KVM_X86_GET_MCE_CAP_SUPPORTED:
3917 r = -EFAULT;
3918 if (copy_to_user(argp, &kvm_mce_cap_supported,
3919 sizeof(kvm_mce_cap_supported)))
3920 goto out;
3921 r = 0;
3922 break;
3923 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3924 struct kvm_msr_list __user *user_msr_list = argp;
3925 struct kvm_msr_list msr_list;
3926 unsigned int n;
3927
3928 r = -EFAULT;
3929 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3930 goto out;
3931 n = msr_list.nmsrs;
3932 msr_list.nmsrs = num_msr_based_features;
3933 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3934 goto out;
3935 r = -E2BIG;
3936 if (n < msr_list.nmsrs)
3937 goto out;
3938 r = -EFAULT;
3939 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3940 num_msr_based_features * sizeof(u32)))
3941 goto out;
3942 r = 0;
3943 break;
3944 }
3945 case KVM_GET_MSRS:
3946 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3947 break;
3948 case KVM_GET_SUPPORTED_HV_CPUID:
3949 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
3950 break;
3951 default:
3952 r = -EINVAL;
3953 break;
3954 }
3955 out:
3956 return r;
3957 }
3958
3959 static void wbinvd_ipi(void *garbage)
3960 {
3961 wbinvd();
3962 }
3963
3964 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3965 {
3966 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3967 }
3968
3969 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3970 {
3971 /* Address WBINVD may be executed by guest */
3972 if (need_emulate_wbinvd(vcpu)) {
3973 if (static_call(kvm_x86_has_wbinvd_exit)())
3974 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3975 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3976 smp_call_function_single(vcpu->cpu,
3977 wbinvd_ipi, NULL, 1);
3978 }
3979
3980 static_call(kvm_x86_vcpu_load)(vcpu, cpu);
3981
3982 /* Save host pkru register if supported */
3983 vcpu->arch.host_pkru = read_pkru();
3984
3985 /* Apply any externally detected TSC adjustments (due to suspend) */
3986 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3987 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3988 vcpu->arch.tsc_offset_adjustment = 0;
3989 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3990 }
3991
3992 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3993 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3994 rdtsc() - vcpu->arch.last_host_tsc;
3995 if (tsc_delta < 0)
3996 mark_tsc_unstable("KVM discovered backwards TSC");
3997
3998 if (kvm_check_tsc_unstable()) {
3999 u64 offset = kvm_compute_tsc_offset(vcpu,
4000 vcpu->arch.last_guest_tsc);
4001 kvm_vcpu_write_tsc_offset(vcpu, offset);
4002 vcpu->arch.tsc_catchup = 1;
4003 }
4004
4005 if (kvm_lapic_hv_timer_in_use(vcpu))
4006 kvm_lapic_restart_hv_timer(vcpu);
4007
4008 /*
4009 * On a host with synchronized TSC, there is no need to update
4010 * kvmclock on vcpu->cpu migration
4011 */
4012 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4013 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4014 if (vcpu->cpu != cpu)
4015 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4016 vcpu->cpu = cpu;
4017 }
4018
4019 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4020 }
4021
4022 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4023 {
4024 struct kvm_host_map map;
4025 struct kvm_steal_time *st;
4026 int idx;
4027
4028 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4029 return;
4030
4031 if (vcpu->arch.st.preempted)
4032 return;
4033
4034 /*
4035 * Take the srcu lock as memslots will be accessed to check the gfn
4036 * cache generation against the memslots generation.
4037 */
4038 idx = srcu_read_lock(&vcpu->kvm->srcu);
4039
4040 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
4041 &vcpu->arch.st.cache, true))
4042 goto out;
4043
4044 st = map.hva +
4045 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
4046
4047 st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4048
4049 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
4050
4051 out:
4052 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4053 }
4054
4055 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4056 {
4057 if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4058 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4059
4060 kvm_steal_time_set_preempted(vcpu);
4061 static_call(kvm_x86_vcpu_put)(vcpu);
4062 vcpu->arch.last_host_tsc = rdtsc();
4063 /*
4064 * If userspace has set any breakpoints or watchpoints, dr6 is restored
4065 * on every vmexit, but if not, we might have a stale dr6 from the
4066 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
4067 */
4068 set_debugreg(0, 6);
4069 }
4070
4071 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4072 struct kvm_lapic_state *s)
4073 {
4074 if (vcpu->arch.apicv_active)
4075 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
4076
4077 return kvm_apic_get_state(vcpu, s);
4078 }
4079
4080 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4081 struct kvm_lapic_state *s)
4082 {
4083 int r;
4084
4085 r = kvm_apic_set_state(vcpu, s);
4086 if (r)
4087 return r;
4088 update_cr8_intercept(vcpu);
4089
4090 return 0;
4091 }
4092
4093 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4094 {
4095 /*
4096 * We can accept userspace's request for interrupt injection
4097 * as long as we have a place to store the interrupt number.
4098 * The actual injection will happen when the CPU is able to
4099 * deliver the interrupt.
4100 */
4101 if (kvm_cpu_has_extint(vcpu))
4102 return false;
4103
4104 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
4105 return (!lapic_in_kernel(vcpu) ||
4106 kvm_apic_accept_pic_intr(vcpu));
4107 }
4108
4109 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4110 {
4111 return kvm_arch_interrupt_allowed(vcpu) &&
4112 kvm_cpu_accept_dm_intr(vcpu);
4113 }
4114
4115 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4116 struct kvm_interrupt *irq)
4117 {
4118 if (irq->irq >= KVM_NR_INTERRUPTS)
4119 return -EINVAL;
4120
4121 if (!irqchip_in_kernel(vcpu->kvm)) {
4122 kvm_queue_interrupt(vcpu, irq->irq, false);
4123 kvm_make_request(KVM_REQ_EVENT, vcpu);
4124 return 0;
4125 }
4126
4127 /*
4128 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4129 * fail for in-kernel 8259.
4130 */
4131 if (pic_in_kernel(vcpu->kvm))
4132 return -ENXIO;
4133
4134 if (vcpu->arch.pending_external_vector != -1)
4135 return -EEXIST;
4136
4137 vcpu->arch.pending_external_vector = irq->irq;
4138 kvm_make_request(KVM_REQ_EVENT, vcpu);
4139 return 0;
4140 }
4141
4142 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4143 {
4144 kvm_inject_nmi(vcpu);
4145
4146 return 0;
4147 }
4148
4149 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4150 {
4151 kvm_make_request(KVM_REQ_SMI, vcpu);
4152
4153 return 0;
4154 }
4155
4156 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4157 struct kvm_tpr_access_ctl *tac)
4158 {
4159 if (tac->flags)
4160 return -EINVAL;
4161 vcpu->arch.tpr_access_reporting = !!tac->enabled;
4162 return 0;
4163 }
4164
4165 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4166 u64 mcg_cap)
4167 {
4168 int r;
4169 unsigned bank_num = mcg_cap & 0xff, bank;
4170
4171 r = -EINVAL;
4172 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4173 goto out;
4174 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4175 goto out;
4176 r = 0;
4177 vcpu->arch.mcg_cap = mcg_cap;
4178 /* Init IA32_MCG_CTL to all 1s */
4179 if (mcg_cap & MCG_CTL_P)
4180 vcpu->arch.mcg_ctl = ~(u64)0;
4181 /* Init IA32_MCi_CTL to all 1s */
4182 for (bank = 0; bank < bank_num; bank++)
4183 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4184
4185 static_call(kvm_x86_setup_mce)(vcpu);
4186 out:
4187 return r;
4188 }
4189
4190 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4191 struct kvm_x86_mce *mce)
4192 {
4193 u64 mcg_cap = vcpu->arch.mcg_cap;
4194 unsigned bank_num = mcg_cap & 0xff;
4195 u64 *banks = vcpu->arch.mce_banks;
4196
4197 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4198 return -EINVAL;
4199 /*
4200 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4201 * reporting is disabled
4202 */
4203 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4204 vcpu->arch.mcg_ctl != ~(u64)0)
4205 return 0;
4206 banks += 4 * mce->bank;
4207 /*
4208 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4209 * reporting is disabled for the bank
4210 */
4211 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4212 return 0;
4213 if (mce->status & MCI_STATUS_UC) {
4214 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4215 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4216 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4217 return 0;
4218 }
4219 if (banks[1] & MCI_STATUS_VAL)
4220 mce->status |= MCI_STATUS_OVER;
4221 banks[2] = mce->addr;
4222 banks[3] = mce->misc;
4223 vcpu->arch.mcg_status = mce->mcg_status;
4224 banks[1] = mce->status;
4225 kvm_queue_exception(vcpu, MC_VECTOR);
4226 } else if (!(banks[1] & MCI_STATUS_VAL)
4227 || !(banks[1] & MCI_STATUS_UC)) {
4228 if (banks[1] & MCI_STATUS_VAL)
4229 mce->status |= MCI_STATUS_OVER;
4230 banks[2] = mce->addr;
4231 banks[3] = mce->misc;
4232 banks[1] = mce->status;
4233 } else
4234 banks[1] |= MCI_STATUS_OVER;
4235 return 0;
4236 }
4237
4238 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4239 struct kvm_vcpu_events *events)
4240 {
4241 process_nmi(vcpu);
4242
4243 if (kvm_check_request(KVM_REQ_SMI, vcpu))
4244 process_smi(vcpu);
4245
4246 /*
4247 * In guest mode, payload delivery should be deferred,
4248 * so that the L1 hypervisor can intercept #PF before
4249 * CR2 is modified (or intercept #DB before DR6 is
4250 * modified under nVMX). Unless the per-VM capability,
4251 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4252 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4253 * opportunistically defer the exception payload, deliver it if the
4254 * capability hasn't been requested before processing a
4255 * KVM_GET_VCPU_EVENTS.
4256 */
4257 if (!vcpu->kvm->arch.exception_payload_enabled &&
4258 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4259 kvm_deliver_exception_payload(vcpu);
4260
4261 /*
4262 * The API doesn't provide the instruction length for software
4263 * exceptions, so don't report them. As long as the guest RIP
4264 * isn't advanced, we should expect to encounter the exception
4265 * again.
4266 */
4267 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4268 events->exception.injected = 0;
4269 events->exception.pending = 0;
4270 } else {
4271 events->exception.injected = vcpu->arch.exception.injected;
4272 events->exception.pending = vcpu->arch.exception.pending;
4273 /*
4274 * For ABI compatibility, deliberately conflate
4275 * pending and injected exceptions when
4276 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4277 */
4278 if (!vcpu->kvm->arch.exception_payload_enabled)
4279 events->exception.injected |=
4280 vcpu->arch.exception.pending;
4281 }
4282 events->exception.nr = vcpu->arch.exception.nr;
4283 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4284 events->exception.error_code = vcpu->arch.exception.error_code;
4285 events->exception_has_payload = vcpu->arch.exception.has_payload;
4286 events->exception_payload = vcpu->arch.exception.payload;
4287
4288 events->interrupt.injected =
4289 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4290 events->interrupt.nr = vcpu->arch.interrupt.nr;
4291 events->interrupt.soft = 0;
4292 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4293
4294 events->nmi.injected = vcpu->arch.nmi_injected;
4295 events->nmi.pending = vcpu->arch.nmi_pending != 0;
4296 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4297 events->nmi.pad = 0;
4298
4299 events->sipi_vector = 0; /* never valid when reporting to user space */
4300
4301 events->smi.smm = is_smm(vcpu);
4302 events->smi.pending = vcpu->arch.smi_pending;
4303 events->smi.smm_inside_nmi =
4304 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4305 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4306
4307 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4308 | KVM_VCPUEVENT_VALID_SHADOW
4309 | KVM_VCPUEVENT_VALID_SMM);
4310 if (vcpu->kvm->arch.exception_payload_enabled)
4311 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4312
4313 memset(&events->reserved, 0, sizeof(events->reserved));
4314 }
4315
4316 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
4317
4318 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4319 struct kvm_vcpu_events *events)
4320 {
4321 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4322 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4323 | KVM_VCPUEVENT_VALID_SHADOW
4324 | KVM_VCPUEVENT_VALID_SMM
4325 | KVM_VCPUEVENT_VALID_PAYLOAD))
4326 return -EINVAL;
4327
4328 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4329 if (!vcpu->kvm->arch.exception_payload_enabled)
4330 return -EINVAL;
4331 if (events->exception.pending)
4332 events->exception.injected = 0;
4333 else
4334 events->exception_has_payload = 0;
4335 } else {
4336 events->exception.pending = 0;
4337 events->exception_has_payload = 0;
4338 }
4339
4340 if ((events->exception.injected || events->exception.pending) &&
4341 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4342 return -EINVAL;
4343
4344 /* INITs are latched while in SMM */
4345 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4346 (events->smi.smm || events->smi.pending) &&
4347 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4348 return -EINVAL;
4349
4350 process_nmi(vcpu);
4351 vcpu->arch.exception.injected = events->exception.injected;
4352 vcpu->arch.exception.pending = events->exception.pending;
4353 vcpu->arch.exception.nr = events->exception.nr;
4354 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4355 vcpu->arch.exception.error_code = events->exception.error_code;
4356 vcpu->arch.exception.has_payload = events->exception_has_payload;
4357 vcpu->arch.exception.payload = events->exception_payload;
4358
4359 vcpu->arch.interrupt.injected = events->interrupt.injected;
4360 vcpu->arch.interrupt.nr = events->interrupt.nr;
4361 vcpu->arch.interrupt.soft = events->interrupt.soft;
4362 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4363 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4364 events->interrupt.shadow);
4365
4366 vcpu->arch.nmi_injected = events->nmi.injected;
4367 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4368 vcpu->arch.nmi_pending = events->nmi.pending;
4369 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4370
4371 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4372 lapic_in_kernel(vcpu))
4373 vcpu->arch.apic->sipi_vector = events->sipi_vector;
4374
4375 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4376 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4377 if (events->smi.smm)
4378 vcpu->arch.hflags |= HF_SMM_MASK;
4379 else
4380 vcpu->arch.hflags &= ~HF_SMM_MASK;
4381 kvm_smm_changed(vcpu);
4382 }
4383
4384 vcpu->arch.smi_pending = events->smi.pending;
4385
4386 if (events->smi.smm) {
4387 if (events->smi.smm_inside_nmi)
4388 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4389 else
4390 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4391 }
4392
4393 if (lapic_in_kernel(vcpu)) {
4394 if (events->smi.latched_init)
4395 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4396 else
4397 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4398 }
4399 }
4400
4401 kvm_make_request(KVM_REQ_EVENT, vcpu);
4402
4403 return 0;
4404 }
4405
4406 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4407 struct kvm_debugregs *dbgregs)
4408 {
4409 unsigned long val;
4410
4411 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4412 kvm_get_dr(vcpu, 6, &val);
4413 dbgregs->dr6 = val;
4414 dbgregs->dr7 = vcpu->arch.dr7;
4415 dbgregs->flags = 0;
4416 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4417 }
4418
4419 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4420 struct kvm_debugregs *dbgregs)
4421 {
4422 if (dbgregs->flags)
4423 return -EINVAL;
4424
4425 if (dbgregs->dr6 & ~0xffffffffull)
4426 return -EINVAL;
4427 if (dbgregs->dr7 & ~0xffffffffull)
4428 return -EINVAL;
4429
4430 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4431 kvm_update_dr0123(vcpu);
4432 vcpu->arch.dr6 = dbgregs->dr6;
4433 vcpu->arch.dr7 = dbgregs->dr7;
4434 kvm_update_dr7(vcpu);
4435
4436 return 0;
4437 }
4438
4439 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4440
4441 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4442 {
4443 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4444 u64 xstate_bv = xsave->header.xfeatures;
4445 u64 valid;
4446
4447 /*
4448 * Copy legacy XSAVE area, to avoid complications with CPUID
4449 * leaves 0 and 1 in the loop below.
4450 */
4451 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4452
4453 /* Set XSTATE_BV */
4454 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4455 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4456
4457 /*
4458 * Copy each region from the possibly compacted offset to the
4459 * non-compacted offset.
4460 */
4461 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4462 while (valid) {
4463 u64 xfeature_mask = valid & -valid;
4464 int xfeature_nr = fls64(xfeature_mask) - 1;
4465 void *src = get_xsave_addr(xsave, xfeature_nr);
4466
4467 if (src) {
4468 u32 size, offset, ecx, edx;
4469 cpuid_count(XSTATE_CPUID, xfeature_nr,
4470 &size, &offset, &ecx, &edx);
4471 if (xfeature_nr == XFEATURE_PKRU)
4472 memcpy(dest + offset, &vcpu->arch.pkru,
4473 sizeof(vcpu->arch.pkru));
4474 else
4475 memcpy(dest + offset, src, size);
4476
4477 }
4478
4479 valid -= xfeature_mask;
4480 }
4481 }
4482
4483 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4484 {
4485 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4486 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4487 u64 valid;
4488
4489 /*
4490 * Copy legacy XSAVE area, to avoid complications with CPUID
4491 * leaves 0 and 1 in the loop below.
4492 */
4493 memcpy(xsave, src, XSAVE_HDR_OFFSET);
4494
4495 /* Set XSTATE_BV and possibly XCOMP_BV. */
4496 xsave->header.xfeatures = xstate_bv;
4497 if (boot_cpu_has(X86_FEATURE_XSAVES))
4498 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4499
4500 /*
4501 * Copy each region from the non-compacted offset to the
4502 * possibly compacted offset.
4503 */
4504 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4505 while (valid) {
4506 u64 xfeature_mask = valid & -valid;
4507 int xfeature_nr = fls64(xfeature_mask) - 1;
4508 void *dest = get_xsave_addr(xsave, xfeature_nr);
4509
4510 if (dest) {
4511 u32 size, offset, ecx, edx;
4512 cpuid_count(XSTATE_CPUID, xfeature_nr,
4513 &size, &offset, &ecx, &edx);
4514 if (xfeature_nr == XFEATURE_PKRU)
4515 memcpy(&vcpu->arch.pkru, src + offset,
4516 sizeof(vcpu->arch.pkru));
4517 else
4518 memcpy(dest, src + offset, size);
4519 }
4520
4521 valid -= xfeature_mask;
4522 }
4523 }
4524
4525 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4526 struct kvm_xsave *guest_xsave)
4527 {
4528 if (!vcpu->arch.guest_fpu)
4529 return;
4530
4531 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4532 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4533 fill_xsave((u8 *) guest_xsave->region, vcpu);
4534 } else {
4535 memcpy(guest_xsave->region,
4536 &vcpu->arch.guest_fpu->state.fxsave,
4537 sizeof(struct fxregs_state));
4538 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4539 XFEATURE_MASK_FPSSE;
4540 }
4541 }
4542
4543 #define XSAVE_MXCSR_OFFSET 24
4544
4545 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4546 struct kvm_xsave *guest_xsave)
4547 {
4548 u64 xstate_bv;
4549 u32 mxcsr;
4550
4551 if (!vcpu->arch.guest_fpu)
4552 return 0;
4553
4554 xstate_bv = *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4555 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4556
4557 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4558 /*
4559 * Here we allow setting states that are not present in
4560 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
4561 * with old userspace.
4562 */
4563 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4564 return -EINVAL;
4565 load_xsave(vcpu, (u8 *)guest_xsave->region);
4566 } else {
4567 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4568 mxcsr & ~mxcsr_feature_mask)
4569 return -EINVAL;
4570 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4571 guest_xsave->region, sizeof(struct fxregs_state));
4572 }
4573 return 0;
4574 }
4575
4576 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4577 struct kvm_xcrs *guest_xcrs)
4578 {
4579 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4580 guest_xcrs->nr_xcrs = 0;
4581 return;
4582 }
4583
4584 guest_xcrs->nr_xcrs = 1;
4585 guest_xcrs->flags = 0;
4586 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4587 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4588 }
4589
4590 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4591 struct kvm_xcrs *guest_xcrs)
4592 {
4593 int i, r = 0;
4594
4595 if (!boot_cpu_has(X86_FEATURE_XSAVE))
4596 return -EINVAL;
4597
4598 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4599 return -EINVAL;
4600
4601 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4602 /* Only support XCR0 currently */
4603 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4604 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4605 guest_xcrs->xcrs[i].value);
4606 break;
4607 }
4608 if (r)
4609 r = -EINVAL;
4610 return r;
4611 }
4612
4613 /*
4614 * kvm_set_guest_paused() indicates to the guest kernel that it has been
4615 * stopped by the hypervisor. This function will be called from the host only.
4616 * EINVAL is returned when the host attempts to set the flag for a guest that
4617 * does not support pv clocks.
4618 */
4619 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4620 {
4621 if (!vcpu->arch.pv_time_enabled)
4622 return -EINVAL;
4623 vcpu->arch.pvclock_set_guest_stopped_request = true;
4624 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4625 return 0;
4626 }
4627
4628 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4629 struct kvm_enable_cap *cap)
4630 {
4631 int r;
4632 uint16_t vmcs_version;
4633 void __user *user_ptr;
4634
4635 if (cap->flags)
4636 return -EINVAL;
4637
4638 switch (cap->cap) {
4639 case KVM_CAP_HYPERV_SYNIC2:
4640 if (cap->args[0])
4641 return -EINVAL;
4642 fallthrough;
4643
4644 case KVM_CAP_HYPERV_SYNIC:
4645 if (!irqchip_in_kernel(vcpu->kvm))
4646 return -EINVAL;
4647 return kvm_hv_activate_synic(vcpu, cap->cap ==
4648 KVM_CAP_HYPERV_SYNIC2);
4649 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4650 if (!kvm_x86_ops.nested_ops->enable_evmcs)
4651 return -ENOTTY;
4652 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4653 if (!r) {
4654 user_ptr = (void __user *)(uintptr_t)cap->args[0];
4655 if (copy_to_user(user_ptr, &vmcs_version,
4656 sizeof(vmcs_version)))
4657 r = -EFAULT;
4658 }
4659 return r;
4660 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4661 if (!kvm_x86_ops.enable_direct_tlbflush)
4662 return -ENOTTY;
4663
4664 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
4665
4666 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4667 vcpu->arch.pv_cpuid.enforce = cap->args[0];
4668 if (vcpu->arch.pv_cpuid.enforce)
4669 kvm_update_pv_runtime(vcpu);
4670
4671 return 0;
4672
4673 default:
4674 return -EINVAL;
4675 }
4676 }
4677
4678 long kvm_arch_vcpu_ioctl(struct file *filp,
4679 unsigned int ioctl, unsigned long arg)
4680 {
4681 struct kvm_vcpu *vcpu = filp->private_data;
4682 void __user *argp = (void __user *)arg;
4683 int r;
4684 union {
4685 struct kvm_lapic_state *lapic;
4686 struct kvm_xsave *xsave;
4687 struct kvm_xcrs *xcrs;
4688 void *buffer;
4689 } u;
4690
4691 vcpu_load(vcpu);
4692
4693 u.buffer = NULL;
4694 switch (ioctl) {
4695 case KVM_GET_LAPIC: {
4696 r = -EINVAL;
4697 if (!lapic_in_kernel(vcpu))
4698 goto out;
4699 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4700 GFP_KERNEL_ACCOUNT);
4701
4702 r = -ENOMEM;
4703 if (!u.lapic)
4704 goto out;
4705 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4706 if (r)
4707 goto out;
4708 r = -EFAULT;
4709 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4710 goto out;
4711 r = 0;
4712 break;
4713 }
4714 case KVM_SET_LAPIC: {
4715 r = -EINVAL;
4716 if (!lapic_in_kernel(vcpu))
4717 goto out;
4718 u.lapic = memdup_user(argp, sizeof(*u.lapic));
4719 if (IS_ERR(u.lapic)) {
4720 r = PTR_ERR(u.lapic);
4721 goto out_nofree;
4722 }
4723
4724 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4725 break;
4726 }
4727 case KVM_INTERRUPT: {
4728 struct kvm_interrupt irq;
4729
4730 r = -EFAULT;
4731 if (copy_from_user(&irq, argp, sizeof(irq)))
4732 goto out;
4733 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4734 break;
4735 }
4736 case KVM_NMI: {
4737 r = kvm_vcpu_ioctl_nmi(vcpu);
4738 break;
4739 }
4740 case KVM_SMI: {
4741 r = kvm_vcpu_ioctl_smi(vcpu);
4742 break;
4743 }
4744 case KVM_SET_CPUID: {
4745 struct kvm_cpuid __user *cpuid_arg = argp;
4746 struct kvm_cpuid cpuid;
4747
4748 r = -EFAULT;
4749 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4750 goto out;
4751 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4752 break;
4753 }
4754 case KVM_SET_CPUID2: {
4755 struct kvm_cpuid2 __user *cpuid_arg = argp;
4756 struct kvm_cpuid2 cpuid;
4757
4758 r = -EFAULT;
4759 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4760 goto out;
4761 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4762 cpuid_arg->entries);
4763 break;
4764 }
4765 case KVM_GET_CPUID2: {
4766 struct kvm_cpuid2 __user *cpuid_arg = argp;
4767 struct kvm_cpuid2 cpuid;
4768
4769 r = -EFAULT;
4770 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4771 goto out;
4772 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4773 cpuid_arg->entries);
4774 if (r)
4775 goto out;
4776 r = -EFAULT;
4777 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4778 goto out;
4779 r = 0;
4780 break;
4781 }
4782 case KVM_GET_MSRS: {
4783 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4784 r = msr_io(vcpu, argp, do_get_msr, 1);
4785 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4786 break;
4787 }
4788 case KVM_SET_MSRS: {
4789 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4790 r = msr_io(vcpu, argp, do_set_msr, 0);
4791 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4792 break;
4793 }
4794 case KVM_TPR_ACCESS_REPORTING: {
4795 struct kvm_tpr_access_ctl tac;
4796
4797 r = -EFAULT;
4798 if (copy_from_user(&tac, argp, sizeof(tac)))
4799 goto out;
4800 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4801 if (r)
4802 goto out;
4803 r = -EFAULT;
4804 if (copy_to_user(argp, &tac, sizeof(tac)))
4805 goto out;
4806 r = 0;
4807 break;
4808 };
4809 case KVM_SET_VAPIC_ADDR: {
4810 struct kvm_vapic_addr va;
4811 int idx;
4812
4813 r = -EINVAL;
4814 if (!lapic_in_kernel(vcpu))
4815 goto out;
4816 r = -EFAULT;
4817 if (copy_from_user(&va, argp, sizeof(va)))
4818 goto out;
4819 idx = srcu_read_lock(&vcpu->kvm->srcu);
4820 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4821 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4822 break;
4823 }
4824 case KVM_X86_SETUP_MCE: {
4825 u64 mcg_cap;
4826
4827 r = -EFAULT;
4828 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4829 goto out;
4830 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4831 break;
4832 }
4833 case KVM_X86_SET_MCE: {
4834 struct kvm_x86_mce mce;
4835
4836 r = -EFAULT;
4837 if (copy_from_user(&mce, argp, sizeof(mce)))
4838 goto out;
4839 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4840 break;
4841 }
4842 case KVM_GET_VCPU_EVENTS: {
4843 struct kvm_vcpu_events events;
4844
4845 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4846
4847 r = -EFAULT;
4848 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4849 break;
4850 r = 0;
4851 break;
4852 }
4853 case KVM_SET_VCPU_EVENTS: {
4854 struct kvm_vcpu_events events;
4855
4856 r = -EFAULT;
4857 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4858 break;
4859
4860 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4861 break;
4862 }
4863 case KVM_GET_DEBUGREGS: {
4864 struct kvm_debugregs dbgregs;
4865
4866 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4867
4868 r = -EFAULT;
4869 if (copy_to_user(argp, &dbgregs,
4870 sizeof(struct kvm_debugregs)))
4871 break;
4872 r = 0;
4873 break;
4874 }
4875 case KVM_SET_DEBUGREGS: {
4876 struct kvm_debugregs dbgregs;
4877
4878 r = -EFAULT;
4879 if (copy_from_user(&dbgregs, argp,
4880 sizeof(struct kvm_debugregs)))
4881 break;
4882
4883 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4884 break;
4885 }
4886 case KVM_GET_XSAVE: {
4887 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4888 r = -ENOMEM;
4889 if (!u.xsave)
4890 break;
4891
4892 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4893
4894 r = -EFAULT;
4895 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4896 break;
4897 r = 0;
4898 break;
4899 }
4900 case KVM_SET_XSAVE: {
4901 u.xsave = memdup_user(argp, sizeof(*u.xsave));
4902 if (IS_ERR(u.xsave)) {
4903 r = PTR_ERR(u.xsave);
4904 goto out_nofree;
4905 }
4906
4907 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4908 break;
4909 }
4910 case KVM_GET_XCRS: {
4911 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4912 r = -ENOMEM;
4913 if (!u.xcrs)
4914 break;
4915
4916 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4917
4918 r = -EFAULT;
4919 if (copy_to_user(argp, u.xcrs,
4920 sizeof(struct kvm_xcrs)))
4921 break;
4922 r = 0;
4923 break;
4924 }
4925 case KVM_SET_XCRS: {
4926 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4927 if (IS_ERR(u.xcrs)) {
4928 r = PTR_ERR(u.xcrs);
4929 goto out_nofree;
4930 }
4931
4932 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4933 break;
4934 }
4935 case KVM_SET_TSC_KHZ: {
4936 u32 user_tsc_khz;
4937
4938 r = -EINVAL;
4939 user_tsc_khz = (u32)arg;
4940
4941 if (kvm_has_tsc_control &&
4942 user_tsc_khz >= kvm_max_guest_tsc_khz)
4943 goto out;
4944
4945 if (user_tsc_khz == 0)
4946 user_tsc_khz = tsc_khz;
4947
4948 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4949 r = 0;
4950
4951 goto out;
4952 }
4953 case KVM_GET_TSC_KHZ: {
4954 r = vcpu->arch.virtual_tsc_khz;
4955 goto out;
4956 }
4957 case KVM_KVMCLOCK_CTRL: {
4958 r = kvm_set_guest_paused(vcpu);
4959 goto out;
4960 }
4961 case KVM_ENABLE_CAP: {
4962 struct kvm_enable_cap cap;
4963
4964 r = -EFAULT;
4965 if (copy_from_user(&cap, argp, sizeof(cap)))
4966 goto out;
4967 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4968 break;
4969 }
4970 case KVM_GET_NESTED_STATE: {
4971 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4972 u32 user_data_size;
4973
4974 r = -EINVAL;
4975 if (!kvm_x86_ops.nested_ops->get_state)
4976 break;
4977
4978 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4979 r = -EFAULT;
4980 if (get_user(user_data_size, &user_kvm_nested_state->size))
4981 break;
4982
4983 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
4984 user_data_size);
4985 if (r < 0)
4986 break;
4987
4988 if (r > user_data_size) {
4989 if (put_user(r, &user_kvm_nested_state->size))
4990 r = -EFAULT;
4991 else
4992 r = -E2BIG;
4993 break;
4994 }
4995
4996 r = 0;
4997 break;
4998 }
4999 case KVM_SET_NESTED_STATE: {
5000 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5001 struct kvm_nested_state kvm_state;
5002 int idx;
5003
5004 r = -EINVAL;
5005 if (!kvm_x86_ops.nested_ops->set_state)
5006 break;
5007
5008 r = -EFAULT;
5009 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5010 break;
5011
5012 r = -EINVAL;
5013 if (kvm_state.size < sizeof(kvm_state))
5014 break;
5015
5016 if (kvm_state.flags &
5017 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5018 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5019 | KVM_STATE_NESTED_GIF_SET))
5020 break;
5021
5022 /* nested_run_pending implies guest_mode. */
5023 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5024 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5025 break;
5026
5027 idx = srcu_read_lock(&vcpu->kvm->srcu);
5028 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5029 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5030 break;
5031 }
5032 case KVM_GET_SUPPORTED_HV_CPUID:
5033 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5034 break;
5035 default:
5036 r = -EINVAL;
5037 }
5038 out:
5039 kfree(u.buffer);
5040 out_nofree:
5041 vcpu_put(vcpu);
5042 return r;
5043 }
5044
5045 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5046 {
5047 return VM_FAULT_SIGBUS;
5048 }
5049
5050 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5051 {
5052 int ret;
5053
5054 if (addr > (unsigned int)(-3 * PAGE_SIZE))
5055 return -EINVAL;
5056 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5057 return ret;
5058 }
5059
5060 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5061 u64 ident_addr)
5062 {
5063 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5064 }
5065
5066 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5067 unsigned long kvm_nr_mmu_pages)
5068 {
5069 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5070 return -EINVAL;
5071
5072 mutex_lock(&kvm->slots_lock);
5073
5074 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5075 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5076
5077 mutex_unlock(&kvm->slots_lock);
5078 return 0;
5079 }
5080
5081 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5082 {
5083 return kvm->arch.n_max_mmu_pages;
5084 }
5085
5086 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5087 {
5088 struct kvm_pic *pic = kvm->arch.vpic;
5089 int r;
5090
5091 r = 0;
5092 switch (chip->chip_id) {
5093 case KVM_IRQCHIP_PIC_MASTER:
5094 memcpy(&chip->chip.pic, &pic->pics[0],
5095 sizeof(struct kvm_pic_state));
5096 break;
5097 case KVM_IRQCHIP_PIC_SLAVE:
5098 memcpy(&chip->chip.pic, &pic->pics[1],
5099 sizeof(struct kvm_pic_state));
5100 break;
5101 case KVM_IRQCHIP_IOAPIC:
5102 kvm_get_ioapic(kvm, &chip->chip.ioapic);
5103 break;
5104 default:
5105 r = -EINVAL;
5106 break;
5107 }
5108 return r;
5109 }
5110
5111 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5112 {
5113 struct kvm_pic *pic = kvm->arch.vpic;
5114 int r;
5115
5116 r = 0;
5117 switch (chip->chip_id) {
5118 case KVM_IRQCHIP_PIC_MASTER:
5119 spin_lock(&pic->lock);
5120 memcpy(&pic->pics[0], &chip->chip.pic,
5121 sizeof(struct kvm_pic_state));
5122 spin_unlock(&pic->lock);
5123 break;
5124 case KVM_IRQCHIP_PIC_SLAVE:
5125 spin_lock(&pic->lock);
5126 memcpy(&pic->pics[1], &chip->chip.pic,
5127 sizeof(struct kvm_pic_state));
5128 spin_unlock(&pic->lock);
5129 break;
5130 case KVM_IRQCHIP_IOAPIC:
5131 kvm_set_ioapic(kvm, &chip->chip.ioapic);
5132 break;
5133 default:
5134 r = -EINVAL;
5135 break;
5136 }
5137 kvm_pic_update_irq(pic);
5138 return r;
5139 }
5140
5141 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5142 {
5143 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5144
5145 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5146
5147 mutex_lock(&kps->lock);
5148 memcpy(ps, &kps->channels, sizeof(*ps));
5149 mutex_unlock(&kps->lock);
5150 return 0;
5151 }
5152
5153 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5154 {
5155 int i;
5156 struct kvm_pit *pit = kvm->arch.vpit;
5157
5158 mutex_lock(&pit->pit_state.lock);
5159 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5160 for (i = 0; i < 3; i++)
5161 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5162 mutex_unlock(&pit->pit_state.lock);
5163 return 0;
5164 }
5165
5166 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5167 {
5168 mutex_lock(&kvm->arch.vpit->pit_state.lock);
5169 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5170 sizeof(ps->channels));
5171 ps->flags = kvm->arch.vpit->pit_state.flags;
5172 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5173 memset(&ps->reserved, 0, sizeof(ps->reserved));
5174 return 0;
5175 }
5176
5177 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5178 {
5179 int start = 0;
5180 int i;
5181 u32 prev_legacy, cur_legacy;
5182 struct kvm_pit *pit = kvm->arch.vpit;
5183
5184 mutex_lock(&pit->pit_state.lock);
5185 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5186 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5187 if (!prev_legacy && cur_legacy)
5188 start = 1;
5189 memcpy(&pit->pit_state.channels, &ps->channels,
5190 sizeof(pit->pit_state.channels));
5191 pit->pit_state.flags = ps->flags;
5192 for (i = 0; i < 3; i++)
5193 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5194 start && i == 0);
5195 mutex_unlock(&pit->pit_state.lock);
5196 return 0;
5197 }
5198
5199 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5200 struct kvm_reinject_control *control)
5201 {
5202 struct kvm_pit *pit = kvm->arch.vpit;
5203
5204 /* pit->pit_state.lock was overloaded to prevent userspace from getting
5205 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5206 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
5207 */
5208 mutex_lock(&pit->pit_state.lock);
5209 kvm_pit_set_reinject(pit, control->pit_reinject);
5210 mutex_unlock(&pit->pit_state.lock);
5211
5212 return 0;
5213 }
5214
5215 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5216 {
5217 /*
5218 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
5219 */
5220 static_call_cond(kvm_x86_flush_log_dirty)(kvm);
5221 }
5222
5223 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5224 bool line_status)
5225 {
5226 if (!irqchip_in_kernel(kvm))
5227 return -ENXIO;
5228
5229 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5230 irq_event->irq, irq_event->level,
5231 line_status);
5232 return 0;
5233 }
5234
5235 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5236 struct kvm_enable_cap *cap)
5237 {
5238 int r;
5239
5240 if (cap->flags)
5241 return -EINVAL;
5242
5243 switch (cap->cap) {
5244 case KVM_CAP_DISABLE_QUIRKS:
5245 kvm->arch.disabled_quirks = cap->args[0];
5246 r = 0;
5247 break;
5248 case KVM_CAP_SPLIT_IRQCHIP: {
5249 mutex_lock(&kvm->lock);
5250 r = -EINVAL;
5251 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5252 goto split_irqchip_unlock;
5253 r = -EEXIST;
5254 if (irqchip_in_kernel(kvm))
5255 goto split_irqchip_unlock;
5256 if (kvm->created_vcpus)
5257 goto split_irqchip_unlock;
5258 r = kvm_setup_empty_irq_routing(kvm);
5259 if (r)
5260 goto split_irqchip_unlock;
5261 /* Pairs with irqchip_in_kernel. */
5262 smp_wmb();
5263 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5264 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5265 r = 0;
5266 split_irqchip_unlock:
5267 mutex_unlock(&kvm->lock);
5268 break;
5269 }
5270 case KVM_CAP_X2APIC_API:
5271 r = -EINVAL;
5272 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5273 break;
5274
5275 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5276 kvm->arch.x2apic_format = true;
5277 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5278 kvm->arch.x2apic_broadcast_quirk_disabled = true;
5279
5280 r = 0;
5281 break;
5282 case KVM_CAP_X86_DISABLE_EXITS:
5283 r = -EINVAL;
5284 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5285 break;
5286
5287 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5288 kvm_can_mwait_in_guest())
5289 kvm->arch.mwait_in_guest = true;
5290 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5291 kvm->arch.hlt_in_guest = true;
5292 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5293 kvm->arch.pause_in_guest = true;
5294 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5295 kvm->arch.cstate_in_guest = true;
5296 r = 0;
5297 break;
5298 case KVM_CAP_MSR_PLATFORM_INFO:
5299 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5300 r = 0;
5301 break;
5302 case KVM_CAP_EXCEPTION_PAYLOAD:
5303 kvm->arch.exception_payload_enabled = cap->args[0];
5304 r = 0;
5305 break;
5306 case KVM_CAP_X86_USER_SPACE_MSR:
5307 kvm->arch.user_space_msr_mask = cap->args[0];
5308 r = 0;
5309 break;
5310 case KVM_CAP_X86_BUS_LOCK_EXIT:
5311 r = -EINVAL;
5312 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5313 break;
5314
5315 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
5316 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
5317 break;
5318
5319 if (kvm_has_bus_lock_exit &&
5320 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
5321 kvm->arch.bus_lock_detection_enabled = true;
5322 r = 0;
5323 break;
5324 default:
5325 r = -EINVAL;
5326 break;
5327 }
5328 return r;
5329 }
5330
5331 static void kvm_clear_msr_filter(struct kvm *kvm)
5332 {
5333 u32 i;
5334 u32 count = kvm->arch.msr_filter.count;
5335 struct msr_bitmap_range ranges[16];
5336
5337 mutex_lock(&kvm->lock);
5338 kvm->arch.msr_filter.count = 0;
5339 memcpy(ranges, kvm->arch.msr_filter.ranges, count * sizeof(ranges[0]));
5340 mutex_unlock(&kvm->lock);
5341 synchronize_srcu(&kvm->srcu);
5342
5343 for (i = 0; i < count; i++)
5344 kfree(ranges[i].bitmap);
5345 }
5346
5347 static int kvm_add_msr_filter(struct kvm *kvm, struct kvm_msr_filter_range *user_range)
5348 {
5349 struct msr_bitmap_range *ranges = kvm->arch.msr_filter.ranges;
5350 struct msr_bitmap_range range;
5351 unsigned long *bitmap = NULL;
5352 size_t bitmap_size;
5353 int r;
5354
5355 if (!user_range->nmsrs)
5356 return 0;
5357
5358 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5359 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5360 return -EINVAL;
5361
5362 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5363 if (IS_ERR(bitmap))
5364 return PTR_ERR(bitmap);
5365
5366 range = (struct msr_bitmap_range) {
5367 .flags = user_range->flags,
5368 .base = user_range->base,
5369 .nmsrs = user_range->nmsrs,
5370 .bitmap = bitmap,
5371 };
5372
5373 if (range.flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE)) {
5374 r = -EINVAL;
5375 goto err;
5376 }
5377
5378 if (!range.flags) {
5379 r = -EINVAL;
5380 goto err;
5381 }
5382
5383 /* Everything ok, add this range identifier to our global pool */
5384 ranges[kvm->arch.msr_filter.count] = range;
5385 /* Make sure we filled the array before we tell anyone to walk it */
5386 smp_wmb();
5387 kvm->arch.msr_filter.count++;
5388
5389 return 0;
5390 err:
5391 kfree(bitmap);
5392 return r;
5393 }
5394
5395 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
5396 {
5397 struct kvm_msr_filter __user *user_msr_filter = argp;
5398 struct kvm_msr_filter filter;
5399 bool default_allow;
5400 int r = 0;
5401 bool empty = true;
5402 u32 i;
5403
5404 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5405 return -EFAULT;
5406
5407 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
5408 empty &= !filter.ranges[i].nmsrs;
5409
5410 default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
5411 if (empty && !default_allow)
5412 return -EINVAL;
5413
5414 kvm_clear_msr_filter(kvm);
5415
5416 kvm->arch.msr_filter.default_allow = default_allow;
5417
5418 /*
5419 * Protect from concurrent calls to this function that could trigger
5420 * a TOCTOU violation on kvm->arch.msr_filter.count.
5421 */
5422 mutex_lock(&kvm->lock);
5423 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5424 r = kvm_add_msr_filter(kvm, &filter.ranges[i]);
5425 if (r)
5426 break;
5427 }
5428
5429 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5430 mutex_unlock(&kvm->lock);
5431
5432 return r;
5433 }
5434
5435 long kvm_arch_vm_ioctl(struct file *filp,
5436 unsigned int ioctl, unsigned long arg)
5437 {
5438 struct kvm *kvm = filp->private_data;
5439 void __user *argp = (void __user *)arg;
5440 int r = -ENOTTY;
5441 /*
5442 * This union makes it completely explicit to gcc-3.x
5443 * that these two variables' stack usage should be
5444 * combined, not added together.
5445 */
5446 union {
5447 struct kvm_pit_state ps;
5448 struct kvm_pit_state2 ps2;
5449 struct kvm_pit_config pit_config;
5450 } u;
5451
5452 switch (ioctl) {
5453 case KVM_SET_TSS_ADDR:
5454 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5455 break;
5456 case KVM_SET_IDENTITY_MAP_ADDR: {
5457 u64 ident_addr;
5458
5459 mutex_lock(&kvm->lock);
5460 r = -EINVAL;
5461 if (kvm->created_vcpus)
5462 goto set_identity_unlock;
5463 r = -EFAULT;
5464 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5465 goto set_identity_unlock;
5466 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5467 set_identity_unlock:
5468 mutex_unlock(&kvm->lock);
5469 break;
5470 }
5471 case KVM_SET_NR_MMU_PAGES:
5472 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5473 break;
5474 case KVM_GET_NR_MMU_PAGES:
5475 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5476 break;
5477 case KVM_CREATE_IRQCHIP: {
5478 mutex_lock(&kvm->lock);
5479
5480 r = -EEXIST;
5481 if (irqchip_in_kernel(kvm))
5482 goto create_irqchip_unlock;
5483
5484 r = -EINVAL;
5485 if (kvm->created_vcpus)
5486 goto create_irqchip_unlock;
5487
5488 r = kvm_pic_init(kvm);
5489 if (r)
5490 goto create_irqchip_unlock;
5491
5492 r = kvm_ioapic_init(kvm);
5493 if (r) {
5494 kvm_pic_destroy(kvm);
5495 goto create_irqchip_unlock;
5496 }
5497
5498 r = kvm_setup_default_irq_routing(kvm);
5499 if (r) {
5500 kvm_ioapic_destroy(kvm);
5501 kvm_pic_destroy(kvm);
5502 goto create_irqchip_unlock;
5503 }
5504 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5505 smp_wmb();
5506 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5507 create_irqchip_unlock:
5508 mutex_unlock(&kvm->lock);
5509 break;
5510 }
5511 case KVM_CREATE_PIT:
5512 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5513 goto create_pit;
5514 case KVM_CREATE_PIT2:
5515 r = -EFAULT;
5516 if (copy_from_user(&u.pit_config, argp,
5517 sizeof(struct kvm_pit_config)))
5518 goto out;
5519 create_pit:
5520 mutex_lock(&kvm->lock);
5521 r = -EEXIST;
5522 if (kvm->arch.vpit)
5523 goto create_pit_unlock;
5524 r = -ENOMEM;
5525 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5526 if (kvm->arch.vpit)
5527 r = 0;
5528 create_pit_unlock:
5529 mutex_unlock(&kvm->lock);
5530 break;
5531 case KVM_GET_IRQCHIP: {
5532 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5533 struct kvm_irqchip *chip;
5534
5535 chip = memdup_user(argp, sizeof(*chip));
5536 if (IS_ERR(chip)) {
5537 r = PTR_ERR(chip);
5538 goto out;
5539 }
5540
5541 r = -ENXIO;
5542 if (!irqchip_kernel(kvm))
5543 goto get_irqchip_out;
5544 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5545 if (r)
5546 goto get_irqchip_out;
5547 r = -EFAULT;
5548 if (copy_to_user(argp, chip, sizeof(*chip)))
5549 goto get_irqchip_out;
5550 r = 0;
5551 get_irqchip_out:
5552 kfree(chip);
5553 break;
5554 }
5555 case KVM_SET_IRQCHIP: {
5556 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5557 struct kvm_irqchip *chip;
5558
5559 chip = memdup_user(argp, sizeof(*chip));
5560 if (IS_ERR(chip)) {
5561 r = PTR_ERR(chip);
5562 goto out;
5563 }
5564
5565 r = -ENXIO;
5566 if (!irqchip_kernel(kvm))
5567 goto set_irqchip_out;
5568 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5569 set_irqchip_out:
5570 kfree(chip);
5571 break;
5572 }
5573 case KVM_GET_PIT: {
5574 r = -EFAULT;
5575 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5576 goto out;
5577 r = -ENXIO;
5578 if (!kvm->arch.vpit)
5579 goto out;
5580 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5581 if (r)
5582 goto out;
5583 r = -EFAULT;
5584 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5585 goto out;
5586 r = 0;
5587 break;
5588 }
5589 case KVM_SET_PIT: {
5590 r = -EFAULT;
5591 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5592 goto out;
5593 mutex_lock(&kvm->lock);
5594 r = -ENXIO;
5595 if (!kvm->arch.vpit)
5596 goto set_pit_out;
5597 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5598 set_pit_out:
5599 mutex_unlock(&kvm->lock);
5600 break;
5601 }
5602 case KVM_GET_PIT2: {
5603 r = -ENXIO;
5604 if (!kvm->arch.vpit)
5605 goto out;
5606 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5607 if (r)
5608 goto out;
5609 r = -EFAULT;
5610 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5611 goto out;
5612 r = 0;
5613 break;
5614 }
5615 case KVM_SET_PIT2: {
5616 r = -EFAULT;
5617 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5618 goto out;
5619 mutex_lock(&kvm->lock);
5620 r = -ENXIO;
5621 if (!kvm->arch.vpit)
5622 goto set_pit2_out;
5623 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5624 set_pit2_out:
5625 mutex_unlock(&kvm->lock);
5626 break;
5627 }
5628 case KVM_REINJECT_CONTROL: {
5629 struct kvm_reinject_control control;
5630 r = -EFAULT;
5631 if (copy_from_user(&control, argp, sizeof(control)))
5632 goto out;
5633 r = -ENXIO;
5634 if (!kvm->arch.vpit)
5635 goto out;
5636 r = kvm_vm_ioctl_reinject(kvm, &control);
5637 break;
5638 }
5639 case KVM_SET_BOOT_CPU_ID:
5640 r = 0;
5641 mutex_lock(&kvm->lock);
5642 if (kvm->created_vcpus)
5643 r = -EBUSY;
5644 else
5645 kvm->arch.bsp_vcpu_id = arg;
5646 mutex_unlock(&kvm->lock);
5647 break;
5648 case KVM_XEN_HVM_CONFIG: {
5649 struct kvm_xen_hvm_config xhc;
5650 r = -EFAULT;
5651 if (copy_from_user(&xhc, argp, sizeof(xhc)))
5652 goto out;
5653 r = -EINVAL;
5654 if (xhc.flags)
5655 goto out;
5656 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
5657 r = 0;
5658 break;
5659 }
5660 case KVM_SET_CLOCK: {
5661 struct kvm_clock_data user_ns;
5662 u64 now_ns;
5663
5664 r = -EFAULT;
5665 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5666 goto out;
5667
5668 r = -EINVAL;
5669 if (user_ns.flags)
5670 goto out;
5671
5672 r = 0;
5673 /*
5674 * TODO: userspace has to take care of races with VCPU_RUN, so
5675 * kvm_gen_update_masterclock() can be cut down to locked
5676 * pvclock_update_vm_gtod_copy().
5677 */
5678 kvm_gen_update_masterclock(kvm);
5679 now_ns = get_kvmclock_ns(kvm);
5680 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5681 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5682 break;
5683 }
5684 case KVM_GET_CLOCK: {
5685 struct kvm_clock_data user_ns;
5686 u64 now_ns;
5687
5688 now_ns = get_kvmclock_ns(kvm);
5689 user_ns.clock = now_ns;
5690 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5691 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5692
5693 r = -EFAULT;
5694 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5695 goto out;
5696 r = 0;
5697 break;
5698 }
5699 case KVM_MEMORY_ENCRYPT_OP: {
5700 r = -ENOTTY;
5701 if (kvm_x86_ops.mem_enc_op)
5702 r = static_call(kvm_x86_mem_enc_op)(kvm, argp);
5703 break;
5704 }
5705 case KVM_MEMORY_ENCRYPT_REG_REGION: {
5706 struct kvm_enc_region region;
5707
5708 r = -EFAULT;
5709 if (copy_from_user(&region, argp, sizeof(region)))
5710 goto out;
5711
5712 r = -ENOTTY;
5713 if (kvm_x86_ops.mem_enc_reg_region)
5714 r = static_call(kvm_x86_mem_enc_reg_region)(kvm, &region);
5715 break;
5716 }
5717 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5718 struct kvm_enc_region region;
5719
5720 r = -EFAULT;
5721 if (copy_from_user(&region, argp, sizeof(region)))
5722 goto out;
5723
5724 r = -ENOTTY;
5725 if (kvm_x86_ops.mem_enc_unreg_region)
5726 r = static_call(kvm_x86_mem_enc_unreg_region)(kvm, &region);
5727 break;
5728 }
5729 case KVM_HYPERV_EVENTFD: {
5730 struct kvm_hyperv_eventfd hvevfd;
5731
5732 r = -EFAULT;
5733 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5734 goto out;
5735 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5736 break;
5737 }
5738 case KVM_SET_PMU_EVENT_FILTER:
5739 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5740 break;
5741 case KVM_X86_SET_MSR_FILTER:
5742 r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
5743 break;
5744 default:
5745 r = -ENOTTY;
5746 }
5747 out:
5748 return r;
5749 }
5750
5751 static void kvm_init_msr_list(void)
5752 {
5753 struct x86_pmu_capability x86_pmu;
5754 u32 dummy[2];
5755 unsigned i;
5756
5757 BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5758 "Please update the fixed PMCs in msrs_to_saved_all[]");
5759
5760 perf_get_x86_pmu_capability(&x86_pmu);
5761
5762 num_msrs_to_save = 0;
5763 num_emulated_msrs = 0;
5764 num_msr_based_features = 0;
5765
5766 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5767 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5768 continue;
5769
5770 /*
5771 * Even MSRs that are valid in the host may not be exposed
5772 * to the guests in some cases.
5773 */
5774 switch (msrs_to_save_all[i]) {
5775 case MSR_IA32_BNDCFGS:
5776 if (!kvm_mpx_supported())
5777 continue;
5778 break;
5779 case MSR_TSC_AUX:
5780 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
5781 continue;
5782 break;
5783 case MSR_IA32_UMWAIT_CONTROL:
5784 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
5785 continue;
5786 break;
5787 case MSR_IA32_RTIT_CTL:
5788 case MSR_IA32_RTIT_STATUS:
5789 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
5790 continue;
5791 break;
5792 case MSR_IA32_RTIT_CR3_MATCH:
5793 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5794 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5795 continue;
5796 break;
5797 case MSR_IA32_RTIT_OUTPUT_BASE:
5798 case MSR_IA32_RTIT_OUTPUT_MASK:
5799 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5800 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5801 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5802 continue;
5803 break;
5804 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
5805 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5806 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5807 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5808 continue;
5809 break;
5810 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5811 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5812 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5813 continue;
5814 break;
5815 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5816 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5817 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5818 continue;
5819 break;
5820 default:
5821 break;
5822 }
5823
5824 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
5825 }
5826
5827 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
5828 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
5829 continue;
5830
5831 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
5832 }
5833
5834 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
5835 struct kvm_msr_entry msr;
5836
5837 msr.index = msr_based_features_all[i];
5838 if (kvm_get_msr_feature(&msr))
5839 continue;
5840
5841 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
5842 }
5843 }
5844
5845 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5846 const void *v)
5847 {
5848 int handled = 0;
5849 int n;
5850
5851 do {
5852 n = min(len, 8);
5853 if (!(lapic_in_kernel(vcpu) &&
5854 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5855 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5856 break;
5857 handled += n;
5858 addr += n;
5859 len -= n;
5860 v += n;
5861 } while (len);
5862
5863 return handled;
5864 }
5865
5866 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5867 {
5868 int handled = 0;
5869 int n;
5870
5871 do {
5872 n = min(len, 8);
5873 if (!(lapic_in_kernel(vcpu) &&
5874 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5875 addr, n, v))
5876 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5877 break;
5878 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5879 handled += n;
5880 addr += n;
5881 len -= n;
5882 v += n;
5883 } while (len);
5884
5885 return handled;
5886 }
5887
5888 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5889 struct kvm_segment *var, int seg)
5890 {
5891 static_call(kvm_x86_set_segment)(vcpu, var, seg);
5892 }
5893
5894 void kvm_get_segment(struct kvm_vcpu *vcpu,
5895 struct kvm_segment *var, int seg)
5896 {
5897 static_call(kvm_x86_get_segment)(vcpu, var, seg);
5898 }
5899
5900 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5901 struct x86_exception *exception)
5902 {
5903 gpa_t t_gpa;
5904
5905 BUG_ON(!mmu_is_nested(vcpu));
5906
5907 /* NPT walks are always user-walks */
5908 access |= PFERR_USER_MASK;
5909 t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5910
5911 return t_gpa;
5912 }
5913
5914 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5915 struct x86_exception *exception)
5916 {
5917 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
5918 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5919 }
5920
5921 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5922 struct x86_exception *exception)
5923 {
5924 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
5925 access |= PFERR_FETCH_MASK;
5926 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5927 }
5928
5929 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5930 struct x86_exception *exception)
5931 {
5932 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
5933 access |= PFERR_WRITE_MASK;
5934 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5935 }
5936
5937 /* uses this to access any guest's mapped memory without checking CPL */
5938 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5939 struct x86_exception *exception)
5940 {
5941 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5942 }
5943
5944 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5945 struct kvm_vcpu *vcpu, u32 access,
5946 struct x86_exception *exception)
5947 {
5948 void *data = val;
5949 int r = X86EMUL_CONTINUE;
5950
5951 while (bytes) {
5952 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5953 exception);
5954 unsigned offset = addr & (PAGE_SIZE-1);
5955 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5956 int ret;
5957
5958 if (gpa == UNMAPPED_GVA)
5959 return X86EMUL_PROPAGATE_FAULT;
5960 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5961 offset, toread);
5962 if (ret < 0) {
5963 r = X86EMUL_IO_NEEDED;
5964 goto out;
5965 }
5966
5967 bytes -= toread;
5968 data += toread;
5969 addr += toread;
5970 }
5971 out:
5972 return r;
5973 }
5974
5975 /* used for instruction fetching */
5976 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5977 gva_t addr, void *val, unsigned int bytes,
5978 struct x86_exception *exception)
5979 {
5980 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5981 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
5982 unsigned offset;
5983 int ret;
5984
5985 /* Inline kvm_read_guest_virt_helper for speed. */
5986 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5987 exception);
5988 if (unlikely(gpa == UNMAPPED_GVA))
5989 return X86EMUL_PROPAGATE_FAULT;
5990
5991 offset = addr & (PAGE_SIZE-1);
5992 if (WARN_ON(offset + bytes > PAGE_SIZE))
5993 bytes = (unsigned)PAGE_SIZE - offset;
5994 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5995 offset, bytes);
5996 if (unlikely(ret < 0))
5997 return X86EMUL_IO_NEEDED;
5998
5999 return X86EMUL_CONTINUE;
6000 }
6001
6002 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6003 gva_t addr, void *val, unsigned int bytes,
6004 struct x86_exception *exception)
6005 {
6006 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6007
6008 /*
6009 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6010 * is returned, but our callers are not ready for that and they blindly
6011 * call kvm_inject_page_fault. Ensure that they at least do not leak
6012 * uninitialized kernel stack memory into cr2 and error code.
6013 */
6014 memset(exception, 0, sizeof(*exception));
6015 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6016 exception);
6017 }
6018 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6019
6020 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6021 gva_t addr, void *val, unsigned int bytes,
6022 struct x86_exception *exception, bool system)
6023 {
6024 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6025 u32 access = 0;
6026
6027 if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6028 access |= PFERR_USER_MASK;
6029
6030 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6031 }
6032
6033 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6034 unsigned long addr, void *val, unsigned int bytes)
6035 {
6036 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6037 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6038
6039 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6040 }
6041
6042 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6043 struct kvm_vcpu *vcpu, u32 access,
6044 struct x86_exception *exception)
6045 {
6046 void *data = val;
6047 int r = X86EMUL_CONTINUE;
6048
6049 while (bytes) {
6050 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6051 access,
6052 exception);
6053 unsigned offset = addr & (PAGE_SIZE-1);
6054 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6055 int ret;
6056
6057 if (gpa == UNMAPPED_GVA)
6058 return X86EMUL_PROPAGATE_FAULT;
6059 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6060 if (ret < 0) {
6061 r = X86EMUL_IO_NEEDED;
6062 goto out;
6063 }
6064
6065 bytes -= towrite;
6066 data += towrite;
6067 addr += towrite;
6068 }
6069 out:
6070 return r;
6071 }
6072
6073 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6074 unsigned int bytes, struct x86_exception *exception,
6075 bool system)
6076 {
6077 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6078 u32 access = PFERR_WRITE_MASK;
6079
6080 if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6081 access |= PFERR_USER_MASK;
6082
6083 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6084 access, exception);
6085 }
6086
6087 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6088 unsigned int bytes, struct x86_exception *exception)
6089 {
6090 /* kvm_write_guest_virt_system can pull in tons of pages. */
6091 vcpu->arch.l1tf_flush_l1d = true;
6092
6093 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6094 PFERR_WRITE_MASK, exception);
6095 }
6096 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6097
6098 int handle_ud(struct kvm_vcpu *vcpu)
6099 {
6100 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6101 int emul_type = EMULTYPE_TRAP_UD;
6102 char sig[5]; /* ud2; .ascii "kvm" */
6103 struct x86_exception e;
6104
6105 if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, NULL, 0)))
6106 return 1;
6107
6108 if (force_emulation_prefix &&
6109 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6110 sig, sizeof(sig), &e) == 0 &&
6111 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6112 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6113 emul_type = EMULTYPE_TRAP_UD_FORCED;
6114 }
6115
6116 return kvm_emulate_instruction(vcpu, emul_type);
6117 }
6118 EXPORT_SYMBOL_GPL(handle_ud);
6119
6120 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6121 gpa_t gpa, bool write)
6122 {
6123 /* For APIC access vmexit */
6124 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6125 return 1;
6126
6127 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6128 trace_vcpu_match_mmio(gva, gpa, write, true);
6129 return 1;
6130 }
6131
6132 return 0;
6133 }
6134
6135 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6136 gpa_t *gpa, struct x86_exception *exception,
6137 bool write)
6138 {
6139 u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
6140 | (write ? PFERR_WRITE_MASK : 0);
6141
6142 /*
6143 * currently PKRU is only applied to ept enabled guest so
6144 * there is no pkey in EPT page table for L1 guest or EPT
6145 * shadow page table for L2 guest.
6146 */
6147 if (vcpu_match_mmio_gva(vcpu, gva)
6148 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
6149 vcpu->arch.mmio_access, 0, access)) {
6150 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6151 (gva & (PAGE_SIZE - 1));
6152 trace_vcpu_match_mmio(gva, *gpa, write, false);
6153 return 1;
6154 }
6155
6156 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6157
6158 if (*gpa == UNMAPPED_GVA)
6159 return -1;
6160
6161 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6162 }
6163
6164 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6165 const void *val, int bytes)
6166 {
6167 int ret;
6168
6169 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6170 if (ret < 0)
6171 return 0;
6172 kvm_page_track_write(vcpu, gpa, val, bytes);
6173 return 1;
6174 }
6175
6176 struct read_write_emulator_ops {
6177 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6178 int bytes);
6179 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6180 void *val, int bytes);
6181 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6182 int bytes, void *val);
6183 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6184 void *val, int bytes);
6185 bool write;
6186 };
6187
6188 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6189 {
6190 if (vcpu->mmio_read_completed) {
6191 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6192 vcpu->mmio_fragments[0].gpa, val);
6193 vcpu->mmio_read_completed = 0;
6194 return 1;
6195 }
6196
6197 return 0;
6198 }
6199
6200 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6201 void *val, int bytes)
6202 {
6203 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6204 }
6205
6206 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6207 void *val, int bytes)
6208 {
6209 return emulator_write_phys(vcpu, gpa, val, bytes);
6210 }
6211
6212 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6213 {
6214 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6215 return vcpu_mmio_write(vcpu, gpa, bytes, val);
6216 }
6217
6218 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6219 void *val, int bytes)
6220 {
6221 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6222 return X86EMUL_IO_NEEDED;
6223 }
6224
6225 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6226 void *val, int bytes)
6227 {
6228 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6229
6230 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6231 return X86EMUL_CONTINUE;
6232 }
6233
6234 static const struct read_write_emulator_ops read_emultor = {
6235 .read_write_prepare = read_prepare,
6236 .read_write_emulate = read_emulate,
6237 .read_write_mmio = vcpu_mmio_read,
6238 .read_write_exit_mmio = read_exit_mmio,
6239 };
6240
6241 static const struct read_write_emulator_ops write_emultor = {
6242 .read_write_emulate = write_emulate,
6243 .read_write_mmio = write_mmio,
6244 .read_write_exit_mmio = write_exit_mmio,
6245 .write = true,
6246 };
6247
6248 static int emulator_read_write_onepage(unsigned long addr, void *val,
6249 unsigned int bytes,
6250 struct x86_exception *exception,
6251 struct kvm_vcpu *vcpu,
6252 const struct read_write_emulator_ops *ops)
6253 {
6254 gpa_t gpa;
6255 int handled, ret;
6256 bool write = ops->write;
6257 struct kvm_mmio_fragment *frag;
6258 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6259
6260 /*
6261 * If the exit was due to a NPF we may already have a GPA.
6262 * If the GPA is present, use it to avoid the GVA to GPA table walk.
6263 * Note, this cannot be used on string operations since string
6264 * operation using rep will only have the initial GPA from the NPF
6265 * occurred.
6266 */
6267 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6268 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6269 gpa = ctxt->gpa_val;
6270 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6271 } else {
6272 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6273 if (ret < 0)
6274 return X86EMUL_PROPAGATE_FAULT;
6275 }
6276
6277 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6278 return X86EMUL_CONTINUE;
6279
6280 /*
6281 * Is this MMIO handled locally?
6282 */
6283 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6284 if (handled == bytes)
6285 return X86EMUL_CONTINUE;
6286
6287 gpa += handled;
6288 bytes -= handled;
6289 val += handled;
6290
6291 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6292 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6293 frag->gpa = gpa;
6294 frag->data = val;
6295 frag->len = bytes;
6296 return X86EMUL_CONTINUE;
6297 }
6298
6299 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6300 unsigned long addr,
6301 void *val, unsigned int bytes,
6302 struct x86_exception *exception,
6303 const struct read_write_emulator_ops *ops)
6304 {
6305 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6306 gpa_t gpa;
6307 int rc;
6308
6309 if (ops->read_write_prepare &&
6310 ops->read_write_prepare(vcpu, val, bytes))
6311 return X86EMUL_CONTINUE;
6312
6313 vcpu->mmio_nr_fragments = 0;
6314
6315 /* Crossing a page boundary? */
6316 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6317 int now;
6318
6319 now = -addr & ~PAGE_MASK;
6320 rc = emulator_read_write_onepage(addr, val, now, exception,
6321 vcpu, ops);
6322
6323 if (rc != X86EMUL_CONTINUE)
6324 return rc;
6325 addr += now;
6326 if (ctxt->mode != X86EMUL_MODE_PROT64)
6327 addr = (u32)addr;
6328 val += now;
6329 bytes -= now;
6330 }
6331
6332 rc = emulator_read_write_onepage(addr, val, bytes, exception,
6333 vcpu, ops);
6334 if (rc != X86EMUL_CONTINUE)
6335 return rc;
6336
6337 if (!vcpu->mmio_nr_fragments)
6338 return rc;
6339
6340 gpa = vcpu->mmio_fragments[0].gpa;
6341
6342 vcpu->mmio_needed = 1;
6343 vcpu->mmio_cur_fragment = 0;
6344
6345 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6346 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6347 vcpu->run->exit_reason = KVM_EXIT_MMIO;
6348 vcpu->run->mmio.phys_addr = gpa;
6349
6350 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6351 }
6352
6353 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6354 unsigned long addr,
6355 void *val,
6356 unsigned int bytes,
6357 struct x86_exception *exception)
6358 {
6359 return emulator_read_write(ctxt, addr, val, bytes,
6360 exception, &read_emultor);
6361 }
6362
6363 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6364 unsigned long addr,
6365 const void *val,
6366 unsigned int bytes,
6367 struct x86_exception *exception)
6368 {
6369 return emulator_read_write(ctxt, addr, (void *)val, bytes,
6370 exception, &write_emultor);
6371 }
6372
6373 #define CMPXCHG_TYPE(t, ptr, old, new) \
6374 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6375
6376 #ifdef CONFIG_X86_64
6377 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6378 #else
6379 # define CMPXCHG64(ptr, old, new) \
6380 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6381 #endif
6382
6383 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6384 unsigned long addr,
6385 const void *old,
6386 const void *new,
6387 unsigned int bytes,
6388 struct x86_exception *exception)
6389 {
6390 struct kvm_host_map map;
6391 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6392 u64 page_line_mask;
6393 gpa_t gpa;
6394 char *kaddr;
6395 bool exchanged;
6396
6397 /* guests cmpxchg8b have to be emulated atomically */
6398 if (bytes > 8 || (bytes & (bytes - 1)))
6399 goto emul_write;
6400
6401 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6402
6403 if (gpa == UNMAPPED_GVA ||
6404 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6405 goto emul_write;
6406
6407 /*
6408 * Emulate the atomic as a straight write to avoid #AC if SLD is
6409 * enabled in the host and the access splits a cache line.
6410 */
6411 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6412 page_line_mask = ~(cache_line_size() - 1);
6413 else
6414 page_line_mask = PAGE_MASK;
6415
6416 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6417 goto emul_write;
6418
6419 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6420 goto emul_write;
6421
6422 kaddr = map.hva + offset_in_page(gpa);
6423
6424 switch (bytes) {
6425 case 1:
6426 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6427 break;
6428 case 2:
6429 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6430 break;
6431 case 4:
6432 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6433 break;
6434 case 8:
6435 exchanged = CMPXCHG64(kaddr, old, new);
6436 break;
6437 default:
6438 BUG();
6439 }
6440
6441 kvm_vcpu_unmap(vcpu, &map, true);
6442
6443 if (!exchanged)
6444 return X86EMUL_CMPXCHG_FAILED;
6445
6446 kvm_page_track_write(vcpu, gpa, new, bytes);
6447
6448 return X86EMUL_CONTINUE;
6449
6450 emul_write:
6451 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6452
6453 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6454 }
6455
6456 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6457 {
6458 int r = 0, i;
6459
6460 for (i = 0; i < vcpu->arch.pio.count; i++) {
6461 if (vcpu->arch.pio.in)
6462 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6463 vcpu->arch.pio.size, pd);
6464 else
6465 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6466 vcpu->arch.pio.port, vcpu->arch.pio.size,
6467 pd);
6468 if (r)
6469 break;
6470 pd += vcpu->arch.pio.size;
6471 }
6472 return r;
6473 }
6474
6475 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6476 unsigned short port, void *val,
6477 unsigned int count, bool in)
6478 {
6479 vcpu->arch.pio.port = port;
6480 vcpu->arch.pio.in = in;
6481 vcpu->arch.pio.count = count;
6482 vcpu->arch.pio.size = size;
6483
6484 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
6485 vcpu->arch.pio.count = 0;
6486 return 1;
6487 }
6488
6489 vcpu->run->exit_reason = KVM_EXIT_IO;
6490 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6491 vcpu->run->io.size = size;
6492 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6493 vcpu->run->io.count = count;
6494 vcpu->run->io.port = port;
6495
6496 return 0;
6497 }
6498
6499 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6500 unsigned short port, void *val, unsigned int count)
6501 {
6502 int ret;
6503
6504 if (vcpu->arch.pio.count)
6505 goto data_avail;
6506
6507 memset(vcpu->arch.pio_data, 0, size * count);
6508
6509 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
6510 if (ret) {
6511 data_avail:
6512 memcpy(val, vcpu->arch.pio_data, size * count);
6513 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
6514 vcpu->arch.pio.count = 0;
6515 return 1;
6516 }
6517
6518 return 0;
6519 }
6520
6521 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6522 int size, unsigned short port, void *val,
6523 unsigned int count)
6524 {
6525 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6526
6527 }
6528
6529 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6530 unsigned short port, const void *val,
6531 unsigned int count)
6532 {
6533 memcpy(vcpu->arch.pio_data, val, size * count);
6534 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6535 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6536 }
6537
6538 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6539 int size, unsigned short port,
6540 const void *val, unsigned int count)
6541 {
6542 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6543 }
6544
6545 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6546 {
6547 return static_call(kvm_x86_get_segment_base)(vcpu, seg);
6548 }
6549
6550 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6551 {
6552 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6553 }
6554
6555 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6556 {
6557 if (!need_emulate_wbinvd(vcpu))
6558 return X86EMUL_CONTINUE;
6559
6560 if (static_call(kvm_x86_has_wbinvd_exit)()) {
6561 int cpu = get_cpu();
6562
6563 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6564 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
6565 wbinvd_ipi, NULL, 1);
6566 put_cpu();
6567 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6568 } else
6569 wbinvd();
6570 return X86EMUL_CONTINUE;
6571 }
6572
6573 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6574 {
6575 kvm_emulate_wbinvd_noskip(vcpu);
6576 return kvm_skip_emulated_instruction(vcpu);
6577 }
6578 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6579
6580
6581
6582 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6583 {
6584 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6585 }
6586
6587 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6588 unsigned long *dest)
6589 {
6590 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6591 }
6592
6593 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6594 unsigned long value)
6595 {
6596
6597 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6598 }
6599
6600 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6601 {
6602 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6603 }
6604
6605 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6606 {
6607 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6608 unsigned long value;
6609
6610 switch (cr) {
6611 case 0:
6612 value = kvm_read_cr0(vcpu);
6613 break;
6614 case 2:
6615 value = vcpu->arch.cr2;
6616 break;
6617 case 3:
6618 value = kvm_read_cr3(vcpu);
6619 break;
6620 case 4:
6621 value = kvm_read_cr4(vcpu);
6622 break;
6623 case 8:
6624 value = kvm_get_cr8(vcpu);
6625 break;
6626 default:
6627 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6628 return 0;
6629 }
6630
6631 return value;
6632 }
6633
6634 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6635 {
6636 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6637 int res = 0;
6638
6639 switch (cr) {
6640 case 0:
6641 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6642 break;
6643 case 2:
6644 vcpu->arch.cr2 = val;
6645 break;
6646 case 3:
6647 res = kvm_set_cr3(vcpu, val);
6648 break;
6649 case 4:
6650 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6651 break;
6652 case 8:
6653 res = kvm_set_cr8(vcpu, val);
6654 break;
6655 default:
6656 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6657 res = -1;
6658 }
6659
6660 return res;
6661 }
6662
6663 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6664 {
6665 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
6666 }
6667
6668 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6669 {
6670 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
6671 }
6672
6673 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6674 {
6675 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
6676 }
6677
6678 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6679 {
6680 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
6681 }
6682
6683 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6684 {
6685 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
6686 }
6687
6688 static unsigned long emulator_get_cached_segment_base(
6689 struct x86_emulate_ctxt *ctxt, int seg)
6690 {
6691 return get_segment_base(emul_to_vcpu(ctxt), seg);
6692 }
6693
6694 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6695 struct desc_struct *desc, u32 *base3,
6696 int seg)
6697 {
6698 struct kvm_segment var;
6699
6700 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6701 *selector = var.selector;
6702
6703 if (var.unusable) {
6704 memset(desc, 0, sizeof(*desc));
6705 if (base3)
6706 *base3 = 0;
6707 return false;
6708 }
6709
6710 if (var.g)
6711 var.limit >>= 12;
6712 set_desc_limit(desc, var.limit);
6713 set_desc_base(desc, (unsigned long)var.base);
6714 #ifdef CONFIG_X86_64
6715 if (base3)
6716 *base3 = var.base >> 32;
6717 #endif
6718 desc->type = var.type;
6719 desc->s = var.s;
6720 desc->dpl = var.dpl;
6721 desc->p = var.present;
6722 desc->avl = var.avl;
6723 desc->l = var.l;
6724 desc->d = var.db;
6725 desc->g = var.g;
6726
6727 return true;
6728 }
6729
6730 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6731 struct desc_struct *desc, u32 base3,
6732 int seg)
6733 {
6734 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6735 struct kvm_segment var;
6736
6737 var.selector = selector;
6738 var.base = get_desc_base(desc);
6739 #ifdef CONFIG_X86_64
6740 var.base |= ((u64)base3) << 32;
6741 #endif
6742 var.limit = get_desc_limit(desc);
6743 if (desc->g)
6744 var.limit = (var.limit << 12) | 0xfff;
6745 var.type = desc->type;
6746 var.dpl = desc->dpl;
6747 var.db = desc->d;
6748 var.s = desc->s;
6749 var.l = desc->l;
6750 var.g = desc->g;
6751 var.avl = desc->avl;
6752 var.present = desc->p;
6753 var.unusable = !var.present;
6754 var.padding = 0;
6755
6756 kvm_set_segment(vcpu, &var, seg);
6757 return;
6758 }
6759
6760 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6761 u32 msr_index, u64 *pdata)
6762 {
6763 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6764 int r;
6765
6766 r = kvm_get_msr(vcpu, msr_index, pdata);
6767
6768 if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
6769 /* Bounce to user space */
6770 return X86EMUL_IO_NEEDED;
6771 }
6772
6773 return r;
6774 }
6775
6776 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6777 u32 msr_index, u64 data)
6778 {
6779 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6780 int r;
6781
6782 r = kvm_set_msr(vcpu, msr_index, data);
6783
6784 if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
6785 /* Bounce to user space */
6786 return X86EMUL_IO_NEEDED;
6787 }
6788
6789 return r;
6790 }
6791
6792 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6793 {
6794 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6795
6796 return vcpu->arch.smbase;
6797 }
6798
6799 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6800 {
6801 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6802
6803 vcpu->arch.smbase = smbase;
6804 }
6805
6806 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6807 u32 pmc)
6808 {
6809 return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
6810 }
6811
6812 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6813 u32 pmc, u64 *pdata)
6814 {
6815 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6816 }
6817
6818 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6819 {
6820 emul_to_vcpu(ctxt)->arch.halt_request = 1;
6821 }
6822
6823 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6824 struct x86_instruction_info *info,
6825 enum x86_intercept_stage stage)
6826 {
6827 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
6828 &ctxt->exception);
6829 }
6830
6831 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6832 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
6833 bool exact_only)
6834 {
6835 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
6836 }
6837
6838 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
6839 {
6840 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
6841 }
6842
6843 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
6844 {
6845 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
6846 }
6847
6848 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
6849 {
6850 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
6851 }
6852
6853 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6854 {
6855 return kvm_register_read(emul_to_vcpu(ctxt), reg);
6856 }
6857
6858 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6859 {
6860 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6861 }
6862
6863 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6864 {
6865 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
6866 }
6867
6868 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6869 {
6870 return emul_to_vcpu(ctxt)->arch.hflags;
6871 }
6872
6873 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6874 {
6875 emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6876 }
6877
6878 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6879 const char *smstate)
6880 {
6881 return static_call(kvm_x86_pre_leave_smm)(emul_to_vcpu(ctxt), smstate);
6882 }
6883
6884 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6885 {
6886 kvm_smm_changed(emul_to_vcpu(ctxt));
6887 }
6888
6889 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6890 {
6891 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6892 }
6893
6894 static const struct x86_emulate_ops emulate_ops = {
6895 .read_gpr = emulator_read_gpr,
6896 .write_gpr = emulator_write_gpr,
6897 .read_std = emulator_read_std,
6898 .write_std = emulator_write_std,
6899 .read_phys = kvm_read_guest_phys_system,
6900 .fetch = kvm_fetch_guest_virt,
6901 .read_emulated = emulator_read_emulated,
6902 .write_emulated = emulator_write_emulated,
6903 .cmpxchg_emulated = emulator_cmpxchg_emulated,
6904 .invlpg = emulator_invlpg,
6905 .pio_in_emulated = emulator_pio_in_emulated,
6906 .pio_out_emulated = emulator_pio_out_emulated,
6907 .get_segment = emulator_get_segment,
6908 .set_segment = emulator_set_segment,
6909 .get_cached_segment_base = emulator_get_cached_segment_base,
6910 .get_gdt = emulator_get_gdt,
6911 .get_idt = emulator_get_idt,
6912 .set_gdt = emulator_set_gdt,
6913 .set_idt = emulator_set_idt,
6914 .get_cr = emulator_get_cr,
6915 .set_cr = emulator_set_cr,
6916 .cpl = emulator_get_cpl,
6917 .get_dr = emulator_get_dr,
6918 .set_dr = emulator_set_dr,
6919 .get_smbase = emulator_get_smbase,
6920 .set_smbase = emulator_set_smbase,
6921 .set_msr = emulator_set_msr,
6922 .get_msr = emulator_get_msr,
6923 .check_pmc = emulator_check_pmc,
6924 .read_pmc = emulator_read_pmc,
6925 .halt = emulator_halt,
6926 .wbinvd = emulator_wbinvd,
6927 .fix_hypercall = emulator_fix_hypercall,
6928 .intercept = emulator_intercept,
6929 .get_cpuid = emulator_get_cpuid,
6930 .guest_has_long_mode = emulator_guest_has_long_mode,
6931 .guest_has_movbe = emulator_guest_has_movbe,
6932 .guest_has_fxsr = emulator_guest_has_fxsr,
6933 .set_nmi_mask = emulator_set_nmi_mask,
6934 .get_hflags = emulator_get_hflags,
6935 .set_hflags = emulator_set_hflags,
6936 .pre_leave_smm = emulator_pre_leave_smm,
6937 .post_leave_smm = emulator_post_leave_smm,
6938 .set_xcr = emulator_set_xcr,
6939 };
6940
6941 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6942 {
6943 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
6944 /*
6945 * an sti; sti; sequence only disable interrupts for the first
6946 * instruction. So, if the last instruction, be it emulated or
6947 * not, left the system with the INT_STI flag enabled, it
6948 * means that the last instruction is an sti. We should not
6949 * leave the flag on in this case. The same goes for mov ss
6950 */
6951 if (int_shadow & mask)
6952 mask = 0;
6953 if (unlikely(int_shadow || mask)) {
6954 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
6955 if (!mask)
6956 kvm_make_request(KVM_REQ_EVENT, vcpu);
6957 }
6958 }
6959
6960 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6961 {
6962 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6963 if (ctxt->exception.vector == PF_VECTOR)
6964 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
6965
6966 if (ctxt->exception.error_code_valid)
6967 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6968 ctxt->exception.error_code);
6969 else
6970 kvm_queue_exception(vcpu, ctxt->exception.vector);
6971 return false;
6972 }
6973
6974 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
6975 {
6976 struct x86_emulate_ctxt *ctxt;
6977
6978 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
6979 if (!ctxt) {
6980 pr_err("kvm: failed to allocate vcpu's emulator\n");
6981 return NULL;
6982 }
6983
6984 ctxt->vcpu = vcpu;
6985 ctxt->ops = &emulate_ops;
6986 vcpu->arch.emulate_ctxt = ctxt;
6987
6988 return ctxt;
6989 }
6990
6991 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6992 {
6993 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6994 int cs_db, cs_l;
6995
6996 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
6997
6998 ctxt->gpa_available = false;
6999 ctxt->eflags = kvm_get_rflags(vcpu);
7000 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7001
7002 ctxt->eip = kvm_rip_read(vcpu);
7003 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
7004 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
7005 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
7006 cs_db ? X86EMUL_MODE_PROT32 :
7007 X86EMUL_MODE_PROT16;
7008 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7009 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7010 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7011
7012 init_decode_cache(ctxt);
7013 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7014 }
7015
7016 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7017 {
7018 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7019 int ret;
7020
7021 init_emulate_ctxt(vcpu);
7022
7023 ctxt->op_bytes = 2;
7024 ctxt->ad_bytes = 2;
7025 ctxt->_eip = ctxt->eip + inc_eip;
7026 ret = emulate_int_real(ctxt, irq);
7027
7028 if (ret != X86EMUL_CONTINUE) {
7029 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7030 } else {
7031 ctxt->eip = ctxt->_eip;
7032 kvm_rip_write(vcpu, ctxt->eip);
7033 kvm_set_rflags(vcpu, ctxt->eflags);
7034 }
7035 }
7036 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7037
7038 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7039 {
7040 ++vcpu->stat.insn_emulation_fail;
7041 trace_kvm_emulate_insn_failed(vcpu);
7042
7043 if (emulation_type & EMULTYPE_VMWARE_GP) {
7044 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7045 return 1;
7046 }
7047
7048 if (emulation_type & EMULTYPE_SKIP) {
7049 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7050 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7051 vcpu->run->internal.ndata = 0;
7052 return 0;
7053 }
7054
7055 kvm_queue_exception(vcpu, UD_VECTOR);
7056
7057 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
7058 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7059 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7060 vcpu->run->internal.ndata = 0;
7061 return 0;
7062 }
7063
7064 return 1;
7065 }
7066
7067 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7068 bool write_fault_to_shadow_pgtable,
7069 int emulation_type)
7070 {
7071 gpa_t gpa = cr2_or_gpa;
7072 kvm_pfn_t pfn;
7073
7074 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7075 return false;
7076
7077 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7078 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7079 return false;
7080
7081 if (!vcpu->arch.mmu->direct_map) {
7082 /*
7083 * Write permission should be allowed since only
7084 * write access need to be emulated.
7085 */
7086 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7087
7088 /*
7089 * If the mapping is invalid in guest, let cpu retry
7090 * it to generate fault.
7091 */
7092 if (gpa == UNMAPPED_GVA)
7093 return true;
7094 }
7095
7096 /*
7097 * Do not retry the unhandleable instruction if it faults on the
7098 * readonly host memory, otherwise it will goto a infinite loop:
7099 * retry instruction -> write #PF -> emulation fail -> retry
7100 * instruction -> ...
7101 */
7102 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7103
7104 /*
7105 * If the instruction failed on the error pfn, it can not be fixed,
7106 * report the error to userspace.
7107 */
7108 if (is_error_noslot_pfn(pfn))
7109 return false;
7110
7111 kvm_release_pfn_clean(pfn);
7112
7113 /* The instructions are well-emulated on direct mmu. */
7114 if (vcpu->arch.mmu->direct_map) {
7115 unsigned int indirect_shadow_pages;
7116
7117 spin_lock(&vcpu->kvm->mmu_lock);
7118 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7119 spin_unlock(&vcpu->kvm->mmu_lock);
7120
7121 if (indirect_shadow_pages)
7122 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7123
7124 return true;
7125 }
7126
7127 /*
7128 * if emulation was due to access to shadowed page table
7129 * and it failed try to unshadow page and re-enter the
7130 * guest to let CPU execute the instruction.
7131 */
7132 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7133
7134 /*
7135 * If the access faults on its page table, it can not
7136 * be fixed by unprotecting shadow page and it should
7137 * be reported to userspace.
7138 */
7139 return !write_fault_to_shadow_pgtable;
7140 }
7141
7142 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7143 gpa_t cr2_or_gpa, int emulation_type)
7144 {
7145 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7146 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7147
7148 last_retry_eip = vcpu->arch.last_retry_eip;
7149 last_retry_addr = vcpu->arch.last_retry_addr;
7150
7151 /*
7152 * If the emulation is caused by #PF and it is non-page_table
7153 * writing instruction, it means the VM-EXIT is caused by shadow
7154 * page protected, we can zap the shadow page and retry this
7155 * instruction directly.
7156 *
7157 * Note: if the guest uses a non-page-table modifying instruction
7158 * on the PDE that points to the instruction, then we will unmap
7159 * the instruction and go to an infinite loop. So, we cache the
7160 * last retried eip and the last fault address, if we meet the eip
7161 * and the address again, we can break out of the potential infinite
7162 * loop.
7163 */
7164 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7165
7166 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7167 return false;
7168
7169 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7170 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7171 return false;
7172
7173 if (x86_page_table_writing_insn(ctxt))
7174 return false;
7175
7176 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7177 return false;
7178
7179 vcpu->arch.last_retry_eip = ctxt->eip;
7180 vcpu->arch.last_retry_addr = cr2_or_gpa;
7181
7182 if (!vcpu->arch.mmu->direct_map)
7183 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7184
7185 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7186
7187 return true;
7188 }
7189
7190 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7191 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7192
7193 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
7194 {
7195 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
7196 /* This is a good place to trace that we are exiting SMM. */
7197 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
7198
7199 /* Process a latched INIT or SMI, if any. */
7200 kvm_make_request(KVM_REQ_EVENT, vcpu);
7201 }
7202
7203 kvm_mmu_reset_context(vcpu);
7204 }
7205
7206 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7207 unsigned long *db)
7208 {
7209 u32 dr6 = 0;
7210 int i;
7211 u32 enable, rwlen;
7212
7213 enable = dr7;
7214 rwlen = dr7 >> 16;
7215 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7216 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7217 dr6 |= (1 << i);
7218 return dr6;
7219 }
7220
7221 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7222 {
7223 struct kvm_run *kvm_run = vcpu->run;
7224
7225 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7226 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
7227 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7228 kvm_run->debug.arch.exception = DB_VECTOR;
7229 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7230 return 0;
7231 }
7232 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7233 return 1;
7234 }
7235
7236 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7237 {
7238 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7239 int r;
7240
7241 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
7242 if (unlikely(!r))
7243 return 0;
7244
7245 /*
7246 * rflags is the old, "raw" value of the flags. The new value has
7247 * not been saved yet.
7248 *
7249 * This is correct even for TF set by the guest, because "the
7250 * processor will not generate this exception after the instruction
7251 * that sets the TF flag".
7252 */
7253 if (unlikely(rflags & X86_EFLAGS_TF))
7254 r = kvm_vcpu_do_singlestep(vcpu);
7255 return r;
7256 }
7257 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7258
7259 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
7260 {
7261 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7262 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7263 struct kvm_run *kvm_run = vcpu->run;
7264 unsigned long eip = kvm_get_linear_rip(vcpu);
7265 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7266 vcpu->arch.guest_debug_dr7,
7267 vcpu->arch.eff_db);
7268
7269 if (dr6 != 0) {
7270 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
7271 kvm_run->debug.arch.pc = eip;
7272 kvm_run->debug.arch.exception = DB_VECTOR;
7273 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7274 *r = 0;
7275 return true;
7276 }
7277 }
7278
7279 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7280 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7281 unsigned long eip = kvm_get_linear_rip(vcpu);
7282 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7283 vcpu->arch.dr7,
7284 vcpu->arch.db);
7285
7286 if (dr6 != 0) {
7287 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
7288 *r = 1;
7289 return true;
7290 }
7291 }
7292
7293 return false;
7294 }
7295
7296 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7297 {
7298 switch (ctxt->opcode_len) {
7299 case 1:
7300 switch (ctxt->b) {
7301 case 0xe4: /* IN */
7302 case 0xe5:
7303 case 0xec:
7304 case 0xed:
7305 case 0xe6: /* OUT */
7306 case 0xe7:
7307 case 0xee:
7308 case 0xef:
7309 case 0x6c: /* INS */
7310 case 0x6d:
7311 case 0x6e: /* OUTS */
7312 case 0x6f:
7313 return true;
7314 }
7315 break;
7316 case 2:
7317 switch (ctxt->b) {
7318 case 0x33: /* RDPMC */
7319 return true;
7320 }
7321 break;
7322 }
7323
7324 return false;
7325 }
7326
7327 /*
7328 * Decode to be emulated instruction. Return EMULATION_OK if success.
7329 */
7330 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
7331 void *insn, int insn_len)
7332 {
7333 int r = EMULATION_OK;
7334 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7335
7336 init_emulate_ctxt(vcpu);
7337
7338 /*
7339 * We will reenter on the same instruction since we do not set
7340 * complete_userspace_io. This does not handle watchpoints yet,
7341 * those would be handled in the emulate_ops.
7342 */
7343 if (!(emulation_type & EMULTYPE_SKIP) &&
7344 kvm_vcpu_check_breakpoint(vcpu, &r))
7345 return r;
7346
7347 ctxt->interruptibility = 0;
7348 ctxt->have_exception = false;
7349 ctxt->exception.vector = -1;
7350 ctxt->perm_ok = false;
7351
7352 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
7353
7354 r = x86_decode_insn(ctxt, insn, insn_len);
7355
7356 trace_kvm_emulate_insn_start(vcpu);
7357 ++vcpu->stat.insn_emulation;
7358
7359 return r;
7360 }
7361 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
7362
7363 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7364 int emulation_type, void *insn, int insn_len)
7365 {
7366 int r;
7367 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7368 bool writeback = true;
7369 bool write_fault_to_spt;
7370
7371 if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, insn, insn_len)))
7372 return 1;
7373
7374 vcpu->arch.l1tf_flush_l1d = true;
7375
7376 /*
7377 * Clear write_fault_to_shadow_pgtable here to ensure it is
7378 * never reused.
7379 */
7380 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
7381 vcpu->arch.write_fault_to_shadow_pgtable = false;
7382
7383 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
7384 kvm_clear_exception_queue(vcpu);
7385
7386 r = x86_decode_emulated_instruction(vcpu, emulation_type,
7387 insn, insn_len);
7388 if (r != EMULATION_OK) {
7389 if ((emulation_type & EMULTYPE_TRAP_UD) ||
7390 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
7391 kvm_queue_exception(vcpu, UD_VECTOR);
7392 return 1;
7393 }
7394 if (reexecute_instruction(vcpu, cr2_or_gpa,
7395 write_fault_to_spt,
7396 emulation_type))
7397 return 1;
7398 if (ctxt->have_exception) {
7399 /*
7400 * #UD should result in just EMULATION_FAILED, and trap-like
7401 * exception should not be encountered during decode.
7402 */
7403 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
7404 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
7405 inject_emulated_exception(vcpu);
7406 return 1;
7407 }
7408 return handle_emulation_failure(vcpu, emulation_type);
7409 }
7410 }
7411
7412 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
7413 !is_vmware_backdoor_opcode(ctxt)) {
7414 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7415 return 1;
7416 }
7417
7418 /*
7419 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
7420 * for kvm_skip_emulated_instruction(). The caller is responsible for
7421 * updating interruptibility state and injecting single-step #DBs.
7422 */
7423 if (emulation_type & EMULTYPE_SKIP) {
7424 kvm_rip_write(vcpu, ctxt->_eip);
7425 if (ctxt->eflags & X86_EFLAGS_RF)
7426 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
7427 return 1;
7428 }
7429
7430 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
7431 return 1;
7432
7433 /* this is needed for vmware backdoor interface to work since it
7434 changes registers values during IO operation */
7435 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7436 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7437 emulator_invalidate_register_cache(ctxt);
7438 }
7439
7440 restart:
7441 if (emulation_type & EMULTYPE_PF) {
7442 /* Save the faulting GPA (cr2) in the address field */
7443 ctxt->exception.address = cr2_or_gpa;
7444
7445 /* With shadow page tables, cr2 contains a GVA or nGPA. */
7446 if (vcpu->arch.mmu->direct_map) {
7447 ctxt->gpa_available = true;
7448 ctxt->gpa_val = cr2_or_gpa;
7449 }
7450 } else {
7451 /* Sanitize the address out of an abundance of paranoia. */
7452 ctxt->exception.address = 0;
7453 }
7454
7455 r = x86_emulate_insn(ctxt);
7456
7457 if (r == EMULATION_INTERCEPTED)
7458 return 1;
7459
7460 if (r == EMULATION_FAILED) {
7461 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
7462 emulation_type))
7463 return 1;
7464
7465 return handle_emulation_failure(vcpu, emulation_type);
7466 }
7467
7468 if (ctxt->have_exception) {
7469 r = 1;
7470 if (inject_emulated_exception(vcpu))
7471 return r;
7472 } else if (vcpu->arch.pio.count) {
7473 if (!vcpu->arch.pio.in) {
7474 /* FIXME: return into emulator if single-stepping. */
7475 vcpu->arch.pio.count = 0;
7476 } else {
7477 writeback = false;
7478 vcpu->arch.complete_userspace_io = complete_emulated_pio;
7479 }
7480 r = 0;
7481 } else if (vcpu->mmio_needed) {
7482 ++vcpu->stat.mmio_exits;
7483
7484 if (!vcpu->mmio_is_write)
7485 writeback = false;
7486 r = 0;
7487 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7488 } else if (r == EMULATION_RESTART)
7489 goto restart;
7490 else
7491 r = 1;
7492
7493 if (writeback) {
7494 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7495 toggle_interruptibility(vcpu, ctxt->interruptibility);
7496 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7497 if (!ctxt->have_exception ||
7498 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7499 kvm_rip_write(vcpu, ctxt->eip);
7500 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7501 r = kvm_vcpu_do_singlestep(vcpu);
7502 if (kvm_x86_ops.update_emulated_instruction)
7503 static_call(kvm_x86_update_emulated_instruction)(vcpu);
7504 __kvm_set_rflags(vcpu, ctxt->eflags);
7505 }
7506
7507 /*
7508 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7509 * do nothing, and it will be requested again as soon as
7510 * the shadow expires. But we still need to check here,
7511 * because POPF has no interrupt shadow.
7512 */
7513 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7514 kvm_make_request(KVM_REQ_EVENT, vcpu);
7515 } else
7516 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
7517
7518 return r;
7519 }
7520
7521 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7522 {
7523 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
7524 }
7525 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
7526
7527 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
7528 void *insn, int insn_len)
7529 {
7530 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
7531 }
7532 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
7533
7534 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
7535 {
7536 vcpu->arch.pio.count = 0;
7537 return 1;
7538 }
7539
7540 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
7541 {
7542 vcpu->arch.pio.count = 0;
7543
7544 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
7545 return 1;
7546
7547 return kvm_skip_emulated_instruction(vcpu);
7548 }
7549
7550 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
7551 unsigned short port)
7552 {
7553 unsigned long val = kvm_rax_read(vcpu);
7554 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
7555
7556 if (ret)
7557 return ret;
7558
7559 /*
7560 * Workaround userspace that relies on old KVM behavior of %rip being
7561 * incremented prior to exiting to userspace to handle "OUT 0x7e".
7562 */
7563 if (port == 0x7e &&
7564 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
7565 vcpu->arch.complete_userspace_io =
7566 complete_fast_pio_out_port_0x7e;
7567 kvm_skip_emulated_instruction(vcpu);
7568 } else {
7569 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7570 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
7571 }
7572 return 0;
7573 }
7574
7575 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
7576 {
7577 unsigned long val;
7578
7579 /* We should only ever be called with arch.pio.count equal to 1 */
7580 BUG_ON(vcpu->arch.pio.count != 1);
7581
7582 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
7583 vcpu->arch.pio.count = 0;
7584 return 1;
7585 }
7586
7587 /* For size less than 4 we merge, else we zero extend */
7588 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
7589
7590 /*
7591 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
7592 * the copy and tracing
7593 */
7594 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
7595 kvm_rax_write(vcpu, val);
7596
7597 return kvm_skip_emulated_instruction(vcpu);
7598 }
7599
7600 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
7601 unsigned short port)
7602 {
7603 unsigned long val;
7604 int ret;
7605
7606 /* For size less than 4 we merge, else we zero extend */
7607 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
7608
7609 ret = emulator_pio_in(vcpu, size, port, &val, 1);
7610 if (ret) {
7611 kvm_rax_write(vcpu, val);
7612 return ret;
7613 }
7614
7615 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7616 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7617
7618 return 0;
7619 }
7620
7621 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7622 {
7623 int ret;
7624
7625 if (in)
7626 ret = kvm_fast_pio_in(vcpu, size, port);
7627 else
7628 ret = kvm_fast_pio_out(vcpu, size, port);
7629 return ret && kvm_skip_emulated_instruction(vcpu);
7630 }
7631 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7632
7633 static int kvmclock_cpu_down_prep(unsigned int cpu)
7634 {
7635 __this_cpu_write(cpu_tsc_khz, 0);
7636 return 0;
7637 }
7638
7639 static void tsc_khz_changed(void *data)
7640 {
7641 struct cpufreq_freqs *freq = data;
7642 unsigned long khz = 0;
7643
7644 if (data)
7645 khz = freq->new;
7646 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7647 khz = cpufreq_quick_get(raw_smp_processor_id());
7648 if (!khz)
7649 khz = tsc_khz;
7650 __this_cpu_write(cpu_tsc_khz, khz);
7651 }
7652
7653 #ifdef CONFIG_X86_64
7654 static void kvm_hyperv_tsc_notifier(void)
7655 {
7656 struct kvm *kvm;
7657 struct kvm_vcpu *vcpu;
7658 int cpu;
7659
7660 mutex_lock(&kvm_lock);
7661 list_for_each_entry(kvm, &vm_list, vm_list)
7662 kvm_make_mclock_inprogress_request(kvm);
7663
7664 hyperv_stop_tsc_emulation();
7665
7666 /* TSC frequency always matches when on Hyper-V */
7667 for_each_present_cpu(cpu)
7668 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7669 kvm_max_guest_tsc_khz = tsc_khz;
7670
7671 list_for_each_entry(kvm, &vm_list, vm_list) {
7672 struct kvm_arch *ka = &kvm->arch;
7673
7674 spin_lock(&ka->pvclock_gtod_sync_lock);
7675
7676 pvclock_update_vm_gtod_copy(kvm);
7677
7678 kvm_for_each_vcpu(cpu, vcpu, kvm)
7679 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7680
7681 kvm_for_each_vcpu(cpu, vcpu, kvm)
7682 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7683
7684 spin_unlock(&ka->pvclock_gtod_sync_lock);
7685 }
7686 mutex_unlock(&kvm_lock);
7687 }
7688 #endif
7689
7690 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7691 {
7692 struct kvm *kvm;
7693 struct kvm_vcpu *vcpu;
7694 int i, send_ipi = 0;
7695
7696 /*
7697 * We allow guests to temporarily run on slowing clocks,
7698 * provided we notify them after, or to run on accelerating
7699 * clocks, provided we notify them before. Thus time never
7700 * goes backwards.
7701 *
7702 * However, we have a problem. We can't atomically update
7703 * the frequency of a given CPU from this function; it is
7704 * merely a notifier, which can be called from any CPU.
7705 * Changing the TSC frequency at arbitrary points in time
7706 * requires a recomputation of local variables related to
7707 * the TSC for each VCPU. We must flag these local variables
7708 * to be updated and be sure the update takes place with the
7709 * new frequency before any guests proceed.
7710 *
7711 * Unfortunately, the combination of hotplug CPU and frequency
7712 * change creates an intractable locking scenario; the order
7713 * of when these callouts happen is undefined with respect to
7714 * CPU hotplug, and they can race with each other. As such,
7715 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7716 * undefined; you can actually have a CPU frequency change take
7717 * place in between the computation of X and the setting of the
7718 * variable. To protect against this problem, all updates of
7719 * the per_cpu tsc_khz variable are done in an interrupt
7720 * protected IPI, and all callers wishing to update the value
7721 * must wait for a synchronous IPI to complete (which is trivial
7722 * if the caller is on the CPU already). This establishes the
7723 * necessary total order on variable updates.
7724 *
7725 * Note that because a guest time update may take place
7726 * anytime after the setting of the VCPU's request bit, the
7727 * correct TSC value must be set before the request. However,
7728 * to ensure the update actually makes it to any guest which
7729 * starts running in hardware virtualization between the set
7730 * and the acquisition of the spinlock, we must also ping the
7731 * CPU after setting the request bit.
7732 *
7733 */
7734
7735 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7736
7737 mutex_lock(&kvm_lock);
7738 list_for_each_entry(kvm, &vm_list, vm_list) {
7739 kvm_for_each_vcpu(i, vcpu, kvm) {
7740 if (vcpu->cpu != cpu)
7741 continue;
7742 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7743 if (vcpu->cpu != raw_smp_processor_id())
7744 send_ipi = 1;
7745 }
7746 }
7747 mutex_unlock(&kvm_lock);
7748
7749 if (freq->old < freq->new && send_ipi) {
7750 /*
7751 * We upscale the frequency. Must make the guest
7752 * doesn't see old kvmclock values while running with
7753 * the new frequency, otherwise we risk the guest sees
7754 * time go backwards.
7755 *
7756 * In case we update the frequency for another cpu
7757 * (which might be in guest context) send an interrupt
7758 * to kick the cpu out of guest context. Next time
7759 * guest context is entered kvmclock will be updated,
7760 * so the guest will not see stale values.
7761 */
7762 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7763 }
7764 }
7765
7766 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7767 void *data)
7768 {
7769 struct cpufreq_freqs *freq = data;
7770 int cpu;
7771
7772 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7773 return 0;
7774 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7775 return 0;
7776
7777 for_each_cpu(cpu, freq->policy->cpus)
7778 __kvmclock_cpufreq_notifier(freq, cpu);
7779
7780 return 0;
7781 }
7782
7783 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7784 .notifier_call = kvmclock_cpufreq_notifier
7785 };
7786
7787 static int kvmclock_cpu_online(unsigned int cpu)
7788 {
7789 tsc_khz_changed(NULL);
7790 return 0;
7791 }
7792
7793 static void kvm_timer_init(void)
7794 {
7795 max_tsc_khz = tsc_khz;
7796
7797 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7798 #ifdef CONFIG_CPU_FREQ
7799 struct cpufreq_policy *policy;
7800 int cpu;
7801
7802 cpu = get_cpu();
7803 policy = cpufreq_cpu_get(cpu);
7804 if (policy) {
7805 if (policy->cpuinfo.max_freq)
7806 max_tsc_khz = policy->cpuinfo.max_freq;
7807 cpufreq_cpu_put(policy);
7808 }
7809 put_cpu();
7810 #endif
7811 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7812 CPUFREQ_TRANSITION_NOTIFIER);
7813 }
7814
7815 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7816 kvmclock_cpu_online, kvmclock_cpu_down_prep);
7817 }
7818
7819 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7820 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7821
7822 int kvm_is_in_guest(void)
7823 {
7824 return __this_cpu_read(current_vcpu) != NULL;
7825 }
7826
7827 static int kvm_is_user_mode(void)
7828 {
7829 int user_mode = 3;
7830
7831 if (__this_cpu_read(current_vcpu))
7832 user_mode = static_call(kvm_x86_get_cpl)(__this_cpu_read(current_vcpu));
7833
7834 return user_mode != 0;
7835 }
7836
7837 static unsigned long kvm_get_guest_ip(void)
7838 {
7839 unsigned long ip = 0;
7840
7841 if (__this_cpu_read(current_vcpu))
7842 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7843
7844 return ip;
7845 }
7846
7847 static void kvm_handle_intel_pt_intr(void)
7848 {
7849 struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7850
7851 kvm_make_request(KVM_REQ_PMI, vcpu);
7852 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7853 (unsigned long *)&vcpu->arch.pmu.global_status);
7854 }
7855
7856 static struct perf_guest_info_callbacks kvm_guest_cbs = {
7857 .is_in_guest = kvm_is_in_guest,
7858 .is_user_mode = kvm_is_user_mode,
7859 .get_guest_ip = kvm_get_guest_ip,
7860 .handle_intel_pt_intr = kvm_handle_intel_pt_intr,
7861 };
7862
7863 #ifdef CONFIG_X86_64
7864 static void pvclock_gtod_update_fn(struct work_struct *work)
7865 {
7866 struct kvm *kvm;
7867
7868 struct kvm_vcpu *vcpu;
7869 int i;
7870
7871 mutex_lock(&kvm_lock);
7872 list_for_each_entry(kvm, &vm_list, vm_list)
7873 kvm_for_each_vcpu(i, vcpu, kvm)
7874 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7875 atomic_set(&kvm_guest_has_master_clock, 0);
7876 mutex_unlock(&kvm_lock);
7877 }
7878
7879 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7880
7881 /*
7882 * Notification about pvclock gtod data update.
7883 */
7884 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7885 void *priv)
7886 {
7887 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7888 struct timekeeper *tk = priv;
7889
7890 update_pvclock_gtod(tk);
7891
7892 /* disable master clock if host does not trust, or does not
7893 * use, TSC based clocksource.
7894 */
7895 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7896 atomic_read(&kvm_guest_has_master_clock) != 0)
7897 queue_work(system_long_wq, &pvclock_gtod_work);
7898
7899 return 0;
7900 }
7901
7902 static struct notifier_block pvclock_gtod_notifier = {
7903 .notifier_call = pvclock_gtod_notify,
7904 };
7905 #endif
7906
7907 int kvm_arch_init(void *opaque)
7908 {
7909 struct kvm_x86_init_ops *ops = opaque;
7910 int r;
7911
7912 if (kvm_x86_ops.hardware_enable) {
7913 printk(KERN_ERR "kvm: already loaded the other module\n");
7914 r = -EEXIST;
7915 goto out;
7916 }
7917
7918 if (!ops->cpu_has_kvm_support()) {
7919 pr_err_ratelimited("kvm: no hardware support\n");
7920 r = -EOPNOTSUPP;
7921 goto out;
7922 }
7923 if (ops->disabled_by_bios()) {
7924 pr_err_ratelimited("kvm: disabled by bios\n");
7925 r = -EOPNOTSUPP;
7926 goto out;
7927 }
7928
7929 /*
7930 * KVM explicitly assumes that the guest has an FPU and
7931 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7932 * vCPU's FPU state as a fxregs_state struct.
7933 */
7934 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7935 printk(KERN_ERR "kvm: inadequate fpu\n");
7936 r = -EOPNOTSUPP;
7937 goto out;
7938 }
7939
7940 r = -ENOMEM;
7941 x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7942 __alignof__(struct fpu), SLAB_ACCOUNT,
7943 NULL);
7944 if (!x86_fpu_cache) {
7945 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7946 goto out;
7947 }
7948
7949 x86_emulator_cache = kvm_alloc_emulator_cache();
7950 if (!x86_emulator_cache) {
7951 pr_err("kvm: failed to allocate cache for x86 emulator\n");
7952 goto out_free_x86_fpu_cache;
7953 }
7954
7955 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
7956 if (!user_return_msrs) {
7957 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
7958 goto out_free_x86_emulator_cache;
7959 }
7960
7961 r = kvm_mmu_module_init();
7962 if (r)
7963 goto out_free_percpu;
7964
7965 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7966 PT_DIRTY_MASK, PT64_NX_MASK, 0,
7967 PT_PRESENT_MASK, 0, sme_me_mask);
7968 kvm_timer_init();
7969
7970 perf_register_guest_info_callbacks(&kvm_guest_cbs);
7971
7972 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
7973 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7974 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
7975 }
7976
7977 if (pi_inject_timer == -1)
7978 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
7979 #ifdef CONFIG_X86_64
7980 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7981
7982 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7983 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7984 #endif
7985
7986 return 0;
7987
7988 out_free_percpu:
7989 free_percpu(user_return_msrs);
7990 out_free_x86_emulator_cache:
7991 kmem_cache_destroy(x86_emulator_cache);
7992 out_free_x86_fpu_cache:
7993 kmem_cache_destroy(x86_fpu_cache);
7994 out:
7995 return r;
7996 }
7997
7998 void kvm_arch_exit(void)
7999 {
8000 #ifdef CONFIG_X86_64
8001 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8002 clear_hv_tscchange_cb();
8003 #endif
8004 kvm_lapic_exit();
8005 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
8006
8007 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8008 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8009 CPUFREQ_TRANSITION_NOTIFIER);
8010 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8011 #ifdef CONFIG_X86_64
8012 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8013 #endif
8014 kvm_x86_ops.hardware_enable = NULL;
8015 kvm_mmu_module_exit();
8016 free_percpu(user_return_msrs);
8017 kmem_cache_destroy(x86_fpu_cache);
8018 }
8019
8020 static int __kvm_vcpu_halt(struct kvm_vcpu *vcpu, int state, int reason)
8021 {
8022 ++vcpu->stat.halt_exits;
8023 if (lapic_in_kernel(vcpu)) {
8024 vcpu->arch.mp_state = state;
8025 return 1;
8026 } else {
8027 vcpu->run->exit_reason = reason;
8028 return 0;
8029 }
8030 }
8031
8032 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
8033 {
8034 return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
8035 }
8036 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
8037
8038 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8039 {
8040 int ret = kvm_skip_emulated_instruction(vcpu);
8041 /*
8042 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8043 * KVM_EXIT_DEBUG here.
8044 */
8045 return kvm_vcpu_halt(vcpu) && ret;
8046 }
8047 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8048
8049 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8050 {
8051 int ret = kvm_skip_emulated_instruction(vcpu);
8052
8053 return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, KVM_EXIT_AP_RESET_HOLD) && ret;
8054 }
8055 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8056
8057 #ifdef CONFIG_X86_64
8058 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8059 unsigned long clock_type)
8060 {
8061 struct kvm_clock_pairing clock_pairing;
8062 struct timespec64 ts;
8063 u64 cycle;
8064 int ret;
8065
8066 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8067 return -KVM_EOPNOTSUPP;
8068
8069 if (!kvm_get_walltime_and_clockread(&ts, &cycle))
8070 return -KVM_EOPNOTSUPP;
8071
8072 clock_pairing.sec = ts.tv_sec;
8073 clock_pairing.nsec = ts.tv_nsec;
8074 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8075 clock_pairing.flags = 0;
8076 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8077
8078 ret = 0;
8079 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8080 sizeof(struct kvm_clock_pairing)))
8081 ret = -KVM_EFAULT;
8082
8083 return ret;
8084 }
8085 #endif
8086
8087 /*
8088 * kvm_pv_kick_cpu_op: Kick a vcpu.
8089 *
8090 * @apicid - apicid of vcpu to be kicked.
8091 */
8092 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8093 {
8094 struct kvm_lapic_irq lapic_irq;
8095
8096 lapic_irq.shorthand = APIC_DEST_NOSHORT;
8097 lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8098 lapic_irq.level = 0;
8099 lapic_irq.dest_id = apicid;
8100 lapic_irq.msi_redir_hint = false;
8101
8102 lapic_irq.delivery_mode = APIC_DM_REMRD;
8103 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8104 }
8105
8106 bool kvm_apicv_activated(struct kvm *kvm)
8107 {
8108 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8109 }
8110 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8111
8112 void kvm_apicv_init(struct kvm *kvm, bool enable)
8113 {
8114 if (enable)
8115 clear_bit(APICV_INHIBIT_REASON_DISABLE,
8116 &kvm->arch.apicv_inhibit_reasons);
8117 else
8118 set_bit(APICV_INHIBIT_REASON_DISABLE,
8119 &kvm->arch.apicv_inhibit_reasons);
8120 }
8121 EXPORT_SYMBOL_GPL(kvm_apicv_init);
8122
8123 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
8124 {
8125 struct kvm_vcpu *target = NULL;
8126 struct kvm_apic_map *map;
8127
8128 rcu_read_lock();
8129 map = rcu_dereference(kvm->arch.apic_map);
8130
8131 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8132 target = map->phys_map[dest_id]->vcpu;
8133
8134 rcu_read_unlock();
8135
8136 if (target && READ_ONCE(target->ready))
8137 kvm_vcpu_yield_to(target);
8138 }
8139
8140 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8141 {
8142 unsigned long nr, a0, a1, a2, a3, ret;
8143 int op_64_bit;
8144
8145 if (kvm_hv_hypercall_enabled(vcpu->kvm))
8146 return kvm_hv_hypercall(vcpu);
8147
8148 nr = kvm_rax_read(vcpu);
8149 a0 = kvm_rbx_read(vcpu);
8150 a1 = kvm_rcx_read(vcpu);
8151 a2 = kvm_rdx_read(vcpu);
8152 a3 = kvm_rsi_read(vcpu);
8153
8154 trace_kvm_hypercall(nr, a0, a1, a2, a3);
8155
8156 op_64_bit = is_64_bit_mode(vcpu);
8157 if (!op_64_bit) {
8158 nr &= 0xFFFFFFFF;
8159 a0 &= 0xFFFFFFFF;
8160 a1 &= 0xFFFFFFFF;
8161 a2 &= 0xFFFFFFFF;
8162 a3 &= 0xFFFFFFFF;
8163 }
8164
8165 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
8166 ret = -KVM_EPERM;
8167 goto out;
8168 }
8169
8170 ret = -KVM_ENOSYS;
8171
8172 switch (nr) {
8173 case KVM_HC_VAPIC_POLL_IRQ:
8174 ret = 0;
8175 break;
8176 case KVM_HC_KICK_CPU:
8177 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8178 break;
8179
8180 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8181 kvm_sched_yield(vcpu->kvm, a1);
8182 ret = 0;
8183 break;
8184 #ifdef CONFIG_X86_64
8185 case KVM_HC_CLOCK_PAIRING:
8186 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8187 break;
8188 #endif
8189 case KVM_HC_SEND_IPI:
8190 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8191 break;
8192
8193 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8194 break;
8195 case KVM_HC_SCHED_YIELD:
8196 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8197 break;
8198
8199 kvm_sched_yield(vcpu->kvm, a0);
8200 ret = 0;
8201 break;
8202 default:
8203 ret = -KVM_ENOSYS;
8204 break;
8205 }
8206 out:
8207 if (!op_64_bit)
8208 ret = (u32)ret;
8209 kvm_rax_write(vcpu, ret);
8210
8211 ++vcpu->stat.hypercalls;
8212 return kvm_skip_emulated_instruction(vcpu);
8213 }
8214 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8215
8216 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8217 {
8218 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8219 char instruction[3];
8220 unsigned long rip = kvm_rip_read(vcpu);
8221
8222 static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
8223
8224 return emulator_write_emulated(ctxt, rip, instruction, 3,
8225 &ctxt->exception);
8226 }
8227
8228 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8229 {
8230 return vcpu->run->request_interrupt_window &&
8231 likely(!pic_in_kernel(vcpu->kvm));
8232 }
8233
8234 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8235 {
8236 struct kvm_run *kvm_run = vcpu->run;
8237
8238 /*
8239 * if_flag is obsolete and useless, so do not bother
8240 * setting it for SEV-ES guests. Userspace can just
8241 * use kvm_run->ready_for_interrupt_injection.
8242 */
8243 kvm_run->if_flag = !vcpu->arch.guest_state_protected
8244 && (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
8245
8246 kvm_run->cr8 = kvm_get_cr8(vcpu);
8247 kvm_run->apic_base = kvm_get_apic_base(vcpu);
8248 kvm_run->ready_for_interrupt_injection =
8249 pic_in_kernel(vcpu->kvm) ||
8250 kvm_vcpu_ready_for_interrupt_injection(vcpu);
8251
8252 if (is_smm(vcpu))
8253 kvm_run->flags |= KVM_RUN_X86_SMM;
8254 }
8255
8256 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8257 {
8258 int max_irr, tpr;
8259
8260 if (!kvm_x86_ops.update_cr8_intercept)
8261 return;
8262
8263 if (!lapic_in_kernel(vcpu))
8264 return;
8265
8266 if (vcpu->arch.apicv_active)
8267 return;
8268
8269 if (!vcpu->arch.apic->vapic_addr)
8270 max_irr = kvm_lapic_find_highest_irr(vcpu);
8271 else
8272 max_irr = -1;
8273
8274 if (max_irr != -1)
8275 max_irr >>= 4;
8276
8277 tpr = kvm_lapic_get_cr8(vcpu);
8278
8279 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
8280 }
8281
8282 static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
8283 {
8284 int r;
8285 bool can_inject = true;
8286
8287 /* try to reinject previous events if any */
8288
8289 if (vcpu->arch.exception.injected) {
8290 static_call(kvm_x86_queue_exception)(vcpu);
8291 can_inject = false;
8292 }
8293 /*
8294 * Do not inject an NMI or interrupt if there is a pending
8295 * exception. Exceptions and interrupts are recognized at
8296 * instruction boundaries, i.e. the start of an instruction.
8297 * Trap-like exceptions, e.g. #DB, have higher priority than
8298 * NMIs and interrupts, i.e. traps are recognized before an
8299 * NMI/interrupt that's pending on the same instruction.
8300 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
8301 * priority, but are only generated (pended) during instruction
8302 * execution, i.e. a pending fault-like exception means the
8303 * fault occurred on the *previous* instruction and must be
8304 * serviced prior to recognizing any new events in order to
8305 * fully complete the previous instruction.
8306 */
8307 else if (!vcpu->arch.exception.pending) {
8308 if (vcpu->arch.nmi_injected) {
8309 static_call(kvm_x86_set_nmi)(vcpu);
8310 can_inject = false;
8311 } else if (vcpu->arch.interrupt.injected) {
8312 static_call(kvm_x86_set_irq)(vcpu);
8313 can_inject = false;
8314 }
8315 }
8316
8317 WARN_ON_ONCE(vcpu->arch.exception.injected &&
8318 vcpu->arch.exception.pending);
8319
8320 /*
8321 * Call check_nested_events() even if we reinjected a previous event
8322 * in order for caller to determine if it should require immediate-exit
8323 * from L2 to L1 due to pending L1 events which require exit
8324 * from L2 to L1.
8325 */
8326 if (is_guest_mode(vcpu)) {
8327 r = kvm_x86_ops.nested_ops->check_events(vcpu);
8328 if (r < 0)
8329 goto busy;
8330 }
8331
8332 /* try to inject new event if pending */
8333 if (vcpu->arch.exception.pending) {
8334 trace_kvm_inj_exception(vcpu->arch.exception.nr,
8335 vcpu->arch.exception.has_error_code,
8336 vcpu->arch.exception.error_code);
8337
8338 vcpu->arch.exception.pending = false;
8339 vcpu->arch.exception.injected = true;
8340
8341 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
8342 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
8343 X86_EFLAGS_RF);
8344
8345 if (vcpu->arch.exception.nr == DB_VECTOR) {
8346 kvm_deliver_exception_payload(vcpu);
8347 if (vcpu->arch.dr7 & DR7_GD) {
8348 vcpu->arch.dr7 &= ~DR7_GD;
8349 kvm_update_dr7(vcpu);
8350 }
8351 }
8352
8353 static_call(kvm_x86_queue_exception)(vcpu);
8354 can_inject = false;
8355 }
8356
8357 /*
8358 * Finally, inject interrupt events. If an event cannot be injected
8359 * due to architectural conditions (e.g. IF=0) a window-open exit
8360 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
8361 * and can architecturally be injected, but we cannot do it right now:
8362 * an interrupt could have arrived just now and we have to inject it
8363 * as a vmexit, or there could already an event in the queue, which is
8364 * indicated by can_inject. In that case we request an immediate exit
8365 * in order to make progress and get back here for another iteration.
8366 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
8367 */
8368 if (vcpu->arch.smi_pending) {
8369 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
8370 if (r < 0)
8371 goto busy;
8372 if (r) {
8373 vcpu->arch.smi_pending = false;
8374 ++vcpu->arch.smi_count;
8375 enter_smm(vcpu);
8376 can_inject = false;
8377 } else
8378 static_call(kvm_x86_enable_smi_window)(vcpu);
8379 }
8380
8381 if (vcpu->arch.nmi_pending) {
8382 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
8383 if (r < 0)
8384 goto busy;
8385 if (r) {
8386 --vcpu->arch.nmi_pending;
8387 vcpu->arch.nmi_injected = true;
8388 static_call(kvm_x86_set_nmi)(vcpu);
8389 can_inject = false;
8390 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
8391 }
8392 if (vcpu->arch.nmi_pending)
8393 static_call(kvm_x86_enable_nmi_window)(vcpu);
8394 }
8395
8396 if (kvm_cpu_has_injectable_intr(vcpu)) {
8397 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
8398 if (r < 0)
8399 goto busy;
8400 if (r) {
8401 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
8402 static_call(kvm_x86_set_irq)(vcpu);
8403 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
8404 }
8405 if (kvm_cpu_has_injectable_intr(vcpu))
8406 static_call(kvm_x86_enable_irq_window)(vcpu);
8407 }
8408
8409 if (is_guest_mode(vcpu) &&
8410 kvm_x86_ops.nested_ops->hv_timer_pending &&
8411 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
8412 *req_immediate_exit = true;
8413
8414 WARN_ON(vcpu->arch.exception.pending);
8415 return;
8416
8417 busy:
8418 *req_immediate_exit = true;
8419 return;
8420 }
8421
8422 static void process_nmi(struct kvm_vcpu *vcpu)
8423 {
8424 unsigned limit = 2;
8425
8426 /*
8427 * x86 is limited to one NMI running, and one NMI pending after it.
8428 * If an NMI is already in progress, limit further NMIs to just one.
8429 * Otherwise, allow two (and we'll inject the first one immediately).
8430 */
8431 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
8432 limit = 1;
8433
8434 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
8435 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
8436 kvm_make_request(KVM_REQ_EVENT, vcpu);
8437 }
8438
8439 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
8440 {
8441 u32 flags = 0;
8442 flags |= seg->g << 23;
8443 flags |= seg->db << 22;
8444 flags |= seg->l << 21;
8445 flags |= seg->avl << 20;
8446 flags |= seg->present << 15;
8447 flags |= seg->dpl << 13;
8448 flags |= seg->s << 12;
8449 flags |= seg->type << 8;
8450 return flags;
8451 }
8452
8453 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
8454 {
8455 struct kvm_segment seg;
8456 int offset;
8457
8458 kvm_get_segment(vcpu, &seg, n);
8459 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
8460
8461 if (n < 3)
8462 offset = 0x7f84 + n * 12;
8463 else
8464 offset = 0x7f2c + (n - 3) * 12;
8465
8466 put_smstate(u32, buf, offset + 8, seg.base);
8467 put_smstate(u32, buf, offset + 4, seg.limit);
8468 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
8469 }
8470
8471 #ifdef CONFIG_X86_64
8472 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
8473 {
8474 struct kvm_segment seg;
8475 int offset;
8476 u16 flags;
8477
8478 kvm_get_segment(vcpu, &seg, n);
8479 offset = 0x7e00 + n * 16;
8480
8481 flags = enter_smm_get_segment_flags(&seg) >> 8;
8482 put_smstate(u16, buf, offset, seg.selector);
8483 put_smstate(u16, buf, offset + 2, flags);
8484 put_smstate(u32, buf, offset + 4, seg.limit);
8485 put_smstate(u64, buf, offset + 8, seg.base);
8486 }
8487 #endif
8488
8489 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
8490 {
8491 struct desc_ptr dt;
8492 struct kvm_segment seg;
8493 unsigned long val;
8494 int i;
8495
8496 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
8497 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
8498 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
8499 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
8500
8501 for (i = 0; i < 8; i++)
8502 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
8503
8504 kvm_get_dr(vcpu, 6, &val);
8505 put_smstate(u32, buf, 0x7fcc, (u32)val);
8506 kvm_get_dr(vcpu, 7, &val);
8507 put_smstate(u32, buf, 0x7fc8, (u32)val);
8508
8509 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8510 put_smstate(u32, buf, 0x7fc4, seg.selector);
8511 put_smstate(u32, buf, 0x7f64, seg.base);
8512 put_smstate(u32, buf, 0x7f60, seg.limit);
8513 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
8514
8515 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8516 put_smstate(u32, buf, 0x7fc0, seg.selector);
8517 put_smstate(u32, buf, 0x7f80, seg.base);
8518 put_smstate(u32, buf, 0x7f7c, seg.limit);
8519 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
8520
8521 static_call(kvm_x86_get_gdt)(vcpu, &dt);
8522 put_smstate(u32, buf, 0x7f74, dt.address);
8523 put_smstate(u32, buf, 0x7f70, dt.size);
8524
8525 static_call(kvm_x86_get_idt)(vcpu, &dt);
8526 put_smstate(u32, buf, 0x7f58, dt.address);
8527 put_smstate(u32, buf, 0x7f54, dt.size);
8528
8529 for (i = 0; i < 6; i++)
8530 enter_smm_save_seg_32(vcpu, buf, i);
8531
8532 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
8533
8534 /* revision id */
8535 put_smstate(u32, buf, 0x7efc, 0x00020000);
8536 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
8537 }
8538
8539 #ifdef CONFIG_X86_64
8540 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
8541 {
8542 struct desc_ptr dt;
8543 struct kvm_segment seg;
8544 unsigned long val;
8545 int i;
8546
8547 for (i = 0; i < 16; i++)
8548 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
8549
8550 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
8551 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
8552
8553 kvm_get_dr(vcpu, 6, &val);
8554 put_smstate(u64, buf, 0x7f68, val);
8555 kvm_get_dr(vcpu, 7, &val);
8556 put_smstate(u64, buf, 0x7f60, val);
8557
8558 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
8559 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
8560 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
8561
8562 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
8563
8564 /* revision id */
8565 put_smstate(u32, buf, 0x7efc, 0x00020064);
8566
8567 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
8568
8569 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8570 put_smstate(u16, buf, 0x7e90, seg.selector);
8571 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
8572 put_smstate(u32, buf, 0x7e94, seg.limit);
8573 put_smstate(u64, buf, 0x7e98, seg.base);
8574
8575 static_call(kvm_x86_get_idt)(vcpu, &dt);
8576 put_smstate(u32, buf, 0x7e84, dt.size);
8577 put_smstate(u64, buf, 0x7e88, dt.address);
8578
8579 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8580 put_smstate(u16, buf, 0x7e70, seg.selector);
8581 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
8582 put_smstate(u32, buf, 0x7e74, seg.limit);
8583 put_smstate(u64, buf, 0x7e78, seg.base);
8584
8585 static_call(kvm_x86_get_gdt)(vcpu, &dt);
8586 put_smstate(u32, buf, 0x7e64, dt.size);
8587 put_smstate(u64, buf, 0x7e68, dt.address);
8588
8589 for (i = 0; i < 6; i++)
8590 enter_smm_save_seg_64(vcpu, buf, i);
8591 }
8592 #endif
8593
8594 static void enter_smm(struct kvm_vcpu *vcpu)
8595 {
8596 struct kvm_segment cs, ds;
8597 struct desc_ptr dt;
8598 char buf[512];
8599 u32 cr0;
8600
8601 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
8602 memset(buf, 0, 512);
8603 #ifdef CONFIG_X86_64
8604 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8605 enter_smm_save_state_64(vcpu, buf);
8606 else
8607 #endif
8608 enter_smm_save_state_32(vcpu, buf);
8609
8610 /*
8611 * Give pre_enter_smm() a chance to make ISA-specific changes to the
8612 * vCPU state (e.g. leave guest mode) after we've saved the state into
8613 * the SMM state-save area.
8614 */
8615 static_call(kvm_x86_pre_enter_smm)(vcpu, buf);
8616
8617 vcpu->arch.hflags |= HF_SMM_MASK;
8618 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
8619
8620 if (static_call(kvm_x86_get_nmi_mask)(vcpu))
8621 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
8622 else
8623 static_call(kvm_x86_set_nmi_mask)(vcpu, true);
8624
8625 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
8626 kvm_rip_write(vcpu, 0x8000);
8627
8628 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
8629 static_call(kvm_x86_set_cr0)(vcpu, cr0);
8630 vcpu->arch.cr0 = cr0;
8631
8632 static_call(kvm_x86_set_cr4)(vcpu, 0);
8633
8634 /* Undocumented: IDT limit is set to zero on entry to SMM. */
8635 dt.address = dt.size = 0;
8636 static_call(kvm_x86_set_idt)(vcpu, &dt);
8637
8638 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
8639
8640 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
8641 cs.base = vcpu->arch.smbase;
8642
8643 ds.selector = 0;
8644 ds.base = 0;
8645
8646 cs.limit = ds.limit = 0xffffffff;
8647 cs.type = ds.type = 0x3;
8648 cs.dpl = ds.dpl = 0;
8649 cs.db = ds.db = 0;
8650 cs.s = ds.s = 1;
8651 cs.l = ds.l = 0;
8652 cs.g = ds.g = 1;
8653 cs.avl = ds.avl = 0;
8654 cs.present = ds.present = 1;
8655 cs.unusable = ds.unusable = 0;
8656 cs.padding = ds.padding = 0;
8657
8658 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8659 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
8660 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
8661 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
8662 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
8663 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
8664
8665 #ifdef CONFIG_X86_64
8666 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8667 static_call(kvm_x86_set_efer)(vcpu, 0);
8668 #endif
8669
8670 kvm_update_cpuid_runtime(vcpu);
8671 kvm_mmu_reset_context(vcpu);
8672 }
8673
8674 static void process_smi(struct kvm_vcpu *vcpu)
8675 {
8676 vcpu->arch.smi_pending = true;
8677 kvm_make_request(KVM_REQ_EVENT, vcpu);
8678 }
8679
8680 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
8681 unsigned long *vcpu_bitmap)
8682 {
8683 cpumask_var_t cpus;
8684
8685 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
8686
8687 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
8688 NULL, vcpu_bitmap, cpus);
8689
8690 free_cpumask_var(cpus);
8691 }
8692
8693 void kvm_make_scan_ioapic_request(struct kvm *kvm)
8694 {
8695 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8696 }
8697
8698 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8699 {
8700 if (!lapic_in_kernel(vcpu))
8701 return;
8702
8703 vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
8704 kvm_apic_update_apicv(vcpu);
8705 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
8706 }
8707 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
8708
8709 /*
8710 * NOTE: Do not hold any lock prior to calling this.
8711 *
8712 * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
8713 * locked, because it calls __x86_set_memory_region() which does
8714 * synchronize_srcu(&kvm->srcu).
8715 */
8716 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
8717 {
8718 struct kvm_vcpu *except;
8719 unsigned long old, new, expected;
8720
8721 if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
8722 !static_call(kvm_x86_check_apicv_inhibit_reasons)(bit))
8723 return;
8724
8725 old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
8726 do {
8727 expected = new = old;
8728 if (activate)
8729 __clear_bit(bit, &new);
8730 else
8731 __set_bit(bit, &new);
8732 if (new == old)
8733 break;
8734 old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
8735 } while (old != expected);
8736
8737 if (!!old == !!new)
8738 return;
8739
8740 trace_kvm_apicv_update_request(activate, bit);
8741 if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
8742 static_call(kvm_x86_pre_update_apicv_exec_ctrl)(kvm, activate);
8743
8744 /*
8745 * Sending request to update APICV for all other vcpus,
8746 * while update the calling vcpu immediately instead of
8747 * waiting for another #VMEXIT to handle the request.
8748 */
8749 except = kvm_get_running_vcpu();
8750 kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE,
8751 except);
8752 if (except)
8753 kvm_vcpu_update_apicv(except);
8754 }
8755 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
8756
8757 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
8758 {
8759 if (!kvm_apic_present(vcpu))
8760 return;
8761
8762 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
8763
8764 if (irqchip_split(vcpu->kvm))
8765 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
8766 else {
8767 if (vcpu->arch.apicv_active)
8768 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
8769 if (ioapic_in_kernel(vcpu->kvm))
8770 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
8771 }
8772
8773 if (is_guest_mode(vcpu))
8774 vcpu->arch.load_eoi_exitmap_pending = true;
8775 else
8776 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
8777 }
8778
8779 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8780 {
8781 u64 eoi_exit_bitmap[4];
8782
8783 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
8784 return;
8785
8786 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
8787 vcpu_to_synic(vcpu)->vec_bitmap, 256);
8788 static_call(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
8789 }
8790
8791 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
8792 unsigned long start, unsigned long end)
8793 {
8794 unsigned long apic_address;
8795
8796 /*
8797 * The physical address of apic access page is stored in the VMCS.
8798 * Update it when it becomes invalid.
8799 */
8800 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8801 if (start <= apic_address && apic_address < end)
8802 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
8803 }
8804
8805 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
8806 {
8807 if (!lapic_in_kernel(vcpu))
8808 return;
8809
8810 if (!kvm_x86_ops.set_apic_access_page_addr)
8811 return;
8812
8813 static_call(kvm_x86_set_apic_access_page_addr)(vcpu);
8814 }
8815
8816 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
8817 {
8818 smp_send_reschedule(vcpu->cpu);
8819 }
8820 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
8821
8822 /*
8823 * Returns 1 to let vcpu_run() continue the guest execution loop without
8824 * exiting to the userspace. Otherwise, the value will be returned to the
8825 * userspace.
8826 */
8827 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
8828 {
8829 int r;
8830 bool req_int_win =
8831 dm_request_for_irq_injection(vcpu) &&
8832 kvm_cpu_accept_dm_intr(vcpu);
8833 fastpath_t exit_fastpath;
8834
8835 bool req_immediate_exit = false;
8836
8837 /* Forbid vmenter if vcpu dirty ring is soft-full */
8838 if (unlikely(vcpu->kvm->dirty_ring_size &&
8839 kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
8840 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
8841 trace_kvm_dirty_ring_exit(vcpu);
8842 r = 0;
8843 goto out;
8844 }
8845
8846 if (kvm_request_pending(vcpu)) {
8847 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
8848 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
8849 r = 0;
8850 goto out;
8851 }
8852 }
8853 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
8854 kvm_mmu_unload(vcpu);
8855 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
8856 __kvm_migrate_timers(vcpu);
8857 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
8858 kvm_gen_update_masterclock(vcpu->kvm);
8859 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
8860 kvm_gen_kvmclock_update(vcpu);
8861 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
8862 r = kvm_guest_time_update(vcpu);
8863 if (unlikely(r))
8864 goto out;
8865 }
8866 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
8867 kvm_mmu_sync_roots(vcpu);
8868 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
8869 kvm_mmu_load_pgd(vcpu);
8870 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
8871 kvm_vcpu_flush_tlb_all(vcpu);
8872
8873 /* Flushing all ASIDs flushes the current ASID... */
8874 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
8875 }
8876 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
8877 kvm_vcpu_flush_tlb_current(vcpu);
8878 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu))
8879 kvm_vcpu_flush_tlb_guest(vcpu);
8880
8881 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
8882 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
8883 r = 0;
8884 goto out;
8885 }
8886 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8887 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
8888 vcpu->mmio_needed = 0;
8889 r = 0;
8890 goto out;
8891 }
8892 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
8893 /* Page is swapped out. Do synthetic halt */
8894 vcpu->arch.apf.halted = true;
8895 r = 1;
8896 goto out;
8897 }
8898 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
8899 record_steal_time(vcpu);
8900 if (kvm_check_request(KVM_REQ_SMI, vcpu))
8901 process_smi(vcpu);
8902 if (kvm_check_request(KVM_REQ_NMI, vcpu))
8903 process_nmi(vcpu);
8904 if (kvm_check_request(KVM_REQ_PMU, vcpu))
8905 kvm_pmu_handle_event(vcpu);
8906 if (kvm_check_request(KVM_REQ_PMI, vcpu))
8907 kvm_pmu_deliver_pmi(vcpu);
8908 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
8909 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
8910 if (test_bit(vcpu->arch.pending_ioapic_eoi,
8911 vcpu->arch.ioapic_handled_vectors)) {
8912 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
8913 vcpu->run->eoi.vector =
8914 vcpu->arch.pending_ioapic_eoi;
8915 r = 0;
8916 goto out;
8917 }
8918 }
8919 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
8920 vcpu_scan_ioapic(vcpu);
8921 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
8922 vcpu_load_eoi_exitmap(vcpu);
8923 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
8924 kvm_vcpu_reload_apic_access_page(vcpu);
8925 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
8926 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8927 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
8928 r = 0;
8929 goto out;
8930 }
8931 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
8932 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8933 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
8934 r = 0;
8935 goto out;
8936 }
8937 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
8938 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
8939 vcpu->run->hyperv = vcpu->arch.hyperv.exit;
8940 r = 0;
8941 goto out;
8942 }
8943
8944 /*
8945 * KVM_REQ_HV_STIMER has to be processed after
8946 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
8947 * depend on the guest clock being up-to-date
8948 */
8949 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
8950 kvm_hv_process_stimers(vcpu);
8951 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
8952 kvm_vcpu_update_apicv(vcpu);
8953 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
8954 kvm_check_async_pf_completion(vcpu);
8955 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
8956 static_call(kvm_x86_msr_filter_changed)(vcpu);
8957 }
8958
8959 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
8960 ++vcpu->stat.req_event;
8961 kvm_apic_accept_events(vcpu);
8962 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
8963 r = 1;
8964 goto out;
8965 }
8966
8967 inject_pending_event(vcpu, &req_immediate_exit);
8968 if (req_int_win)
8969 static_call(kvm_x86_enable_irq_window)(vcpu);
8970
8971 if (kvm_lapic_enabled(vcpu)) {
8972 update_cr8_intercept(vcpu);
8973 kvm_lapic_sync_to_vapic(vcpu);
8974 }
8975 }
8976
8977 r = kvm_mmu_reload(vcpu);
8978 if (unlikely(r)) {
8979 goto cancel_injection;
8980 }
8981
8982 preempt_disable();
8983
8984 static_call(kvm_x86_prepare_guest_switch)(vcpu);
8985
8986 /*
8987 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
8988 * IPI are then delayed after guest entry, which ensures that they
8989 * result in virtual interrupt delivery.
8990 */
8991 local_irq_disable();
8992 vcpu->mode = IN_GUEST_MODE;
8993
8994 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8995
8996 /*
8997 * 1) We should set ->mode before checking ->requests. Please see
8998 * the comment in kvm_vcpu_exiting_guest_mode().
8999 *
9000 * 2) For APICv, we should set ->mode before checking PID.ON. This
9001 * pairs with the memory barrier implicit in pi_test_and_set_on
9002 * (see vmx_deliver_posted_interrupt).
9003 *
9004 * 3) This also orders the write to mode from any reads to the page
9005 * tables done while the VCPU is running. Please see the comment
9006 * in kvm_flush_remote_tlbs.
9007 */
9008 smp_mb__after_srcu_read_unlock();
9009
9010 /*
9011 * This handles the case where a posted interrupt was
9012 * notified with kvm_vcpu_kick.
9013 */
9014 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
9015 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9016
9017 if (kvm_vcpu_exit_request(vcpu)) {
9018 vcpu->mode = OUTSIDE_GUEST_MODE;
9019 smp_wmb();
9020 local_irq_enable();
9021 preempt_enable();
9022 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9023 r = 1;
9024 goto cancel_injection;
9025 }
9026
9027 if (req_immediate_exit) {
9028 kvm_make_request(KVM_REQ_EVENT, vcpu);
9029 static_call(kvm_x86_request_immediate_exit)(vcpu);
9030 }
9031
9032 fpregs_assert_state_consistent();
9033 if (test_thread_flag(TIF_NEED_FPU_LOAD))
9034 switch_fpu_return();
9035
9036 if (unlikely(vcpu->arch.switch_db_regs)) {
9037 set_debugreg(0, 7);
9038 set_debugreg(vcpu->arch.eff_db[0], 0);
9039 set_debugreg(vcpu->arch.eff_db[1], 1);
9040 set_debugreg(vcpu->arch.eff_db[2], 2);
9041 set_debugreg(vcpu->arch.eff_db[3], 3);
9042 set_debugreg(vcpu->arch.dr6, 6);
9043 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9044 }
9045
9046 for (;;) {
9047 exit_fastpath = static_call(kvm_x86_run)(vcpu);
9048 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
9049 break;
9050
9051 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
9052 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
9053 break;
9054 }
9055
9056 if (vcpu->arch.apicv_active)
9057 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9058 }
9059
9060 /*
9061 * Do this here before restoring debug registers on the host. And
9062 * since we do this before handling the vmexit, a DR access vmexit
9063 * can (a) read the correct value of the debug registers, (b) set
9064 * KVM_DEBUGREG_WONT_EXIT again.
9065 */
9066 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
9067 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
9068 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
9069 kvm_update_dr0123(vcpu);
9070 kvm_update_dr7(vcpu);
9071 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9072 }
9073
9074 /*
9075 * If the guest has used debug registers, at least dr7
9076 * will be disabled while returning to the host.
9077 * If we don't have active breakpoints in the host, we don't
9078 * care about the messed up debug address registers. But if
9079 * we have some of them active, restore the old state.
9080 */
9081 if (hw_breakpoint_active())
9082 hw_breakpoint_restore();
9083
9084 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
9085 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
9086
9087 vcpu->mode = OUTSIDE_GUEST_MODE;
9088 smp_wmb();
9089
9090 static_call(kvm_x86_handle_exit_irqoff)(vcpu);
9091
9092 /*
9093 * Consume any pending interrupts, including the possible source of
9094 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
9095 * An instruction is required after local_irq_enable() to fully unblock
9096 * interrupts on processors that implement an interrupt shadow, the
9097 * stat.exits increment will do nicely.
9098 */
9099 kvm_before_interrupt(vcpu);
9100 local_irq_enable();
9101 ++vcpu->stat.exits;
9102 local_irq_disable();
9103 kvm_after_interrupt(vcpu);
9104
9105 if (lapic_in_kernel(vcpu)) {
9106 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9107 if (delta != S64_MIN) {
9108 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9109 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9110 }
9111 }
9112
9113 local_irq_enable();
9114 preempt_enable();
9115
9116 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9117
9118 /*
9119 * Profile KVM exit RIPs:
9120 */
9121 if (unlikely(prof_on == KVM_PROFILING)) {
9122 unsigned long rip = kvm_rip_read(vcpu);
9123 profile_hit(KVM_PROFILING, (void *)rip);
9124 }
9125
9126 if (unlikely(vcpu->arch.tsc_always_catchup))
9127 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9128
9129 if (vcpu->arch.apic_attention)
9130 kvm_lapic_sync_from_vapic(vcpu);
9131
9132 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
9133 return r;
9134
9135 cancel_injection:
9136 if (req_immediate_exit)
9137 kvm_make_request(KVM_REQ_EVENT, vcpu);
9138 static_call(kvm_x86_cancel_injection)(vcpu);
9139 if (unlikely(vcpu->arch.apic_attention))
9140 kvm_lapic_sync_from_vapic(vcpu);
9141 out:
9142 return r;
9143 }
9144
9145 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9146 {
9147 if (!kvm_arch_vcpu_runnable(vcpu) &&
9148 (!kvm_x86_ops.pre_block || static_call(kvm_x86_pre_block)(vcpu) == 0)) {
9149 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9150 kvm_vcpu_block(vcpu);
9151 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9152
9153 if (kvm_x86_ops.post_block)
9154 static_call(kvm_x86_post_block)(vcpu);
9155
9156 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9157 return 1;
9158 }
9159
9160 kvm_apic_accept_events(vcpu);
9161 switch(vcpu->arch.mp_state) {
9162 case KVM_MP_STATE_HALTED:
9163 case KVM_MP_STATE_AP_RESET_HOLD:
9164 vcpu->arch.pv.pv_unhalted = false;
9165 vcpu->arch.mp_state =
9166 KVM_MP_STATE_RUNNABLE;
9167 fallthrough;
9168 case KVM_MP_STATE_RUNNABLE:
9169 vcpu->arch.apf.halted = false;
9170 break;
9171 case KVM_MP_STATE_INIT_RECEIVED:
9172 break;
9173 default:
9174 return -EINTR;
9175 }
9176 return 1;
9177 }
9178
9179 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9180 {
9181 if (is_guest_mode(vcpu))
9182 kvm_x86_ops.nested_ops->check_events(vcpu);
9183
9184 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9185 !vcpu->arch.apf.halted);
9186 }
9187
9188 static int vcpu_run(struct kvm_vcpu *vcpu)
9189 {
9190 int r;
9191 struct kvm *kvm = vcpu->kvm;
9192
9193 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9194 vcpu->arch.l1tf_flush_l1d = true;
9195
9196 for (;;) {
9197 if (kvm_vcpu_running(vcpu)) {
9198 r = vcpu_enter_guest(vcpu);
9199 } else {
9200 r = vcpu_block(kvm, vcpu);
9201 }
9202
9203 if (r <= 0)
9204 break;
9205
9206 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
9207 if (kvm_cpu_has_pending_timer(vcpu))
9208 kvm_inject_pending_timer_irqs(vcpu);
9209
9210 if (dm_request_for_irq_injection(vcpu) &&
9211 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
9212 r = 0;
9213 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
9214 ++vcpu->stat.request_irq_exits;
9215 break;
9216 }
9217
9218 if (__xfer_to_guest_mode_work_pending()) {
9219 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9220 r = xfer_to_guest_mode_handle_work(vcpu);
9221 if (r)
9222 return r;
9223 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9224 }
9225 }
9226
9227 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9228
9229 return r;
9230 }
9231
9232 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
9233 {
9234 int r;
9235
9236 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9237 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
9238 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9239 return r;
9240 }
9241
9242 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
9243 {
9244 BUG_ON(!vcpu->arch.pio.count);
9245
9246 return complete_emulated_io(vcpu);
9247 }
9248
9249 /*
9250 * Implements the following, as a state machine:
9251 *
9252 * read:
9253 * for each fragment
9254 * for each mmio piece in the fragment
9255 * write gpa, len
9256 * exit
9257 * copy data
9258 * execute insn
9259 *
9260 * write:
9261 * for each fragment
9262 * for each mmio piece in the fragment
9263 * write gpa, len
9264 * copy data
9265 * exit
9266 */
9267 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
9268 {
9269 struct kvm_run *run = vcpu->run;
9270 struct kvm_mmio_fragment *frag;
9271 unsigned len;
9272
9273 BUG_ON(!vcpu->mmio_needed);
9274
9275 /* Complete previous fragment */
9276 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
9277 len = min(8u, frag->len);
9278 if (!vcpu->mmio_is_write)
9279 memcpy(frag->data, run->mmio.data, len);
9280
9281 if (frag->len <= 8) {
9282 /* Switch to the next fragment. */
9283 frag++;
9284 vcpu->mmio_cur_fragment++;
9285 } else {
9286 /* Go forward to the next mmio piece. */
9287 frag->data += len;
9288 frag->gpa += len;
9289 frag->len -= len;
9290 }
9291
9292 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
9293 vcpu->mmio_needed = 0;
9294
9295 /* FIXME: return into emulator if single-stepping. */
9296 if (vcpu->mmio_is_write)
9297 return 1;
9298 vcpu->mmio_read_completed = 1;
9299 return complete_emulated_io(vcpu);
9300 }
9301
9302 run->exit_reason = KVM_EXIT_MMIO;
9303 run->mmio.phys_addr = frag->gpa;
9304 if (vcpu->mmio_is_write)
9305 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
9306 run->mmio.len = min(8u, frag->len);
9307 run->mmio.is_write = vcpu->mmio_is_write;
9308 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9309 return 0;
9310 }
9311
9312 static void kvm_save_current_fpu(struct fpu *fpu)
9313 {
9314 /*
9315 * If the target FPU state is not resident in the CPU registers, just
9316 * memcpy() from current, else save CPU state directly to the target.
9317 */
9318 if (test_thread_flag(TIF_NEED_FPU_LOAD))
9319 memcpy(&fpu->state, &current->thread.fpu.state,
9320 fpu_kernel_xstate_size);
9321 else
9322 copy_fpregs_to_fpstate(fpu);
9323 }
9324
9325 /* Swap (qemu) user FPU context for the guest FPU context. */
9326 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
9327 {
9328 fpregs_lock();
9329
9330 kvm_save_current_fpu(vcpu->arch.user_fpu);
9331
9332 /*
9333 * Guests with protected state can't have it set by the hypervisor,
9334 * so skip trying to set it.
9335 */
9336 if (vcpu->arch.guest_fpu)
9337 /* PKRU is separately restored in kvm_x86_ops.run. */
9338 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
9339 ~XFEATURE_MASK_PKRU);
9340
9341 fpregs_mark_activate();
9342 fpregs_unlock();
9343
9344 trace_kvm_fpu(1);
9345 }
9346
9347 /* When vcpu_run ends, restore user space FPU context. */
9348 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
9349 {
9350 fpregs_lock();
9351
9352 /*
9353 * Guests with protected state can't have it read by the hypervisor,
9354 * so skip trying to save it.
9355 */
9356 if (vcpu->arch.guest_fpu)
9357 kvm_save_current_fpu(vcpu->arch.guest_fpu);
9358
9359 copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
9360
9361 fpregs_mark_activate();
9362 fpregs_unlock();
9363
9364 ++vcpu->stat.fpu_reload;
9365 trace_kvm_fpu(0);
9366 }
9367
9368 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
9369 {
9370 struct kvm_run *kvm_run = vcpu->run;
9371 int r;
9372
9373 vcpu_load(vcpu);
9374 kvm_sigset_activate(vcpu);
9375 kvm_run->flags = 0;
9376 kvm_load_guest_fpu(vcpu);
9377
9378 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
9379 if (kvm_run->immediate_exit) {
9380 r = -EINTR;
9381 goto out;
9382 }
9383 kvm_vcpu_block(vcpu);
9384 kvm_apic_accept_events(vcpu);
9385 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
9386 r = -EAGAIN;
9387 if (signal_pending(current)) {
9388 r = -EINTR;
9389 kvm_run->exit_reason = KVM_EXIT_INTR;
9390 ++vcpu->stat.signal_exits;
9391 }
9392 goto out;
9393 }
9394
9395 if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
9396 r = -EINVAL;
9397 goto out;
9398 }
9399
9400 if (kvm_run->kvm_dirty_regs) {
9401 r = sync_regs(vcpu);
9402 if (r != 0)
9403 goto out;
9404 }
9405
9406 /* re-sync apic's tpr */
9407 if (!lapic_in_kernel(vcpu)) {
9408 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
9409 r = -EINVAL;
9410 goto out;
9411 }
9412 }
9413
9414 if (unlikely(vcpu->arch.complete_userspace_io)) {
9415 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
9416 vcpu->arch.complete_userspace_io = NULL;
9417 r = cui(vcpu);
9418 if (r <= 0)
9419 goto out;
9420 } else
9421 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
9422
9423 if (kvm_run->immediate_exit)
9424 r = -EINTR;
9425 else
9426 r = vcpu_run(vcpu);
9427
9428 out:
9429 kvm_put_guest_fpu(vcpu);
9430 if (kvm_run->kvm_valid_regs)
9431 store_regs(vcpu);
9432 post_kvm_run_save(vcpu);
9433 kvm_sigset_deactivate(vcpu);
9434
9435 vcpu_put(vcpu);
9436 return r;
9437 }
9438
9439 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9440 {
9441 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
9442 /*
9443 * We are here if userspace calls get_regs() in the middle of
9444 * instruction emulation. Registers state needs to be copied
9445 * back from emulation context to vcpu. Userspace shouldn't do
9446 * that usually, but some bad designed PV devices (vmware
9447 * backdoor interface) need this to work
9448 */
9449 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
9450 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9451 }
9452 regs->rax = kvm_rax_read(vcpu);
9453 regs->rbx = kvm_rbx_read(vcpu);
9454 regs->rcx = kvm_rcx_read(vcpu);
9455 regs->rdx = kvm_rdx_read(vcpu);
9456 regs->rsi = kvm_rsi_read(vcpu);
9457 regs->rdi = kvm_rdi_read(vcpu);
9458 regs->rsp = kvm_rsp_read(vcpu);
9459 regs->rbp = kvm_rbp_read(vcpu);
9460 #ifdef CONFIG_X86_64
9461 regs->r8 = kvm_r8_read(vcpu);
9462 regs->r9 = kvm_r9_read(vcpu);
9463 regs->r10 = kvm_r10_read(vcpu);
9464 regs->r11 = kvm_r11_read(vcpu);
9465 regs->r12 = kvm_r12_read(vcpu);
9466 regs->r13 = kvm_r13_read(vcpu);
9467 regs->r14 = kvm_r14_read(vcpu);
9468 regs->r15 = kvm_r15_read(vcpu);
9469 #endif
9470
9471 regs->rip = kvm_rip_read(vcpu);
9472 regs->rflags = kvm_get_rflags(vcpu);
9473 }
9474
9475 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9476 {
9477 vcpu_load(vcpu);
9478 __get_regs(vcpu, regs);
9479 vcpu_put(vcpu);
9480 return 0;
9481 }
9482
9483 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9484 {
9485 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
9486 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9487
9488 kvm_rax_write(vcpu, regs->rax);
9489 kvm_rbx_write(vcpu, regs->rbx);
9490 kvm_rcx_write(vcpu, regs->rcx);
9491 kvm_rdx_write(vcpu, regs->rdx);
9492 kvm_rsi_write(vcpu, regs->rsi);
9493 kvm_rdi_write(vcpu, regs->rdi);
9494 kvm_rsp_write(vcpu, regs->rsp);
9495 kvm_rbp_write(vcpu, regs->rbp);
9496 #ifdef CONFIG_X86_64
9497 kvm_r8_write(vcpu, regs->r8);
9498 kvm_r9_write(vcpu, regs->r9);
9499 kvm_r10_write(vcpu, regs->r10);
9500 kvm_r11_write(vcpu, regs->r11);
9501 kvm_r12_write(vcpu, regs->r12);
9502 kvm_r13_write(vcpu, regs->r13);
9503 kvm_r14_write(vcpu, regs->r14);
9504 kvm_r15_write(vcpu, regs->r15);
9505 #endif
9506
9507 kvm_rip_write(vcpu, regs->rip);
9508 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
9509
9510 vcpu->arch.exception.pending = false;
9511
9512 kvm_make_request(KVM_REQ_EVENT, vcpu);
9513 }
9514
9515 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9516 {
9517 vcpu_load(vcpu);
9518 __set_regs(vcpu, regs);
9519 vcpu_put(vcpu);
9520 return 0;
9521 }
9522
9523 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
9524 {
9525 struct kvm_segment cs;
9526
9527 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9528 *db = cs.db;
9529 *l = cs.l;
9530 }
9531 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
9532
9533 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9534 {
9535 struct desc_ptr dt;
9536
9537 if (vcpu->arch.guest_state_protected)
9538 goto skip_protected_regs;
9539
9540 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9541 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9542 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9543 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9544 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9545 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9546
9547 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9548 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9549
9550 static_call(kvm_x86_get_idt)(vcpu, &dt);
9551 sregs->idt.limit = dt.size;
9552 sregs->idt.base = dt.address;
9553 static_call(kvm_x86_get_gdt)(vcpu, &dt);
9554 sregs->gdt.limit = dt.size;
9555 sregs->gdt.base = dt.address;
9556
9557 sregs->cr2 = vcpu->arch.cr2;
9558 sregs->cr3 = kvm_read_cr3(vcpu);
9559
9560 skip_protected_regs:
9561 sregs->cr0 = kvm_read_cr0(vcpu);
9562 sregs->cr4 = kvm_read_cr4(vcpu);
9563 sregs->cr8 = kvm_get_cr8(vcpu);
9564 sregs->efer = vcpu->arch.efer;
9565 sregs->apic_base = kvm_get_apic_base(vcpu);
9566
9567 memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
9568
9569 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
9570 set_bit(vcpu->arch.interrupt.nr,
9571 (unsigned long *)sregs->interrupt_bitmap);
9572 }
9573
9574 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
9575 struct kvm_sregs *sregs)
9576 {
9577 vcpu_load(vcpu);
9578 __get_sregs(vcpu, sregs);
9579 vcpu_put(vcpu);
9580 return 0;
9581 }
9582
9583 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
9584 struct kvm_mp_state *mp_state)
9585 {
9586 vcpu_load(vcpu);
9587 if (kvm_mpx_supported())
9588 kvm_load_guest_fpu(vcpu);
9589
9590 kvm_apic_accept_events(vcpu);
9591 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
9592 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
9593 vcpu->arch.pv.pv_unhalted)
9594 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
9595 else
9596 mp_state->mp_state = vcpu->arch.mp_state;
9597
9598 if (kvm_mpx_supported())
9599 kvm_put_guest_fpu(vcpu);
9600 vcpu_put(vcpu);
9601 return 0;
9602 }
9603
9604 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
9605 struct kvm_mp_state *mp_state)
9606 {
9607 int ret = -EINVAL;
9608
9609 vcpu_load(vcpu);
9610
9611 if (!lapic_in_kernel(vcpu) &&
9612 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
9613 goto out;
9614
9615 /*
9616 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
9617 * INIT state; latched init should be reported using
9618 * KVM_SET_VCPU_EVENTS, so reject it here.
9619 */
9620 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
9621 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
9622 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
9623 goto out;
9624
9625 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
9626 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
9627 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
9628 } else
9629 vcpu->arch.mp_state = mp_state->mp_state;
9630 kvm_make_request(KVM_REQ_EVENT, vcpu);
9631
9632 ret = 0;
9633 out:
9634 vcpu_put(vcpu);
9635 return ret;
9636 }
9637
9638 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
9639 int reason, bool has_error_code, u32 error_code)
9640 {
9641 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9642 int ret;
9643
9644 init_emulate_ctxt(vcpu);
9645
9646 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
9647 has_error_code, error_code);
9648 if (ret) {
9649 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9650 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
9651 vcpu->run->internal.ndata = 0;
9652 return 0;
9653 }
9654
9655 kvm_rip_write(vcpu, ctxt->eip);
9656 kvm_set_rflags(vcpu, ctxt->eflags);
9657 return 1;
9658 }
9659 EXPORT_SYMBOL_GPL(kvm_task_switch);
9660
9661 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9662 {
9663 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
9664 /*
9665 * When EFER.LME and CR0.PG are set, the processor is in
9666 * 64-bit mode (though maybe in a 32-bit code segment).
9667 * CR4.PAE and EFER.LMA must be set.
9668 */
9669 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
9670 return false;
9671 if (sregs->cr3 & vcpu->arch.cr3_lm_rsvd_bits)
9672 return false;
9673 } else {
9674 /*
9675 * Not in 64-bit mode: EFER.LMA is clear and the code
9676 * segment cannot be 64-bit.
9677 */
9678 if (sregs->efer & EFER_LMA || sregs->cs.l)
9679 return false;
9680 }
9681
9682 return kvm_is_valid_cr4(vcpu, sregs->cr4);
9683 }
9684
9685 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9686 {
9687 struct msr_data apic_base_msr;
9688 int mmu_reset_needed = 0;
9689 int pending_vec, max_bits, idx;
9690 struct desc_ptr dt;
9691 int ret = -EINVAL;
9692
9693 if (!kvm_is_valid_sregs(vcpu, sregs))
9694 goto out;
9695
9696 apic_base_msr.data = sregs->apic_base;
9697 apic_base_msr.host_initiated = true;
9698 if (kvm_set_apic_base(vcpu, &apic_base_msr))
9699 goto out;
9700
9701 if (vcpu->arch.guest_state_protected)
9702 goto skip_protected_regs;
9703
9704 dt.size = sregs->idt.limit;
9705 dt.address = sregs->idt.base;
9706 static_call(kvm_x86_set_idt)(vcpu, &dt);
9707 dt.size = sregs->gdt.limit;
9708 dt.address = sregs->gdt.base;
9709 static_call(kvm_x86_set_gdt)(vcpu, &dt);
9710
9711 vcpu->arch.cr2 = sregs->cr2;
9712 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
9713 vcpu->arch.cr3 = sregs->cr3;
9714 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
9715
9716 kvm_set_cr8(vcpu, sregs->cr8);
9717
9718 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
9719 static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
9720
9721 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
9722 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
9723 vcpu->arch.cr0 = sregs->cr0;
9724
9725 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
9726 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
9727
9728 idx = srcu_read_lock(&vcpu->kvm->srcu);
9729 if (is_pae_paging(vcpu)) {
9730 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
9731 mmu_reset_needed = 1;
9732 }
9733 srcu_read_unlock(&vcpu->kvm->srcu, idx);
9734
9735 if (mmu_reset_needed)
9736 kvm_mmu_reset_context(vcpu);
9737
9738 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9739 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9740 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9741 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9742 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9743 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9744
9745 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9746 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9747
9748 update_cr8_intercept(vcpu);
9749
9750 /* Older userspace won't unhalt the vcpu on reset. */
9751 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
9752 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
9753 !is_protmode(vcpu))
9754 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9755
9756 skip_protected_regs:
9757 max_bits = KVM_NR_INTERRUPTS;
9758 pending_vec = find_first_bit(
9759 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
9760 if (pending_vec < max_bits) {
9761 kvm_queue_interrupt(vcpu, pending_vec, false);
9762 pr_debug("Set back pending irq %d\n", pending_vec);
9763 }
9764
9765 kvm_make_request(KVM_REQ_EVENT, vcpu);
9766
9767 ret = 0;
9768 out:
9769 return ret;
9770 }
9771
9772 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
9773 struct kvm_sregs *sregs)
9774 {
9775 int ret;
9776
9777 vcpu_load(vcpu);
9778 ret = __set_sregs(vcpu, sregs);
9779 vcpu_put(vcpu);
9780 return ret;
9781 }
9782
9783 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
9784 struct kvm_guest_debug *dbg)
9785 {
9786 unsigned long rflags;
9787 int i, r;
9788
9789 if (vcpu->arch.guest_state_protected)
9790 return -EINVAL;
9791
9792 vcpu_load(vcpu);
9793
9794 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
9795 r = -EBUSY;
9796 if (vcpu->arch.exception.pending)
9797 goto out;
9798 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
9799 kvm_queue_exception(vcpu, DB_VECTOR);
9800 else
9801 kvm_queue_exception(vcpu, BP_VECTOR);
9802 }
9803
9804 /*
9805 * Read rflags as long as potentially injected trace flags are still
9806 * filtered out.
9807 */
9808 rflags = kvm_get_rflags(vcpu);
9809
9810 vcpu->guest_debug = dbg->control;
9811 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
9812 vcpu->guest_debug = 0;
9813
9814 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
9815 for (i = 0; i < KVM_NR_DB_REGS; ++i)
9816 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
9817 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
9818 } else {
9819 for (i = 0; i < KVM_NR_DB_REGS; i++)
9820 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
9821 }
9822 kvm_update_dr7(vcpu);
9823
9824 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9825 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
9826 get_segment_base(vcpu, VCPU_SREG_CS);
9827
9828 /*
9829 * Trigger an rflags update that will inject or remove the trace
9830 * flags.
9831 */
9832 kvm_set_rflags(vcpu, rflags);
9833
9834 static_call(kvm_x86_update_exception_bitmap)(vcpu);
9835
9836 r = 0;
9837
9838 out:
9839 vcpu_put(vcpu);
9840 return r;
9841 }
9842
9843 /*
9844 * Translate a guest virtual address to a guest physical address.
9845 */
9846 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
9847 struct kvm_translation *tr)
9848 {
9849 unsigned long vaddr = tr->linear_address;
9850 gpa_t gpa;
9851 int idx;
9852
9853 vcpu_load(vcpu);
9854
9855 idx = srcu_read_lock(&vcpu->kvm->srcu);
9856 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
9857 srcu_read_unlock(&vcpu->kvm->srcu, idx);
9858 tr->physical_address = gpa;
9859 tr->valid = gpa != UNMAPPED_GVA;
9860 tr->writeable = 1;
9861 tr->usermode = 0;
9862
9863 vcpu_put(vcpu);
9864 return 0;
9865 }
9866
9867 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9868 {
9869 struct fxregs_state *fxsave;
9870
9871 if (!vcpu->arch.guest_fpu)
9872 return 0;
9873
9874 vcpu_load(vcpu);
9875
9876 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9877 memcpy(fpu->fpr, fxsave->st_space, 128);
9878 fpu->fcw = fxsave->cwd;
9879 fpu->fsw = fxsave->swd;
9880 fpu->ftwx = fxsave->twd;
9881 fpu->last_opcode = fxsave->fop;
9882 fpu->last_ip = fxsave->rip;
9883 fpu->last_dp = fxsave->rdp;
9884 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
9885
9886 vcpu_put(vcpu);
9887 return 0;
9888 }
9889
9890 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9891 {
9892 struct fxregs_state *fxsave;
9893
9894 if (!vcpu->arch.guest_fpu)
9895 return 0;
9896
9897 vcpu_load(vcpu);
9898
9899 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9900
9901 memcpy(fxsave->st_space, fpu->fpr, 128);
9902 fxsave->cwd = fpu->fcw;
9903 fxsave->swd = fpu->fsw;
9904 fxsave->twd = fpu->ftwx;
9905 fxsave->fop = fpu->last_opcode;
9906 fxsave->rip = fpu->last_ip;
9907 fxsave->rdp = fpu->last_dp;
9908 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
9909
9910 vcpu_put(vcpu);
9911 return 0;
9912 }
9913
9914 static void store_regs(struct kvm_vcpu *vcpu)
9915 {
9916 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
9917
9918 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
9919 __get_regs(vcpu, &vcpu->run->s.regs.regs);
9920
9921 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
9922 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
9923
9924 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
9925 kvm_vcpu_ioctl_x86_get_vcpu_events(
9926 vcpu, &vcpu->run->s.regs.events);
9927 }
9928
9929 static int sync_regs(struct kvm_vcpu *vcpu)
9930 {
9931 if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
9932 return -EINVAL;
9933
9934 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
9935 __set_regs(vcpu, &vcpu->run->s.regs.regs);
9936 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
9937 }
9938 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
9939 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
9940 return -EINVAL;
9941 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
9942 }
9943 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
9944 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
9945 vcpu, &vcpu->run->s.regs.events))
9946 return -EINVAL;
9947 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
9948 }
9949
9950 return 0;
9951 }
9952
9953 static void fx_init(struct kvm_vcpu *vcpu)
9954 {
9955 if (!vcpu->arch.guest_fpu)
9956 return;
9957
9958 fpstate_init(&vcpu->arch.guest_fpu->state);
9959 if (boot_cpu_has(X86_FEATURE_XSAVES))
9960 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
9961 host_xcr0 | XSTATE_COMPACTION_ENABLED;
9962
9963 /*
9964 * Ensure guest xcr0 is valid for loading
9965 */
9966 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9967
9968 vcpu->arch.cr0 |= X86_CR0_ET;
9969 }
9970
9971 void kvm_free_guest_fpu(struct kvm_vcpu *vcpu)
9972 {
9973 if (vcpu->arch.guest_fpu) {
9974 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9975 vcpu->arch.guest_fpu = NULL;
9976 }
9977 }
9978 EXPORT_SYMBOL_GPL(kvm_free_guest_fpu);
9979
9980 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
9981 {
9982 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
9983 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
9984 "guest TSC will not be reliable\n");
9985
9986 return 0;
9987 }
9988
9989 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
9990 {
9991 struct page *page;
9992 int r;
9993
9994 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9995 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9996 else
9997 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9998
9999 kvm_set_tsc_khz(vcpu, max_tsc_khz);
10000
10001 r = kvm_mmu_create(vcpu);
10002 if (r < 0)
10003 return r;
10004
10005 if (irqchip_in_kernel(vcpu->kvm)) {
10006 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
10007 if (r < 0)
10008 goto fail_mmu_destroy;
10009 if (kvm_apicv_activated(vcpu->kvm))
10010 vcpu->arch.apicv_active = true;
10011 } else
10012 static_branch_inc(&kvm_has_noapic_vcpu);
10013
10014 r = -ENOMEM;
10015
10016 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
10017 if (!page)
10018 goto fail_free_lapic;
10019 vcpu->arch.pio_data = page_address(page);
10020
10021 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
10022 GFP_KERNEL_ACCOUNT);
10023 if (!vcpu->arch.mce_banks)
10024 goto fail_free_pio_data;
10025 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
10026
10027 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
10028 GFP_KERNEL_ACCOUNT))
10029 goto fail_free_mce_banks;
10030
10031 if (!alloc_emulate_ctxt(vcpu))
10032 goto free_wbinvd_dirty_mask;
10033
10034 vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
10035 GFP_KERNEL_ACCOUNT);
10036 if (!vcpu->arch.user_fpu) {
10037 pr_err("kvm: failed to allocate userspace's fpu\n");
10038 goto free_emulate_ctxt;
10039 }
10040
10041 vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
10042 GFP_KERNEL_ACCOUNT);
10043 if (!vcpu->arch.guest_fpu) {
10044 pr_err("kvm: failed to allocate vcpu's fpu\n");
10045 goto free_user_fpu;
10046 }
10047 fx_init(vcpu);
10048
10049 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
10050
10051 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
10052
10053 kvm_async_pf_hash_reset(vcpu);
10054 kvm_pmu_init(vcpu);
10055
10056 vcpu->arch.pending_external_vector = -1;
10057 vcpu->arch.preempted_in_kernel = false;
10058
10059 kvm_hv_vcpu_init(vcpu);
10060
10061 r = static_call(kvm_x86_vcpu_create)(vcpu);
10062 if (r)
10063 goto free_guest_fpu;
10064
10065 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
10066 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
10067 kvm_vcpu_mtrr_init(vcpu);
10068 vcpu_load(vcpu);
10069 kvm_vcpu_reset(vcpu, false);
10070 kvm_init_mmu(vcpu, false);
10071 vcpu_put(vcpu);
10072 return 0;
10073
10074 free_guest_fpu:
10075 kvm_free_guest_fpu(vcpu);
10076 free_user_fpu:
10077 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10078 free_emulate_ctxt:
10079 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10080 free_wbinvd_dirty_mask:
10081 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10082 fail_free_mce_banks:
10083 kfree(vcpu->arch.mce_banks);
10084 fail_free_pio_data:
10085 free_page((unsigned long)vcpu->arch.pio_data);
10086 fail_free_lapic:
10087 kvm_free_lapic(vcpu);
10088 fail_mmu_destroy:
10089 kvm_mmu_destroy(vcpu);
10090 return r;
10091 }
10092
10093 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
10094 {
10095 struct kvm *kvm = vcpu->kvm;
10096
10097 kvm_hv_vcpu_postcreate(vcpu);
10098
10099 if (mutex_lock_killable(&vcpu->mutex))
10100 return;
10101 vcpu_load(vcpu);
10102 kvm_synchronize_tsc(vcpu, 0);
10103 vcpu_put(vcpu);
10104
10105 /* poll control enabled by default */
10106 vcpu->arch.msr_kvm_poll_control = 1;
10107
10108 mutex_unlock(&vcpu->mutex);
10109
10110 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
10111 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
10112 KVMCLOCK_SYNC_PERIOD);
10113 }
10114
10115 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
10116 {
10117 struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
10118 int idx;
10119
10120 kvm_release_pfn(cache->pfn, cache->dirty, cache);
10121
10122 kvmclock_reset(vcpu);
10123
10124 static_call(kvm_x86_vcpu_free)(vcpu);
10125
10126 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10127 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10128 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10129 kvm_free_guest_fpu(vcpu);
10130
10131 kvm_hv_vcpu_uninit(vcpu);
10132 kvm_pmu_destroy(vcpu);
10133 kfree(vcpu->arch.mce_banks);
10134 kvm_free_lapic(vcpu);
10135 idx = srcu_read_lock(&vcpu->kvm->srcu);
10136 kvm_mmu_destroy(vcpu);
10137 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10138 free_page((unsigned long)vcpu->arch.pio_data);
10139 kvfree(vcpu->arch.cpuid_entries);
10140 if (!lapic_in_kernel(vcpu))
10141 static_branch_dec(&kvm_has_noapic_vcpu);
10142 }
10143
10144 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
10145 {
10146 kvm_lapic_reset(vcpu, init_event);
10147
10148 vcpu->arch.hflags = 0;
10149
10150 vcpu->arch.smi_pending = 0;
10151 vcpu->arch.smi_count = 0;
10152 atomic_set(&vcpu->arch.nmi_queued, 0);
10153 vcpu->arch.nmi_pending = 0;
10154 vcpu->arch.nmi_injected = false;
10155 kvm_clear_interrupt_queue(vcpu);
10156 kvm_clear_exception_queue(vcpu);
10157
10158 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
10159 kvm_update_dr0123(vcpu);
10160 vcpu->arch.dr6 = DR6_ACTIVE_LOW;
10161 vcpu->arch.dr7 = DR7_FIXED_1;
10162 kvm_update_dr7(vcpu);
10163
10164 vcpu->arch.cr2 = 0;
10165
10166 kvm_make_request(KVM_REQ_EVENT, vcpu);
10167 vcpu->arch.apf.msr_en_val = 0;
10168 vcpu->arch.apf.msr_int_val = 0;
10169 vcpu->arch.st.msr_val = 0;
10170
10171 kvmclock_reset(vcpu);
10172
10173 kvm_clear_async_pf_completion_queue(vcpu);
10174 kvm_async_pf_hash_reset(vcpu);
10175 vcpu->arch.apf.halted = false;
10176
10177 if (vcpu->arch.guest_fpu && kvm_mpx_supported()) {
10178 void *mpx_state_buffer;
10179
10180 /*
10181 * To avoid have the INIT path from kvm_apic_has_events() that be
10182 * called with loaded FPU and does not let userspace fix the state.
10183 */
10184 if (init_event)
10185 kvm_put_guest_fpu(vcpu);
10186 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10187 XFEATURE_BNDREGS);
10188 if (mpx_state_buffer)
10189 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
10190 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10191 XFEATURE_BNDCSR);
10192 if (mpx_state_buffer)
10193 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
10194 if (init_event)
10195 kvm_load_guest_fpu(vcpu);
10196 }
10197
10198 if (!init_event) {
10199 kvm_pmu_reset(vcpu);
10200 vcpu->arch.smbase = 0x30000;
10201
10202 vcpu->arch.msr_misc_features_enables = 0;
10203
10204 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10205 }
10206
10207 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
10208 vcpu->arch.regs_avail = ~0;
10209 vcpu->arch.regs_dirty = ~0;
10210
10211 vcpu->arch.ia32_xss = 0;
10212
10213 static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
10214 }
10215
10216 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
10217 {
10218 struct kvm_segment cs;
10219
10220 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10221 cs.selector = vector << 8;
10222 cs.base = vector << 12;
10223 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10224 kvm_rip_write(vcpu, 0);
10225 }
10226 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
10227
10228 int kvm_arch_hardware_enable(void)
10229 {
10230 struct kvm *kvm;
10231 struct kvm_vcpu *vcpu;
10232 int i;
10233 int ret;
10234 u64 local_tsc;
10235 u64 max_tsc = 0;
10236 bool stable, backwards_tsc = false;
10237
10238 kvm_user_return_msr_cpu_online();
10239 ret = static_call(kvm_x86_hardware_enable)();
10240 if (ret != 0)
10241 return ret;
10242
10243 local_tsc = rdtsc();
10244 stable = !kvm_check_tsc_unstable();
10245 list_for_each_entry(kvm, &vm_list, vm_list) {
10246 kvm_for_each_vcpu(i, vcpu, kvm) {
10247 if (!stable && vcpu->cpu == smp_processor_id())
10248 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10249 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
10250 backwards_tsc = true;
10251 if (vcpu->arch.last_host_tsc > max_tsc)
10252 max_tsc = vcpu->arch.last_host_tsc;
10253 }
10254 }
10255 }
10256
10257 /*
10258 * Sometimes, even reliable TSCs go backwards. This happens on
10259 * platforms that reset TSC during suspend or hibernate actions, but
10260 * maintain synchronization. We must compensate. Fortunately, we can
10261 * detect that condition here, which happens early in CPU bringup,
10262 * before any KVM threads can be running. Unfortunately, we can't
10263 * bring the TSCs fully up to date with real time, as we aren't yet far
10264 * enough into CPU bringup that we know how much real time has actually
10265 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
10266 * variables that haven't been updated yet.
10267 *
10268 * So we simply find the maximum observed TSC above, then record the
10269 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
10270 * the adjustment will be applied. Note that we accumulate
10271 * adjustments, in case multiple suspend cycles happen before some VCPU
10272 * gets a chance to run again. In the event that no KVM threads get a
10273 * chance to run, we will miss the entire elapsed period, as we'll have
10274 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
10275 * loose cycle time. This isn't too big a deal, since the loss will be
10276 * uniform across all VCPUs (not to mention the scenario is extremely
10277 * unlikely). It is possible that a second hibernate recovery happens
10278 * much faster than a first, causing the observed TSC here to be
10279 * smaller; this would require additional padding adjustment, which is
10280 * why we set last_host_tsc to the local tsc observed here.
10281 *
10282 * N.B. - this code below runs only on platforms with reliable TSC,
10283 * as that is the only way backwards_tsc is set above. Also note
10284 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
10285 * have the same delta_cyc adjustment applied if backwards_tsc
10286 * is detected. Note further, this adjustment is only done once,
10287 * as we reset last_host_tsc on all VCPUs to stop this from being
10288 * called multiple times (one for each physical CPU bringup).
10289 *
10290 * Platforms with unreliable TSCs don't have to deal with this, they
10291 * will be compensated by the logic in vcpu_load, which sets the TSC to
10292 * catchup mode. This will catchup all VCPUs to real time, but cannot
10293 * guarantee that they stay in perfect synchronization.
10294 */
10295 if (backwards_tsc) {
10296 u64 delta_cyc = max_tsc - local_tsc;
10297 list_for_each_entry(kvm, &vm_list, vm_list) {
10298 kvm->arch.backwards_tsc_observed = true;
10299 kvm_for_each_vcpu(i, vcpu, kvm) {
10300 vcpu->arch.tsc_offset_adjustment += delta_cyc;
10301 vcpu->arch.last_host_tsc = local_tsc;
10302 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
10303 }
10304
10305 /*
10306 * We have to disable TSC offset matching.. if you were
10307 * booting a VM while issuing an S4 host suspend....
10308 * you may have some problem. Solving this issue is
10309 * left as an exercise to the reader.
10310 */
10311 kvm->arch.last_tsc_nsec = 0;
10312 kvm->arch.last_tsc_write = 0;
10313 }
10314
10315 }
10316 return 0;
10317 }
10318
10319 void kvm_arch_hardware_disable(void)
10320 {
10321 static_call(kvm_x86_hardware_disable)();
10322 drop_user_return_notifiers();
10323 }
10324
10325 int kvm_arch_hardware_setup(void *opaque)
10326 {
10327 struct kvm_x86_init_ops *ops = opaque;
10328 int r;
10329
10330 rdmsrl_safe(MSR_EFER, &host_efer);
10331
10332 if (boot_cpu_has(X86_FEATURE_XSAVES))
10333 rdmsrl(MSR_IA32_XSS, host_xss);
10334
10335 r = ops->hardware_setup();
10336 if (r != 0)
10337 return r;
10338
10339 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
10340 kvm_ops_static_call_update();
10341
10342 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
10343 supported_xss = 0;
10344
10345 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
10346 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
10347 #undef __kvm_cpu_cap_has
10348
10349 if (kvm_has_tsc_control) {
10350 /*
10351 * Make sure the user can only configure tsc_khz values that
10352 * fit into a signed integer.
10353 * A min value is not calculated because it will always
10354 * be 1 on all machines.
10355 */
10356 u64 max = min(0x7fffffffULL,
10357 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
10358 kvm_max_guest_tsc_khz = max;
10359
10360 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
10361 }
10362
10363 kvm_init_msr_list();
10364 return 0;
10365 }
10366
10367 void kvm_arch_hardware_unsetup(void)
10368 {
10369 static_call(kvm_x86_hardware_unsetup)();
10370 }
10371
10372 int kvm_arch_check_processor_compat(void *opaque)
10373 {
10374 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
10375 struct kvm_x86_init_ops *ops = opaque;
10376
10377 WARN_ON(!irqs_disabled());
10378
10379 if (__cr4_reserved_bits(cpu_has, c) !=
10380 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
10381 return -EIO;
10382
10383 return ops->check_processor_compatibility();
10384 }
10385
10386 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
10387 {
10388 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
10389 }
10390 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
10391
10392 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
10393 {
10394 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
10395 }
10396
10397 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
10398 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
10399
10400 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
10401 {
10402 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
10403
10404 vcpu->arch.l1tf_flush_l1d = true;
10405 if (pmu->version && unlikely(pmu->event_count)) {
10406 pmu->need_cleanup = true;
10407 kvm_make_request(KVM_REQ_PMU, vcpu);
10408 }
10409 static_call(kvm_x86_sched_in)(vcpu, cpu);
10410 }
10411
10412 void kvm_arch_free_vm(struct kvm *kvm)
10413 {
10414 kfree(kvm->arch.hyperv.hv_pa_pg);
10415 vfree(kvm);
10416 }
10417
10418
10419 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
10420 {
10421 if (type)
10422 return -EINVAL;
10423
10424 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
10425 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
10426 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
10427 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
10428 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
10429 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
10430
10431 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
10432 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
10433 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
10434 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
10435 &kvm->arch.irq_sources_bitmap);
10436
10437 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
10438 mutex_init(&kvm->arch.apic_map_lock);
10439 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
10440
10441 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
10442 pvclock_update_vm_gtod_copy(kvm);
10443
10444 kvm->arch.guest_can_read_msr_platform_info = true;
10445
10446 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
10447 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
10448
10449 kvm_hv_init_vm(kvm);
10450 kvm_page_track_init(kvm);
10451 kvm_mmu_init_vm(kvm);
10452
10453 return static_call(kvm_x86_vm_init)(kvm);
10454 }
10455
10456 int kvm_arch_post_init_vm(struct kvm *kvm)
10457 {
10458 return kvm_mmu_post_init_vm(kvm);
10459 }
10460
10461 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
10462 {
10463 vcpu_load(vcpu);
10464 kvm_mmu_unload(vcpu);
10465 vcpu_put(vcpu);
10466 }
10467
10468 static void kvm_free_vcpus(struct kvm *kvm)
10469 {
10470 unsigned int i;
10471 struct kvm_vcpu *vcpu;
10472
10473 /*
10474 * Unpin any mmu pages first.
10475 */
10476 kvm_for_each_vcpu(i, vcpu, kvm) {
10477 kvm_clear_async_pf_completion_queue(vcpu);
10478 kvm_unload_vcpu_mmu(vcpu);
10479 }
10480 kvm_for_each_vcpu(i, vcpu, kvm)
10481 kvm_vcpu_destroy(vcpu);
10482
10483 mutex_lock(&kvm->lock);
10484 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
10485 kvm->vcpus[i] = NULL;
10486
10487 atomic_set(&kvm->online_vcpus, 0);
10488 mutex_unlock(&kvm->lock);
10489 }
10490
10491 void kvm_arch_sync_events(struct kvm *kvm)
10492 {
10493 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
10494 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
10495 kvm_free_pit(kvm);
10496 }
10497
10498 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
10499
10500 /**
10501 * __x86_set_memory_region: Setup KVM internal memory slot
10502 *
10503 * @kvm: the kvm pointer to the VM.
10504 * @id: the slot ID to setup.
10505 * @gpa: the GPA to install the slot (unused when @size == 0).
10506 * @size: the size of the slot. Set to zero to uninstall a slot.
10507 *
10508 * This function helps to setup a KVM internal memory slot. Specify
10509 * @size > 0 to install a new slot, while @size == 0 to uninstall a
10510 * slot. The return code can be one of the following:
10511 *
10512 * HVA: on success (uninstall will return a bogus HVA)
10513 * -errno: on error
10514 *
10515 * The caller should always use IS_ERR() to check the return value
10516 * before use. Note, the KVM internal memory slots are guaranteed to
10517 * remain valid and unchanged until the VM is destroyed, i.e., the
10518 * GPA->HVA translation will not change. However, the HVA is a user
10519 * address, i.e. its accessibility is not guaranteed, and must be
10520 * accessed via __copy_{to,from}_user().
10521 */
10522 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
10523 u32 size)
10524 {
10525 int i, r;
10526 unsigned long hva, old_npages;
10527 struct kvm_memslots *slots = kvm_memslots(kvm);
10528 struct kvm_memory_slot *slot;
10529
10530 /* Called with kvm->slots_lock held. */
10531 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
10532 return ERR_PTR_USR(-EINVAL);
10533
10534 slot = id_to_memslot(slots, id);
10535 if (size) {
10536 if (slot && slot->npages)
10537 return ERR_PTR_USR(-EEXIST);
10538
10539 /*
10540 * MAP_SHARED to prevent internal slot pages from being moved
10541 * by fork()/COW.
10542 */
10543 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
10544 MAP_SHARED | MAP_ANONYMOUS, 0);
10545 if (IS_ERR((void *)hva))
10546 return (void __user *)hva;
10547 } else {
10548 if (!slot || !slot->npages)
10549 return 0;
10550
10551 old_npages = slot->npages;
10552 hva = slot->userspace_addr;
10553 }
10554
10555 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
10556 struct kvm_userspace_memory_region m;
10557
10558 m.slot = id | (i << 16);
10559 m.flags = 0;
10560 m.guest_phys_addr = gpa;
10561 m.userspace_addr = hva;
10562 m.memory_size = size;
10563 r = __kvm_set_memory_region(kvm, &m);
10564 if (r < 0)
10565 return ERR_PTR_USR(r);
10566 }
10567
10568 if (!size)
10569 vm_munmap(hva, old_npages * PAGE_SIZE);
10570
10571 return (void __user *)hva;
10572 }
10573 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
10574
10575 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
10576 {
10577 kvm_mmu_pre_destroy_vm(kvm);
10578 }
10579
10580 void kvm_arch_destroy_vm(struct kvm *kvm)
10581 {
10582 u32 i;
10583
10584 if (current->mm == kvm->mm) {
10585 /*
10586 * Free memory regions allocated on behalf of userspace,
10587 * unless the the memory map has changed due to process exit
10588 * or fd copying.
10589 */
10590 mutex_lock(&kvm->slots_lock);
10591 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
10592 0, 0);
10593 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
10594 0, 0);
10595 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
10596 mutex_unlock(&kvm->slots_lock);
10597 }
10598 static_call_cond(kvm_x86_vm_destroy)(kvm);
10599 for (i = 0; i < kvm->arch.msr_filter.count; i++)
10600 kfree(kvm->arch.msr_filter.ranges[i].bitmap);
10601 kvm_pic_destroy(kvm);
10602 kvm_ioapic_destroy(kvm);
10603 kvm_free_vcpus(kvm);
10604 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
10605 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
10606 kvm_mmu_uninit_vm(kvm);
10607 kvm_page_track_cleanup(kvm);
10608 kvm_hv_destroy_vm(kvm);
10609 }
10610
10611 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
10612 {
10613 int i;
10614
10615 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10616 kvfree(slot->arch.rmap[i]);
10617 slot->arch.rmap[i] = NULL;
10618
10619 if (i == 0)
10620 continue;
10621
10622 kvfree(slot->arch.lpage_info[i - 1]);
10623 slot->arch.lpage_info[i - 1] = NULL;
10624 }
10625
10626 kvm_page_track_free_memslot(slot);
10627 }
10628
10629 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot,
10630 unsigned long npages)
10631 {
10632 int i;
10633
10634 /*
10635 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
10636 * old arrays will be freed by __kvm_set_memory_region() if installing
10637 * the new memslot is successful.
10638 */
10639 memset(&slot->arch, 0, sizeof(slot->arch));
10640
10641 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10642 struct kvm_lpage_info *linfo;
10643 unsigned long ugfn;
10644 int lpages;
10645 int level = i + 1;
10646
10647 lpages = gfn_to_index(slot->base_gfn + npages - 1,
10648 slot->base_gfn, level) + 1;
10649
10650 slot->arch.rmap[i] =
10651 kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
10652 GFP_KERNEL_ACCOUNT);
10653 if (!slot->arch.rmap[i])
10654 goto out_free;
10655 if (i == 0)
10656 continue;
10657
10658 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
10659 if (!linfo)
10660 goto out_free;
10661
10662 slot->arch.lpage_info[i - 1] = linfo;
10663
10664 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
10665 linfo[0].disallow_lpage = 1;
10666 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
10667 linfo[lpages - 1].disallow_lpage = 1;
10668 ugfn = slot->userspace_addr >> PAGE_SHIFT;
10669 /*
10670 * If the gfn and userspace address are not aligned wrt each
10671 * other, disable large page support for this slot.
10672 */
10673 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
10674 unsigned long j;
10675
10676 for (j = 0; j < lpages; ++j)
10677 linfo[j].disallow_lpage = 1;
10678 }
10679 }
10680
10681 if (kvm_page_track_create_memslot(slot, npages))
10682 goto out_free;
10683
10684 return 0;
10685
10686 out_free:
10687 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10688 kvfree(slot->arch.rmap[i]);
10689 slot->arch.rmap[i] = NULL;
10690 if (i == 0)
10691 continue;
10692
10693 kvfree(slot->arch.lpage_info[i - 1]);
10694 slot->arch.lpage_info[i - 1] = NULL;
10695 }
10696 return -ENOMEM;
10697 }
10698
10699 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
10700 {
10701 struct kvm_vcpu *vcpu;
10702 int i;
10703
10704 /*
10705 * memslots->generation has been incremented.
10706 * mmio generation may have reached its maximum value.
10707 */
10708 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
10709
10710 /* Force re-initialization of steal_time cache */
10711 kvm_for_each_vcpu(i, vcpu, kvm)
10712 kvm_vcpu_kick(vcpu);
10713 }
10714
10715 int kvm_arch_prepare_memory_region(struct kvm *kvm,
10716 struct kvm_memory_slot *memslot,
10717 const struct kvm_userspace_memory_region *mem,
10718 enum kvm_mr_change change)
10719 {
10720 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
10721 return kvm_alloc_memslot_metadata(memslot,
10722 mem->memory_size >> PAGE_SHIFT);
10723 return 0;
10724 }
10725
10726 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
10727 struct kvm_memory_slot *old,
10728 struct kvm_memory_slot *new,
10729 enum kvm_mr_change change)
10730 {
10731 /*
10732 * Nothing to do for RO slots or CREATE/MOVE/DELETE of a slot.
10733 * See comments below.
10734 */
10735 if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
10736 return;
10737
10738 /*
10739 * Dirty logging tracks sptes in 4k granularity, meaning that large
10740 * sptes have to be split. If live migration is successful, the guest
10741 * in the source machine will be destroyed and large sptes will be
10742 * created in the destination. However, if the guest continues to run
10743 * in the source machine (for example if live migration fails), small
10744 * sptes will remain around and cause bad performance.
10745 *
10746 * Scan sptes if dirty logging has been stopped, dropping those
10747 * which can be collapsed into a single large-page spte. Later
10748 * page faults will create the large-page sptes.
10749 *
10750 * There is no need to do this in any of the following cases:
10751 * CREATE: No dirty mappings will already exist.
10752 * MOVE/DELETE: The old mappings will already have been cleaned up by
10753 * kvm_arch_flush_shadow_memslot()
10754 */
10755 if ((old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
10756 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
10757 kvm_mmu_zap_collapsible_sptes(kvm, new);
10758
10759 /*
10760 * Enable or disable dirty logging for the slot.
10761 *
10762 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of the old
10763 * slot have been zapped so no dirty logging updates are needed for
10764 * the old slot.
10765 * For KVM_MR_CREATE and KVM_MR_MOVE, once the new slot is visible
10766 * any mappings that might be created in it will consume the
10767 * properties of the new slot and do not need to be updated here.
10768 *
10769 * When PML is enabled, the kvm_x86_ops dirty logging hooks are
10770 * called to enable/disable dirty logging.
10771 *
10772 * When disabling dirty logging with PML enabled, the D-bit is set
10773 * for sptes in the slot in order to prevent unnecessary GPA
10774 * logging in the PML buffer (and potential PML buffer full VMEXIT).
10775 * This guarantees leaving PML enabled for the guest's lifetime
10776 * won't have any additional overhead from PML when the guest is
10777 * running with dirty logging disabled.
10778 *
10779 * When enabling dirty logging, large sptes are write-protected
10780 * so they can be split on first write. New large sptes cannot
10781 * be created for this slot until the end of the logging.
10782 * See the comments in fast_page_fault().
10783 * For small sptes, nothing is done if the dirty log is in the
10784 * initial-all-set state. Otherwise, depending on whether pml
10785 * is enabled the D-bit or the W-bit will be cleared.
10786 */
10787 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
10788 if (kvm_x86_ops.slot_enable_log_dirty) {
10789 static_call(kvm_x86_slot_enable_log_dirty)(kvm, new);
10790 } else {
10791 int level =
10792 kvm_dirty_log_manual_protect_and_init_set(kvm) ?
10793 PG_LEVEL_2M : PG_LEVEL_4K;
10794
10795 /*
10796 * If we're with initial-all-set, we don't need
10797 * to write protect any small page because
10798 * they're reported as dirty already. However
10799 * we still need to write-protect huge pages
10800 * so that the page split can happen lazily on
10801 * the first write to the huge page.
10802 */
10803 kvm_mmu_slot_remove_write_access(kvm, new, level);
10804 }
10805 } else {
10806 static_call_cond(kvm_x86_slot_disable_log_dirty)(kvm, new);
10807 }
10808 }
10809
10810 void kvm_arch_commit_memory_region(struct kvm *kvm,
10811 const struct kvm_userspace_memory_region *mem,
10812 struct kvm_memory_slot *old,
10813 const struct kvm_memory_slot *new,
10814 enum kvm_mr_change change)
10815 {
10816 if (!kvm->arch.n_requested_mmu_pages)
10817 kvm_mmu_change_mmu_pages(kvm,
10818 kvm_mmu_calculate_default_mmu_pages(kvm));
10819
10820 /*
10821 * FIXME: const-ify all uses of struct kvm_memory_slot.
10822 */
10823 kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change);
10824
10825 /* Free the arrays associated with the old memslot. */
10826 if (change == KVM_MR_MOVE)
10827 kvm_arch_free_memslot(kvm, old);
10828 }
10829
10830 void kvm_arch_flush_shadow_all(struct kvm *kvm)
10831 {
10832 kvm_mmu_zap_all(kvm);
10833 }
10834
10835 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
10836 struct kvm_memory_slot *slot)
10837 {
10838 kvm_page_track_flush_slot(kvm, slot);
10839 }
10840
10841 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
10842 {
10843 return (is_guest_mode(vcpu) &&
10844 kvm_x86_ops.guest_apic_has_interrupt &&
10845 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
10846 }
10847
10848 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
10849 {
10850 if (!list_empty_careful(&vcpu->async_pf.done))
10851 return true;
10852
10853 if (kvm_apic_has_events(vcpu))
10854 return true;
10855
10856 if (vcpu->arch.pv.pv_unhalted)
10857 return true;
10858
10859 if (vcpu->arch.exception.pending)
10860 return true;
10861
10862 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10863 (vcpu->arch.nmi_pending &&
10864 static_call(kvm_x86_nmi_allowed)(vcpu, false)))
10865 return true;
10866
10867 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
10868 (vcpu->arch.smi_pending &&
10869 static_call(kvm_x86_smi_allowed)(vcpu, false)))
10870 return true;
10871
10872 if (kvm_arch_interrupt_allowed(vcpu) &&
10873 (kvm_cpu_has_interrupt(vcpu) ||
10874 kvm_guest_apic_has_interrupt(vcpu)))
10875 return true;
10876
10877 if (kvm_hv_has_stimer_pending(vcpu))
10878 return true;
10879
10880 if (is_guest_mode(vcpu) &&
10881 kvm_x86_ops.nested_ops->hv_timer_pending &&
10882 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
10883 return true;
10884
10885 return false;
10886 }
10887
10888 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
10889 {
10890 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
10891 }
10892
10893 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
10894 {
10895 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
10896 return true;
10897
10898 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10899 kvm_test_request(KVM_REQ_SMI, vcpu) ||
10900 kvm_test_request(KVM_REQ_EVENT, vcpu))
10901 return true;
10902
10903 if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
10904 return true;
10905
10906 return false;
10907 }
10908
10909 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
10910 {
10911 return vcpu->arch.preempted_in_kernel;
10912 }
10913
10914 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
10915 {
10916 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
10917 }
10918
10919 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
10920 {
10921 return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
10922 }
10923
10924 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
10925 {
10926 /* Can't read the RIP when guest state is protected, just return 0 */
10927 if (vcpu->arch.guest_state_protected)
10928 return 0;
10929
10930 if (is_64_bit_mode(vcpu))
10931 return kvm_rip_read(vcpu);
10932 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
10933 kvm_rip_read(vcpu));
10934 }
10935 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
10936
10937 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
10938 {
10939 return kvm_get_linear_rip(vcpu) == linear_rip;
10940 }
10941 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
10942
10943 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
10944 {
10945 unsigned long rflags;
10946
10947 rflags = static_call(kvm_x86_get_rflags)(vcpu);
10948 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10949 rflags &= ~X86_EFLAGS_TF;
10950 return rflags;
10951 }
10952 EXPORT_SYMBOL_GPL(kvm_get_rflags);
10953
10954 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10955 {
10956 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
10957 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
10958 rflags |= X86_EFLAGS_TF;
10959 static_call(kvm_x86_set_rflags)(vcpu, rflags);
10960 }
10961
10962 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10963 {
10964 __kvm_set_rflags(vcpu, rflags);
10965 kvm_make_request(KVM_REQ_EVENT, vcpu);
10966 }
10967 EXPORT_SYMBOL_GPL(kvm_set_rflags);
10968
10969 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
10970 {
10971 int r;
10972
10973 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
10974 work->wakeup_all)
10975 return;
10976
10977 r = kvm_mmu_reload(vcpu);
10978 if (unlikely(r))
10979 return;
10980
10981 if (!vcpu->arch.mmu->direct_map &&
10982 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
10983 return;
10984
10985 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
10986 }
10987
10988 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
10989 {
10990 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
10991
10992 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
10993 }
10994
10995 static inline u32 kvm_async_pf_next_probe(u32 key)
10996 {
10997 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
10998 }
10999
11000 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11001 {
11002 u32 key = kvm_async_pf_hash_fn(gfn);
11003
11004 while (vcpu->arch.apf.gfns[key] != ~0)
11005 key = kvm_async_pf_next_probe(key);
11006
11007 vcpu->arch.apf.gfns[key] = gfn;
11008 }
11009
11010 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
11011 {
11012 int i;
11013 u32 key = kvm_async_pf_hash_fn(gfn);
11014
11015 for (i = 0; i < ASYNC_PF_PER_VCPU &&
11016 (vcpu->arch.apf.gfns[key] != gfn &&
11017 vcpu->arch.apf.gfns[key] != ~0); i++)
11018 key = kvm_async_pf_next_probe(key);
11019
11020 return key;
11021 }
11022
11023 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11024 {
11025 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
11026 }
11027
11028 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11029 {
11030 u32 i, j, k;
11031
11032 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
11033
11034 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
11035 return;
11036
11037 while (true) {
11038 vcpu->arch.apf.gfns[i] = ~0;
11039 do {
11040 j = kvm_async_pf_next_probe(j);
11041 if (vcpu->arch.apf.gfns[j] == ~0)
11042 return;
11043 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
11044 /*
11045 * k lies cyclically in ]i,j]
11046 * | i.k.j |
11047 * |....j i.k.| or |.k..j i...|
11048 */
11049 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
11050 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
11051 i = j;
11052 }
11053 }
11054
11055 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
11056 {
11057 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
11058
11059 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
11060 sizeof(reason));
11061 }
11062
11063 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
11064 {
11065 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11066
11067 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11068 &token, offset, sizeof(token));
11069 }
11070
11071 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
11072 {
11073 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11074 u32 val;
11075
11076 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11077 &val, offset, sizeof(val)))
11078 return false;
11079
11080 return !val;
11081 }
11082
11083 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
11084 {
11085 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
11086 return false;
11087
11088 if (!kvm_pv_async_pf_enabled(vcpu) ||
11089 (vcpu->arch.apf.send_user_only && static_call(kvm_x86_get_cpl)(vcpu) == 0))
11090 return false;
11091
11092 return true;
11093 }
11094
11095 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
11096 {
11097 if (unlikely(!lapic_in_kernel(vcpu) ||
11098 kvm_event_needs_reinjection(vcpu) ||
11099 vcpu->arch.exception.pending))
11100 return false;
11101
11102 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
11103 return false;
11104
11105 /*
11106 * If interrupts are off we cannot even use an artificial
11107 * halt state.
11108 */
11109 return kvm_arch_interrupt_allowed(vcpu);
11110 }
11111
11112 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
11113 struct kvm_async_pf *work)
11114 {
11115 struct x86_exception fault;
11116
11117 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
11118 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
11119
11120 if (kvm_can_deliver_async_pf(vcpu) &&
11121 !apf_put_user_notpresent(vcpu)) {
11122 fault.vector = PF_VECTOR;
11123 fault.error_code_valid = true;
11124 fault.error_code = 0;
11125 fault.nested_page_fault = false;
11126 fault.address = work->arch.token;
11127 fault.async_page_fault = true;
11128 kvm_inject_page_fault(vcpu, &fault);
11129 return true;
11130 } else {
11131 /*
11132 * It is not possible to deliver a paravirtualized asynchronous
11133 * page fault, but putting the guest in an artificial halt state
11134 * can be beneficial nevertheless: if an interrupt arrives, we
11135 * can deliver it timely and perhaps the guest will schedule
11136 * another process. When the instruction that triggered a page
11137 * fault is retried, hopefully the page will be ready in the host.
11138 */
11139 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
11140 return false;
11141 }
11142 }
11143
11144 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
11145 struct kvm_async_pf *work)
11146 {
11147 struct kvm_lapic_irq irq = {
11148 .delivery_mode = APIC_DM_FIXED,
11149 .vector = vcpu->arch.apf.vec
11150 };
11151
11152 if (work->wakeup_all)
11153 work->arch.token = ~0; /* broadcast wakeup */
11154 else
11155 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
11156 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
11157
11158 if ((work->wakeup_all || work->notpresent_injected) &&
11159 kvm_pv_async_pf_enabled(vcpu) &&
11160 !apf_put_user_ready(vcpu, work->arch.token)) {
11161 vcpu->arch.apf.pageready_pending = true;
11162 kvm_apic_set_irq(vcpu, &irq, NULL);
11163 }
11164
11165 vcpu->arch.apf.halted = false;
11166 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11167 }
11168
11169 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
11170 {
11171 kvm_make_request(KVM_REQ_APF_READY, vcpu);
11172 if (!vcpu->arch.apf.pageready_pending)
11173 kvm_vcpu_kick(vcpu);
11174 }
11175
11176 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
11177 {
11178 if (!kvm_pv_async_pf_enabled(vcpu))
11179 return true;
11180 else
11181 return apf_pageready_slot_free(vcpu);
11182 }
11183
11184 void kvm_arch_start_assignment(struct kvm *kvm)
11185 {
11186 atomic_inc(&kvm->arch.assigned_device_count);
11187 }
11188 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
11189
11190 void kvm_arch_end_assignment(struct kvm *kvm)
11191 {
11192 atomic_dec(&kvm->arch.assigned_device_count);
11193 }
11194 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
11195
11196 bool kvm_arch_has_assigned_device(struct kvm *kvm)
11197 {
11198 return atomic_read(&kvm->arch.assigned_device_count);
11199 }
11200 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
11201
11202 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
11203 {
11204 atomic_inc(&kvm->arch.noncoherent_dma_count);
11205 }
11206 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
11207
11208 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
11209 {
11210 atomic_dec(&kvm->arch.noncoherent_dma_count);
11211 }
11212 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
11213
11214 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
11215 {
11216 return atomic_read(&kvm->arch.noncoherent_dma_count);
11217 }
11218 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
11219
11220 bool kvm_arch_has_irq_bypass(void)
11221 {
11222 return true;
11223 }
11224
11225 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
11226 struct irq_bypass_producer *prod)
11227 {
11228 struct kvm_kernel_irqfd *irqfd =
11229 container_of(cons, struct kvm_kernel_irqfd, consumer);
11230 int ret;
11231
11232 irqfd->producer = prod;
11233 kvm_arch_start_assignment(irqfd->kvm);
11234 ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm,
11235 prod->irq, irqfd->gsi, 1);
11236
11237 if (ret)
11238 kvm_arch_end_assignment(irqfd->kvm);
11239
11240 return ret;
11241 }
11242
11243 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
11244 struct irq_bypass_producer *prod)
11245 {
11246 int ret;
11247 struct kvm_kernel_irqfd *irqfd =
11248 container_of(cons, struct kvm_kernel_irqfd, consumer);
11249
11250 WARN_ON(irqfd->producer != prod);
11251 irqfd->producer = NULL;
11252
11253 /*
11254 * When producer of consumer is unregistered, we change back to
11255 * remapped mode, so we can re-use the current implementation
11256 * when the irq is masked/disabled or the consumer side (KVM
11257 * int this case doesn't want to receive the interrupts.
11258 */
11259 ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
11260 if (ret)
11261 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
11262 " fails: %d\n", irqfd->consumer.token, ret);
11263
11264 kvm_arch_end_assignment(irqfd->kvm);
11265 }
11266
11267 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
11268 uint32_t guest_irq, bool set)
11269 {
11270 return static_call(kvm_x86_update_pi_irte)(kvm, host_irq, guest_irq, set);
11271 }
11272
11273 bool kvm_vector_hashing_enabled(void)
11274 {
11275 return vector_hashing;
11276 }
11277
11278 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
11279 {
11280 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
11281 }
11282 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
11283
11284
11285 int kvm_spec_ctrl_test_value(u64 value)
11286 {
11287 /*
11288 * test that setting IA32_SPEC_CTRL to given value
11289 * is allowed by the host processor
11290 */
11291
11292 u64 saved_value;
11293 unsigned long flags;
11294 int ret = 0;
11295
11296 local_irq_save(flags);
11297
11298 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
11299 ret = 1;
11300 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
11301 ret = 1;
11302 else
11303 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
11304
11305 local_irq_restore(flags);
11306
11307 return ret;
11308 }
11309 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
11310
11311 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
11312 {
11313 struct x86_exception fault;
11314 u32 access = error_code &
11315 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
11316
11317 if (!(error_code & PFERR_PRESENT_MASK) ||
11318 vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
11319 /*
11320 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
11321 * tables probably do not match the TLB. Just proceed
11322 * with the error code that the processor gave.
11323 */
11324 fault.vector = PF_VECTOR;
11325 fault.error_code_valid = true;
11326 fault.error_code = error_code;
11327 fault.nested_page_fault = false;
11328 fault.address = gva;
11329 }
11330 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
11331 }
11332 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
11333
11334 /*
11335 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
11336 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
11337 * indicates whether exit to userspace is needed.
11338 */
11339 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
11340 struct x86_exception *e)
11341 {
11342 if (r == X86EMUL_PROPAGATE_FAULT) {
11343 kvm_inject_emulated_page_fault(vcpu, e);
11344 return 1;
11345 }
11346
11347 /*
11348 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
11349 * while handling a VMX instruction KVM could've handled the request
11350 * correctly by exiting to userspace and performing I/O but there
11351 * doesn't seem to be a real use-case behind such requests, just return
11352 * KVM_EXIT_INTERNAL_ERROR for now.
11353 */
11354 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11355 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11356 vcpu->run->internal.ndata = 0;
11357
11358 return 0;
11359 }
11360 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
11361
11362 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
11363 {
11364 bool pcid_enabled;
11365 struct x86_exception e;
11366 unsigned i;
11367 unsigned long roots_to_free = 0;
11368 struct {
11369 u64 pcid;
11370 u64 gla;
11371 } operand;
11372 int r;
11373
11374 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
11375 if (r != X86EMUL_CONTINUE)
11376 return kvm_handle_memory_failure(vcpu, r, &e);
11377
11378 if (operand.pcid >> 12 != 0) {
11379 kvm_inject_gp(vcpu, 0);
11380 return 1;
11381 }
11382
11383 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
11384
11385 switch (type) {
11386 case INVPCID_TYPE_INDIV_ADDR:
11387 if ((!pcid_enabled && (operand.pcid != 0)) ||
11388 is_noncanonical_address(operand.gla, vcpu)) {
11389 kvm_inject_gp(vcpu, 0);
11390 return 1;
11391 }
11392 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
11393 return kvm_skip_emulated_instruction(vcpu);
11394
11395 case INVPCID_TYPE_SINGLE_CTXT:
11396 if (!pcid_enabled && (operand.pcid != 0)) {
11397 kvm_inject_gp(vcpu, 0);
11398 return 1;
11399 }
11400
11401 if (kvm_get_active_pcid(vcpu) == operand.pcid) {
11402 kvm_mmu_sync_roots(vcpu);
11403 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
11404 }
11405
11406 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
11407 if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].pgd)
11408 == operand.pcid)
11409 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
11410
11411 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
11412 /*
11413 * If neither the current cr3 nor any of the prev_roots use the
11414 * given PCID, then nothing needs to be done here because a
11415 * resync will happen anyway before switching to any other CR3.
11416 */
11417
11418 return kvm_skip_emulated_instruction(vcpu);
11419
11420 case INVPCID_TYPE_ALL_NON_GLOBAL:
11421 /*
11422 * Currently, KVM doesn't mark global entries in the shadow
11423 * page tables, so a non-global flush just degenerates to a
11424 * global flush. If needed, we could optimize this later by
11425 * keeping track of global entries in shadow page tables.
11426 */
11427
11428 fallthrough;
11429 case INVPCID_TYPE_ALL_INCL_GLOBAL:
11430 kvm_mmu_unload(vcpu);
11431 return kvm_skip_emulated_instruction(vcpu);
11432
11433 default:
11434 BUG(); /* We have already checked above that type <= 3 */
11435 }
11436 }
11437 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
11438
11439 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
11440 {
11441 struct kvm_run *run = vcpu->run;
11442 struct kvm_mmio_fragment *frag;
11443 unsigned int len;
11444
11445 BUG_ON(!vcpu->mmio_needed);
11446
11447 /* Complete previous fragment */
11448 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11449 len = min(8u, frag->len);
11450 if (!vcpu->mmio_is_write)
11451 memcpy(frag->data, run->mmio.data, len);
11452
11453 if (frag->len <= 8) {
11454 /* Switch to the next fragment. */
11455 frag++;
11456 vcpu->mmio_cur_fragment++;
11457 } else {
11458 /* Go forward to the next mmio piece. */
11459 frag->data += len;
11460 frag->gpa += len;
11461 frag->len -= len;
11462 }
11463
11464 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11465 vcpu->mmio_needed = 0;
11466
11467 // VMG change, at this point, we're always done
11468 // RIP has already been advanced
11469 return 1;
11470 }
11471
11472 // More MMIO is needed
11473 run->mmio.phys_addr = frag->gpa;
11474 run->mmio.len = min(8u, frag->len);
11475 run->mmio.is_write = vcpu->mmio_is_write;
11476 if (run->mmio.is_write)
11477 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11478 run->exit_reason = KVM_EXIT_MMIO;
11479
11480 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11481
11482 return 0;
11483 }
11484
11485 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
11486 void *data)
11487 {
11488 int handled;
11489 struct kvm_mmio_fragment *frag;
11490
11491 if (!data)
11492 return -EINVAL;
11493
11494 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
11495 if (handled == bytes)
11496 return 1;
11497
11498 bytes -= handled;
11499 gpa += handled;
11500 data += handled;
11501
11502 /*TODO: Check if need to increment number of frags */
11503 frag = vcpu->mmio_fragments;
11504 vcpu->mmio_nr_fragments = 1;
11505 frag->len = bytes;
11506 frag->gpa = gpa;
11507 frag->data = data;
11508
11509 vcpu->mmio_needed = 1;
11510 vcpu->mmio_cur_fragment = 0;
11511
11512 vcpu->run->mmio.phys_addr = gpa;
11513 vcpu->run->mmio.len = min(8u, frag->len);
11514 vcpu->run->mmio.is_write = 1;
11515 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
11516 vcpu->run->exit_reason = KVM_EXIT_MMIO;
11517
11518 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11519
11520 return 0;
11521 }
11522 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
11523
11524 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
11525 void *data)
11526 {
11527 int handled;
11528 struct kvm_mmio_fragment *frag;
11529
11530 if (!data)
11531 return -EINVAL;
11532
11533 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
11534 if (handled == bytes)
11535 return 1;
11536
11537 bytes -= handled;
11538 gpa += handled;
11539 data += handled;
11540
11541 /*TODO: Check if need to increment number of frags */
11542 frag = vcpu->mmio_fragments;
11543 vcpu->mmio_nr_fragments = 1;
11544 frag->len = bytes;
11545 frag->gpa = gpa;
11546 frag->data = data;
11547
11548 vcpu->mmio_needed = 1;
11549 vcpu->mmio_cur_fragment = 0;
11550
11551 vcpu->run->mmio.phys_addr = gpa;
11552 vcpu->run->mmio.len = min(8u, frag->len);
11553 vcpu->run->mmio.is_write = 0;
11554 vcpu->run->exit_reason = KVM_EXIT_MMIO;
11555
11556 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11557
11558 return 0;
11559 }
11560 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
11561
11562 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
11563 {
11564 memcpy(vcpu->arch.guest_ins_data, vcpu->arch.pio_data,
11565 vcpu->arch.pio.count * vcpu->arch.pio.size);
11566 vcpu->arch.pio.count = 0;
11567
11568 return 1;
11569 }
11570
11571 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
11572 unsigned int port, void *data, unsigned int count)
11573 {
11574 int ret;
11575
11576 ret = emulator_pio_out_emulated(vcpu->arch.emulate_ctxt, size, port,
11577 data, count);
11578 if (ret)
11579 return ret;
11580
11581 vcpu->arch.pio.count = 0;
11582
11583 return 0;
11584 }
11585
11586 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
11587 unsigned int port, void *data, unsigned int count)
11588 {
11589 int ret;
11590
11591 ret = emulator_pio_in_emulated(vcpu->arch.emulate_ctxt, size, port,
11592 data, count);
11593 if (ret) {
11594 vcpu->arch.pio.count = 0;
11595 } else {
11596 vcpu->arch.guest_ins_data = data;
11597 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
11598 }
11599
11600 return 0;
11601 }
11602
11603 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
11604 unsigned int port, void *data, unsigned int count,
11605 int in)
11606 {
11607 return in ? kvm_sev_es_ins(vcpu, size, port, data, count)
11608 : kvm_sev_es_outs(vcpu, size, port, data, count);
11609 }
11610 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
11611
11612 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
11613 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
11614 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
11615 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
11616 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
11617 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
11618 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
11619 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
11620 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
11621 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
11622 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
11623 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
11624 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
11625 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
11626 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
11627 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
11628 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
11629 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
11630 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
11631 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
11632 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
11633 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
11634 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
11635 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
11636 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
11637 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
11638 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);