2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Amit Shah <amit.shah@qumranet.com>
14 * Ben-Ami Yassour <benami@il.ibm.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
21 #include <linux/kvm_host.h>
26 #include "kvm_cache_regs.h"
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40 #define CREATE_TRACE_POINTS
43 #include <asm/uaccess.h>
49 #define MAX_IO_MSRS 256
50 #define CR0_RESERVED_BITS \
51 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
52 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
53 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
54 #define CR4_RESERVED_BITS \
55 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
56 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
57 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
58 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
60 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
62 #define KVM_MAX_MCE_BANKS 32
63 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
66 * - enable syscall per default because its emulated by KVM
67 * - enable LME and LMA per default on 64 bit KVM
70 static u64 __read_mostly efer_reserved_bits
= 0xfffffffffffffafeULL
;
72 static u64 __read_mostly efer_reserved_bits
= 0xfffffffffffffffeULL
;
75 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
76 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
78 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2
*cpuid
,
79 struct kvm_cpuid_entry2 __user
*entries
);
80 struct kvm_cpuid_entry2
*kvm_find_cpuid_entry(struct kvm_vcpu
*vcpu
,
81 u32 function
, u32 index
);
83 struct kvm_x86_ops
*kvm_x86_ops
;
84 EXPORT_SYMBOL_GPL(kvm_x86_ops
);
86 struct kvm_stats_debugfs_item debugfs_entries
[] = {
87 { "pf_fixed", VCPU_STAT(pf_fixed
) },
88 { "pf_guest", VCPU_STAT(pf_guest
) },
89 { "tlb_flush", VCPU_STAT(tlb_flush
) },
90 { "invlpg", VCPU_STAT(invlpg
) },
91 { "exits", VCPU_STAT(exits
) },
92 { "io_exits", VCPU_STAT(io_exits
) },
93 { "mmio_exits", VCPU_STAT(mmio_exits
) },
94 { "signal_exits", VCPU_STAT(signal_exits
) },
95 { "irq_window", VCPU_STAT(irq_window_exits
) },
96 { "nmi_window", VCPU_STAT(nmi_window_exits
) },
97 { "halt_exits", VCPU_STAT(halt_exits
) },
98 { "halt_wakeup", VCPU_STAT(halt_wakeup
) },
99 { "hypercalls", VCPU_STAT(hypercalls
) },
100 { "request_irq", VCPU_STAT(request_irq_exits
) },
101 { "irq_exits", VCPU_STAT(irq_exits
) },
102 { "host_state_reload", VCPU_STAT(host_state_reload
) },
103 { "efer_reload", VCPU_STAT(efer_reload
) },
104 { "fpu_reload", VCPU_STAT(fpu_reload
) },
105 { "insn_emulation", VCPU_STAT(insn_emulation
) },
106 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail
) },
107 { "irq_injections", VCPU_STAT(irq_injections
) },
108 { "nmi_injections", VCPU_STAT(nmi_injections
) },
109 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped
) },
110 { "mmu_pte_write", VM_STAT(mmu_pte_write
) },
111 { "mmu_pte_updated", VM_STAT(mmu_pte_updated
) },
112 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped
) },
113 { "mmu_flooded", VM_STAT(mmu_flooded
) },
114 { "mmu_recycled", VM_STAT(mmu_recycled
) },
115 { "mmu_cache_miss", VM_STAT(mmu_cache_miss
) },
116 { "mmu_unsync", VM_STAT(mmu_unsync
) },
117 { "remote_tlb_flush", VM_STAT(remote_tlb_flush
) },
118 { "largepages", VM_STAT(lpages
) },
122 unsigned long segment_base(u16 selector
)
124 struct descriptor_table gdt
;
125 struct desc_struct
*d
;
126 unsigned long table_base
;
132 asm("sgdt %0" : "=m"(gdt
));
133 table_base
= gdt
.base
;
135 if (selector
& 4) { /* from ldt */
138 asm("sldt %0" : "=g"(ldt_selector
));
139 table_base
= segment_base(ldt_selector
);
141 d
= (struct desc_struct
*)(table_base
+ (selector
& ~7));
142 v
= d
->base0
| ((unsigned long)d
->base1
<< 16) |
143 ((unsigned long)d
->base2
<< 24);
145 if (d
->s
== 0 && (d
->type
== 2 || d
->type
== 9 || d
->type
== 11))
146 v
|= ((unsigned long)((struct ldttss_desc64
*)d
)->base3
) << 32;
150 EXPORT_SYMBOL_GPL(segment_base
);
152 u64
kvm_get_apic_base(struct kvm_vcpu
*vcpu
)
154 if (irqchip_in_kernel(vcpu
->kvm
))
155 return vcpu
->arch
.apic_base
;
157 return vcpu
->arch
.apic_base
;
159 EXPORT_SYMBOL_GPL(kvm_get_apic_base
);
161 void kvm_set_apic_base(struct kvm_vcpu
*vcpu
, u64 data
)
163 /* TODO: reserve bits check */
164 if (irqchip_in_kernel(vcpu
->kvm
))
165 kvm_lapic_set_base(vcpu
, data
);
167 vcpu
->arch
.apic_base
= data
;
169 EXPORT_SYMBOL_GPL(kvm_set_apic_base
);
171 void kvm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
173 WARN_ON(vcpu
->arch
.exception
.pending
);
174 vcpu
->arch
.exception
.pending
= true;
175 vcpu
->arch
.exception
.has_error_code
= false;
176 vcpu
->arch
.exception
.nr
= nr
;
178 EXPORT_SYMBOL_GPL(kvm_queue_exception
);
180 void kvm_inject_page_fault(struct kvm_vcpu
*vcpu
, unsigned long addr
,
183 ++vcpu
->stat
.pf_guest
;
185 if (vcpu
->arch
.exception
.pending
) {
186 switch(vcpu
->arch
.exception
.nr
) {
188 /* triple fault -> shutdown */
189 set_bit(KVM_REQ_TRIPLE_FAULT
, &vcpu
->requests
);
192 vcpu
->arch
.exception
.nr
= DF_VECTOR
;
193 vcpu
->arch
.exception
.error_code
= 0;
196 /* replace previous exception with a new one in a hope
197 that instruction re-execution will regenerate lost
199 vcpu
->arch
.exception
.pending
= false;
203 vcpu
->arch
.cr2
= addr
;
204 kvm_queue_exception_e(vcpu
, PF_VECTOR
, error_code
);
207 void kvm_inject_nmi(struct kvm_vcpu
*vcpu
)
209 vcpu
->arch
.nmi_pending
= 1;
211 EXPORT_SYMBOL_GPL(kvm_inject_nmi
);
213 void kvm_queue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
215 WARN_ON(vcpu
->arch
.exception
.pending
);
216 vcpu
->arch
.exception
.pending
= true;
217 vcpu
->arch
.exception
.has_error_code
= true;
218 vcpu
->arch
.exception
.nr
= nr
;
219 vcpu
->arch
.exception
.error_code
= error_code
;
221 EXPORT_SYMBOL_GPL(kvm_queue_exception_e
);
223 static void __queue_exception(struct kvm_vcpu
*vcpu
)
225 kvm_x86_ops
->queue_exception(vcpu
, vcpu
->arch
.exception
.nr
,
226 vcpu
->arch
.exception
.has_error_code
,
227 vcpu
->arch
.exception
.error_code
);
231 * Load the pae pdptrs. Return true is they are all valid.
233 int load_pdptrs(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
235 gfn_t pdpt_gfn
= cr3
>> PAGE_SHIFT
;
236 unsigned offset
= ((cr3
& (PAGE_SIZE
-1)) >> 5) << 2;
239 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.pdptrs
)];
241 ret
= kvm_read_guest_page(vcpu
->kvm
, pdpt_gfn
, pdpte
,
242 offset
* sizeof(u64
), sizeof(pdpte
));
247 for (i
= 0; i
< ARRAY_SIZE(pdpte
); ++i
) {
248 if (is_present_gpte(pdpte
[i
]) &&
249 (pdpte
[i
] & vcpu
->arch
.mmu
.rsvd_bits_mask
[0][2])) {
256 memcpy(vcpu
->arch
.pdptrs
, pdpte
, sizeof(vcpu
->arch
.pdptrs
));
257 __set_bit(VCPU_EXREG_PDPTR
,
258 (unsigned long *)&vcpu
->arch
.regs_avail
);
259 __set_bit(VCPU_EXREG_PDPTR
,
260 (unsigned long *)&vcpu
->arch
.regs_dirty
);
265 EXPORT_SYMBOL_GPL(load_pdptrs
);
267 static bool pdptrs_changed(struct kvm_vcpu
*vcpu
)
269 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.pdptrs
)];
273 if (is_long_mode(vcpu
) || !is_pae(vcpu
))
276 if (!test_bit(VCPU_EXREG_PDPTR
,
277 (unsigned long *)&vcpu
->arch
.regs_avail
))
280 r
= kvm_read_guest(vcpu
->kvm
, vcpu
->arch
.cr3
& ~31u, pdpte
, sizeof(pdpte
));
283 changed
= memcmp(pdpte
, vcpu
->arch
.pdptrs
, sizeof(pdpte
)) != 0;
289 void kvm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
291 if (cr0
& CR0_RESERVED_BITS
) {
292 printk(KERN_DEBUG
"set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
293 cr0
, vcpu
->arch
.cr0
);
294 kvm_inject_gp(vcpu
, 0);
298 if ((cr0
& X86_CR0_NW
) && !(cr0
& X86_CR0_CD
)) {
299 printk(KERN_DEBUG
"set_cr0: #GP, CD == 0 && NW == 1\n");
300 kvm_inject_gp(vcpu
, 0);
304 if ((cr0
& X86_CR0_PG
) && !(cr0
& X86_CR0_PE
)) {
305 printk(KERN_DEBUG
"set_cr0: #GP, set PG flag "
306 "and a clear PE flag\n");
307 kvm_inject_gp(vcpu
, 0);
311 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
313 if ((vcpu
->arch
.shadow_efer
& EFER_LME
)) {
317 printk(KERN_DEBUG
"set_cr0: #GP, start paging "
318 "in long mode while PAE is disabled\n");
319 kvm_inject_gp(vcpu
, 0);
322 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
324 printk(KERN_DEBUG
"set_cr0: #GP, start paging "
325 "in long mode while CS.L == 1\n");
326 kvm_inject_gp(vcpu
, 0);
332 if (is_pae(vcpu
) && !load_pdptrs(vcpu
, vcpu
->arch
.cr3
)) {
333 printk(KERN_DEBUG
"set_cr0: #GP, pdptrs "
335 kvm_inject_gp(vcpu
, 0);
341 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
342 vcpu
->arch
.cr0
= cr0
;
344 kvm_mmu_reset_context(vcpu
);
347 EXPORT_SYMBOL_GPL(kvm_set_cr0
);
349 void kvm_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
)
351 kvm_set_cr0(vcpu
, (vcpu
->arch
.cr0
& ~0x0ful
) | (msw
& 0x0f));
353 EXPORT_SYMBOL_GPL(kvm_lmsw
);
355 void kvm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
357 unsigned long old_cr4
= vcpu
->arch
.cr4
;
358 unsigned long pdptr_bits
= X86_CR4_PGE
| X86_CR4_PSE
| X86_CR4_PAE
;
360 if (cr4
& CR4_RESERVED_BITS
) {
361 printk(KERN_DEBUG
"set_cr4: #GP, reserved bits\n");
362 kvm_inject_gp(vcpu
, 0);
366 if (is_long_mode(vcpu
)) {
367 if (!(cr4
& X86_CR4_PAE
)) {
368 printk(KERN_DEBUG
"set_cr4: #GP, clearing PAE while "
370 kvm_inject_gp(vcpu
, 0);
373 } else if (is_paging(vcpu
) && (cr4
& X86_CR4_PAE
)
374 && ((cr4
^ old_cr4
) & pdptr_bits
)
375 && !load_pdptrs(vcpu
, vcpu
->arch
.cr3
)) {
376 printk(KERN_DEBUG
"set_cr4: #GP, pdptrs reserved bits\n");
377 kvm_inject_gp(vcpu
, 0);
381 if (cr4
& X86_CR4_VMXE
) {
382 printk(KERN_DEBUG
"set_cr4: #GP, setting VMXE\n");
383 kvm_inject_gp(vcpu
, 0);
386 kvm_x86_ops
->set_cr4(vcpu
, cr4
);
387 vcpu
->arch
.cr4
= cr4
;
388 vcpu
->arch
.mmu
.base_role
.cr4_pge
= (cr4
& X86_CR4_PGE
) && !tdp_enabled
;
389 kvm_mmu_reset_context(vcpu
);
391 EXPORT_SYMBOL_GPL(kvm_set_cr4
);
393 void kvm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
395 if (cr3
== vcpu
->arch
.cr3
&& !pdptrs_changed(vcpu
)) {
396 kvm_mmu_sync_roots(vcpu
);
397 kvm_mmu_flush_tlb(vcpu
);
401 if (is_long_mode(vcpu
)) {
402 if (cr3
& CR3_L_MODE_RESERVED_BITS
) {
403 printk(KERN_DEBUG
"set_cr3: #GP, reserved bits\n");
404 kvm_inject_gp(vcpu
, 0);
409 if (cr3
& CR3_PAE_RESERVED_BITS
) {
411 "set_cr3: #GP, reserved bits\n");
412 kvm_inject_gp(vcpu
, 0);
415 if (is_paging(vcpu
) && !load_pdptrs(vcpu
, cr3
)) {
416 printk(KERN_DEBUG
"set_cr3: #GP, pdptrs "
418 kvm_inject_gp(vcpu
, 0);
423 * We don't check reserved bits in nonpae mode, because
424 * this isn't enforced, and VMware depends on this.
429 * Does the new cr3 value map to physical memory? (Note, we
430 * catch an invalid cr3 even in real-mode, because it would
431 * cause trouble later on when we turn on paging anyway.)
433 * A real CPU would silently accept an invalid cr3 and would
434 * attempt to use it - with largely undefined (and often hard
435 * to debug) behavior on the guest side.
437 if (unlikely(!gfn_to_memslot(vcpu
->kvm
, cr3
>> PAGE_SHIFT
)))
438 kvm_inject_gp(vcpu
, 0);
440 vcpu
->arch
.cr3
= cr3
;
441 vcpu
->arch
.mmu
.new_cr3(vcpu
);
444 EXPORT_SYMBOL_GPL(kvm_set_cr3
);
446 void kvm_set_cr8(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
448 if (cr8
& CR8_RESERVED_BITS
) {
449 printk(KERN_DEBUG
"set_cr8: #GP, reserved bits 0x%lx\n", cr8
);
450 kvm_inject_gp(vcpu
, 0);
453 if (irqchip_in_kernel(vcpu
->kvm
))
454 kvm_lapic_set_tpr(vcpu
, cr8
);
456 vcpu
->arch
.cr8
= cr8
;
458 EXPORT_SYMBOL_GPL(kvm_set_cr8
);
460 unsigned long kvm_get_cr8(struct kvm_vcpu
*vcpu
)
462 if (irqchip_in_kernel(vcpu
->kvm
))
463 return kvm_lapic_get_cr8(vcpu
);
465 return vcpu
->arch
.cr8
;
467 EXPORT_SYMBOL_GPL(kvm_get_cr8
);
469 static inline u32
bit(int bitno
)
471 return 1 << (bitno
& 31);
475 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
476 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
478 * This list is modified at module load time to reflect the
479 * capabilities of the host cpu.
481 static u32 msrs_to_save
[] = {
482 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
485 MSR_CSTAR
, MSR_KERNEL_GS_BASE
, MSR_SYSCALL_MASK
, MSR_LSTAR
,
487 MSR_IA32_TSC
, MSR_KVM_SYSTEM_TIME
, MSR_KVM_WALL_CLOCK
,
488 MSR_IA32_PERF_STATUS
, MSR_IA32_CR_PAT
, MSR_VM_HSAVE_PA
491 static unsigned num_msrs_to_save
;
493 static u32 emulated_msrs
[] = {
494 MSR_IA32_MISC_ENABLE
,
497 static void set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
499 if (efer
& efer_reserved_bits
) {
500 printk(KERN_DEBUG
"set_efer: 0x%llx #GP, reserved bits\n",
502 kvm_inject_gp(vcpu
, 0);
507 && (vcpu
->arch
.shadow_efer
& EFER_LME
) != (efer
& EFER_LME
)) {
508 printk(KERN_DEBUG
"set_efer: #GP, change LME while paging\n");
509 kvm_inject_gp(vcpu
, 0);
513 if (efer
& EFER_FFXSR
) {
514 struct kvm_cpuid_entry2
*feat
;
516 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
517 if (!feat
|| !(feat
->edx
& bit(X86_FEATURE_FXSR_OPT
))) {
518 printk(KERN_DEBUG
"set_efer: #GP, enable FFXSR w/o CPUID capability\n");
519 kvm_inject_gp(vcpu
, 0);
524 if (efer
& EFER_SVME
) {
525 struct kvm_cpuid_entry2
*feat
;
527 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
528 if (!feat
|| !(feat
->ecx
& bit(X86_FEATURE_SVM
))) {
529 printk(KERN_DEBUG
"set_efer: #GP, enable SVM w/o SVM\n");
530 kvm_inject_gp(vcpu
, 0);
535 kvm_x86_ops
->set_efer(vcpu
, efer
);
538 efer
|= vcpu
->arch
.shadow_efer
& EFER_LMA
;
540 vcpu
->arch
.shadow_efer
= efer
;
542 vcpu
->arch
.mmu
.base_role
.nxe
= (efer
& EFER_NX
) && !tdp_enabled
;
543 kvm_mmu_reset_context(vcpu
);
546 void kvm_enable_efer_bits(u64 mask
)
548 efer_reserved_bits
&= ~mask
;
550 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits
);
554 * Writes msr value into into the appropriate "register".
555 * Returns 0 on success, non-0 otherwise.
556 * Assumes vcpu_load() was already called.
558 int kvm_set_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64 data
)
560 return kvm_x86_ops
->set_msr(vcpu
, msr_index
, data
);
564 * Adapt set_msr() to msr_io()'s calling convention
566 static int do_set_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
568 return kvm_set_msr(vcpu
, index
, *data
);
571 static void kvm_write_wall_clock(struct kvm
*kvm
, gpa_t wall_clock
)
574 struct pvclock_wall_clock wc
;
575 struct timespec now
, sys
, boot
;
582 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
585 * The guest calculates current wall clock time by adding
586 * system time (updated by kvm_write_guest_time below) to the
587 * wall clock specified here. guest system time equals host
588 * system time for us, thus we must fill in host boot time here.
590 now
= current_kernel_time();
592 boot
= ns_to_timespec(timespec_to_ns(&now
) - timespec_to_ns(&sys
));
594 wc
.sec
= boot
.tv_sec
;
595 wc
.nsec
= boot
.tv_nsec
;
596 wc
.version
= version
;
598 kvm_write_guest(kvm
, wall_clock
, &wc
, sizeof(wc
));
601 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
604 static uint32_t div_frac(uint32_t dividend
, uint32_t divisor
)
606 uint32_t quotient
, remainder
;
608 /* Don't try to replace with do_div(), this one calculates
609 * "(dividend << 32) / divisor" */
611 : "=a" (quotient
), "=d" (remainder
)
612 : "0" (0), "1" (dividend
), "r" (divisor
) );
616 static void kvm_set_time_scale(uint32_t tsc_khz
, struct pvclock_vcpu_time_info
*hv_clock
)
618 uint64_t nsecs
= 1000000000LL;
623 tps64
= tsc_khz
* 1000LL;
624 while (tps64
> nsecs
*2) {
629 tps32
= (uint32_t)tps64
;
630 while (tps32
<= (uint32_t)nsecs
) {
635 hv_clock
->tsc_shift
= shift
;
636 hv_clock
->tsc_to_system_mul
= div_frac(nsecs
, tps32
);
638 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
639 __func__
, tsc_khz
, hv_clock
->tsc_shift
,
640 hv_clock
->tsc_to_system_mul
);
643 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz
);
645 static void kvm_write_guest_time(struct kvm_vcpu
*v
)
649 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
651 unsigned long this_tsc_khz
;
653 if ((!vcpu
->time_page
))
656 this_tsc_khz
= get_cpu_var(cpu_tsc_khz
);
657 if (unlikely(vcpu
->hv_clock_tsc_khz
!= this_tsc_khz
)) {
658 kvm_set_time_scale(this_tsc_khz
, &vcpu
->hv_clock
);
659 vcpu
->hv_clock_tsc_khz
= this_tsc_khz
;
661 put_cpu_var(cpu_tsc_khz
);
663 /* Keep irq disabled to prevent changes to the clock */
664 local_irq_save(flags
);
665 kvm_get_msr(v
, MSR_IA32_TSC
, &vcpu
->hv_clock
.tsc_timestamp
);
667 local_irq_restore(flags
);
669 /* With all the info we got, fill in the values */
671 vcpu
->hv_clock
.system_time
= ts
.tv_nsec
+
672 (NSEC_PER_SEC
* (u64
)ts
.tv_sec
);
674 * The interface expects us to write an even number signaling that the
675 * update is finished. Since the guest won't see the intermediate
676 * state, we just increase by 2 at the end.
678 vcpu
->hv_clock
.version
+= 2;
680 shared_kaddr
= kmap_atomic(vcpu
->time_page
, KM_USER0
);
682 memcpy(shared_kaddr
+ vcpu
->time_offset
, &vcpu
->hv_clock
,
683 sizeof(vcpu
->hv_clock
));
685 kunmap_atomic(shared_kaddr
, KM_USER0
);
687 mark_page_dirty(v
->kvm
, vcpu
->time
>> PAGE_SHIFT
);
690 static int kvm_request_guest_time_update(struct kvm_vcpu
*v
)
692 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
694 if (!vcpu
->time_page
)
696 set_bit(KVM_REQ_KVMCLOCK_UPDATE
, &v
->requests
);
700 static bool msr_mtrr_valid(unsigned msr
)
703 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR
- 1:
704 case MSR_MTRRfix64K_00000
:
705 case MSR_MTRRfix16K_80000
:
706 case MSR_MTRRfix16K_A0000
:
707 case MSR_MTRRfix4K_C0000
:
708 case MSR_MTRRfix4K_C8000
:
709 case MSR_MTRRfix4K_D0000
:
710 case MSR_MTRRfix4K_D8000
:
711 case MSR_MTRRfix4K_E0000
:
712 case MSR_MTRRfix4K_E8000
:
713 case MSR_MTRRfix4K_F0000
:
714 case MSR_MTRRfix4K_F8000
:
715 case MSR_MTRRdefType
:
716 case MSR_IA32_CR_PAT
:
724 static bool valid_pat_type(unsigned t
)
726 return t
< 8 && (1 << t
) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
729 static bool valid_mtrr_type(unsigned t
)
731 return t
< 8 && (1 << t
) & 0x73; /* 0, 1, 4, 5, 6 */
734 static bool mtrr_valid(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
738 if (!msr_mtrr_valid(msr
))
741 if (msr
== MSR_IA32_CR_PAT
) {
742 for (i
= 0; i
< 8; i
++)
743 if (!valid_pat_type((data
>> (i
* 8)) & 0xff))
746 } else if (msr
== MSR_MTRRdefType
) {
749 return valid_mtrr_type(data
& 0xff);
750 } else if (msr
>= MSR_MTRRfix64K_00000
&& msr
<= MSR_MTRRfix4K_F8000
) {
751 for (i
= 0; i
< 8 ; i
++)
752 if (!valid_mtrr_type((data
>> (i
* 8)) & 0xff))
758 return valid_mtrr_type(data
& 0xff);
761 static int set_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
763 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
765 if (!mtrr_valid(vcpu
, msr
, data
))
768 if (msr
== MSR_MTRRdefType
) {
769 vcpu
->arch
.mtrr_state
.def_type
= data
;
770 vcpu
->arch
.mtrr_state
.enabled
= (data
& 0xc00) >> 10;
771 } else if (msr
== MSR_MTRRfix64K_00000
)
773 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
774 p
[1 + msr
- MSR_MTRRfix16K_80000
] = data
;
775 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
776 p
[3 + msr
- MSR_MTRRfix4K_C0000
] = data
;
777 else if (msr
== MSR_IA32_CR_PAT
)
778 vcpu
->arch
.pat
= data
;
779 else { /* Variable MTRRs */
780 int idx
, is_mtrr_mask
;
783 idx
= (msr
- 0x200) / 2;
784 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
787 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
790 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
794 kvm_mmu_reset_context(vcpu
);
798 static int set_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
800 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
801 unsigned bank_num
= mcg_cap
& 0xff;
804 case MSR_IA32_MCG_STATUS
:
805 vcpu
->arch
.mcg_status
= data
;
807 case MSR_IA32_MCG_CTL
:
808 if (!(mcg_cap
& MCG_CTL_P
))
810 if (data
!= 0 && data
!= ~(u64
)0)
812 vcpu
->arch
.mcg_ctl
= data
;
815 if (msr
>= MSR_IA32_MC0_CTL
&&
816 msr
< MSR_IA32_MC0_CTL
+ 4 * bank_num
) {
817 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
818 /* only 0 or all 1s can be written to IA32_MCi_CTL */
819 if ((offset
& 0x3) == 0 &&
820 data
!= 0 && data
!= ~(u64
)0)
822 vcpu
->arch
.mce_banks
[offset
] = data
;
830 int kvm_set_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
834 set_efer(vcpu
, data
);
836 case MSR_IA32_DEBUGCTLMSR
:
838 /* We support the non-activated case already */
840 } else if (data
& ~(DEBUGCTLMSR_LBR
| DEBUGCTLMSR_BTF
)) {
841 /* Values other than LBR and BTF are vendor-specific,
842 thus reserved and should throw a #GP */
845 pr_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
848 case MSR_IA32_UCODE_REV
:
849 case MSR_IA32_UCODE_WRITE
:
850 case MSR_VM_HSAVE_PA
:
852 case 0x200 ... 0x2ff:
853 return set_msr_mtrr(vcpu
, msr
, data
);
854 case MSR_IA32_APICBASE
:
855 kvm_set_apic_base(vcpu
, data
);
857 case MSR_IA32_MISC_ENABLE
:
858 vcpu
->arch
.ia32_misc_enable_msr
= data
;
860 case MSR_KVM_WALL_CLOCK
:
861 vcpu
->kvm
->arch
.wall_clock
= data
;
862 kvm_write_wall_clock(vcpu
->kvm
, data
);
864 case MSR_KVM_SYSTEM_TIME
: {
865 if (vcpu
->arch
.time_page
) {
866 kvm_release_page_dirty(vcpu
->arch
.time_page
);
867 vcpu
->arch
.time_page
= NULL
;
870 vcpu
->arch
.time
= data
;
872 /* we verify if the enable bit is set... */
876 /* ...but clean it before doing the actual write */
877 vcpu
->arch
.time_offset
= data
& ~(PAGE_MASK
| 1);
879 vcpu
->arch
.time_page
=
880 gfn_to_page(vcpu
->kvm
, data
>> PAGE_SHIFT
);
882 if (is_error_page(vcpu
->arch
.time_page
)) {
883 kvm_release_page_clean(vcpu
->arch
.time_page
);
884 vcpu
->arch
.time_page
= NULL
;
887 kvm_request_guest_time_update(vcpu
);
890 case MSR_IA32_MCG_CTL
:
891 case MSR_IA32_MCG_STATUS
:
892 case MSR_IA32_MC0_CTL
... MSR_IA32_MC0_CTL
+ 4 * KVM_MAX_MCE_BANKS
- 1:
893 return set_msr_mce(vcpu
, msr
, data
);
895 /* Performance counters are not protected by a CPUID bit,
896 * so we should check all of them in the generic path for the sake of
897 * cross vendor migration.
898 * Writing a zero into the event select MSRs disables them,
899 * which we perfectly emulate ;-). Any other value should be at least
900 * reported, some guests depend on them.
902 case MSR_P6_EVNTSEL0
:
903 case MSR_P6_EVNTSEL1
:
904 case MSR_K7_EVNTSEL0
:
905 case MSR_K7_EVNTSEL1
:
906 case MSR_K7_EVNTSEL2
:
907 case MSR_K7_EVNTSEL3
:
909 pr_unimpl(vcpu
, "unimplemented perfctr wrmsr: "
910 "0x%x data 0x%llx\n", msr
, data
);
912 /* at least RHEL 4 unconditionally writes to the perfctr registers,
913 * so we ignore writes to make it happy.
915 case MSR_P6_PERFCTR0
:
916 case MSR_P6_PERFCTR1
:
917 case MSR_K7_PERFCTR0
:
918 case MSR_K7_PERFCTR1
:
919 case MSR_K7_PERFCTR2
:
920 case MSR_K7_PERFCTR3
:
921 pr_unimpl(vcpu
, "unimplemented perfctr wrmsr: "
922 "0x%x data 0x%llx\n", msr
, data
);
925 pr_unimpl(vcpu
, "unhandled wrmsr: 0x%x data %llx\n", msr
, data
);
930 EXPORT_SYMBOL_GPL(kvm_set_msr_common
);
934 * Reads an msr value (of 'msr_index') into 'pdata'.
935 * Returns 0 on success, non-0 otherwise.
936 * Assumes vcpu_load() was already called.
938 int kvm_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
940 return kvm_x86_ops
->get_msr(vcpu
, msr_index
, pdata
);
943 static int get_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
945 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
947 if (!msr_mtrr_valid(msr
))
950 if (msr
== MSR_MTRRdefType
)
951 *pdata
= vcpu
->arch
.mtrr_state
.def_type
+
952 (vcpu
->arch
.mtrr_state
.enabled
<< 10);
953 else if (msr
== MSR_MTRRfix64K_00000
)
955 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
956 *pdata
= p
[1 + msr
- MSR_MTRRfix16K_80000
];
957 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
958 *pdata
= p
[3 + msr
- MSR_MTRRfix4K_C0000
];
959 else if (msr
== MSR_IA32_CR_PAT
)
960 *pdata
= vcpu
->arch
.pat
;
961 else { /* Variable MTRRs */
962 int idx
, is_mtrr_mask
;
965 idx
= (msr
- 0x200) / 2;
966 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
969 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
972 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
979 static int get_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
982 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
983 unsigned bank_num
= mcg_cap
& 0xff;
986 case MSR_IA32_P5_MC_ADDR
:
987 case MSR_IA32_P5_MC_TYPE
:
990 case MSR_IA32_MCG_CAP
:
991 data
= vcpu
->arch
.mcg_cap
;
993 case MSR_IA32_MCG_CTL
:
994 if (!(mcg_cap
& MCG_CTL_P
))
996 data
= vcpu
->arch
.mcg_ctl
;
998 case MSR_IA32_MCG_STATUS
:
999 data
= vcpu
->arch
.mcg_status
;
1002 if (msr
>= MSR_IA32_MC0_CTL
&&
1003 msr
< MSR_IA32_MC0_CTL
+ 4 * bank_num
) {
1004 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
1005 data
= vcpu
->arch
.mce_banks
[offset
];
1014 int kvm_get_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1019 case MSR_IA32_PLATFORM_ID
:
1020 case MSR_IA32_UCODE_REV
:
1021 case MSR_IA32_EBL_CR_POWERON
:
1022 case MSR_IA32_DEBUGCTLMSR
:
1023 case MSR_IA32_LASTBRANCHFROMIP
:
1024 case MSR_IA32_LASTBRANCHTOIP
:
1025 case MSR_IA32_LASTINTFROMIP
:
1026 case MSR_IA32_LASTINTTOIP
:
1029 case MSR_VM_HSAVE_PA
:
1030 case MSR_P6_EVNTSEL0
:
1031 case MSR_P6_EVNTSEL1
:
1032 case MSR_K7_EVNTSEL0
:
1036 data
= 0x500 | KVM_NR_VAR_MTRR
;
1038 case 0x200 ... 0x2ff:
1039 return get_msr_mtrr(vcpu
, msr
, pdata
);
1040 case 0xcd: /* fsb frequency */
1043 case MSR_IA32_APICBASE
:
1044 data
= kvm_get_apic_base(vcpu
);
1046 case MSR_IA32_MISC_ENABLE
:
1047 data
= vcpu
->arch
.ia32_misc_enable_msr
;
1049 case MSR_IA32_PERF_STATUS
:
1050 /* TSC increment by tick */
1052 /* CPU multiplier */
1053 data
|= (((uint64_t)4ULL) << 40);
1056 data
= vcpu
->arch
.shadow_efer
;
1058 case MSR_KVM_WALL_CLOCK
:
1059 data
= vcpu
->kvm
->arch
.wall_clock
;
1061 case MSR_KVM_SYSTEM_TIME
:
1062 data
= vcpu
->arch
.time
;
1064 case MSR_IA32_P5_MC_ADDR
:
1065 case MSR_IA32_P5_MC_TYPE
:
1066 case MSR_IA32_MCG_CAP
:
1067 case MSR_IA32_MCG_CTL
:
1068 case MSR_IA32_MCG_STATUS
:
1069 case MSR_IA32_MC0_CTL
... MSR_IA32_MC0_CTL
+ 4 * KVM_MAX_MCE_BANKS
- 1:
1070 return get_msr_mce(vcpu
, msr
, pdata
);
1072 pr_unimpl(vcpu
, "unhandled rdmsr: 0x%x\n", msr
);
1078 EXPORT_SYMBOL_GPL(kvm_get_msr_common
);
1081 * Read or write a bunch of msrs. All parameters are kernel addresses.
1083 * @return number of msrs set successfully.
1085 static int __msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs
*msrs
,
1086 struct kvm_msr_entry
*entries
,
1087 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
1088 unsigned index
, u64
*data
))
1094 down_read(&vcpu
->kvm
->slots_lock
);
1095 for (i
= 0; i
< msrs
->nmsrs
; ++i
)
1096 if (do_msr(vcpu
, entries
[i
].index
, &entries
[i
].data
))
1098 up_read(&vcpu
->kvm
->slots_lock
);
1106 * Read or write a bunch of msrs. Parameters are user addresses.
1108 * @return number of msrs set successfully.
1110 static int msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs __user
*user_msrs
,
1111 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
1112 unsigned index
, u64
*data
),
1115 struct kvm_msrs msrs
;
1116 struct kvm_msr_entry
*entries
;
1121 if (copy_from_user(&msrs
, user_msrs
, sizeof msrs
))
1125 if (msrs
.nmsrs
>= MAX_IO_MSRS
)
1129 size
= sizeof(struct kvm_msr_entry
) * msrs
.nmsrs
;
1130 entries
= vmalloc(size
);
1135 if (copy_from_user(entries
, user_msrs
->entries
, size
))
1138 r
= n
= __msr_io(vcpu
, &msrs
, entries
, do_msr
);
1143 if (writeback
&& copy_to_user(user_msrs
->entries
, entries
, size
))
1154 int kvm_dev_ioctl_check_extension(long ext
)
1159 case KVM_CAP_IRQCHIP
:
1161 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL
:
1162 case KVM_CAP_SET_TSS_ADDR
:
1163 case KVM_CAP_EXT_CPUID
:
1164 case KVM_CAP_CLOCKSOURCE
:
1166 case KVM_CAP_NOP_IO_DELAY
:
1167 case KVM_CAP_MP_STATE
:
1168 case KVM_CAP_SYNC_MMU
:
1169 case KVM_CAP_REINJECT_CONTROL
:
1170 case KVM_CAP_IRQ_INJECT_STATUS
:
1171 case KVM_CAP_ASSIGN_DEV_IRQ
:
1176 case KVM_CAP_COALESCED_MMIO
:
1177 r
= KVM_COALESCED_MMIO_PAGE_OFFSET
;
1180 r
= !kvm_x86_ops
->cpu_has_accelerated_tpr();
1182 case KVM_CAP_NR_VCPUS
:
1185 case KVM_CAP_NR_MEMSLOTS
:
1186 r
= KVM_MEMORY_SLOTS
;
1188 case KVM_CAP_PV_MMU
:
1195 r
= KVM_MAX_MCE_BANKS
;
1205 long kvm_arch_dev_ioctl(struct file
*filp
,
1206 unsigned int ioctl
, unsigned long arg
)
1208 void __user
*argp
= (void __user
*)arg
;
1212 case KVM_GET_MSR_INDEX_LIST
: {
1213 struct kvm_msr_list __user
*user_msr_list
= argp
;
1214 struct kvm_msr_list msr_list
;
1218 if (copy_from_user(&msr_list
, user_msr_list
, sizeof msr_list
))
1221 msr_list
.nmsrs
= num_msrs_to_save
+ ARRAY_SIZE(emulated_msrs
);
1222 if (copy_to_user(user_msr_list
, &msr_list
, sizeof msr_list
))
1225 if (n
< msr_list
.nmsrs
)
1228 if (copy_to_user(user_msr_list
->indices
, &msrs_to_save
,
1229 num_msrs_to_save
* sizeof(u32
)))
1231 if (copy_to_user(user_msr_list
->indices
+ num_msrs_to_save
,
1233 ARRAY_SIZE(emulated_msrs
) * sizeof(u32
)))
1238 case KVM_GET_SUPPORTED_CPUID
: {
1239 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
1240 struct kvm_cpuid2 cpuid
;
1243 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1245 r
= kvm_dev_ioctl_get_supported_cpuid(&cpuid
,
1246 cpuid_arg
->entries
);
1251 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
1256 case KVM_X86_GET_MCE_CAP_SUPPORTED
: {
1259 mce_cap
= KVM_MCE_CAP_SUPPORTED
;
1261 if (copy_to_user(argp
, &mce_cap
, sizeof mce_cap
))
1273 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
1275 kvm_x86_ops
->vcpu_load(vcpu
, cpu
);
1276 kvm_request_guest_time_update(vcpu
);
1279 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
1281 kvm_x86_ops
->vcpu_put(vcpu
);
1282 kvm_put_guest_fpu(vcpu
);
1285 static int is_efer_nx(void)
1287 unsigned long long efer
= 0;
1289 rdmsrl_safe(MSR_EFER
, &efer
);
1290 return efer
& EFER_NX
;
1293 static void cpuid_fix_nx_cap(struct kvm_vcpu
*vcpu
)
1296 struct kvm_cpuid_entry2
*e
, *entry
;
1299 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
1300 e
= &vcpu
->arch
.cpuid_entries
[i
];
1301 if (e
->function
== 0x80000001) {
1306 if (entry
&& (entry
->edx
& (1 << 20)) && !is_efer_nx()) {
1307 entry
->edx
&= ~(1 << 20);
1308 printk(KERN_INFO
"kvm: guest NX capability removed\n");
1312 /* when an old userspace process fills a new kernel module */
1313 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu
*vcpu
,
1314 struct kvm_cpuid
*cpuid
,
1315 struct kvm_cpuid_entry __user
*entries
)
1318 struct kvm_cpuid_entry
*cpuid_entries
;
1321 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
1324 cpuid_entries
= vmalloc(sizeof(struct kvm_cpuid_entry
) * cpuid
->nent
);
1328 if (copy_from_user(cpuid_entries
, entries
,
1329 cpuid
->nent
* sizeof(struct kvm_cpuid_entry
)))
1331 for (i
= 0; i
< cpuid
->nent
; i
++) {
1332 vcpu
->arch
.cpuid_entries
[i
].function
= cpuid_entries
[i
].function
;
1333 vcpu
->arch
.cpuid_entries
[i
].eax
= cpuid_entries
[i
].eax
;
1334 vcpu
->arch
.cpuid_entries
[i
].ebx
= cpuid_entries
[i
].ebx
;
1335 vcpu
->arch
.cpuid_entries
[i
].ecx
= cpuid_entries
[i
].ecx
;
1336 vcpu
->arch
.cpuid_entries
[i
].edx
= cpuid_entries
[i
].edx
;
1337 vcpu
->arch
.cpuid_entries
[i
].index
= 0;
1338 vcpu
->arch
.cpuid_entries
[i
].flags
= 0;
1339 vcpu
->arch
.cpuid_entries
[i
].padding
[0] = 0;
1340 vcpu
->arch
.cpuid_entries
[i
].padding
[1] = 0;
1341 vcpu
->arch
.cpuid_entries
[i
].padding
[2] = 0;
1343 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
1344 cpuid_fix_nx_cap(vcpu
);
1348 vfree(cpuid_entries
);
1353 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu
*vcpu
,
1354 struct kvm_cpuid2
*cpuid
,
1355 struct kvm_cpuid_entry2 __user
*entries
)
1360 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
1363 if (copy_from_user(&vcpu
->arch
.cpuid_entries
, entries
,
1364 cpuid
->nent
* sizeof(struct kvm_cpuid_entry2
)))
1366 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
1373 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu
*vcpu
,
1374 struct kvm_cpuid2
*cpuid
,
1375 struct kvm_cpuid_entry2 __user
*entries
)
1380 if (cpuid
->nent
< vcpu
->arch
.cpuid_nent
)
1383 if (copy_to_user(entries
, &vcpu
->arch
.cpuid_entries
,
1384 vcpu
->arch
.cpuid_nent
* sizeof(struct kvm_cpuid_entry2
)))
1389 cpuid
->nent
= vcpu
->arch
.cpuid_nent
;
1393 static void do_cpuid_1_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
1396 entry
->function
= function
;
1397 entry
->index
= index
;
1398 cpuid_count(entry
->function
, entry
->index
,
1399 &entry
->eax
, &entry
->ebx
, &entry
->ecx
, &entry
->edx
);
1403 #define F(x) bit(X86_FEATURE_##x)
1405 static void do_cpuid_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
1406 u32 index
, int *nent
, int maxnent
)
1408 unsigned f_nx
= is_efer_nx() ? F(NX
) : 0;
1409 #ifdef CONFIG_X86_64
1410 unsigned f_lm
= F(LM
);
1416 const u32 kvm_supported_word0_x86_features
=
1417 F(FPU
) | F(VME
) | F(DE
) | F(PSE
) |
1418 F(TSC
) | F(MSR
) | F(PAE
) | F(MCE
) |
1419 F(CX8
) | F(APIC
) | 0 /* Reserved */ | F(SEP
) |
1420 F(MTRR
) | F(PGE
) | F(MCA
) | F(CMOV
) |
1421 F(PAT
) | F(PSE36
) | 0 /* PSN */ | F(CLFLSH
) |
1422 0 /* Reserved, DS, ACPI */ | F(MMX
) |
1423 F(FXSR
) | F(XMM
) | F(XMM2
) | F(SELFSNOOP
) |
1424 0 /* HTT, TM, Reserved, PBE */;
1425 /* cpuid 0x80000001.edx */
1426 const u32 kvm_supported_word1_x86_features
=
1427 F(FPU
) | F(VME
) | F(DE
) | F(PSE
) |
1428 F(TSC
) | F(MSR
) | F(PAE
) | F(MCE
) |
1429 F(CX8
) | F(APIC
) | 0 /* Reserved */ | F(SYSCALL
) |
1430 F(MTRR
) | F(PGE
) | F(MCA
) | F(CMOV
) |
1431 F(PAT
) | F(PSE36
) | 0 /* Reserved */ |
1432 f_nx
| 0 /* Reserved */ | F(MMXEXT
) | F(MMX
) |
1433 F(FXSR
) | F(FXSR_OPT
) | 0 /* GBPAGES */ | 0 /* RDTSCP */ |
1434 0 /* Reserved */ | f_lm
| F(3DNOWEXT
) | F(3DNOW
);
1436 const u32 kvm_supported_word4_x86_features
=
1437 F(XMM3
) | 0 /* Reserved, DTES64, MONITOR */ |
1438 0 /* DS-CPL, VMX, SMX, EST */ |
1439 0 /* TM2 */ | F(SSSE3
) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1440 0 /* Reserved */ | F(CX16
) | 0 /* xTPR Update, PDCM */ |
1441 0 /* Reserved, DCA */ | F(XMM4_1
) |
1442 F(XMM4_2
) | 0 /* x2APIC */ | F(MOVBE
) | F(POPCNT
) |
1443 0 /* Reserved, XSAVE, OSXSAVE */;
1444 /* cpuid 0x80000001.ecx */
1445 const u32 kvm_supported_word6_x86_features
=
1446 F(LAHF_LM
) | F(CMP_LEGACY
) | F(SVM
) | 0 /* ExtApicSpace */ |
1447 F(CR8_LEGACY
) | F(ABM
) | F(SSE4A
) | F(MISALIGNSSE
) |
1448 F(3DNOWPREFETCH
) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5
) |
1449 0 /* SKINIT */ | 0 /* WDT */;
1451 /* all calls to cpuid_count() should be made on the same cpu */
1453 do_cpuid_1_ent(entry
, function
, index
);
1458 entry
->eax
= min(entry
->eax
, (u32
)0xb);
1461 entry
->edx
&= kvm_supported_word0_x86_features
;
1462 entry
->ecx
&= kvm_supported_word4_x86_features
;
1464 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1465 * may return different values. This forces us to get_cpu() before
1466 * issuing the first command, and also to emulate this annoying behavior
1467 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1469 int t
, times
= entry
->eax
& 0xff;
1471 entry
->flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
1472 entry
->flags
|= KVM_CPUID_FLAG_STATE_READ_NEXT
;
1473 for (t
= 1; t
< times
&& *nent
< maxnent
; ++t
) {
1474 do_cpuid_1_ent(&entry
[t
], function
, 0);
1475 entry
[t
].flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
1480 /* function 4 and 0xb have additional index. */
1484 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1485 /* read more entries until cache_type is zero */
1486 for (i
= 1; *nent
< maxnent
; ++i
) {
1487 cache_type
= entry
[i
- 1].eax
& 0x1f;
1490 do_cpuid_1_ent(&entry
[i
], function
, i
);
1492 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1500 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1501 /* read more entries until level_type is zero */
1502 for (i
= 1; *nent
< maxnent
; ++i
) {
1503 level_type
= entry
[i
- 1].ecx
& 0xff00;
1506 do_cpuid_1_ent(&entry
[i
], function
, i
);
1508 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1514 entry
->eax
= min(entry
->eax
, 0x8000001a);
1517 entry
->edx
&= kvm_supported_word1_x86_features
;
1518 entry
->ecx
&= kvm_supported_word6_x86_features
;
1526 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2
*cpuid
,
1527 struct kvm_cpuid_entry2 __user
*entries
)
1529 struct kvm_cpuid_entry2
*cpuid_entries
;
1530 int limit
, nent
= 0, r
= -E2BIG
;
1533 if (cpuid
->nent
< 1)
1536 cpuid_entries
= vmalloc(sizeof(struct kvm_cpuid_entry2
) * cpuid
->nent
);
1540 do_cpuid_ent(&cpuid_entries
[0], 0, 0, &nent
, cpuid
->nent
);
1541 limit
= cpuid_entries
[0].eax
;
1542 for (func
= 1; func
<= limit
&& nent
< cpuid
->nent
; ++func
)
1543 do_cpuid_ent(&cpuid_entries
[nent
], func
, 0,
1544 &nent
, cpuid
->nent
);
1546 if (nent
>= cpuid
->nent
)
1549 do_cpuid_ent(&cpuid_entries
[nent
], 0x80000000, 0, &nent
, cpuid
->nent
);
1550 limit
= cpuid_entries
[nent
- 1].eax
;
1551 for (func
= 0x80000001; func
<= limit
&& nent
< cpuid
->nent
; ++func
)
1552 do_cpuid_ent(&cpuid_entries
[nent
], func
, 0,
1553 &nent
, cpuid
->nent
);
1555 if (nent
>= cpuid
->nent
)
1559 if (copy_to_user(entries
, cpuid_entries
,
1560 nent
* sizeof(struct kvm_cpuid_entry2
)))
1566 vfree(cpuid_entries
);
1571 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu
*vcpu
,
1572 struct kvm_lapic_state
*s
)
1575 memcpy(s
->regs
, vcpu
->arch
.apic
->regs
, sizeof *s
);
1581 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu
*vcpu
,
1582 struct kvm_lapic_state
*s
)
1585 memcpy(vcpu
->arch
.apic
->regs
, s
->regs
, sizeof *s
);
1586 kvm_apic_post_state_restore(vcpu
);
1592 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
1593 struct kvm_interrupt
*irq
)
1595 if (irq
->irq
< 0 || irq
->irq
>= 256)
1597 if (irqchip_in_kernel(vcpu
->kvm
))
1601 kvm_queue_interrupt(vcpu
, irq
->irq
, false);
1608 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu
*vcpu
)
1611 kvm_inject_nmi(vcpu
);
1617 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu
*vcpu
,
1618 struct kvm_tpr_access_ctl
*tac
)
1622 vcpu
->arch
.tpr_access_reporting
= !!tac
->enabled
;
1626 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu
*vcpu
,
1630 unsigned bank_num
= mcg_cap
& 0xff, bank
;
1635 if (mcg_cap
& ~(KVM_MCE_CAP_SUPPORTED
| 0xff | 0xff0000))
1638 vcpu
->arch
.mcg_cap
= mcg_cap
;
1639 /* Init IA32_MCG_CTL to all 1s */
1640 if (mcg_cap
& MCG_CTL_P
)
1641 vcpu
->arch
.mcg_ctl
= ~(u64
)0;
1642 /* Init IA32_MCi_CTL to all 1s */
1643 for (bank
= 0; bank
< bank_num
; bank
++)
1644 vcpu
->arch
.mce_banks
[bank
*4] = ~(u64
)0;
1649 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu
*vcpu
,
1650 struct kvm_x86_mce
*mce
)
1652 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
1653 unsigned bank_num
= mcg_cap
& 0xff;
1654 u64
*banks
= vcpu
->arch
.mce_banks
;
1656 if (mce
->bank
>= bank_num
|| !(mce
->status
& MCI_STATUS_VAL
))
1659 * if IA32_MCG_CTL is not all 1s, the uncorrected error
1660 * reporting is disabled
1662 if ((mce
->status
& MCI_STATUS_UC
) && (mcg_cap
& MCG_CTL_P
) &&
1663 vcpu
->arch
.mcg_ctl
!= ~(u64
)0)
1665 banks
+= 4 * mce
->bank
;
1667 * if IA32_MCi_CTL is not all 1s, the uncorrected error
1668 * reporting is disabled for the bank
1670 if ((mce
->status
& MCI_STATUS_UC
) && banks
[0] != ~(u64
)0)
1672 if (mce
->status
& MCI_STATUS_UC
) {
1673 if ((vcpu
->arch
.mcg_status
& MCG_STATUS_MCIP
) ||
1674 !(vcpu
->arch
.cr4
& X86_CR4_MCE
)) {
1675 printk(KERN_DEBUG
"kvm: set_mce: "
1676 "injects mce exception while "
1677 "previous one is in progress!\n");
1678 set_bit(KVM_REQ_TRIPLE_FAULT
, &vcpu
->requests
);
1681 if (banks
[1] & MCI_STATUS_VAL
)
1682 mce
->status
|= MCI_STATUS_OVER
;
1683 banks
[2] = mce
->addr
;
1684 banks
[3] = mce
->misc
;
1685 vcpu
->arch
.mcg_status
= mce
->mcg_status
;
1686 banks
[1] = mce
->status
;
1687 kvm_queue_exception(vcpu
, MC_VECTOR
);
1688 } else if (!(banks
[1] & MCI_STATUS_VAL
)
1689 || !(banks
[1] & MCI_STATUS_UC
)) {
1690 if (banks
[1] & MCI_STATUS_VAL
)
1691 mce
->status
|= MCI_STATUS_OVER
;
1692 banks
[2] = mce
->addr
;
1693 banks
[3] = mce
->misc
;
1694 banks
[1] = mce
->status
;
1696 banks
[1] |= MCI_STATUS_OVER
;
1700 long kvm_arch_vcpu_ioctl(struct file
*filp
,
1701 unsigned int ioctl
, unsigned long arg
)
1703 struct kvm_vcpu
*vcpu
= filp
->private_data
;
1704 void __user
*argp
= (void __user
*)arg
;
1706 struct kvm_lapic_state
*lapic
= NULL
;
1709 case KVM_GET_LAPIC
: {
1710 lapic
= kzalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
1715 r
= kvm_vcpu_ioctl_get_lapic(vcpu
, lapic
);
1719 if (copy_to_user(argp
, lapic
, sizeof(struct kvm_lapic_state
)))
1724 case KVM_SET_LAPIC
: {
1725 lapic
= kmalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
1730 if (copy_from_user(lapic
, argp
, sizeof(struct kvm_lapic_state
)))
1732 r
= kvm_vcpu_ioctl_set_lapic(vcpu
, lapic
);
1738 case KVM_INTERRUPT
: {
1739 struct kvm_interrupt irq
;
1742 if (copy_from_user(&irq
, argp
, sizeof irq
))
1744 r
= kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
1751 r
= kvm_vcpu_ioctl_nmi(vcpu
);
1757 case KVM_SET_CPUID
: {
1758 struct kvm_cpuid __user
*cpuid_arg
= argp
;
1759 struct kvm_cpuid cpuid
;
1762 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1764 r
= kvm_vcpu_ioctl_set_cpuid(vcpu
, &cpuid
, cpuid_arg
->entries
);
1769 case KVM_SET_CPUID2
: {
1770 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
1771 struct kvm_cpuid2 cpuid
;
1774 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1776 r
= kvm_vcpu_ioctl_set_cpuid2(vcpu
, &cpuid
,
1777 cpuid_arg
->entries
);
1782 case KVM_GET_CPUID2
: {
1783 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
1784 struct kvm_cpuid2 cpuid
;
1787 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1789 r
= kvm_vcpu_ioctl_get_cpuid2(vcpu
, &cpuid
,
1790 cpuid_arg
->entries
);
1794 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
1800 r
= msr_io(vcpu
, argp
, kvm_get_msr
, 1);
1803 r
= msr_io(vcpu
, argp
, do_set_msr
, 0);
1805 case KVM_TPR_ACCESS_REPORTING
: {
1806 struct kvm_tpr_access_ctl tac
;
1809 if (copy_from_user(&tac
, argp
, sizeof tac
))
1811 r
= vcpu_ioctl_tpr_access_reporting(vcpu
, &tac
);
1815 if (copy_to_user(argp
, &tac
, sizeof tac
))
1820 case KVM_SET_VAPIC_ADDR
: {
1821 struct kvm_vapic_addr va
;
1824 if (!irqchip_in_kernel(vcpu
->kvm
))
1827 if (copy_from_user(&va
, argp
, sizeof va
))
1830 kvm_lapic_set_vapic_addr(vcpu
, va
.vapic_addr
);
1833 case KVM_X86_SETUP_MCE
: {
1837 if (copy_from_user(&mcg_cap
, argp
, sizeof mcg_cap
))
1839 r
= kvm_vcpu_ioctl_x86_setup_mce(vcpu
, mcg_cap
);
1842 case KVM_X86_SET_MCE
: {
1843 struct kvm_x86_mce mce
;
1846 if (copy_from_user(&mce
, argp
, sizeof mce
))
1848 r
= kvm_vcpu_ioctl_x86_set_mce(vcpu
, &mce
);
1859 static int kvm_vm_ioctl_set_tss_addr(struct kvm
*kvm
, unsigned long addr
)
1863 if (addr
> (unsigned int)(-3 * PAGE_SIZE
))
1865 ret
= kvm_x86_ops
->set_tss_addr(kvm
, addr
);
1869 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm
*kvm
,
1870 u32 kvm_nr_mmu_pages
)
1872 if (kvm_nr_mmu_pages
< KVM_MIN_ALLOC_MMU_PAGES
)
1875 down_write(&kvm
->slots_lock
);
1876 spin_lock(&kvm
->mmu_lock
);
1878 kvm_mmu_change_mmu_pages(kvm
, kvm_nr_mmu_pages
);
1879 kvm
->arch
.n_requested_mmu_pages
= kvm_nr_mmu_pages
;
1881 spin_unlock(&kvm
->mmu_lock
);
1882 up_write(&kvm
->slots_lock
);
1886 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm
*kvm
)
1888 return kvm
->arch
.n_alloc_mmu_pages
;
1891 gfn_t
unalias_gfn(struct kvm
*kvm
, gfn_t gfn
)
1894 struct kvm_mem_alias
*alias
;
1896 for (i
= 0; i
< kvm
->arch
.naliases
; ++i
) {
1897 alias
= &kvm
->arch
.aliases
[i
];
1898 if (gfn
>= alias
->base_gfn
1899 && gfn
< alias
->base_gfn
+ alias
->npages
)
1900 return alias
->target_gfn
+ gfn
- alias
->base_gfn
;
1906 * Set a new alias region. Aliases map a portion of physical memory into
1907 * another portion. This is useful for memory windows, for example the PC
1910 static int kvm_vm_ioctl_set_memory_alias(struct kvm
*kvm
,
1911 struct kvm_memory_alias
*alias
)
1914 struct kvm_mem_alias
*p
;
1917 /* General sanity checks */
1918 if (alias
->memory_size
& (PAGE_SIZE
- 1))
1920 if (alias
->guest_phys_addr
& (PAGE_SIZE
- 1))
1922 if (alias
->slot
>= KVM_ALIAS_SLOTS
)
1924 if (alias
->guest_phys_addr
+ alias
->memory_size
1925 < alias
->guest_phys_addr
)
1927 if (alias
->target_phys_addr
+ alias
->memory_size
1928 < alias
->target_phys_addr
)
1931 down_write(&kvm
->slots_lock
);
1932 spin_lock(&kvm
->mmu_lock
);
1934 p
= &kvm
->arch
.aliases
[alias
->slot
];
1935 p
->base_gfn
= alias
->guest_phys_addr
>> PAGE_SHIFT
;
1936 p
->npages
= alias
->memory_size
>> PAGE_SHIFT
;
1937 p
->target_gfn
= alias
->target_phys_addr
>> PAGE_SHIFT
;
1939 for (n
= KVM_ALIAS_SLOTS
; n
> 0; --n
)
1940 if (kvm
->arch
.aliases
[n
- 1].npages
)
1942 kvm
->arch
.naliases
= n
;
1944 spin_unlock(&kvm
->mmu_lock
);
1945 kvm_mmu_zap_all(kvm
);
1947 up_write(&kvm
->slots_lock
);
1955 static int kvm_vm_ioctl_get_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
1960 switch (chip
->chip_id
) {
1961 case KVM_IRQCHIP_PIC_MASTER
:
1962 memcpy(&chip
->chip
.pic
,
1963 &pic_irqchip(kvm
)->pics
[0],
1964 sizeof(struct kvm_pic_state
));
1966 case KVM_IRQCHIP_PIC_SLAVE
:
1967 memcpy(&chip
->chip
.pic
,
1968 &pic_irqchip(kvm
)->pics
[1],
1969 sizeof(struct kvm_pic_state
));
1971 case KVM_IRQCHIP_IOAPIC
:
1972 memcpy(&chip
->chip
.ioapic
,
1973 ioapic_irqchip(kvm
),
1974 sizeof(struct kvm_ioapic_state
));
1983 static int kvm_vm_ioctl_set_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
1988 switch (chip
->chip_id
) {
1989 case KVM_IRQCHIP_PIC_MASTER
:
1990 memcpy(&pic_irqchip(kvm
)->pics
[0],
1992 sizeof(struct kvm_pic_state
));
1994 case KVM_IRQCHIP_PIC_SLAVE
:
1995 memcpy(&pic_irqchip(kvm
)->pics
[1],
1997 sizeof(struct kvm_pic_state
));
1999 case KVM_IRQCHIP_IOAPIC
:
2000 memcpy(ioapic_irqchip(kvm
),
2002 sizeof(struct kvm_ioapic_state
));
2008 kvm_pic_update_irq(pic_irqchip(kvm
));
2012 static int kvm_vm_ioctl_get_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
2016 memcpy(ps
, &kvm
->arch
.vpit
->pit_state
, sizeof(struct kvm_pit_state
));
2020 static int kvm_vm_ioctl_set_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
2024 memcpy(&kvm
->arch
.vpit
->pit_state
, ps
, sizeof(struct kvm_pit_state
));
2025 kvm_pit_load_count(kvm
, 0, ps
->channels
[0].count
);
2029 static int kvm_vm_ioctl_reinject(struct kvm
*kvm
,
2030 struct kvm_reinject_control
*control
)
2032 if (!kvm
->arch
.vpit
)
2034 kvm
->arch
.vpit
->pit_state
.pit_timer
.reinject
= control
->pit_reinject
;
2039 * Get (and clear) the dirty memory log for a memory slot.
2041 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
,
2042 struct kvm_dirty_log
*log
)
2046 struct kvm_memory_slot
*memslot
;
2049 down_write(&kvm
->slots_lock
);
2051 r
= kvm_get_dirty_log(kvm
, log
, &is_dirty
);
2055 /* If nothing is dirty, don't bother messing with page tables. */
2057 spin_lock(&kvm
->mmu_lock
);
2058 kvm_mmu_slot_remove_write_access(kvm
, log
->slot
);
2059 spin_unlock(&kvm
->mmu_lock
);
2060 kvm_flush_remote_tlbs(kvm
);
2061 memslot
= &kvm
->memslots
[log
->slot
];
2062 n
= ALIGN(memslot
->npages
, BITS_PER_LONG
) / 8;
2063 memset(memslot
->dirty_bitmap
, 0, n
);
2067 up_write(&kvm
->slots_lock
);
2071 long kvm_arch_vm_ioctl(struct file
*filp
,
2072 unsigned int ioctl
, unsigned long arg
)
2074 struct kvm
*kvm
= filp
->private_data
;
2075 void __user
*argp
= (void __user
*)arg
;
2078 * This union makes it completely explicit to gcc-3.x
2079 * that these two variables' stack usage should be
2080 * combined, not added together.
2083 struct kvm_pit_state ps
;
2084 struct kvm_memory_alias alias
;
2085 struct kvm_pit_config pit_config
;
2089 case KVM_SET_TSS_ADDR
:
2090 r
= kvm_vm_ioctl_set_tss_addr(kvm
, arg
);
2094 case KVM_SET_MEMORY_REGION
: {
2095 struct kvm_memory_region kvm_mem
;
2096 struct kvm_userspace_memory_region kvm_userspace_mem
;
2099 if (copy_from_user(&kvm_mem
, argp
, sizeof kvm_mem
))
2101 kvm_userspace_mem
.slot
= kvm_mem
.slot
;
2102 kvm_userspace_mem
.flags
= kvm_mem
.flags
;
2103 kvm_userspace_mem
.guest_phys_addr
= kvm_mem
.guest_phys_addr
;
2104 kvm_userspace_mem
.memory_size
= kvm_mem
.memory_size
;
2105 r
= kvm_vm_ioctl_set_memory_region(kvm
, &kvm_userspace_mem
, 0);
2110 case KVM_SET_NR_MMU_PAGES
:
2111 r
= kvm_vm_ioctl_set_nr_mmu_pages(kvm
, arg
);
2115 case KVM_GET_NR_MMU_PAGES
:
2116 r
= kvm_vm_ioctl_get_nr_mmu_pages(kvm
);
2118 case KVM_SET_MEMORY_ALIAS
:
2120 if (copy_from_user(&u
.alias
, argp
, sizeof(struct kvm_memory_alias
)))
2122 r
= kvm_vm_ioctl_set_memory_alias(kvm
, &u
.alias
);
2126 case KVM_CREATE_IRQCHIP
:
2128 kvm
->arch
.vpic
= kvm_create_pic(kvm
);
2129 if (kvm
->arch
.vpic
) {
2130 r
= kvm_ioapic_init(kvm
);
2132 kfree(kvm
->arch
.vpic
);
2133 kvm
->arch
.vpic
= NULL
;
2138 r
= kvm_setup_default_irq_routing(kvm
);
2140 kfree(kvm
->arch
.vpic
);
2141 kfree(kvm
->arch
.vioapic
);
2145 case KVM_CREATE_PIT
:
2146 u
.pit_config
.flags
= KVM_PIT_SPEAKER_DUMMY
;
2148 case KVM_CREATE_PIT2
:
2150 if (copy_from_user(&u
.pit_config
, argp
,
2151 sizeof(struct kvm_pit_config
)))
2154 mutex_lock(&kvm
->lock
);
2157 goto create_pit_unlock
;
2159 kvm
->arch
.vpit
= kvm_create_pit(kvm
, u
.pit_config
.flags
);
2163 mutex_unlock(&kvm
->lock
);
2165 case KVM_IRQ_LINE_STATUS
:
2166 case KVM_IRQ_LINE
: {
2167 struct kvm_irq_level irq_event
;
2170 if (copy_from_user(&irq_event
, argp
, sizeof irq_event
))
2172 if (irqchip_in_kernel(kvm
)) {
2174 mutex_lock(&kvm
->irq_lock
);
2175 status
= kvm_set_irq(kvm
, KVM_USERSPACE_IRQ_SOURCE_ID
,
2176 irq_event
.irq
, irq_event
.level
);
2177 mutex_unlock(&kvm
->irq_lock
);
2178 if (ioctl
== KVM_IRQ_LINE_STATUS
) {
2179 irq_event
.status
= status
;
2180 if (copy_to_user(argp
, &irq_event
,
2188 case KVM_GET_IRQCHIP
: {
2189 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2190 struct kvm_irqchip
*chip
= kmalloc(sizeof(*chip
), GFP_KERNEL
);
2196 if (copy_from_user(chip
, argp
, sizeof *chip
))
2197 goto get_irqchip_out
;
2199 if (!irqchip_in_kernel(kvm
))
2200 goto get_irqchip_out
;
2201 r
= kvm_vm_ioctl_get_irqchip(kvm
, chip
);
2203 goto get_irqchip_out
;
2205 if (copy_to_user(argp
, chip
, sizeof *chip
))
2206 goto get_irqchip_out
;
2214 case KVM_SET_IRQCHIP
: {
2215 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2216 struct kvm_irqchip
*chip
= kmalloc(sizeof(*chip
), GFP_KERNEL
);
2222 if (copy_from_user(chip
, argp
, sizeof *chip
))
2223 goto set_irqchip_out
;
2225 if (!irqchip_in_kernel(kvm
))
2226 goto set_irqchip_out
;
2227 r
= kvm_vm_ioctl_set_irqchip(kvm
, chip
);
2229 goto set_irqchip_out
;
2239 if (copy_from_user(&u
.ps
, argp
, sizeof(struct kvm_pit_state
)))
2242 if (!kvm
->arch
.vpit
)
2244 r
= kvm_vm_ioctl_get_pit(kvm
, &u
.ps
);
2248 if (copy_to_user(argp
, &u
.ps
, sizeof(struct kvm_pit_state
)))
2255 if (copy_from_user(&u
.ps
, argp
, sizeof u
.ps
))
2258 if (!kvm
->arch
.vpit
)
2260 r
= kvm_vm_ioctl_set_pit(kvm
, &u
.ps
);
2266 case KVM_REINJECT_CONTROL
: {
2267 struct kvm_reinject_control control
;
2269 if (copy_from_user(&control
, argp
, sizeof(control
)))
2271 r
= kvm_vm_ioctl_reinject(kvm
, &control
);
2284 static void kvm_init_msr_list(void)
2289 for (i
= j
= 0; i
< ARRAY_SIZE(msrs_to_save
); i
++) {
2290 if (rdmsr_safe(msrs_to_save
[i
], &dummy
[0], &dummy
[1]) < 0)
2293 msrs_to_save
[j
] = msrs_to_save
[i
];
2296 num_msrs_to_save
= j
;
2300 * Only apic need an MMIO device hook, so shortcut now..
2302 static struct kvm_io_device
*vcpu_find_pervcpu_dev(struct kvm_vcpu
*vcpu
,
2303 gpa_t addr
, int len
,
2306 struct kvm_io_device
*dev
;
2308 if (vcpu
->arch
.apic
) {
2309 dev
= &vcpu
->arch
.apic
->dev
;
2310 if (kvm_iodevice_in_range(dev
, addr
, len
, is_write
))
2317 static struct kvm_io_device
*vcpu_find_mmio_dev(struct kvm_vcpu
*vcpu
,
2318 gpa_t addr
, int len
,
2321 struct kvm_io_device
*dev
;
2323 dev
= vcpu_find_pervcpu_dev(vcpu
, addr
, len
, is_write
);
2325 dev
= kvm_io_bus_find_dev(&vcpu
->kvm
->mmio_bus
, addr
, len
,
2330 static int kvm_read_guest_virt(gva_t addr
, void *val
, unsigned int bytes
,
2331 struct kvm_vcpu
*vcpu
)
2334 int r
= X86EMUL_CONTINUE
;
2337 gpa_t gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
2338 unsigned offset
= addr
& (PAGE_SIZE
-1);
2339 unsigned toread
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
2342 if (gpa
== UNMAPPED_GVA
) {
2343 r
= X86EMUL_PROPAGATE_FAULT
;
2346 ret
= kvm_read_guest(vcpu
->kvm
, gpa
, data
, toread
);
2348 r
= X86EMUL_UNHANDLEABLE
;
2360 static int kvm_write_guest_virt(gva_t addr
, void *val
, unsigned int bytes
,
2361 struct kvm_vcpu
*vcpu
)
2364 int r
= X86EMUL_CONTINUE
;
2367 gpa_t gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
2368 unsigned offset
= addr
& (PAGE_SIZE
-1);
2369 unsigned towrite
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
2372 if (gpa
== UNMAPPED_GVA
) {
2373 r
= X86EMUL_PROPAGATE_FAULT
;
2376 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, data
, towrite
);
2378 r
= X86EMUL_UNHANDLEABLE
;
2391 static int emulator_read_emulated(unsigned long addr
,
2394 struct kvm_vcpu
*vcpu
)
2396 struct kvm_io_device
*mmio_dev
;
2399 if (vcpu
->mmio_read_completed
) {
2400 memcpy(val
, vcpu
->mmio_data
, bytes
);
2401 vcpu
->mmio_read_completed
= 0;
2402 return X86EMUL_CONTINUE
;
2405 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
2407 /* For APIC access vmexit */
2408 if ((gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
2411 if (kvm_read_guest_virt(addr
, val
, bytes
, vcpu
)
2412 == X86EMUL_CONTINUE
)
2413 return X86EMUL_CONTINUE
;
2414 if (gpa
== UNMAPPED_GVA
)
2415 return X86EMUL_PROPAGATE_FAULT
;
2419 * Is this MMIO handled locally?
2421 mutex_lock(&vcpu
->kvm
->lock
);
2422 mmio_dev
= vcpu_find_mmio_dev(vcpu
, gpa
, bytes
, 0);
2423 mutex_unlock(&vcpu
->kvm
->lock
);
2425 kvm_iodevice_read(mmio_dev
, gpa
, bytes
, val
);
2426 return X86EMUL_CONTINUE
;
2429 vcpu
->mmio_needed
= 1;
2430 vcpu
->mmio_phys_addr
= gpa
;
2431 vcpu
->mmio_size
= bytes
;
2432 vcpu
->mmio_is_write
= 0;
2434 return X86EMUL_UNHANDLEABLE
;
2437 int emulator_write_phys(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
2438 const void *val
, int bytes
)
2442 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, val
, bytes
);
2445 kvm_mmu_pte_write(vcpu
, gpa
, val
, bytes
, 1);
2449 static int emulator_write_emulated_onepage(unsigned long addr
,
2452 struct kvm_vcpu
*vcpu
)
2454 struct kvm_io_device
*mmio_dev
;
2457 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
2459 if (gpa
== UNMAPPED_GVA
) {
2460 kvm_inject_page_fault(vcpu
, addr
, 2);
2461 return X86EMUL_PROPAGATE_FAULT
;
2464 /* For APIC access vmexit */
2465 if ((gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
2468 if (emulator_write_phys(vcpu
, gpa
, val
, bytes
))
2469 return X86EMUL_CONTINUE
;
2473 * Is this MMIO handled locally?
2475 mutex_lock(&vcpu
->kvm
->lock
);
2476 mmio_dev
= vcpu_find_mmio_dev(vcpu
, gpa
, bytes
, 1);
2477 mutex_unlock(&vcpu
->kvm
->lock
);
2479 kvm_iodevice_write(mmio_dev
, gpa
, bytes
, val
);
2480 return X86EMUL_CONTINUE
;
2483 vcpu
->mmio_needed
= 1;
2484 vcpu
->mmio_phys_addr
= gpa
;
2485 vcpu
->mmio_size
= bytes
;
2486 vcpu
->mmio_is_write
= 1;
2487 memcpy(vcpu
->mmio_data
, val
, bytes
);
2489 return X86EMUL_CONTINUE
;
2492 int emulator_write_emulated(unsigned long addr
,
2495 struct kvm_vcpu
*vcpu
)
2497 /* Crossing a page boundary? */
2498 if (((addr
+ bytes
- 1) ^ addr
) & PAGE_MASK
) {
2501 now
= -addr
& ~PAGE_MASK
;
2502 rc
= emulator_write_emulated_onepage(addr
, val
, now
, vcpu
);
2503 if (rc
!= X86EMUL_CONTINUE
)
2509 return emulator_write_emulated_onepage(addr
, val
, bytes
, vcpu
);
2511 EXPORT_SYMBOL_GPL(emulator_write_emulated
);
2513 static int emulator_cmpxchg_emulated(unsigned long addr
,
2517 struct kvm_vcpu
*vcpu
)
2519 static int reported
;
2523 printk(KERN_WARNING
"kvm: emulating exchange as write\n");
2525 #ifndef CONFIG_X86_64
2526 /* guests cmpxchg8b have to be emulated atomically */
2533 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
2535 if (gpa
== UNMAPPED_GVA
||
2536 (gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
2539 if (((gpa
+ bytes
- 1) & PAGE_MASK
) != (gpa
& PAGE_MASK
))
2544 page
= gfn_to_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
2546 kaddr
= kmap_atomic(page
, KM_USER0
);
2547 set_64bit((u64
*)(kaddr
+ offset_in_page(gpa
)), val
);
2548 kunmap_atomic(kaddr
, KM_USER0
);
2549 kvm_release_page_dirty(page
);
2554 return emulator_write_emulated(addr
, new, bytes
, vcpu
);
2557 static unsigned long get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
2559 return kvm_x86_ops
->get_segment_base(vcpu
, seg
);
2562 int emulate_invlpg(struct kvm_vcpu
*vcpu
, gva_t address
)
2564 kvm_mmu_invlpg(vcpu
, address
);
2565 return X86EMUL_CONTINUE
;
2568 int emulate_clts(struct kvm_vcpu
*vcpu
)
2570 kvm_x86_ops
->set_cr0(vcpu
, vcpu
->arch
.cr0
& ~X86_CR0_TS
);
2571 return X86EMUL_CONTINUE
;
2574 int emulator_get_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long *dest
)
2576 struct kvm_vcpu
*vcpu
= ctxt
->vcpu
;
2580 *dest
= kvm_x86_ops
->get_dr(vcpu
, dr
);
2581 return X86EMUL_CONTINUE
;
2583 pr_unimpl(vcpu
, "%s: unexpected dr %u\n", __func__
, dr
);
2584 return X86EMUL_UNHANDLEABLE
;
2588 int emulator_set_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long value
)
2590 unsigned long mask
= (ctxt
->mode
== X86EMUL_MODE_PROT64
) ? ~0ULL : ~0U;
2593 kvm_x86_ops
->set_dr(ctxt
->vcpu
, dr
, value
& mask
, &exception
);
2595 /* FIXME: better handling */
2596 return X86EMUL_UNHANDLEABLE
;
2598 return X86EMUL_CONTINUE
;
2601 void kvm_report_emulation_failure(struct kvm_vcpu
*vcpu
, const char *context
)
2604 unsigned long rip
= kvm_rip_read(vcpu
);
2605 unsigned long rip_linear
;
2607 if (!printk_ratelimit())
2610 rip_linear
= rip
+ get_segment_base(vcpu
, VCPU_SREG_CS
);
2612 kvm_read_guest_virt(rip_linear
, (void *)opcodes
, 4, vcpu
);
2614 printk(KERN_ERR
"emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2615 context
, rip
, opcodes
[0], opcodes
[1], opcodes
[2], opcodes
[3]);
2617 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure
);
2619 static struct x86_emulate_ops emulate_ops
= {
2620 .read_std
= kvm_read_guest_virt
,
2621 .read_emulated
= emulator_read_emulated
,
2622 .write_emulated
= emulator_write_emulated
,
2623 .cmpxchg_emulated
= emulator_cmpxchg_emulated
,
2626 static void cache_all_regs(struct kvm_vcpu
*vcpu
)
2628 kvm_register_read(vcpu
, VCPU_REGS_RAX
);
2629 kvm_register_read(vcpu
, VCPU_REGS_RSP
);
2630 kvm_register_read(vcpu
, VCPU_REGS_RIP
);
2631 vcpu
->arch
.regs_dirty
= ~0;
2634 int emulate_instruction(struct kvm_vcpu
*vcpu
,
2635 struct kvm_run
*run
,
2641 struct decode_cache
*c
;
2643 kvm_clear_exception_queue(vcpu
);
2644 vcpu
->arch
.mmio_fault_cr2
= cr2
;
2646 * TODO: fix x86_emulate.c to use guest_read/write_register
2647 * instead of direct ->regs accesses, can save hundred cycles
2648 * on Intel for instructions that don't read/change RSP, for
2651 cache_all_regs(vcpu
);
2653 vcpu
->mmio_is_write
= 0;
2654 vcpu
->arch
.pio
.string
= 0;
2656 if (!(emulation_type
& EMULTYPE_NO_DECODE
)) {
2658 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
2660 vcpu
->arch
.emulate_ctxt
.vcpu
= vcpu
;
2661 vcpu
->arch
.emulate_ctxt
.eflags
= kvm_x86_ops
->get_rflags(vcpu
);
2662 vcpu
->arch
.emulate_ctxt
.mode
=
2663 (vcpu
->arch
.emulate_ctxt
.eflags
& X86_EFLAGS_VM
)
2664 ? X86EMUL_MODE_REAL
: cs_l
2665 ? X86EMUL_MODE_PROT64
: cs_db
2666 ? X86EMUL_MODE_PROT32
: X86EMUL_MODE_PROT16
;
2668 r
= x86_decode_insn(&vcpu
->arch
.emulate_ctxt
, &emulate_ops
);
2670 /* Only allow emulation of specific instructions on #UD
2671 * (namely VMMCALL, sysenter, sysexit, syscall)*/
2672 c
= &vcpu
->arch
.emulate_ctxt
.decode
;
2673 if (emulation_type
& EMULTYPE_TRAP_UD
) {
2675 return EMULATE_FAIL
;
2677 case 0x01: /* VMMCALL */
2678 if (c
->modrm_mod
!= 3 || c
->modrm_rm
!= 1)
2679 return EMULATE_FAIL
;
2681 case 0x34: /* sysenter */
2682 case 0x35: /* sysexit */
2683 if (c
->modrm_mod
!= 0 || c
->modrm_rm
!= 0)
2684 return EMULATE_FAIL
;
2686 case 0x05: /* syscall */
2687 if (c
->modrm_mod
!= 0 || c
->modrm_rm
!= 0)
2688 return EMULATE_FAIL
;
2691 return EMULATE_FAIL
;
2694 if (!(c
->modrm_reg
== 0 || c
->modrm_reg
== 3))
2695 return EMULATE_FAIL
;
2698 ++vcpu
->stat
.insn_emulation
;
2700 ++vcpu
->stat
.insn_emulation_fail
;
2701 if (kvm_mmu_unprotect_page_virt(vcpu
, cr2
))
2702 return EMULATE_DONE
;
2703 return EMULATE_FAIL
;
2707 if (emulation_type
& EMULTYPE_SKIP
) {
2708 kvm_rip_write(vcpu
, vcpu
->arch
.emulate_ctxt
.decode
.eip
);
2709 return EMULATE_DONE
;
2712 r
= x86_emulate_insn(&vcpu
->arch
.emulate_ctxt
, &emulate_ops
);
2713 shadow_mask
= vcpu
->arch
.emulate_ctxt
.interruptibility
;
2716 kvm_x86_ops
->set_interrupt_shadow(vcpu
, shadow_mask
);
2718 if (vcpu
->arch
.pio
.string
)
2719 return EMULATE_DO_MMIO
;
2721 if ((r
|| vcpu
->mmio_is_write
) && run
) {
2722 run
->exit_reason
= KVM_EXIT_MMIO
;
2723 run
->mmio
.phys_addr
= vcpu
->mmio_phys_addr
;
2724 memcpy(run
->mmio
.data
, vcpu
->mmio_data
, 8);
2725 run
->mmio
.len
= vcpu
->mmio_size
;
2726 run
->mmio
.is_write
= vcpu
->mmio_is_write
;
2730 if (kvm_mmu_unprotect_page_virt(vcpu
, cr2
))
2731 return EMULATE_DONE
;
2732 if (!vcpu
->mmio_needed
) {
2733 kvm_report_emulation_failure(vcpu
, "mmio");
2734 return EMULATE_FAIL
;
2736 return EMULATE_DO_MMIO
;
2739 kvm_x86_ops
->set_rflags(vcpu
, vcpu
->arch
.emulate_ctxt
.eflags
);
2741 if (vcpu
->mmio_is_write
) {
2742 vcpu
->mmio_needed
= 0;
2743 return EMULATE_DO_MMIO
;
2746 return EMULATE_DONE
;
2748 EXPORT_SYMBOL_GPL(emulate_instruction
);
2750 static int pio_copy_data(struct kvm_vcpu
*vcpu
)
2752 void *p
= vcpu
->arch
.pio_data
;
2753 gva_t q
= vcpu
->arch
.pio
.guest_gva
;
2757 bytes
= vcpu
->arch
.pio
.size
* vcpu
->arch
.pio
.cur_count
;
2758 if (vcpu
->arch
.pio
.in
)
2759 ret
= kvm_write_guest_virt(q
, p
, bytes
, vcpu
);
2761 ret
= kvm_read_guest_virt(q
, p
, bytes
, vcpu
);
2765 int complete_pio(struct kvm_vcpu
*vcpu
)
2767 struct kvm_pio_request
*io
= &vcpu
->arch
.pio
;
2774 val
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
2775 memcpy(&val
, vcpu
->arch
.pio_data
, io
->size
);
2776 kvm_register_write(vcpu
, VCPU_REGS_RAX
, val
);
2780 r
= pio_copy_data(vcpu
);
2787 delta
*= io
->cur_count
;
2789 * The size of the register should really depend on
2790 * current address size.
2792 val
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
2794 kvm_register_write(vcpu
, VCPU_REGS_RCX
, val
);
2800 val
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
2802 kvm_register_write(vcpu
, VCPU_REGS_RDI
, val
);
2804 val
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
2806 kvm_register_write(vcpu
, VCPU_REGS_RSI
, val
);
2810 io
->count
-= io
->cur_count
;
2816 static void kernel_pio(struct kvm_io_device
*pio_dev
,
2817 struct kvm_vcpu
*vcpu
,
2820 /* TODO: String I/O for in kernel device */
2822 if (vcpu
->arch
.pio
.in
)
2823 kvm_iodevice_read(pio_dev
, vcpu
->arch
.pio
.port
,
2824 vcpu
->arch
.pio
.size
,
2827 kvm_iodevice_write(pio_dev
, vcpu
->arch
.pio
.port
,
2828 vcpu
->arch
.pio
.size
,
2832 static void pio_string_write(struct kvm_io_device
*pio_dev
,
2833 struct kvm_vcpu
*vcpu
)
2835 struct kvm_pio_request
*io
= &vcpu
->arch
.pio
;
2836 void *pd
= vcpu
->arch
.pio_data
;
2839 for (i
= 0; i
< io
->cur_count
; i
++) {
2840 kvm_iodevice_write(pio_dev
, io
->port
,
2847 static struct kvm_io_device
*vcpu_find_pio_dev(struct kvm_vcpu
*vcpu
,
2848 gpa_t addr
, int len
,
2851 return kvm_io_bus_find_dev(&vcpu
->kvm
->pio_bus
, addr
, len
, is_write
);
2854 int kvm_emulate_pio(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
, int in
,
2855 int size
, unsigned port
)
2857 struct kvm_io_device
*pio_dev
;
2860 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
2861 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
2862 vcpu
->run
->io
.size
= vcpu
->arch
.pio
.size
= size
;
2863 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
2864 vcpu
->run
->io
.count
= vcpu
->arch
.pio
.count
= vcpu
->arch
.pio
.cur_count
= 1;
2865 vcpu
->run
->io
.port
= vcpu
->arch
.pio
.port
= port
;
2866 vcpu
->arch
.pio
.in
= in
;
2867 vcpu
->arch
.pio
.string
= 0;
2868 vcpu
->arch
.pio
.down
= 0;
2869 vcpu
->arch
.pio
.rep
= 0;
2871 trace_kvm_pio(vcpu
->run
->io
.direction
== KVM_EXIT_IO_OUT
, port
,
2874 val
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
2875 memcpy(vcpu
->arch
.pio_data
, &val
, 4);
2877 mutex_lock(&vcpu
->kvm
->lock
);
2878 pio_dev
= vcpu_find_pio_dev(vcpu
, port
, size
, !in
);
2879 mutex_unlock(&vcpu
->kvm
->lock
);
2881 kernel_pio(pio_dev
, vcpu
, vcpu
->arch
.pio_data
);
2887 EXPORT_SYMBOL_GPL(kvm_emulate_pio
);
2889 int kvm_emulate_pio_string(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
, int in
,
2890 int size
, unsigned long count
, int down
,
2891 gva_t address
, int rep
, unsigned port
)
2893 unsigned now
, in_page
;
2895 struct kvm_io_device
*pio_dev
;
2897 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
2898 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
2899 vcpu
->run
->io
.size
= vcpu
->arch
.pio
.size
= size
;
2900 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
2901 vcpu
->run
->io
.count
= vcpu
->arch
.pio
.count
= vcpu
->arch
.pio
.cur_count
= count
;
2902 vcpu
->run
->io
.port
= vcpu
->arch
.pio
.port
= port
;
2903 vcpu
->arch
.pio
.in
= in
;
2904 vcpu
->arch
.pio
.string
= 1;
2905 vcpu
->arch
.pio
.down
= down
;
2906 vcpu
->arch
.pio
.rep
= rep
;
2908 trace_kvm_pio(vcpu
->run
->io
.direction
== KVM_EXIT_IO_OUT
, port
,
2912 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
2917 in_page
= PAGE_SIZE
- offset_in_page(address
);
2919 in_page
= offset_in_page(address
) + size
;
2920 now
= min(count
, (unsigned long)in_page
/ size
);
2925 * String I/O in reverse. Yuck. Kill the guest, fix later.
2927 pr_unimpl(vcpu
, "guest string pio down\n");
2928 kvm_inject_gp(vcpu
, 0);
2931 vcpu
->run
->io
.count
= now
;
2932 vcpu
->arch
.pio
.cur_count
= now
;
2934 if (vcpu
->arch
.pio
.cur_count
== vcpu
->arch
.pio
.count
)
2935 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
2937 vcpu
->arch
.pio
.guest_gva
= address
;
2939 mutex_lock(&vcpu
->kvm
->lock
);
2940 pio_dev
= vcpu_find_pio_dev(vcpu
, port
,
2941 vcpu
->arch
.pio
.cur_count
,
2942 !vcpu
->arch
.pio
.in
);
2943 mutex_unlock(&vcpu
->kvm
->lock
);
2945 if (!vcpu
->arch
.pio
.in
) {
2946 /* string PIO write */
2947 ret
= pio_copy_data(vcpu
);
2948 if (ret
== X86EMUL_PROPAGATE_FAULT
) {
2949 kvm_inject_gp(vcpu
, 0);
2952 if (ret
== 0 && pio_dev
) {
2953 pio_string_write(pio_dev
, vcpu
);
2955 if (vcpu
->arch
.pio
.count
== 0)
2959 pr_unimpl(vcpu
, "no string pio read support yet, "
2960 "port %x size %d count %ld\n",
2965 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string
);
2967 static void bounce_off(void *info
)
2972 static unsigned int ref_freq
;
2973 static unsigned long tsc_khz_ref
;
2975 static int kvmclock_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
2978 struct cpufreq_freqs
*freq
= data
;
2980 struct kvm_vcpu
*vcpu
;
2981 int i
, send_ipi
= 0;
2984 ref_freq
= freq
->old
;
2986 if (val
== CPUFREQ_PRECHANGE
&& freq
->old
> freq
->new)
2988 if (val
== CPUFREQ_POSTCHANGE
&& freq
->old
< freq
->new)
2990 per_cpu(cpu_tsc_khz
, freq
->cpu
) = cpufreq_scale(tsc_khz_ref
, ref_freq
, freq
->new);
2992 spin_lock(&kvm_lock
);
2993 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
2994 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
2995 if (vcpu
->cpu
!= freq
->cpu
)
2997 if (!kvm_request_guest_time_update(vcpu
))
2999 if (vcpu
->cpu
!= smp_processor_id())
3003 spin_unlock(&kvm_lock
);
3005 if (freq
->old
< freq
->new && send_ipi
) {
3007 * We upscale the frequency. Must make the guest
3008 * doesn't see old kvmclock values while running with
3009 * the new frequency, otherwise we risk the guest sees
3010 * time go backwards.
3012 * In case we update the frequency for another cpu
3013 * (which might be in guest context) send an interrupt
3014 * to kick the cpu out of guest context. Next time
3015 * guest context is entered kvmclock will be updated,
3016 * so the guest will not see stale values.
3018 smp_call_function_single(freq
->cpu
, bounce_off
, NULL
, 1);
3023 static struct notifier_block kvmclock_cpufreq_notifier_block
= {
3024 .notifier_call
= kvmclock_cpufreq_notifier
3027 int kvm_arch_init(void *opaque
)
3030 struct kvm_x86_ops
*ops
= (struct kvm_x86_ops
*)opaque
;
3033 printk(KERN_ERR
"kvm: already loaded the other module\n");
3038 if (!ops
->cpu_has_kvm_support()) {
3039 printk(KERN_ERR
"kvm: no hardware support\n");
3043 if (ops
->disabled_by_bios()) {
3044 printk(KERN_ERR
"kvm: disabled by bios\n");
3049 r
= kvm_mmu_module_init();
3053 kvm_init_msr_list();
3056 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
3057 kvm_mmu_set_base_ptes(PT_PRESENT_MASK
);
3058 kvm_mmu_set_mask_ptes(PT_USER_MASK
, PT_ACCESSED_MASK
,
3059 PT_DIRTY_MASK
, PT64_NX_MASK
, 0);
3061 for_each_possible_cpu(cpu
)
3062 per_cpu(cpu_tsc_khz
, cpu
) = tsc_khz
;
3063 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
)) {
3064 tsc_khz_ref
= tsc_khz
;
3065 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block
,
3066 CPUFREQ_TRANSITION_NOTIFIER
);
3075 void kvm_arch_exit(void)
3077 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
3078 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block
,
3079 CPUFREQ_TRANSITION_NOTIFIER
);
3081 kvm_mmu_module_exit();
3084 int kvm_emulate_halt(struct kvm_vcpu
*vcpu
)
3086 ++vcpu
->stat
.halt_exits
;
3087 if (irqchip_in_kernel(vcpu
->kvm
)) {
3088 vcpu
->arch
.mp_state
= KVM_MP_STATE_HALTED
;
3091 vcpu
->run
->exit_reason
= KVM_EXIT_HLT
;
3095 EXPORT_SYMBOL_GPL(kvm_emulate_halt
);
3097 static inline gpa_t
hc_gpa(struct kvm_vcpu
*vcpu
, unsigned long a0
,
3100 if (is_long_mode(vcpu
))
3103 return a0
| ((gpa_t
)a1
<< 32);
3106 int kvm_emulate_hypercall(struct kvm_vcpu
*vcpu
)
3108 unsigned long nr
, a0
, a1
, a2
, a3
, ret
;
3111 nr
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
3112 a0
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
3113 a1
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
3114 a2
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
3115 a3
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
3117 trace_kvm_hypercall(nr
, a0
, a1
, a2
, a3
);
3119 if (!is_long_mode(vcpu
)) {
3128 case KVM_HC_VAPIC_POLL_IRQ
:
3132 r
= kvm_pv_mmu_op(vcpu
, a0
, hc_gpa(vcpu
, a1
, a2
), &ret
);
3138 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
3139 ++vcpu
->stat
.hypercalls
;
3142 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall
);
3144 int kvm_fix_hypercall(struct kvm_vcpu
*vcpu
)
3146 char instruction
[3];
3148 unsigned long rip
= kvm_rip_read(vcpu
);
3152 * Blow out the MMU to ensure that no other VCPU has an active mapping
3153 * to ensure that the updated hypercall appears atomically across all
3156 kvm_mmu_zap_all(vcpu
->kvm
);
3158 kvm_x86_ops
->patch_hypercall(vcpu
, instruction
);
3159 if (emulator_write_emulated(rip
, instruction
, 3, vcpu
)
3160 != X86EMUL_CONTINUE
)
3166 static u64
mk_cr_64(u64 curr_cr
, u32 new_val
)
3168 return (curr_cr
& ~((1ULL << 32) - 1)) | new_val
;
3171 void realmode_lgdt(struct kvm_vcpu
*vcpu
, u16 limit
, unsigned long base
)
3173 struct descriptor_table dt
= { limit
, base
};
3175 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
3178 void realmode_lidt(struct kvm_vcpu
*vcpu
, u16 limit
, unsigned long base
)
3180 struct descriptor_table dt
= { limit
, base
};
3182 kvm_x86_ops
->set_idt(vcpu
, &dt
);
3185 void realmode_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
,
3186 unsigned long *rflags
)
3188 kvm_lmsw(vcpu
, msw
);
3189 *rflags
= kvm_x86_ops
->get_rflags(vcpu
);
3192 unsigned long realmode_get_cr(struct kvm_vcpu
*vcpu
, int cr
)
3194 unsigned long value
;
3196 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
3199 value
= vcpu
->arch
.cr0
;
3202 value
= vcpu
->arch
.cr2
;
3205 value
= vcpu
->arch
.cr3
;
3208 value
= vcpu
->arch
.cr4
;
3211 value
= kvm_get_cr8(vcpu
);
3214 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __func__
, cr
);
3221 void realmode_set_cr(struct kvm_vcpu
*vcpu
, int cr
, unsigned long val
,
3222 unsigned long *rflags
)
3226 kvm_set_cr0(vcpu
, mk_cr_64(vcpu
->arch
.cr0
, val
));
3227 *rflags
= kvm_x86_ops
->get_rflags(vcpu
);
3230 vcpu
->arch
.cr2
= val
;
3233 kvm_set_cr3(vcpu
, val
);
3236 kvm_set_cr4(vcpu
, mk_cr_64(vcpu
->arch
.cr4
, val
));
3239 kvm_set_cr8(vcpu
, val
& 0xfUL
);
3242 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __func__
, cr
);
3246 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu
*vcpu
, int i
)
3248 struct kvm_cpuid_entry2
*e
= &vcpu
->arch
.cpuid_entries
[i
];
3249 int j
, nent
= vcpu
->arch
.cpuid_nent
;
3251 e
->flags
&= ~KVM_CPUID_FLAG_STATE_READ_NEXT
;
3252 /* when no next entry is found, the current entry[i] is reselected */
3253 for (j
= i
+ 1; ; j
= (j
+ 1) % nent
) {
3254 struct kvm_cpuid_entry2
*ej
= &vcpu
->arch
.cpuid_entries
[j
];
3255 if (ej
->function
== e
->function
) {
3256 ej
->flags
|= KVM_CPUID_FLAG_STATE_READ_NEXT
;
3260 return 0; /* silence gcc, even though control never reaches here */
3263 /* find an entry with matching function, matching index (if needed), and that
3264 * should be read next (if it's stateful) */
3265 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2
*e
,
3266 u32 function
, u32 index
)
3268 if (e
->function
!= function
)
3270 if ((e
->flags
& KVM_CPUID_FLAG_SIGNIFCANT_INDEX
) && e
->index
!= index
)
3272 if ((e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
) &&
3273 !(e
->flags
& KVM_CPUID_FLAG_STATE_READ_NEXT
))
3278 struct kvm_cpuid_entry2
*kvm_find_cpuid_entry(struct kvm_vcpu
*vcpu
,
3279 u32 function
, u32 index
)
3282 struct kvm_cpuid_entry2
*best
= NULL
;
3284 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
3285 struct kvm_cpuid_entry2
*e
;
3287 e
= &vcpu
->arch
.cpuid_entries
[i
];
3288 if (is_matching_cpuid_entry(e
, function
, index
)) {
3289 if (e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
)
3290 move_to_next_stateful_cpuid_entry(vcpu
, i
);
3295 * Both basic or both extended?
3297 if (((e
->function
^ function
) & 0x80000000) == 0)
3298 if (!best
|| e
->function
> best
->function
)
3304 int cpuid_maxphyaddr(struct kvm_vcpu
*vcpu
)
3306 struct kvm_cpuid_entry2
*best
;
3308 best
= kvm_find_cpuid_entry(vcpu
, 0x80000008, 0);
3310 return best
->eax
& 0xff;
3314 void kvm_emulate_cpuid(struct kvm_vcpu
*vcpu
)
3316 u32 function
, index
;
3317 struct kvm_cpuid_entry2
*best
;
3319 function
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
3320 index
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
3321 kvm_register_write(vcpu
, VCPU_REGS_RAX
, 0);
3322 kvm_register_write(vcpu
, VCPU_REGS_RBX
, 0);
3323 kvm_register_write(vcpu
, VCPU_REGS_RCX
, 0);
3324 kvm_register_write(vcpu
, VCPU_REGS_RDX
, 0);
3325 best
= kvm_find_cpuid_entry(vcpu
, function
, index
);
3327 kvm_register_write(vcpu
, VCPU_REGS_RAX
, best
->eax
);
3328 kvm_register_write(vcpu
, VCPU_REGS_RBX
, best
->ebx
);
3329 kvm_register_write(vcpu
, VCPU_REGS_RCX
, best
->ecx
);
3330 kvm_register_write(vcpu
, VCPU_REGS_RDX
, best
->edx
);
3332 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
3333 trace_kvm_cpuid(function
,
3334 kvm_register_read(vcpu
, VCPU_REGS_RAX
),
3335 kvm_register_read(vcpu
, VCPU_REGS_RBX
),
3336 kvm_register_read(vcpu
, VCPU_REGS_RCX
),
3337 kvm_register_read(vcpu
, VCPU_REGS_RDX
));
3339 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid
);
3342 * Check if userspace requested an interrupt window, and that the
3343 * interrupt window is open.
3345 * No need to exit to userspace if we already have an interrupt queued.
3347 static int dm_request_for_irq_injection(struct kvm_vcpu
*vcpu
,
3348 struct kvm_run
*kvm_run
)
3350 return (!irqchip_in_kernel(vcpu
->kvm
) && !kvm_cpu_has_interrupt(vcpu
) &&
3351 kvm_run
->request_interrupt_window
&&
3352 kvm_arch_interrupt_allowed(vcpu
));
3355 static void post_kvm_run_save(struct kvm_vcpu
*vcpu
,
3356 struct kvm_run
*kvm_run
)
3358 kvm_run
->if_flag
= (kvm_x86_ops
->get_rflags(vcpu
) & X86_EFLAGS_IF
) != 0;
3359 kvm_run
->cr8
= kvm_get_cr8(vcpu
);
3360 kvm_run
->apic_base
= kvm_get_apic_base(vcpu
);
3361 if (irqchip_in_kernel(vcpu
->kvm
))
3362 kvm_run
->ready_for_interrupt_injection
= 1;
3364 kvm_run
->ready_for_interrupt_injection
=
3365 kvm_arch_interrupt_allowed(vcpu
) &&
3366 !kvm_cpu_has_interrupt(vcpu
) &&
3367 !kvm_event_needs_reinjection(vcpu
);
3370 static void vapic_enter(struct kvm_vcpu
*vcpu
)
3372 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
3375 if (!apic
|| !apic
->vapic_addr
)
3378 page
= gfn_to_page(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
3380 vcpu
->arch
.apic
->vapic_page
= page
;
3383 static void vapic_exit(struct kvm_vcpu
*vcpu
)
3385 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
3387 if (!apic
|| !apic
->vapic_addr
)
3390 down_read(&vcpu
->kvm
->slots_lock
);
3391 kvm_release_page_dirty(apic
->vapic_page
);
3392 mark_page_dirty(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
3393 up_read(&vcpu
->kvm
->slots_lock
);
3396 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
)
3400 if (!kvm_x86_ops
->update_cr8_intercept
)
3403 if (!vcpu
->arch
.apic
->vapic_addr
)
3404 max_irr
= kvm_lapic_find_highest_irr(vcpu
);
3411 tpr
= kvm_lapic_get_cr8(vcpu
);
3413 kvm_x86_ops
->update_cr8_intercept(vcpu
, tpr
, max_irr
);
3416 static void inject_pending_irq(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3418 /* try to reinject previous events if any */
3419 if (vcpu
->arch
.nmi_injected
) {
3420 kvm_x86_ops
->set_nmi(vcpu
);
3424 if (vcpu
->arch
.interrupt
.pending
) {
3425 kvm_x86_ops
->set_irq(vcpu
);
3429 /* try to inject new event if pending */
3430 if (vcpu
->arch
.nmi_pending
) {
3431 if (kvm_x86_ops
->nmi_allowed(vcpu
)) {
3432 vcpu
->arch
.nmi_pending
= false;
3433 vcpu
->arch
.nmi_injected
= true;
3434 kvm_x86_ops
->set_nmi(vcpu
);
3436 } else if (kvm_cpu_has_interrupt(vcpu
)) {
3437 if (kvm_x86_ops
->interrupt_allowed(vcpu
)) {
3438 kvm_queue_interrupt(vcpu
, kvm_cpu_get_interrupt(vcpu
),
3440 kvm_x86_ops
->set_irq(vcpu
);
3445 static int vcpu_enter_guest(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3448 bool req_int_win
= !irqchip_in_kernel(vcpu
->kvm
) &&
3449 kvm_run
->request_interrupt_window
;
3452 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD
, &vcpu
->requests
))
3453 kvm_mmu_unload(vcpu
);
3455 r
= kvm_mmu_reload(vcpu
);
3459 if (vcpu
->requests
) {
3460 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER
, &vcpu
->requests
))
3461 __kvm_migrate_timers(vcpu
);
3462 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE
, &vcpu
->requests
))
3463 kvm_write_guest_time(vcpu
);
3464 if (test_and_clear_bit(KVM_REQ_MMU_SYNC
, &vcpu
->requests
))
3465 kvm_mmu_sync_roots(vcpu
);
3466 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH
, &vcpu
->requests
))
3467 kvm_x86_ops
->tlb_flush(vcpu
);
3468 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS
,
3470 kvm_run
->exit_reason
= KVM_EXIT_TPR_ACCESS
;
3474 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT
, &vcpu
->requests
)) {
3475 kvm_run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
3483 kvm_x86_ops
->prepare_guest_switch(vcpu
);
3484 kvm_load_guest_fpu(vcpu
);
3486 local_irq_disable();
3488 clear_bit(KVM_REQ_KICK
, &vcpu
->requests
);
3489 smp_mb__after_clear_bit();
3491 if (vcpu
->requests
|| need_resched() || signal_pending(current
)) {
3498 if (vcpu
->arch
.exception
.pending
)
3499 __queue_exception(vcpu
);
3501 inject_pending_irq(vcpu
, kvm_run
);
3503 /* enable NMI/IRQ window open exits if needed */
3504 if (vcpu
->arch
.nmi_pending
)
3505 kvm_x86_ops
->enable_nmi_window(vcpu
);
3506 else if (kvm_cpu_has_interrupt(vcpu
) || req_int_win
)
3507 kvm_x86_ops
->enable_irq_window(vcpu
);
3509 if (kvm_lapic_enabled(vcpu
)) {
3510 update_cr8_intercept(vcpu
);
3511 kvm_lapic_sync_to_vapic(vcpu
);
3514 up_read(&vcpu
->kvm
->slots_lock
);
3518 get_debugreg(vcpu
->arch
.host_dr6
, 6);
3519 get_debugreg(vcpu
->arch
.host_dr7
, 7);
3520 if (unlikely(vcpu
->arch
.switch_db_regs
)) {
3521 get_debugreg(vcpu
->arch
.host_db
[0], 0);
3522 get_debugreg(vcpu
->arch
.host_db
[1], 1);
3523 get_debugreg(vcpu
->arch
.host_db
[2], 2);
3524 get_debugreg(vcpu
->arch
.host_db
[3], 3);
3527 set_debugreg(vcpu
->arch
.eff_db
[0], 0);
3528 set_debugreg(vcpu
->arch
.eff_db
[1], 1);
3529 set_debugreg(vcpu
->arch
.eff_db
[2], 2);
3530 set_debugreg(vcpu
->arch
.eff_db
[3], 3);
3533 trace_kvm_entry(vcpu
->vcpu_id
);
3534 kvm_x86_ops
->run(vcpu
, kvm_run
);
3536 if (unlikely(vcpu
->arch
.switch_db_regs
)) {
3538 set_debugreg(vcpu
->arch
.host_db
[0], 0);
3539 set_debugreg(vcpu
->arch
.host_db
[1], 1);
3540 set_debugreg(vcpu
->arch
.host_db
[2], 2);
3541 set_debugreg(vcpu
->arch
.host_db
[3], 3);
3543 set_debugreg(vcpu
->arch
.host_dr6
, 6);
3544 set_debugreg(vcpu
->arch
.host_dr7
, 7);
3546 set_bit(KVM_REQ_KICK
, &vcpu
->requests
);
3552 * We must have an instruction between local_irq_enable() and
3553 * kvm_guest_exit(), so the timer interrupt isn't delayed by
3554 * the interrupt shadow. The stat.exits increment will do nicely.
3555 * But we need to prevent reordering, hence this barrier():
3563 down_read(&vcpu
->kvm
->slots_lock
);
3566 * Profile KVM exit RIPs:
3568 if (unlikely(prof_on
== KVM_PROFILING
)) {
3569 unsigned long rip
= kvm_rip_read(vcpu
);
3570 profile_hit(KVM_PROFILING
, (void *)rip
);
3574 kvm_lapic_sync_from_vapic(vcpu
);
3576 r
= kvm_x86_ops
->handle_exit(kvm_run
, vcpu
);
3582 static int __vcpu_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3586 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_SIPI_RECEIVED
)) {
3587 pr_debug("vcpu %d received sipi with vector # %x\n",
3588 vcpu
->vcpu_id
, vcpu
->arch
.sipi_vector
);
3589 kvm_lapic_reset(vcpu
);
3590 r
= kvm_arch_vcpu_reset(vcpu
);
3593 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
3596 down_read(&vcpu
->kvm
->slots_lock
);
3601 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
)
3602 r
= vcpu_enter_guest(vcpu
, kvm_run
);
3604 up_read(&vcpu
->kvm
->slots_lock
);
3605 kvm_vcpu_block(vcpu
);
3606 down_read(&vcpu
->kvm
->slots_lock
);
3607 if (test_and_clear_bit(KVM_REQ_UNHALT
, &vcpu
->requests
))
3609 switch(vcpu
->arch
.mp_state
) {
3610 case KVM_MP_STATE_HALTED
:
3611 vcpu
->arch
.mp_state
=
3612 KVM_MP_STATE_RUNNABLE
;
3613 case KVM_MP_STATE_RUNNABLE
:
3615 case KVM_MP_STATE_SIPI_RECEIVED
:
3626 clear_bit(KVM_REQ_PENDING_TIMER
, &vcpu
->requests
);
3627 if (kvm_cpu_has_pending_timer(vcpu
))
3628 kvm_inject_pending_timer_irqs(vcpu
);
3630 if (dm_request_for_irq_injection(vcpu
, kvm_run
)) {
3632 kvm_run
->exit_reason
= KVM_EXIT_INTR
;
3633 ++vcpu
->stat
.request_irq_exits
;
3635 if (signal_pending(current
)) {
3637 kvm_run
->exit_reason
= KVM_EXIT_INTR
;
3638 ++vcpu
->stat
.signal_exits
;
3640 if (need_resched()) {
3641 up_read(&vcpu
->kvm
->slots_lock
);
3643 down_read(&vcpu
->kvm
->slots_lock
);
3647 up_read(&vcpu
->kvm
->slots_lock
);
3648 post_kvm_run_save(vcpu
, kvm_run
);
3655 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3662 if (vcpu
->sigset_active
)
3663 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, &sigsaved
);
3665 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_UNINITIALIZED
)) {
3666 kvm_vcpu_block(vcpu
);
3667 clear_bit(KVM_REQ_UNHALT
, &vcpu
->requests
);
3672 /* re-sync apic's tpr */
3673 if (!irqchip_in_kernel(vcpu
->kvm
))
3674 kvm_set_cr8(vcpu
, kvm_run
->cr8
);
3676 if (vcpu
->arch
.pio
.cur_count
) {
3677 r
= complete_pio(vcpu
);
3681 #if CONFIG_HAS_IOMEM
3682 if (vcpu
->mmio_needed
) {
3683 memcpy(vcpu
->mmio_data
, kvm_run
->mmio
.data
, 8);
3684 vcpu
->mmio_read_completed
= 1;
3685 vcpu
->mmio_needed
= 0;
3687 down_read(&vcpu
->kvm
->slots_lock
);
3688 r
= emulate_instruction(vcpu
, kvm_run
,
3689 vcpu
->arch
.mmio_fault_cr2
, 0,
3690 EMULTYPE_NO_DECODE
);
3691 up_read(&vcpu
->kvm
->slots_lock
);
3692 if (r
== EMULATE_DO_MMIO
) {
3694 * Read-modify-write. Back to userspace.
3701 if (kvm_run
->exit_reason
== KVM_EXIT_HYPERCALL
)
3702 kvm_register_write(vcpu
, VCPU_REGS_RAX
,
3703 kvm_run
->hypercall
.ret
);
3705 r
= __vcpu_run(vcpu
, kvm_run
);
3708 if (vcpu
->sigset_active
)
3709 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
3715 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
3719 regs
->rax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
3720 regs
->rbx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
3721 regs
->rcx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
3722 regs
->rdx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
3723 regs
->rsi
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
3724 regs
->rdi
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
3725 regs
->rsp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
3726 regs
->rbp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
3727 #ifdef CONFIG_X86_64
3728 regs
->r8
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
3729 regs
->r9
= kvm_register_read(vcpu
, VCPU_REGS_R9
);
3730 regs
->r10
= kvm_register_read(vcpu
, VCPU_REGS_R10
);
3731 regs
->r11
= kvm_register_read(vcpu
, VCPU_REGS_R11
);
3732 regs
->r12
= kvm_register_read(vcpu
, VCPU_REGS_R12
);
3733 regs
->r13
= kvm_register_read(vcpu
, VCPU_REGS_R13
);
3734 regs
->r14
= kvm_register_read(vcpu
, VCPU_REGS_R14
);
3735 regs
->r15
= kvm_register_read(vcpu
, VCPU_REGS_R15
);
3738 regs
->rip
= kvm_rip_read(vcpu
);
3739 regs
->rflags
= kvm_x86_ops
->get_rflags(vcpu
);
3742 * Don't leak debug flags in case they were set for guest debugging
3744 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
3745 regs
->rflags
&= ~(X86_EFLAGS_TF
| X86_EFLAGS_RF
);
3752 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
3756 kvm_register_write(vcpu
, VCPU_REGS_RAX
, regs
->rax
);
3757 kvm_register_write(vcpu
, VCPU_REGS_RBX
, regs
->rbx
);
3758 kvm_register_write(vcpu
, VCPU_REGS_RCX
, regs
->rcx
);
3759 kvm_register_write(vcpu
, VCPU_REGS_RDX
, regs
->rdx
);
3760 kvm_register_write(vcpu
, VCPU_REGS_RSI
, regs
->rsi
);
3761 kvm_register_write(vcpu
, VCPU_REGS_RDI
, regs
->rdi
);
3762 kvm_register_write(vcpu
, VCPU_REGS_RSP
, regs
->rsp
);
3763 kvm_register_write(vcpu
, VCPU_REGS_RBP
, regs
->rbp
);
3764 #ifdef CONFIG_X86_64
3765 kvm_register_write(vcpu
, VCPU_REGS_R8
, regs
->r8
);
3766 kvm_register_write(vcpu
, VCPU_REGS_R9
, regs
->r9
);
3767 kvm_register_write(vcpu
, VCPU_REGS_R10
, regs
->r10
);
3768 kvm_register_write(vcpu
, VCPU_REGS_R11
, regs
->r11
);
3769 kvm_register_write(vcpu
, VCPU_REGS_R12
, regs
->r12
);
3770 kvm_register_write(vcpu
, VCPU_REGS_R13
, regs
->r13
);
3771 kvm_register_write(vcpu
, VCPU_REGS_R14
, regs
->r14
);
3772 kvm_register_write(vcpu
, VCPU_REGS_R15
, regs
->r15
);
3776 kvm_rip_write(vcpu
, regs
->rip
);
3777 kvm_x86_ops
->set_rflags(vcpu
, regs
->rflags
);
3780 vcpu
->arch
.exception
.pending
= false;
3787 void kvm_get_segment(struct kvm_vcpu
*vcpu
,
3788 struct kvm_segment
*var
, int seg
)
3790 kvm_x86_ops
->get_segment(vcpu
, var
, seg
);
3793 void kvm_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
3795 struct kvm_segment cs
;
3797 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
3801 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits
);
3803 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
3804 struct kvm_sregs
*sregs
)
3806 struct descriptor_table dt
;
3810 kvm_get_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
3811 kvm_get_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
3812 kvm_get_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
3813 kvm_get_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
3814 kvm_get_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
3815 kvm_get_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
3817 kvm_get_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
3818 kvm_get_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
3820 kvm_x86_ops
->get_idt(vcpu
, &dt
);
3821 sregs
->idt
.limit
= dt
.limit
;
3822 sregs
->idt
.base
= dt
.base
;
3823 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
3824 sregs
->gdt
.limit
= dt
.limit
;
3825 sregs
->gdt
.base
= dt
.base
;
3827 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
3828 sregs
->cr0
= vcpu
->arch
.cr0
;
3829 sregs
->cr2
= vcpu
->arch
.cr2
;
3830 sregs
->cr3
= vcpu
->arch
.cr3
;
3831 sregs
->cr4
= vcpu
->arch
.cr4
;
3832 sregs
->cr8
= kvm_get_cr8(vcpu
);
3833 sregs
->efer
= vcpu
->arch
.shadow_efer
;
3834 sregs
->apic_base
= kvm_get_apic_base(vcpu
);
3836 memset(sregs
->interrupt_bitmap
, 0, sizeof sregs
->interrupt_bitmap
);
3838 if (vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
)
3839 set_bit(vcpu
->arch
.interrupt
.nr
,
3840 (unsigned long *)sregs
->interrupt_bitmap
);
3847 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
3848 struct kvm_mp_state
*mp_state
)
3851 mp_state
->mp_state
= vcpu
->arch
.mp_state
;
3856 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
3857 struct kvm_mp_state
*mp_state
)
3860 vcpu
->arch
.mp_state
= mp_state
->mp_state
;
3865 static void kvm_set_segment(struct kvm_vcpu
*vcpu
,
3866 struct kvm_segment
*var
, int seg
)
3868 kvm_x86_ops
->set_segment(vcpu
, var
, seg
);
3871 static void seg_desct_to_kvm_desct(struct desc_struct
*seg_desc
, u16 selector
,
3872 struct kvm_segment
*kvm_desct
)
3874 kvm_desct
->base
= seg_desc
->base0
;
3875 kvm_desct
->base
|= seg_desc
->base1
<< 16;
3876 kvm_desct
->base
|= seg_desc
->base2
<< 24;
3877 kvm_desct
->limit
= seg_desc
->limit0
;
3878 kvm_desct
->limit
|= seg_desc
->limit
<< 16;
3880 kvm_desct
->limit
<<= 12;
3881 kvm_desct
->limit
|= 0xfff;
3883 kvm_desct
->selector
= selector
;
3884 kvm_desct
->type
= seg_desc
->type
;
3885 kvm_desct
->present
= seg_desc
->p
;
3886 kvm_desct
->dpl
= seg_desc
->dpl
;
3887 kvm_desct
->db
= seg_desc
->d
;
3888 kvm_desct
->s
= seg_desc
->s
;
3889 kvm_desct
->l
= seg_desc
->l
;
3890 kvm_desct
->g
= seg_desc
->g
;
3891 kvm_desct
->avl
= seg_desc
->avl
;
3893 kvm_desct
->unusable
= 1;
3895 kvm_desct
->unusable
= 0;
3896 kvm_desct
->padding
= 0;
3899 static void get_segment_descriptor_dtable(struct kvm_vcpu
*vcpu
,
3901 struct descriptor_table
*dtable
)
3903 if (selector
& 1 << 2) {
3904 struct kvm_segment kvm_seg
;
3906 kvm_get_segment(vcpu
, &kvm_seg
, VCPU_SREG_LDTR
);
3908 if (kvm_seg
.unusable
)
3911 dtable
->limit
= kvm_seg
.limit
;
3912 dtable
->base
= kvm_seg
.base
;
3915 kvm_x86_ops
->get_gdt(vcpu
, dtable
);
3918 /* allowed just for 8 bytes segments */
3919 static int load_guest_segment_descriptor(struct kvm_vcpu
*vcpu
, u16 selector
,
3920 struct desc_struct
*seg_desc
)
3923 struct descriptor_table dtable
;
3924 u16 index
= selector
>> 3;
3926 get_segment_descriptor_dtable(vcpu
, selector
, &dtable
);
3928 if (dtable
.limit
< index
* 8 + 7) {
3929 kvm_queue_exception_e(vcpu
, GP_VECTOR
, selector
& 0xfffc);
3932 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, dtable
.base
);
3934 return kvm_read_guest(vcpu
->kvm
, gpa
, seg_desc
, 8);
3937 /* allowed just for 8 bytes segments */
3938 static int save_guest_segment_descriptor(struct kvm_vcpu
*vcpu
, u16 selector
,
3939 struct desc_struct
*seg_desc
)
3942 struct descriptor_table dtable
;
3943 u16 index
= selector
>> 3;
3945 get_segment_descriptor_dtable(vcpu
, selector
, &dtable
);
3947 if (dtable
.limit
< index
* 8 + 7)
3949 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, dtable
.base
);
3951 return kvm_write_guest(vcpu
->kvm
, gpa
, seg_desc
, 8);
3954 static u32
get_tss_base_addr(struct kvm_vcpu
*vcpu
,
3955 struct desc_struct
*seg_desc
)
3959 base_addr
= seg_desc
->base0
;
3960 base_addr
|= (seg_desc
->base1
<< 16);
3961 base_addr
|= (seg_desc
->base2
<< 24);
3963 return vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, base_addr
);
3966 static u16
get_segment_selector(struct kvm_vcpu
*vcpu
, int seg
)
3968 struct kvm_segment kvm_seg
;
3970 kvm_get_segment(vcpu
, &kvm_seg
, seg
);
3971 return kvm_seg
.selector
;
3974 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu
*vcpu
,
3976 struct kvm_segment
*kvm_seg
)
3978 struct desc_struct seg_desc
;
3980 if (load_guest_segment_descriptor(vcpu
, selector
, &seg_desc
))
3982 seg_desct_to_kvm_desct(&seg_desc
, selector
, kvm_seg
);
3986 static int kvm_load_realmode_segment(struct kvm_vcpu
*vcpu
, u16 selector
, int seg
)
3988 struct kvm_segment segvar
= {
3989 .base
= selector
<< 4,
3991 .selector
= selector
,
4002 kvm_x86_ops
->set_segment(vcpu
, &segvar
, seg
);
4006 int kvm_load_segment_descriptor(struct kvm_vcpu
*vcpu
, u16 selector
,
4007 int type_bits
, int seg
)
4009 struct kvm_segment kvm_seg
;
4011 if (!(vcpu
->arch
.cr0
& X86_CR0_PE
))
4012 return kvm_load_realmode_segment(vcpu
, selector
, seg
);
4013 if (load_segment_descriptor_to_kvm_desct(vcpu
, selector
, &kvm_seg
))
4015 kvm_seg
.type
|= type_bits
;
4017 if (seg
!= VCPU_SREG_SS
&& seg
!= VCPU_SREG_CS
&&
4018 seg
!= VCPU_SREG_LDTR
)
4020 kvm_seg
.unusable
= 1;
4022 kvm_set_segment(vcpu
, &kvm_seg
, seg
);
4026 static void save_state_to_tss32(struct kvm_vcpu
*vcpu
,
4027 struct tss_segment_32
*tss
)
4029 tss
->cr3
= vcpu
->arch
.cr3
;
4030 tss
->eip
= kvm_rip_read(vcpu
);
4031 tss
->eflags
= kvm_x86_ops
->get_rflags(vcpu
);
4032 tss
->eax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
4033 tss
->ecx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
4034 tss
->edx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
4035 tss
->ebx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
4036 tss
->esp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
4037 tss
->ebp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
4038 tss
->esi
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
4039 tss
->edi
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
4040 tss
->es
= get_segment_selector(vcpu
, VCPU_SREG_ES
);
4041 tss
->cs
= get_segment_selector(vcpu
, VCPU_SREG_CS
);
4042 tss
->ss
= get_segment_selector(vcpu
, VCPU_SREG_SS
);
4043 tss
->ds
= get_segment_selector(vcpu
, VCPU_SREG_DS
);
4044 tss
->fs
= get_segment_selector(vcpu
, VCPU_SREG_FS
);
4045 tss
->gs
= get_segment_selector(vcpu
, VCPU_SREG_GS
);
4046 tss
->ldt_selector
= get_segment_selector(vcpu
, VCPU_SREG_LDTR
);
4049 static int load_state_from_tss32(struct kvm_vcpu
*vcpu
,
4050 struct tss_segment_32
*tss
)
4052 kvm_set_cr3(vcpu
, tss
->cr3
);
4054 kvm_rip_write(vcpu
, tss
->eip
);
4055 kvm_x86_ops
->set_rflags(vcpu
, tss
->eflags
| 2);
4057 kvm_register_write(vcpu
, VCPU_REGS_RAX
, tss
->eax
);
4058 kvm_register_write(vcpu
, VCPU_REGS_RCX
, tss
->ecx
);
4059 kvm_register_write(vcpu
, VCPU_REGS_RDX
, tss
->edx
);
4060 kvm_register_write(vcpu
, VCPU_REGS_RBX
, tss
->ebx
);
4061 kvm_register_write(vcpu
, VCPU_REGS_RSP
, tss
->esp
);
4062 kvm_register_write(vcpu
, VCPU_REGS_RBP
, tss
->ebp
);
4063 kvm_register_write(vcpu
, VCPU_REGS_RSI
, tss
->esi
);
4064 kvm_register_write(vcpu
, VCPU_REGS_RDI
, tss
->edi
);
4066 if (kvm_load_segment_descriptor(vcpu
, tss
->ldt_selector
, 0, VCPU_SREG_LDTR
))
4069 if (kvm_load_segment_descriptor(vcpu
, tss
->es
, 1, VCPU_SREG_ES
))
4072 if (kvm_load_segment_descriptor(vcpu
, tss
->cs
, 9, VCPU_SREG_CS
))
4075 if (kvm_load_segment_descriptor(vcpu
, tss
->ss
, 1, VCPU_SREG_SS
))
4078 if (kvm_load_segment_descriptor(vcpu
, tss
->ds
, 1, VCPU_SREG_DS
))
4081 if (kvm_load_segment_descriptor(vcpu
, tss
->fs
, 1, VCPU_SREG_FS
))
4084 if (kvm_load_segment_descriptor(vcpu
, tss
->gs
, 1, VCPU_SREG_GS
))
4089 static void save_state_to_tss16(struct kvm_vcpu
*vcpu
,
4090 struct tss_segment_16
*tss
)
4092 tss
->ip
= kvm_rip_read(vcpu
);
4093 tss
->flag
= kvm_x86_ops
->get_rflags(vcpu
);
4094 tss
->ax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
4095 tss
->cx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
4096 tss
->dx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
4097 tss
->bx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
4098 tss
->sp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
4099 tss
->bp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
4100 tss
->si
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
4101 tss
->di
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
4103 tss
->es
= get_segment_selector(vcpu
, VCPU_SREG_ES
);
4104 tss
->cs
= get_segment_selector(vcpu
, VCPU_SREG_CS
);
4105 tss
->ss
= get_segment_selector(vcpu
, VCPU_SREG_SS
);
4106 tss
->ds
= get_segment_selector(vcpu
, VCPU_SREG_DS
);
4107 tss
->ldt
= get_segment_selector(vcpu
, VCPU_SREG_LDTR
);
4108 tss
->prev_task_link
= get_segment_selector(vcpu
, VCPU_SREG_TR
);
4111 static int load_state_from_tss16(struct kvm_vcpu
*vcpu
,
4112 struct tss_segment_16
*tss
)
4114 kvm_rip_write(vcpu
, tss
->ip
);
4115 kvm_x86_ops
->set_rflags(vcpu
, tss
->flag
| 2);
4116 kvm_register_write(vcpu
, VCPU_REGS_RAX
, tss
->ax
);
4117 kvm_register_write(vcpu
, VCPU_REGS_RCX
, tss
->cx
);
4118 kvm_register_write(vcpu
, VCPU_REGS_RDX
, tss
->dx
);
4119 kvm_register_write(vcpu
, VCPU_REGS_RBX
, tss
->bx
);
4120 kvm_register_write(vcpu
, VCPU_REGS_RSP
, tss
->sp
);
4121 kvm_register_write(vcpu
, VCPU_REGS_RBP
, tss
->bp
);
4122 kvm_register_write(vcpu
, VCPU_REGS_RSI
, tss
->si
);
4123 kvm_register_write(vcpu
, VCPU_REGS_RDI
, tss
->di
);
4125 if (kvm_load_segment_descriptor(vcpu
, tss
->ldt
, 0, VCPU_SREG_LDTR
))
4128 if (kvm_load_segment_descriptor(vcpu
, tss
->es
, 1, VCPU_SREG_ES
))
4131 if (kvm_load_segment_descriptor(vcpu
, tss
->cs
, 9, VCPU_SREG_CS
))
4134 if (kvm_load_segment_descriptor(vcpu
, tss
->ss
, 1, VCPU_SREG_SS
))
4137 if (kvm_load_segment_descriptor(vcpu
, tss
->ds
, 1, VCPU_SREG_DS
))
4142 static int kvm_task_switch_16(struct kvm_vcpu
*vcpu
, u16 tss_selector
,
4143 u16 old_tss_sel
, u32 old_tss_base
,
4144 struct desc_struct
*nseg_desc
)
4146 struct tss_segment_16 tss_segment_16
;
4149 if (kvm_read_guest(vcpu
->kvm
, old_tss_base
, &tss_segment_16
,
4150 sizeof tss_segment_16
))
4153 save_state_to_tss16(vcpu
, &tss_segment_16
);
4155 if (kvm_write_guest(vcpu
->kvm
, old_tss_base
, &tss_segment_16
,
4156 sizeof tss_segment_16
))
4159 if (kvm_read_guest(vcpu
->kvm
, get_tss_base_addr(vcpu
, nseg_desc
),
4160 &tss_segment_16
, sizeof tss_segment_16
))
4163 if (old_tss_sel
!= 0xffff) {
4164 tss_segment_16
.prev_task_link
= old_tss_sel
;
4166 if (kvm_write_guest(vcpu
->kvm
,
4167 get_tss_base_addr(vcpu
, nseg_desc
),
4168 &tss_segment_16
.prev_task_link
,
4169 sizeof tss_segment_16
.prev_task_link
))
4173 if (load_state_from_tss16(vcpu
, &tss_segment_16
))
4181 static int kvm_task_switch_32(struct kvm_vcpu
*vcpu
, u16 tss_selector
,
4182 u16 old_tss_sel
, u32 old_tss_base
,
4183 struct desc_struct
*nseg_desc
)
4185 struct tss_segment_32 tss_segment_32
;
4188 if (kvm_read_guest(vcpu
->kvm
, old_tss_base
, &tss_segment_32
,
4189 sizeof tss_segment_32
))
4192 save_state_to_tss32(vcpu
, &tss_segment_32
);
4194 if (kvm_write_guest(vcpu
->kvm
, old_tss_base
, &tss_segment_32
,
4195 sizeof tss_segment_32
))
4198 if (kvm_read_guest(vcpu
->kvm
, get_tss_base_addr(vcpu
, nseg_desc
),
4199 &tss_segment_32
, sizeof tss_segment_32
))
4202 if (old_tss_sel
!= 0xffff) {
4203 tss_segment_32
.prev_task_link
= old_tss_sel
;
4205 if (kvm_write_guest(vcpu
->kvm
,
4206 get_tss_base_addr(vcpu
, nseg_desc
),
4207 &tss_segment_32
.prev_task_link
,
4208 sizeof tss_segment_32
.prev_task_link
))
4212 if (load_state_from_tss32(vcpu
, &tss_segment_32
))
4220 int kvm_task_switch(struct kvm_vcpu
*vcpu
, u16 tss_selector
, int reason
)
4222 struct kvm_segment tr_seg
;
4223 struct desc_struct cseg_desc
;
4224 struct desc_struct nseg_desc
;
4226 u32 old_tss_base
= get_segment_base(vcpu
, VCPU_SREG_TR
);
4227 u16 old_tss_sel
= get_segment_selector(vcpu
, VCPU_SREG_TR
);
4229 old_tss_base
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, old_tss_base
);
4231 /* FIXME: Handle errors. Failure to read either TSS or their
4232 * descriptors should generate a pagefault.
4234 if (load_guest_segment_descriptor(vcpu
, tss_selector
, &nseg_desc
))
4237 if (load_guest_segment_descriptor(vcpu
, old_tss_sel
, &cseg_desc
))
4240 if (reason
!= TASK_SWITCH_IRET
) {
4243 cpl
= kvm_x86_ops
->get_cpl(vcpu
);
4244 if ((tss_selector
& 3) > nseg_desc
.dpl
|| cpl
> nseg_desc
.dpl
) {
4245 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
4250 if (!nseg_desc
.p
|| (nseg_desc
.limit0
| nseg_desc
.limit
<< 16) < 0x67) {
4251 kvm_queue_exception_e(vcpu
, TS_VECTOR
, tss_selector
& 0xfffc);
4255 if (reason
== TASK_SWITCH_IRET
|| reason
== TASK_SWITCH_JMP
) {
4256 cseg_desc
.type
&= ~(1 << 1); //clear the B flag
4257 save_guest_segment_descriptor(vcpu
, old_tss_sel
, &cseg_desc
);
4260 if (reason
== TASK_SWITCH_IRET
) {
4261 u32 eflags
= kvm_x86_ops
->get_rflags(vcpu
);
4262 kvm_x86_ops
->set_rflags(vcpu
, eflags
& ~X86_EFLAGS_NT
);
4265 /* set back link to prev task only if NT bit is set in eflags
4266 note that old_tss_sel is not used afetr this point */
4267 if (reason
!= TASK_SWITCH_CALL
&& reason
!= TASK_SWITCH_GATE
)
4268 old_tss_sel
= 0xffff;
4270 /* set back link to prev task only if NT bit is set in eflags
4271 note that old_tss_sel is not used afetr this point */
4272 if (reason
!= TASK_SWITCH_CALL
&& reason
!= TASK_SWITCH_GATE
)
4273 old_tss_sel
= 0xffff;
4275 if (nseg_desc
.type
& 8)
4276 ret
= kvm_task_switch_32(vcpu
, tss_selector
, old_tss_sel
,
4277 old_tss_base
, &nseg_desc
);
4279 ret
= kvm_task_switch_16(vcpu
, tss_selector
, old_tss_sel
,
4280 old_tss_base
, &nseg_desc
);
4282 if (reason
== TASK_SWITCH_CALL
|| reason
== TASK_SWITCH_GATE
) {
4283 u32 eflags
= kvm_x86_ops
->get_rflags(vcpu
);
4284 kvm_x86_ops
->set_rflags(vcpu
, eflags
| X86_EFLAGS_NT
);
4287 if (reason
!= TASK_SWITCH_IRET
) {
4288 nseg_desc
.type
|= (1 << 1);
4289 save_guest_segment_descriptor(vcpu
, tss_selector
,
4293 kvm_x86_ops
->set_cr0(vcpu
, vcpu
->arch
.cr0
| X86_CR0_TS
);
4294 seg_desct_to_kvm_desct(&nseg_desc
, tss_selector
, &tr_seg
);
4296 kvm_set_segment(vcpu
, &tr_seg
, VCPU_SREG_TR
);
4300 EXPORT_SYMBOL_GPL(kvm_task_switch
);
4302 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
4303 struct kvm_sregs
*sregs
)
4305 int mmu_reset_needed
= 0;
4306 int pending_vec
, max_bits
;
4307 struct descriptor_table dt
;
4311 dt
.limit
= sregs
->idt
.limit
;
4312 dt
.base
= sregs
->idt
.base
;
4313 kvm_x86_ops
->set_idt(vcpu
, &dt
);
4314 dt
.limit
= sregs
->gdt
.limit
;
4315 dt
.base
= sregs
->gdt
.base
;
4316 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
4318 vcpu
->arch
.cr2
= sregs
->cr2
;
4319 mmu_reset_needed
|= vcpu
->arch
.cr3
!= sregs
->cr3
;
4321 down_read(&vcpu
->kvm
->slots_lock
);
4322 if (gfn_to_memslot(vcpu
->kvm
, sregs
->cr3
>> PAGE_SHIFT
))
4323 vcpu
->arch
.cr3
= sregs
->cr3
;
4325 set_bit(KVM_REQ_TRIPLE_FAULT
, &vcpu
->requests
);
4326 up_read(&vcpu
->kvm
->slots_lock
);
4328 kvm_set_cr8(vcpu
, sregs
->cr8
);
4330 mmu_reset_needed
|= vcpu
->arch
.shadow_efer
!= sregs
->efer
;
4331 kvm_x86_ops
->set_efer(vcpu
, sregs
->efer
);
4332 kvm_set_apic_base(vcpu
, sregs
->apic_base
);
4334 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
4336 mmu_reset_needed
|= vcpu
->arch
.cr0
!= sregs
->cr0
;
4337 kvm_x86_ops
->set_cr0(vcpu
, sregs
->cr0
);
4338 vcpu
->arch
.cr0
= sregs
->cr0
;
4340 mmu_reset_needed
|= vcpu
->arch
.cr4
!= sregs
->cr4
;
4341 kvm_x86_ops
->set_cr4(vcpu
, sregs
->cr4
);
4342 if (!is_long_mode(vcpu
) && is_pae(vcpu
))
4343 load_pdptrs(vcpu
, vcpu
->arch
.cr3
);
4345 if (mmu_reset_needed
)
4346 kvm_mmu_reset_context(vcpu
);
4348 max_bits
= (sizeof sregs
->interrupt_bitmap
) << 3;
4349 pending_vec
= find_first_bit(
4350 (const unsigned long *)sregs
->interrupt_bitmap
, max_bits
);
4351 if (pending_vec
< max_bits
) {
4352 kvm_queue_interrupt(vcpu
, pending_vec
, false);
4353 pr_debug("Set back pending irq %d\n", pending_vec
);
4354 if (irqchip_in_kernel(vcpu
->kvm
))
4355 kvm_pic_clear_isr_ack(vcpu
->kvm
);
4358 kvm_set_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
4359 kvm_set_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
4360 kvm_set_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
4361 kvm_set_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
4362 kvm_set_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
4363 kvm_set_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
4365 kvm_set_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
4366 kvm_set_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
4368 /* Older userspace won't unhalt the vcpu on reset. */
4369 if (kvm_vcpu_is_bsp(vcpu
) && kvm_rip_read(vcpu
) == 0xfff0 &&
4370 sregs
->cs
.selector
== 0xf000 && sregs
->cs
.base
== 0xffff0000 &&
4371 !(vcpu
->arch
.cr0
& X86_CR0_PE
))
4372 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
4379 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu
*vcpu
,
4380 struct kvm_guest_debug
*dbg
)
4386 if ((dbg
->control
& (KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
)) ==
4387 (KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
)) {
4388 for (i
= 0; i
< KVM_NR_DB_REGS
; ++i
)
4389 vcpu
->arch
.eff_db
[i
] = dbg
->arch
.debugreg
[i
];
4390 vcpu
->arch
.switch_db_regs
=
4391 (dbg
->arch
.debugreg
[7] & DR7_BP_EN_MASK
);
4393 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
4394 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
4395 vcpu
->arch
.switch_db_regs
= (vcpu
->arch
.dr7
& DR7_BP_EN_MASK
);
4398 r
= kvm_x86_ops
->set_guest_debug(vcpu
, dbg
);
4400 if (dbg
->control
& KVM_GUESTDBG_INJECT_DB
)
4401 kvm_queue_exception(vcpu
, DB_VECTOR
);
4402 else if (dbg
->control
& KVM_GUESTDBG_INJECT_BP
)
4403 kvm_queue_exception(vcpu
, BP_VECTOR
);
4411 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
4412 * we have asm/x86/processor.h
4423 u32 st_space
[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
4424 #ifdef CONFIG_X86_64
4425 u32 xmm_space
[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
4427 u32 xmm_space
[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
4432 * Translate a guest virtual address to a guest physical address.
4434 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
4435 struct kvm_translation
*tr
)
4437 unsigned long vaddr
= tr
->linear_address
;
4441 down_read(&vcpu
->kvm
->slots_lock
);
4442 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, vaddr
);
4443 up_read(&vcpu
->kvm
->slots_lock
);
4444 tr
->physical_address
= gpa
;
4445 tr
->valid
= gpa
!= UNMAPPED_GVA
;
4453 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
4455 struct fxsave
*fxsave
= (struct fxsave
*)&vcpu
->arch
.guest_fx_image
;
4459 memcpy(fpu
->fpr
, fxsave
->st_space
, 128);
4460 fpu
->fcw
= fxsave
->cwd
;
4461 fpu
->fsw
= fxsave
->swd
;
4462 fpu
->ftwx
= fxsave
->twd
;
4463 fpu
->last_opcode
= fxsave
->fop
;
4464 fpu
->last_ip
= fxsave
->rip
;
4465 fpu
->last_dp
= fxsave
->rdp
;
4466 memcpy(fpu
->xmm
, fxsave
->xmm_space
, sizeof fxsave
->xmm_space
);
4473 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
4475 struct fxsave
*fxsave
= (struct fxsave
*)&vcpu
->arch
.guest_fx_image
;
4479 memcpy(fxsave
->st_space
, fpu
->fpr
, 128);
4480 fxsave
->cwd
= fpu
->fcw
;
4481 fxsave
->swd
= fpu
->fsw
;
4482 fxsave
->twd
= fpu
->ftwx
;
4483 fxsave
->fop
= fpu
->last_opcode
;
4484 fxsave
->rip
= fpu
->last_ip
;
4485 fxsave
->rdp
= fpu
->last_dp
;
4486 memcpy(fxsave
->xmm_space
, fpu
->xmm
, sizeof fxsave
->xmm_space
);
4493 void fx_init(struct kvm_vcpu
*vcpu
)
4495 unsigned after_mxcsr_mask
;
4498 * Touch the fpu the first time in non atomic context as if
4499 * this is the first fpu instruction the exception handler
4500 * will fire before the instruction returns and it'll have to
4501 * allocate ram with GFP_KERNEL.
4504 kvm_fx_save(&vcpu
->arch
.host_fx_image
);
4506 /* Initialize guest FPU by resetting ours and saving into guest's */
4508 kvm_fx_save(&vcpu
->arch
.host_fx_image
);
4510 kvm_fx_save(&vcpu
->arch
.guest_fx_image
);
4511 kvm_fx_restore(&vcpu
->arch
.host_fx_image
);
4514 vcpu
->arch
.cr0
|= X86_CR0_ET
;
4515 after_mxcsr_mask
= offsetof(struct i387_fxsave_struct
, st_space
);
4516 vcpu
->arch
.guest_fx_image
.mxcsr
= 0x1f80;
4517 memset((void *)&vcpu
->arch
.guest_fx_image
+ after_mxcsr_mask
,
4518 0, sizeof(struct i387_fxsave_struct
) - after_mxcsr_mask
);
4520 EXPORT_SYMBOL_GPL(fx_init
);
4522 void kvm_load_guest_fpu(struct kvm_vcpu
*vcpu
)
4524 if (!vcpu
->fpu_active
|| vcpu
->guest_fpu_loaded
)
4527 vcpu
->guest_fpu_loaded
= 1;
4528 kvm_fx_save(&vcpu
->arch
.host_fx_image
);
4529 kvm_fx_restore(&vcpu
->arch
.guest_fx_image
);
4531 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu
);
4533 void kvm_put_guest_fpu(struct kvm_vcpu
*vcpu
)
4535 if (!vcpu
->guest_fpu_loaded
)
4538 vcpu
->guest_fpu_loaded
= 0;
4539 kvm_fx_save(&vcpu
->arch
.guest_fx_image
);
4540 kvm_fx_restore(&vcpu
->arch
.host_fx_image
);
4541 ++vcpu
->stat
.fpu_reload
;
4543 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu
);
4545 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
4547 if (vcpu
->arch
.time_page
) {
4548 kvm_release_page_dirty(vcpu
->arch
.time_page
);
4549 vcpu
->arch
.time_page
= NULL
;
4552 kvm_x86_ops
->vcpu_free(vcpu
);
4555 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
,
4558 return kvm_x86_ops
->vcpu_create(kvm
, id
);
4561 int kvm_arch_vcpu_setup(struct kvm_vcpu
*vcpu
)
4565 /* We do fxsave: this must be aligned. */
4566 BUG_ON((unsigned long)&vcpu
->arch
.host_fx_image
& 0xF);
4568 vcpu
->arch
.mtrr_state
.have_fixed
= 1;
4570 r
= kvm_arch_vcpu_reset(vcpu
);
4572 r
= kvm_mmu_setup(vcpu
);
4579 kvm_x86_ops
->vcpu_free(vcpu
);
4583 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
4586 kvm_mmu_unload(vcpu
);
4589 kvm_x86_ops
->vcpu_free(vcpu
);
4592 int kvm_arch_vcpu_reset(struct kvm_vcpu
*vcpu
)
4594 vcpu
->arch
.nmi_pending
= false;
4595 vcpu
->arch
.nmi_injected
= false;
4597 vcpu
->arch
.switch_db_regs
= 0;
4598 memset(vcpu
->arch
.db
, 0, sizeof(vcpu
->arch
.db
));
4599 vcpu
->arch
.dr6
= DR6_FIXED_1
;
4600 vcpu
->arch
.dr7
= DR7_FIXED_1
;
4602 return kvm_x86_ops
->vcpu_reset(vcpu
);
4605 void kvm_arch_hardware_enable(void *garbage
)
4607 kvm_x86_ops
->hardware_enable(garbage
);
4610 void kvm_arch_hardware_disable(void *garbage
)
4612 kvm_x86_ops
->hardware_disable(garbage
);
4615 int kvm_arch_hardware_setup(void)
4617 return kvm_x86_ops
->hardware_setup();
4620 void kvm_arch_hardware_unsetup(void)
4622 kvm_x86_ops
->hardware_unsetup();
4625 void kvm_arch_check_processor_compat(void *rtn
)
4627 kvm_x86_ops
->check_processor_compatibility(rtn
);
4630 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
4636 BUG_ON(vcpu
->kvm
== NULL
);
4639 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
4640 if (!irqchip_in_kernel(kvm
) || kvm_vcpu_is_bsp(vcpu
))
4641 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
4643 vcpu
->arch
.mp_state
= KVM_MP_STATE_UNINITIALIZED
;
4645 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
4650 vcpu
->arch
.pio_data
= page_address(page
);
4652 r
= kvm_mmu_create(vcpu
);
4654 goto fail_free_pio_data
;
4656 if (irqchip_in_kernel(kvm
)) {
4657 r
= kvm_create_lapic(vcpu
);
4659 goto fail_mmu_destroy
;
4662 vcpu
->arch
.mce_banks
= kzalloc(KVM_MAX_MCE_BANKS
* sizeof(u64
) * 4,
4664 if (!vcpu
->arch
.mce_banks
) {
4666 goto fail_mmu_destroy
;
4668 vcpu
->arch
.mcg_cap
= KVM_MAX_MCE_BANKS
;
4673 kvm_mmu_destroy(vcpu
);
4675 free_page((unsigned long)vcpu
->arch
.pio_data
);
4680 void kvm_arch_vcpu_uninit(struct kvm_vcpu
*vcpu
)
4682 kvm_free_lapic(vcpu
);
4683 down_read(&vcpu
->kvm
->slots_lock
);
4684 kvm_mmu_destroy(vcpu
);
4685 up_read(&vcpu
->kvm
->slots_lock
);
4686 free_page((unsigned long)vcpu
->arch
.pio_data
);
4689 struct kvm
*kvm_arch_create_vm(void)
4691 struct kvm
*kvm
= kzalloc(sizeof(struct kvm
), GFP_KERNEL
);
4694 return ERR_PTR(-ENOMEM
);
4696 INIT_LIST_HEAD(&kvm
->arch
.active_mmu_pages
);
4697 INIT_LIST_HEAD(&kvm
->arch
.assigned_dev_head
);
4699 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
4700 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID
, &kvm
->arch
.irq_sources_bitmap
);
4702 rdtscll(kvm
->arch
.vm_init_tsc
);
4707 static void kvm_unload_vcpu_mmu(struct kvm_vcpu
*vcpu
)
4710 kvm_mmu_unload(vcpu
);
4714 static void kvm_free_vcpus(struct kvm
*kvm
)
4717 struct kvm_vcpu
*vcpu
;
4720 * Unpin any mmu pages first.
4722 kvm_for_each_vcpu(i
, vcpu
, kvm
)
4723 kvm_unload_vcpu_mmu(vcpu
);
4724 kvm_for_each_vcpu(i
, vcpu
, kvm
)
4725 kvm_arch_vcpu_free(vcpu
);
4727 mutex_lock(&kvm
->lock
);
4728 for (i
= 0; i
< atomic_read(&kvm
->online_vcpus
); i
++)
4729 kvm
->vcpus
[i
] = NULL
;
4731 atomic_set(&kvm
->online_vcpus
, 0);
4732 mutex_unlock(&kvm
->lock
);
4735 void kvm_arch_sync_events(struct kvm
*kvm
)
4737 kvm_free_all_assigned_devices(kvm
);
4740 void kvm_arch_destroy_vm(struct kvm
*kvm
)
4742 kvm_iommu_unmap_guest(kvm
);
4744 kfree(kvm
->arch
.vpic
);
4745 kfree(kvm
->arch
.vioapic
);
4746 kvm_free_vcpus(kvm
);
4747 kvm_free_physmem(kvm
);
4748 if (kvm
->arch
.apic_access_page
)
4749 put_page(kvm
->arch
.apic_access_page
);
4750 if (kvm
->arch
.ept_identity_pagetable
)
4751 put_page(kvm
->arch
.ept_identity_pagetable
);
4755 int kvm_arch_set_memory_region(struct kvm
*kvm
,
4756 struct kvm_userspace_memory_region
*mem
,
4757 struct kvm_memory_slot old
,
4760 int npages
= mem
->memory_size
>> PAGE_SHIFT
;
4761 struct kvm_memory_slot
*memslot
= &kvm
->memslots
[mem
->slot
];
4763 /*To keep backward compatibility with older userspace,
4764 *x86 needs to hanlde !user_alloc case.
4767 if (npages
&& !old
.rmap
) {
4768 unsigned long userspace_addr
;
4770 down_write(¤t
->mm
->mmap_sem
);
4771 userspace_addr
= do_mmap(NULL
, 0,
4773 PROT_READ
| PROT_WRITE
,
4774 MAP_PRIVATE
| MAP_ANONYMOUS
,
4776 up_write(¤t
->mm
->mmap_sem
);
4778 if (IS_ERR((void *)userspace_addr
))
4779 return PTR_ERR((void *)userspace_addr
);
4781 /* set userspace_addr atomically for kvm_hva_to_rmapp */
4782 spin_lock(&kvm
->mmu_lock
);
4783 memslot
->userspace_addr
= userspace_addr
;
4784 spin_unlock(&kvm
->mmu_lock
);
4786 if (!old
.user_alloc
&& old
.rmap
) {
4789 down_write(¤t
->mm
->mmap_sem
);
4790 ret
= do_munmap(current
->mm
, old
.userspace_addr
,
4791 old
.npages
* PAGE_SIZE
);
4792 up_write(¤t
->mm
->mmap_sem
);
4795 "kvm_vm_ioctl_set_memory_region: "
4796 "failed to munmap memory\n");
4801 spin_lock(&kvm
->mmu_lock
);
4802 if (!kvm
->arch
.n_requested_mmu_pages
) {
4803 unsigned int nr_mmu_pages
= kvm_mmu_calculate_mmu_pages(kvm
);
4804 kvm_mmu_change_mmu_pages(kvm
, nr_mmu_pages
);
4807 kvm_mmu_slot_remove_write_access(kvm
, mem
->slot
);
4808 spin_unlock(&kvm
->mmu_lock
);
4809 kvm_flush_remote_tlbs(kvm
);
4814 void kvm_arch_flush_shadow(struct kvm
*kvm
)
4816 kvm_mmu_zap_all(kvm
);
4817 kvm_reload_remote_mmus(kvm
);
4820 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*vcpu
)
4822 return vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
4823 || vcpu
->arch
.mp_state
== KVM_MP_STATE_SIPI_RECEIVED
4824 || vcpu
->arch
.nmi_pending
;
4827 void kvm_vcpu_kick(struct kvm_vcpu
*vcpu
)
4830 int cpu
= vcpu
->cpu
;
4832 if (waitqueue_active(&vcpu
->wq
)) {
4833 wake_up_interruptible(&vcpu
->wq
);
4834 ++vcpu
->stat
.halt_wakeup
;
4838 if (cpu
!= me
&& (unsigned)cpu
< nr_cpu_ids
&& cpu_online(cpu
))
4839 if (!test_and_set_bit(KVM_REQ_KICK
, &vcpu
->requests
))
4840 smp_send_reschedule(cpu
);
4844 int kvm_arch_interrupt_allowed(struct kvm_vcpu
*vcpu
)
4846 return kvm_x86_ops
->interrupt_allowed(vcpu
);
4849 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit
);
4850 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq
);
4851 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault
);
4852 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr
);
4853 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr
);