]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kvm/x86.c
Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * derived from drivers/kvm/kvm_main.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
17 */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/sched/isolation.h>
58 #include <linux/mem_encrypt.h>
59 #include <linux/entry-kvm.h>
60
61 #include <trace/events/kvm.h>
62
63 #include <asm/debugreg.h>
64 #include <asm/msr.h>
65 #include <asm/desc.h>
66 #include <asm/mce.h>
67 #include <linux/kernel_stat.h>
68 #include <asm/fpu/internal.h> /* Ugh! */
69 #include <asm/pvclock.h>
70 #include <asm/div64.h>
71 #include <asm/irq_remapping.h>
72 #include <asm/mshyperv.h>
73 #include <asm/hypervisor.h>
74 #include <asm/tlbflush.h>
75 #include <asm/intel_pt.h>
76 #include <asm/emulate_prefix.h>
77 #include <clocksource/hyperv_timer.h>
78
79 #define CREATE_TRACE_POINTS
80 #include "trace.h"
81
82 #define MAX_IO_MSRS 256
83 #define KVM_MAX_MCE_BANKS 32
84 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
85 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
86
87 #define emul_to_vcpu(ctxt) \
88 ((struct kvm_vcpu *)(ctxt)->vcpu)
89
90 /* EFER defaults:
91 * - enable syscall per default because its emulated by KVM
92 * - enable LME and LMA per default on 64 bit KVM
93 */
94 #ifdef CONFIG_X86_64
95 static
96 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
97 #else
98 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
99 #endif
100
101 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
102
103 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
104 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
105
106 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
107 static void process_nmi(struct kvm_vcpu *vcpu);
108 static void enter_smm(struct kvm_vcpu *vcpu);
109 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
110 static void store_regs(struct kvm_vcpu *vcpu);
111 static int sync_regs(struct kvm_vcpu *vcpu);
112
113 struct kvm_x86_ops kvm_x86_ops __read_mostly;
114 EXPORT_SYMBOL_GPL(kvm_x86_ops);
115
116 static bool __read_mostly ignore_msrs = 0;
117 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
118
119 static bool __read_mostly report_ignored_msrs = true;
120 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
121
122 unsigned int min_timer_period_us = 200;
123 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
124
125 static bool __read_mostly kvmclock_periodic_sync = true;
126 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
127
128 bool __read_mostly kvm_has_tsc_control;
129 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
130 u32 __read_mostly kvm_max_guest_tsc_khz;
131 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
132 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
133 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
134 u64 __read_mostly kvm_max_tsc_scaling_ratio;
135 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
136 u64 __read_mostly kvm_default_tsc_scaling_ratio;
137 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
138
139 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
140 static u32 __read_mostly tsc_tolerance_ppm = 250;
141 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
142
143 /*
144 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables
145 * adaptive tuning starting from default advancment of 1000ns. '0' disables
146 * advancement entirely. Any other value is used as-is and disables adaptive
147 * tuning, i.e. allows priveleged userspace to set an exact advancement time.
148 */
149 static int __read_mostly lapic_timer_advance_ns = -1;
150 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
151
152 static bool __read_mostly vector_hashing = true;
153 module_param(vector_hashing, bool, S_IRUGO);
154
155 bool __read_mostly enable_vmware_backdoor = false;
156 module_param(enable_vmware_backdoor, bool, S_IRUGO);
157 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
158
159 static bool __read_mostly force_emulation_prefix = false;
160 module_param(force_emulation_prefix, bool, S_IRUGO);
161
162 int __read_mostly pi_inject_timer = -1;
163 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
164
165 /*
166 * Restoring the host value for MSRs that are only consumed when running in
167 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
168 * returns to userspace, i.e. the kernel can run with the guest's value.
169 */
170 #define KVM_MAX_NR_USER_RETURN_MSRS 16
171
172 struct kvm_user_return_msrs_global {
173 int nr;
174 u32 msrs[KVM_MAX_NR_USER_RETURN_MSRS];
175 };
176
177 struct kvm_user_return_msrs {
178 struct user_return_notifier urn;
179 bool registered;
180 struct kvm_user_return_msr_values {
181 u64 host;
182 u64 curr;
183 } values[KVM_MAX_NR_USER_RETURN_MSRS];
184 };
185
186 static struct kvm_user_return_msrs_global __read_mostly user_return_msrs_global;
187 static struct kvm_user_return_msrs __percpu *user_return_msrs;
188
189 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
190 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
191 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
192 | XFEATURE_MASK_PKRU)
193
194 u64 __read_mostly host_efer;
195 EXPORT_SYMBOL_GPL(host_efer);
196
197 bool __read_mostly allow_smaller_maxphyaddr = 0;
198 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
199
200 u64 __read_mostly host_xss;
201 EXPORT_SYMBOL_GPL(host_xss);
202 u64 __read_mostly supported_xss;
203 EXPORT_SYMBOL_GPL(supported_xss);
204
205 struct kvm_stats_debugfs_item debugfs_entries[] = {
206 VCPU_STAT("pf_fixed", pf_fixed),
207 VCPU_STAT("pf_guest", pf_guest),
208 VCPU_STAT("tlb_flush", tlb_flush),
209 VCPU_STAT("invlpg", invlpg),
210 VCPU_STAT("exits", exits),
211 VCPU_STAT("io_exits", io_exits),
212 VCPU_STAT("mmio_exits", mmio_exits),
213 VCPU_STAT("signal_exits", signal_exits),
214 VCPU_STAT("irq_window", irq_window_exits),
215 VCPU_STAT("nmi_window", nmi_window_exits),
216 VCPU_STAT("halt_exits", halt_exits),
217 VCPU_STAT("halt_successful_poll", halt_successful_poll),
218 VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
219 VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
220 VCPU_STAT("halt_wakeup", halt_wakeup),
221 VCPU_STAT("hypercalls", hypercalls),
222 VCPU_STAT("request_irq", request_irq_exits),
223 VCPU_STAT("irq_exits", irq_exits),
224 VCPU_STAT("host_state_reload", host_state_reload),
225 VCPU_STAT("fpu_reload", fpu_reload),
226 VCPU_STAT("insn_emulation", insn_emulation),
227 VCPU_STAT("insn_emulation_fail", insn_emulation_fail),
228 VCPU_STAT("irq_injections", irq_injections),
229 VCPU_STAT("nmi_injections", nmi_injections),
230 VCPU_STAT("req_event", req_event),
231 VCPU_STAT("l1d_flush", l1d_flush),
232 VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
233 VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
234 VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped),
235 VM_STAT("mmu_pte_write", mmu_pte_write),
236 VM_STAT("mmu_pte_updated", mmu_pte_updated),
237 VM_STAT("mmu_pde_zapped", mmu_pde_zapped),
238 VM_STAT("mmu_flooded", mmu_flooded),
239 VM_STAT("mmu_recycled", mmu_recycled),
240 VM_STAT("mmu_cache_miss", mmu_cache_miss),
241 VM_STAT("mmu_unsync", mmu_unsync),
242 VM_STAT("remote_tlb_flush", remote_tlb_flush),
243 VM_STAT("largepages", lpages, .mode = 0444),
244 VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444),
245 VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions),
246 { NULL }
247 };
248
249 u64 __read_mostly host_xcr0;
250 u64 __read_mostly supported_xcr0;
251 EXPORT_SYMBOL_GPL(supported_xcr0);
252
253 static struct kmem_cache *x86_fpu_cache;
254
255 static struct kmem_cache *x86_emulator_cache;
256
257 /*
258 * When called, it means the previous get/set msr reached an invalid msr.
259 * Return true if we want to ignore/silent this failed msr access.
260 */
261 static bool kvm_msr_ignored_check(struct kvm_vcpu *vcpu, u32 msr,
262 u64 data, bool write)
263 {
264 const char *op = write ? "wrmsr" : "rdmsr";
265
266 if (ignore_msrs) {
267 if (report_ignored_msrs)
268 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
269 op, msr, data);
270 /* Mask the error */
271 return true;
272 } else {
273 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
274 op, msr, data);
275 return false;
276 }
277 }
278
279 static struct kmem_cache *kvm_alloc_emulator_cache(void)
280 {
281 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
282 unsigned int size = sizeof(struct x86_emulate_ctxt);
283
284 return kmem_cache_create_usercopy("x86_emulator", size,
285 __alignof__(struct x86_emulate_ctxt),
286 SLAB_ACCOUNT, useroffset,
287 size - useroffset, NULL);
288 }
289
290 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
291
292 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
293 {
294 int i;
295 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
296 vcpu->arch.apf.gfns[i] = ~0;
297 }
298
299 static void kvm_on_user_return(struct user_return_notifier *urn)
300 {
301 unsigned slot;
302 struct kvm_user_return_msrs *msrs
303 = container_of(urn, struct kvm_user_return_msrs, urn);
304 struct kvm_user_return_msr_values *values;
305 unsigned long flags;
306
307 /*
308 * Disabling irqs at this point since the following code could be
309 * interrupted and executed through kvm_arch_hardware_disable()
310 */
311 local_irq_save(flags);
312 if (msrs->registered) {
313 msrs->registered = false;
314 user_return_notifier_unregister(urn);
315 }
316 local_irq_restore(flags);
317 for (slot = 0; slot < user_return_msrs_global.nr; ++slot) {
318 values = &msrs->values[slot];
319 if (values->host != values->curr) {
320 wrmsrl(user_return_msrs_global.msrs[slot], values->host);
321 values->curr = values->host;
322 }
323 }
324 }
325
326 void kvm_define_user_return_msr(unsigned slot, u32 msr)
327 {
328 BUG_ON(slot >= KVM_MAX_NR_USER_RETURN_MSRS);
329 user_return_msrs_global.msrs[slot] = msr;
330 if (slot >= user_return_msrs_global.nr)
331 user_return_msrs_global.nr = slot + 1;
332 }
333 EXPORT_SYMBOL_GPL(kvm_define_user_return_msr);
334
335 static void kvm_user_return_msr_cpu_online(void)
336 {
337 unsigned int cpu = smp_processor_id();
338 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
339 u64 value;
340 int i;
341
342 for (i = 0; i < user_return_msrs_global.nr; ++i) {
343 rdmsrl_safe(user_return_msrs_global.msrs[i], &value);
344 msrs->values[i].host = value;
345 msrs->values[i].curr = value;
346 }
347 }
348
349 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
350 {
351 unsigned int cpu = smp_processor_id();
352 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
353 int err;
354
355 value = (value & mask) | (msrs->values[slot].host & ~mask);
356 if (value == msrs->values[slot].curr)
357 return 0;
358 err = wrmsrl_safe(user_return_msrs_global.msrs[slot], value);
359 if (err)
360 return 1;
361
362 msrs->values[slot].curr = value;
363 if (!msrs->registered) {
364 msrs->urn.on_user_return = kvm_on_user_return;
365 user_return_notifier_register(&msrs->urn);
366 msrs->registered = true;
367 }
368 return 0;
369 }
370 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
371
372 static void drop_user_return_notifiers(void)
373 {
374 unsigned int cpu = smp_processor_id();
375 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
376
377 if (msrs->registered)
378 kvm_on_user_return(&msrs->urn);
379 }
380
381 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
382 {
383 return vcpu->arch.apic_base;
384 }
385 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
386
387 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
388 {
389 return kvm_apic_mode(kvm_get_apic_base(vcpu));
390 }
391 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
392
393 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
394 {
395 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
396 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
397 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
398 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
399
400 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
401 return 1;
402 if (!msr_info->host_initiated) {
403 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
404 return 1;
405 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
406 return 1;
407 }
408
409 kvm_lapic_set_base(vcpu, msr_info->data);
410 kvm_recalculate_apic_map(vcpu->kvm);
411 return 0;
412 }
413 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
414
415 asmlinkage __visible noinstr void kvm_spurious_fault(void)
416 {
417 /* Fault while not rebooting. We want the trace. */
418 BUG_ON(!kvm_rebooting);
419 }
420 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
421
422 #define EXCPT_BENIGN 0
423 #define EXCPT_CONTRIBUTORY 1
424 #define EXCPT_PF 2
425
426 static int exception_class(int vector)
427 {
428 switch (vector) {
429 case PF_VECTOR:
430 return EXCPT_PF;
431 case DE_VECTOR:
432 case TS_VECTOR:
433 case NP_VECTOR:
434 case SS_VECTOR:
435 case GP_VECTOR:
436 return EXCPT_CONTRIBUTORY;
437 default:
438 break;
439 }
440 return EXCPT_BENIGN;
441 }
442
443 #define EXCPT_FAULT 0
444 #define EXCPT_TRAP 1
445 #define EXCPT_ABORT 2
446 #define EXCPT_INTERRUPT 3
447
448 static int exception_type(int vector)
449 {
450 unsigned int mask;
451
452 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
453 return EXCPT_INTERRUPT;
454
455 mask = 1 << vector;
456
457 /* #DB is trap, as instruction watchpoints are handled elsewhere */
458 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
459 return EXCPT_TRAP;
460
461 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
462 return EXCPT_ABORT;
463
464 /* Reserved exceptions will result in fault */
465 return EXCPT_FAULT;
466 }
467
468 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
469 {
470 unsigned nr = vcpu->arch.exception.nr;
471 bool has_payload = vcpu->arch.exception.has_payload;
472 unsigned long payload = vcpu->arch.exception.payload;
473
474 if (!has_payload)
475 return;
476
477 switch (nr) {
478 case DB_VECTOR:
479 /*
480 * "Certain debug exceptions may clear bit 0-3. The
481 * remaining contents of the DR6 register are never
482 * cleared by the processor".
483 */
484 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
485 /*
486 * DR6.RTM is set by all #DB exceptions that don't clear it.
487 */
488 vcpu->arch.dr6 |= DR6_RTM;
489 vcpu->arch.dr6 |= payload;
490 /*
491 * Bit 16 should be set in the payload whenever the #DB
492 * exception should clear DR6.RTM. This makes the payload
493 * compatible with the pending debug exceptions under VMX.
494 * Though not currently documented in the SDM, this also
495 * makes the payload compatible with the exit qualification
496 * for #DB exceptions under VMX.
497 */
498 vcpu->arch.dr6 ^= payload & DR6_RTM;
499
500 /*
501 * The #DB payload is defined as compatible with the 'pending
502 * debug exceptions' field under VMX, not DR6. While bit 12 is
503 * defined in the 'pending debug exceptions' field (enabled
504 * breakpoint), it is reserved and must be zero in DR6.
505 */
506 vcpu->arch.dr6 &= ~BIT(12);
507 break;
508 case PF_VECTOR:
509 vcpu->arch.cr2 = payload;
510 break;
511 }
512
513 vcpu->arch.exception.has_payload = false;
514 vcpu->arch.exception.payload = 0;
515 }
516 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
517
518 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
519 unsigned nr, bool has_error, u32 error_code,
520 bool has_payload, unsigned long payload, bool reinject)
521 {
522 u32 prev_nr;
523 int class1, class2;
524
525 kvm_make_request(KVM_REQ_EVENT, vcpu);
526
527 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
528 queue:
529 if (has_error && !is_protmode(vcpu))
530 has_error = false;
531 if (reinject) {
532 /*
533 * On vmentry, vcpu->arch.exception.pending is only
534 * true if an event injection was blocked by
535 * nested_run_pending. In that case, however,
536 * vcpu_enter_guest requests an immediate exit,
537 * and the guest shouldn't proceed far enough to
538 * need reinjection.
539 */
540 WARN_ON_ONCE(vcpu->arch.exception.pending);
541 vcpu->arch.exception.injected = true;
542 if (WARN_ON_ONCE(has_payload)) {
543 /*
544 * A reinjected event has already
545 * delivered its payload.
546 */
547 has_payload = false;
548 payload = 0;
549 }
550 } else {
551 vcpu->arch.exception.pending = true;
552 vcpu->arch.exception.injected = false;
553 }
554 vcpu->arch.exception.has_error_code = has_error;
555 vcpu->arch.exception.nr = nr;
556 vcpu->arch.exception.error_code = error_code;
557 vcpu->arch.exception.has_payload = has_payload;
558 vcpu->arch.exception.payload = payload;
559 if (!is_guest_mode(vcpu))
560 kvm_deliver_exception_payload(vcpu);
561 return;
562 }
563
564 /* to check exception */
565 prev_nr = vcpu->arch.exception.nr;
566 if (prev_nr == DF_VECTOR) {
567 /* triple fault -> shutdown */
568 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
569 return;
570 }
571 class1 = exception_class(prev_nr);
572 class2 = exception_class(nr);
573 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
574 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
575 /*
576 * Generate double fault per SDM Table 5-5. Set
577 * exception.pending = true so that the double fault
578 * can trigger a nested vmexit.
579 */
580 vcpu->arch.exception.pending = true;
581 vcpu->arch.exception.injected = false;
582 vcpu->arch.exception.has_error_code = true;
583 vcpu->arch.exception.nr = DF_VECTOR;
584 vcpu->arch.exception.error_code = 0;
585 vcpu->arch.exception.has_payload = false;
586 vcpu->arch.exception.payload = 0;
587 } else
588 /* replace previous exception with a new one in a hope
589 that instruction re-execution will regenerate lost
590 exception */
591 goto queue;
592 }
593
594 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
595 {
596 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
597 }
598 EXPORT_SYMBOL_GPL(kvm_queue_exception);
599
600 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
601 {
602 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
603 }
604 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
605
606 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
607 unsigned long payload)
608 {
609 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
610 }
611 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
612
613 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
614 u32 error_code, unsigned long payload)
615 {
616 kvm_multiple_exception(vcpu, nr, true, error_code,
617 true, payload, false);
618 }
619
620 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
621 {
622 if (err)
623 kvm_inject_gp(vcpu, 0);
624 else
625 return kvm_skip_emulated_instruction(vcpu);
626
627 return 1;
628 }
629 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
630
631 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
632 {
633 ++vcpu->stat.pf_guest;
634 vcpu->arch.exception.nested_apf =
635 is_guest_mode(vcpu) && fault->async_page_fault;
636 if (vcpu->arch.exception.nested_apf) {
637 vcpu->arch.apf.nested_apf_token = fault->address;
638 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
639 } else {
640 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
641 fault->address);
642 }
643 }
644 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
645
646 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
647 struct x86_exception *fault)
648 {
649 struct kvm_mmu *fault_mmu;
650 WARN_ON_ONCE(fault->vector != PF_VECTOR);
651
652 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
653 vcpu->arch.walk_mmu;
654
655 /*
656 * Invalidate the TLB entry for the faulting address, if it exists,
657 * else the access will fault indefinitely (and to emulate hardware).
658 */
659 if ((fault->error_code & PFERR_PRESENT_MASK) &&
660 !(fault->error_code & PFERR_RSVD_MASK))
661 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
662 fault_mmu->root_hpa);
663
664 fault_mmu->inject_page_fault(vcpu, fault);
665 return fault->nested_page_fault;
666 }
667 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
668
669 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
670 {
671 atomic_inc(&vcpu->arch.nmi_queued);
672 kvm_make_request(KVM_REQ_NMI, vcpu);
673 }
674 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
675
676 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
677 {
678 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
679 }
680 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
681
682 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
683 {
684 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
685 }
686 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
687
688 /*
689 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
690 * a #GP and return false.
691 */
692 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
693 {
694 if (kvm_x86_ops.get_cpl(vcpu) <= required_cpl)
695 return true;
696 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
697 return false;
698 }
699 EXPORT_SYMBOL_GPL(kvm_require_cpl);
700
701 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
702 {
703 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
704 return true;
705
706 kvm_queue_exception(vcpu, UD_VECTOR);
707 return false;
708 }
709 EXPORT_SYMBOL_GPL(kvm_require_dr);
710
711 /*
712 * This function will be used to read from the physical memory of the currently
713 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
714 * can read from guest physical or from the guest's guest physical memory.
715 */
716 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
717 gfn_t ngfn, void *data, int offset, int len,
718 u32 access)
719 {
720 struct x86_exception exception;
721 gfn_t real_gfn;
722 gpa_t ngpa;
723
724 ngpa = gfn_to_gpa(ngfn);
725 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
726 if (real_gfn == UNMAPPED_GVA)
727 return -EFAULT;
728
729 real_gfn = gpa_to_gfn(real_gfn);
730
731 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
732 }
733 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
734
735 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
736 void *data, int offset, int len, u32 access)
737 {
738 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
739 data, offset, len, access);
740 }
741
742 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
743 {
744 return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
745 rsvd_bits(1, 2);
746 }
747
748 /*
749 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
750 */
751 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
752 {
753 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
754 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
755 int i;
756 int ret;
757 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
758
759 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
760 offset * sizeof(u64), sizeof(pdpte),
761 PFERR_USER_MASK|PFERR_WRITE_MASK);
762 if (ret < 0) {
763 ret = 0;
764 goto out;
765 }
766 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
767 if ((pdpte[i] & PT_PRESENT_MASK) &&
768 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
769 ret = 0;
770 goto out;
771 }
772 }
773 ret = 1;
774
775 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
776 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
777
778 out:
779
780 return ret;
781 }
782 EXPORT_SYMBOL_GPL(load_pdptrs);
783
784 bool pdptrs_changed(struct kvm_vcpu *vcpu)
785 {
786 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
787 int offset;
788 gfn_t gfn;
789 int r;
790
791 if (!is_pae_paging(vcpu))
792 return false;
793
794 if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
795 return true;
796
797 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
798 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
799 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
800 PFERR_USER_MASK | PFERR_WRITE_MASK);
801 if (r < 0)
802 return true;
803
804 return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
805 }
806 EXPORT_SYMBOL_GPL(pdptrs_changed);
807
808 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
809 {
810 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
811
812 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
813 kvm_clear_async_pf_completion_queue(vcpu);
814 kvm_async_pf_hash_reset(vcpu);
815 }
816
817 if ((cr0 ^ old_cr0) & update_bits)
818 kvm_mmu_reset_context(vcpu);
819
820 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
821 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
822 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
823 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
824 }
825 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
826
827 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
828 {
829 unsigned long old_cr0 = kvm_read_cr0(vcpu);
830 unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
831
832 cr0 |= X86_CR0_ET;
833
834 #ifdef CONFIG_X86_64
835 if (cr0 & 0xffffffff00000000UL)
836 return 1;
837 #endif
838
839 cr0 &= ~CR0_RESERVED_BITS;
840
841 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
842 return 1;
843
844 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
845 return 1;
846
847 #ifdef CONFIG_X86_64
848 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
849 (cr0 & X86_CR0_PG)) {
850 int cs_db, cs_l;
851
852 if (!is_pae(vcpu))
853 return 1;
854 kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
855 if (cs_l)
856 return 1;
857 }
858 #endif
859 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
860 is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
861 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
862 return 1;
863
864 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
865 return 1;
866
867 kvm_x86_ops.set_cr0(vcpu, cr0);
868
869 kvm_post_set_cr0(vcpu, old_cr0, cr0);
870
871 return 0;
872 }
873 EXPORT_SYMBOL_GPL(kvm_set_cr0);
874
875 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
876 {
877 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
878 }
879 EXPORT_SYMBOL_GPL(kvm_lmsw);
880
881 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
882 {
883 if (vcpu->arch.guest_state_protected)
884 return;
885
886 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
887
888 if (vcpu->arch.xcr0 != host_xcr0)
889 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
890
891 if (vcpu->arch.xsaves_enabled &&
892 vcpu->arch.ia32_xss != host_xss)
893 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
894 }
895
896 if (static_cpu_has(X86_FEATURE_PKU) &&
897 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
898 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
899 vcpu->arch.pkru != vcpu->arch.host_pkru)
900 __write_pkru(vcpu->arch.pkru);
901 }
902 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
903
904 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
905 {
906 if (vcpu->arch.guest_state_protected)
907 return;
908
909 if (static_cpu_has(X86_FEATURE_PKU) &&
910 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
911 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
912 vcpu->arch.pkru = rdpkru();
913 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
914 __write_pkru(vcpu->arch.host_pkru);
915 }
916
917 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
918
919 if (vcpu->arch.xcr0 != host_xcr0)
920 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
921
922 if (vcpu->arch.xsaves_enabled &&
923 vcpu->arch.ia32_xss != host_xss)
924 wrmsrl(MSR_IA32_XSS, host_xss);
925 }
926
927 }
928 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
929
930 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
931 {
932 u64 xcr0 = xcr;
933 u64 old_xcr0 = vcpu->arch.xcr0;
934 u64 valid_bits;
935
936 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
937 if (index != XCR_XFEATURE_ENABLED_MASK)
938 return 1;
939 if (!(xcr0 & XFEATURE_MASK_FP))
940 return 1;
941 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
942 return 1;
943
944 /*
945 * Do not allow the guest to set bits that we do not support
946 * saving. However, xcr0 bit 0 is always set, even if the
947 * emulated CPU does not support XSAVE (see fx_init).
948 */
949 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
950 if (xcr0 & ~valid_bits)
951 return 1;
952
953 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
954 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
955 return 1;
956
957 if (xcr0 & XFEATURE_MASK_AVX512) {
958 if (!(xcr0 & XFEATURE_MASK_YMM))
959 return 1;
960 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
961 return 1;
962 }
963 vcpu->arch.xcr0 = xcr0;
964
965 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
966 kvm_update_cpuid_runtime(vcpu);
967 return 0;
968 }
969
970 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
971 {
972 if (kvm_x86_ops.get_cpl(vcpu) != 0 ||
973 __kvm_set_xcr(vcpu, index, xcr)) {
974 kvm_inject_gp(vcpu, 0);
975 return 1;
976 }
977 return 0;
978 }
979 EXPORT_SYMBOL_GPL(kvm_set_xcr);
980
981 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
982 {
983 if (cr4 & cr4_reserved_bits)
984 return false;
985
986 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
987 return false;
988
989 return kvm_x86_ops.is_valid_cr4(vcpu, cr4);
990 }
991 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
992
993 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
994 {
995 unsigned long mmu_role_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
996 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
997
998 if (((cr4 ^ old_cr4) & mmu_role_bits) ||
999 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1000 kvm_mmu_reset_context(vcpu);
1001 }
1002 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1003
1004 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1005 {
1006 unsigned long old_cr4 = kvm_read_cr4(vcpu);
1007 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1008 X86_CR4_SMEP;
1009
1010 if (!kvm_is_valid_cr4(vcpu, cr4))
1011 return 1;
1012
1013 if (is_long_mode(vcpu)) {
1014 if (!(cr4 & X86_CR4_PAE))
1015 return 1;
1016 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1017 return 1;
1018 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1019 && ((cr4 ^ old_cr4) & pdptr_bits)
1020 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1021 kvm_read_cr3(vcpu)))
1022 return 1;
1023
1024 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1025 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1026 return 1;
1027
1028 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1029 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1030 return 1;
1031 }
1032
1033 kvm_x86_ops.set_cr4(vcpu, cr4);
1034
1035 kvm_post_set_cr4(vcpu, old_cr4, cr4);
1036
1037 return 0;
1038 }
1039 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1040
1041 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1042 {
1043 bool skip_tlb_flush = false;
1044 #ifdef CONFIG_X86_64
1045 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1046
1047 if (pcid_enabled) {
1048 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1049 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1050 }
1051 #endif
1052
1053 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
1054 if (!skip_tlb_flush) {
1055 kvm_mmu_sync_roots(vcpu);
1056 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1057 }
1058 return 0;
1059 }
1060
1061 if (is_long_mode(vcpu) &&
1062 (cr3 & vcpu->arch.cr3_lm_rsvd_bits))
1063 return 1;
1064 else if (is_pae_paging(vcpu) &&
1065 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1066 return 1;
1067
1068 kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush);
1069 vcpu->arch.cr3 = cr3;
1070 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1071
1072 return 0;
1073 }
1074 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1075
1076 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1077 {
1078 if (cr8 & CR8_RESERVED_BITS)
1079 return 1;
1080 if (lapic_in_kernel(vcpu))
1081 kvm_lapic_set_tpr(vcpu, cr8);
1082 else
1083 vcpu->arch.cr8 = cr8;
1084 return 0;
1085 }
1086 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1087
1088 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1089 {
1090 if (lapic_in_kernel(vcpu))
1091 return kvm_lapic_get_cr8(vcpu);
1092 else
1093 return vcpu->arch.cr8;
1094 }
1095 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1096
1097 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1098 {
1099 int i;
1100
1101 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1102 for (i = 0; i < KVM_NR_DB_REGS; i++)
1103 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1104 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1105 }
1106 }
1107
1108 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1109 {
1110 unsigned long dr7;
1111
1112 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1113 dr7 = vcpu->arch.guest_debug_dr7;
1114 else
1115 dr7 = vcpu->arch.dr7;
1116 kvm_x86_ops.set_dr7(vcpu, dr7);
1117 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1118 if (dr7 & DR7_BP_EN_MASK)
1119 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1120 }
1121 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1122
1123 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1124 {
1125 u64 fixed = DR6_FIXED_1;
1126
1127 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1128 fixed |= DR6_RTM;
1129 return fixed;
1130 }
1131
1132 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1133 {
1134 size_t size = ARRAY_SIZE(vcpu->arch.db);
1135
1136 switch (dr) {
1137 case 0 ... 3:
1138 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1139 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1140 vcpu->arch.eff_db[dr] = val;
1141 break;
1142 case 4:
1143 case 6:
1144 if (!kvm_dr6_valid(val))
1145 return -1; /* #GP */
1146 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1147 break;
1148 case 5:
1149 default: /* 7 */
1150 if (!kvm_dr7_valid(val))
1151 return -1; /* #GP */
1152 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1153 kvm_update_dr7(vcpu);
1154 break;
1155 }
1156
1157 return 0;
1158 }
1159
1160 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1161 {
1162 if (__kvm_set_dr(vcpu, dr, val)) {
1163 kvm_inject_gp(vcpu, 0);
1164 return 1;
1165 }
1166 return 0;
1167 }
1168 EXPORT_SYMBOL_GPL(kvm_set_dr);
1169
1170 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1171 {
1172 size_t size = ARRAY_SIZE(vcpu->arch.db);
1173
1174 switch (dr) {
1175 case 0 ... 3:
1176 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1177 break;
1178 case 4:
1179 case 6:
1180 *val = vcpu->arch.dr6;
1181 break;
1182 case 5:
1183 default: /* 7 */
1184 *val = vcpu->arch.dr7;
1185 break;
1186 }
1187 return 0;
1188 }
1189 EXPORT_SYMBOL_GPL(kvm_get_dr);
1190
1191 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1192 {
1193 u32 ecx = kvm_rcx_read(vcpu);
1194 u64 data;
1195 int err;
1196
1197 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1198 if (err)
1199 return err;
1200 kvm_rax_write(vcpu, (u32)data);
1201 kvm_rdx_write(vcpu, data >> 32);
1202 return err;
1203 }
1204 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1205
1206 /*
1207 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1208 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1209 *
1210 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1211 * extract the supported MSRs from the related const lists.
1212 * msrs_to_save is selected from the msrs_to_save_all to reflect the
1213 * capabilities of the host cpu. This capabilities test skips MSRs that are
1214 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1215 * may depend on host virtualization features rather than host cpu features.
1216 */
1217
1218 static const u32 msrs_to_save_all[] = {
1219 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1220 MSR_STAR,
1221 #ifdef CONFIG_X86_64
1222 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1223 #endif
1224 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1225 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1226 MSR_IA32_SPEC_CTRL,
1227 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1228 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1229 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1230 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1231 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1232 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1233 MSR_IA32_UMWAIT_CONTROL,
1234
1235 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1236 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1237 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1238 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1239 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1240 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1241 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1242 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1243 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1244 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1245 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1246 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1247 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1248 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1249 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1250 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1251 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1252 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1253 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1254 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1255 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1256 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1257 };
1258
1259 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1260 static unsigned num_msrs_to_save;
1261
1262 static const u32 emulated_msrs_all[] = {
1263 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1264 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1265 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1266 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1267 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1268 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1269 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1270 HV_X64_MSR_RESET,
1271 HV_X64_MSR_VP_INDEX,
1272 HV_X64_MSR_VP_RUNTIME,
1273 HV_X64_MSR_SCONTROL,
1274 HV_X64_MSR_STIMER0_CONFIG,
1275 HV_X64_MSR_VP_ASSIST_PAGE,
1276 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1277 HV_X64_MSR_TSC_EMULATION_STATUS,
1278 HV_X64_MSR_SYNDBG_OPTIONS,
1279 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1280 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1281 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1282
1283 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1284 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1285
1286 MSR_IA32_TSC_ADJUST,
1287 MSR_IA32_TSCDEADLINE,
1288 MSR_IA32_ARCH_CAPABILITIES,
1289 MSR_IA32_PERF_CAPABILITIES,
1290 MSR_IA32_MISC_ENABLE,
1291 MSR_IA32_MCG_STATUS,
1292 MSR_IA32_MCG_CTL,
1293 MSR_IA32_MCG_EXT_CTL,
1294 MSR_IA32_SMBASE,
1295 MSR_SMI_COUNT,
1296 MSR_PLATFORM_INFO,
1297 MSR_MISC_FEATURES_ENABLES,
1298 MSR_AMD64_VIRT_SPEC_CTRL,
1299 MSR_IA32_POWER_CTL,
1300 MSR_IA32_UCODE_REV,
1301
1302 /*
1303 * The following list leaves out MSRs whose values are determined
1304 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1305 * We always support the "true" VMX control MSRs, even if the host
1306 * processor does not, so I am putting these registers here rather
1307 * than in msrs_to_save_all.
1308 */
1309 MSR_IA32_VMX_BASIC,
1310 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1311 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1312 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1313 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1314 MSR_IA32_VMX_MISC,
1315 MSR_IA32_VMX_CR0_FIXED0,
1316 MSR_IA32_VMX_CR4_FIXED0,
1317 MSR_IA32_VMX_VMCS_ENUM,
1318 MSR_IA32_VMX_PROCBASED_CTLS2,
1319 MSR_IA32_VMX_EPT_VPID_CAP,
1320 MSR_IA32_VMX_VMFUNC,
1321
1322 MSR_K7_HWCR,
1323 MSR_KVM_POLL_CONTROL,
1324 };
1325
1326 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1327 static unsigned num_emulated_msrs;
1328
1329 /*
1330 * List of msr numbers which are used to expose MSR-based features that
1331 * can be used by a hypervisor to validate requested CPU features.
1332 */
1333 static const u32 msr_based_features_all[] = {
1334 MSR_IA32_VMX_BASIC,
1335 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1336 MSR_IA32_VMX_PINBASED_CTLS,
1337 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1338 MSR_IA32_VMX_PROCBASED_CTLS,
1339 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1340 MSR_IA32_VMX_EXIT_CTLS,
1341 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1342 MSR_IA32_VMX_ENTRY_CTLS,
1343 MSR_IA32_VMX_MISC,
1344 MSR_IA32_VMX_CR0_FIXED0,
1345 MSR_IA32_VMX_CR0_FIXED1,
1346 MSR_IA32_VMX_CR4_FIXED0,
1347 MSR_IA32_VMX_CR4_FIXED1,
1348 MSR_IA32_VMX_VMCS_ENUM,
1349 MSR_IA32_VMX_PROCBASED_CTLS2,
1350 MSR_IA32_VMX_EPT_VPID_CAP,
1351 MSR_IA32_VMX_VMFUNC,
1352
1353 MSR_F10H_DECFG,
1354 MSR_IA32_UCODE_REV,
1355 MSR_IA32_ARCH_CAPABILITIES,
1356 MSR_IA32_PERF_CAPABILITIES,
1357 };
1358
1359 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1360 static unsigned int num_msr_based_features;
1361
1362 static u64 kvm_get_arch_capabilities(void)
1363 {
1364 u64 data = 0;
1365
1366 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1367 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1368
1369 /*
1370 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1371 * the nested hypervisor runs with NX huge pages. If it is not,
1372 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1373 * L1 guests, so it need not worry about its own (L2) guests.
1374 */
1375 data |= ARCH_CAP_PSCHANGE_MC_NO;
1376
1377 /*
1378 * If we're doing cache flushes (either "always" or "cond")
1379 * we will do one whenever the guest does a vmlaunch/vmresume.
1380 * If an outer hypervisor is doing the cache flush for us
1381 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1382 * capability to the guest too, and if EPT is disabled we're not
1383 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1384 * require a nested hypervisor to do a flush of its own.
1385 */
1386 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1387 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1388
1389 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1390 data |= ARCH_CAP_RDCL_NO;
1391 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1392 data |= ARCH_CAP_SSB_NO;
1393 if (!boot_cpu_has_bug(X86_BUG_MDS))
1394 data |= ARCH_CAP_MDS_NO;
1395
1396 /*
1397 * On TAA affected systems:
1398 * - nothing to do if TSX is disabled on the host.
1399 * - we emulate TSX_CTRL if present on the host.
1400 * This lets the guest use VERW to clear CPU buffers.
1401 */
1402 if (!boot_cpu_has(X86_FEATURE_RTM))
1403 data &= ~(ARCH_CAP_TAA_NO | ARCH_CAP_TSX_CTRL_MSR);
1404 else if (!boot_cpu_has_bug(X86_BUG_TAA))
1405 data |= ARCH_CAP_TAA_NO;
1406
1407 return data;
1408 }
1409
1410 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1411 {
1412 switch (msr->index) {
1413 case MSR_IA32_ARCH_CAPABILITIES:
1414 msr->data = kvm_get_arch_capabilities();
1415 break;
1416 case MSR_IA32_UCODE_REV:
1417 rdmsrl_safe(msr->index, &msr->data);
1418 break;
1419 default:
1420 return kvm_x86_ops.get_msr_feature(msr);
1421 }
1422 return 0;
1423 }
1424
1425 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1426 {
1427 struct kvm_msr_entry msr;
1428 int r;
1429
1430 msr.index = index;
1431 r = kvm_get_msr_feature(&msr);
1432
1433 if (r == KVM_MSR_RET_INVALID) {
1434 /* Unconditionally clear the output for simplicity */
1435 *data = 0;
1436 if (kvm_msr_ignored_check(vcpu, index, 0, false))
1437 r = 0;
1438 }
1439
1440 if (r)
1441 return r;
1442
1443 *data = msr.data;
1444
1445 return 0;
1446 }
1447
1448 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1449 {
1450 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1451 return false;
1452
1453 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1454 return false;
1455
1456 if (efer & (EFER_LME | EFER_LMA) &&
1457 !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1458 return false;
1459
1460 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1461 return false;
1462
1463 return true;
1464
1465 }
1466 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1467 {
1468 if (efer & efer_reserved_bits)
1469 return false;
1470
1471 return __kvm_valid_efer(vcpu, efer);
1472 }
1473 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1474
1475 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1476 {
1477 u64 old_efer = vcpu->arch.efer;
1478 u64 efer = msr_info->data;
1479 int r;
1480
1481 if (efer & efer_reserved_bits)
1482 return 1;
1483
1484 if (!msr_info->host_initiated) {
1485 if (!__kvm_valid_efer(vcpu, efer))
1486 return 1;
1487
1488 if (is_paging(vcpu) &&
1489 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1490 return 1;
1491 }
1492
1493 efer &= ~EFER_LMA;
1494 efer |= vcpu->arch.efer & EFER_LMA;
1495
1496 r = kvm_x86_ops.set_efer(vcpu, efer);
1497 if (r) {
1498 WARN_ON(r > 0);
1499 return r;
1500 }
1501
1502 /* Update reserved bits */
1503 if ((efer ^ old_efer) & EFER_NX)
1504 kvm_mmu_reset_context(vcpu);
1505
1506 return 0;
1507 }
1508
1509 void kvm_enable_efer_bits(u64 mask)
1510 {
1511 efer_reserved_bits &= ~mask;
1512 }
1513 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1514
1515 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1516 {
1517 struct kvm *kvm = vcpu->kvm;
1518 struct msr_bitmap_range *ranges = kvm->arch.msr_filter.ranges;
1519 u32 count = kvm->arch.msr_filter.count;
1520 u32 i;
1521 bool r = kvm->arch.msr_filter.default_allow;
1522 int idx;
1523
1524 /* MSR filtering not set up or x2APIC enabled, allow everything */
1525 if (!count || (index >= 0x800 && index <= 0x8ff))
1526 return true;
1527
1528 /* Prevent collision with set_msr_filter */
1529 idx = srcu_read_lock(&kvm->srcu);
1530
1531 for (i = 0; i < count; i++) {
1532 u32 start = ranges[i].base;
1533 u32 end = start + ranges[i].nmsrs;
1534 u32 flags = ranges[i].flags;
1535 unsigned long *bitmap = ranges[i].bitmap;
1536
1537 if ((index >= start) && (index < end) && (flags & type)) {
1538 r = !!test_bit(index - start, bitmap);
1539 break;
1540 }
1541 }
1542
1543 srcu_read_unlock(&kvm->srcu, idx);
1544
1545 return r;
1546 }
1547 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1548
1549 /*
1550 * Write @data into the MSR specified by @index. Select MSR specific fault
1551 * checks are bypassed if @host_initiated is %true.
1552 * Returns 0 on success, non-0 otherwise.
1553 * Assumes vcpu_load() was already called.
1554 */
1555 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1556 bool host_initiated)
1557 {
1558 struct msr_data msr;
1559
1560 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1561 return KVM_MSR_RET_FILTERED;
1562
1563 switch (index) {
1564 case MSR_FS_BASE:
1565 case MSR_GS_BASE:
1566 case MSR_KERNEL_GS_BASE:
1567 case MSR_CSTAR:
1568 case MSR_LSTAR:
1569 if (is_noncanonical_address(data, vcpu))
1570 return 1;
1571 break;
1572 case MSR_IA32_SYSENTER_EIP:
1573 case MSR_IA32_SYSENTER_ESP:
1574 /*
1575 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1576 * non-canonical address is written on Intel but not on
1577 * AMD (which ignores the top 32-bits, because it does
1578 * not implement 64-bit SYSENTER).
1579 *
1580 * 64-bit code should hence be able to write a non-canonical
1581 * value on AMD. Making the address canonical ensures that
1582 * vmentry does not fail on Intel after writing a non-canonical
1583 * value, and that something deterministic happens if the guest
1584 * invokes 64-bit SYSENTER.
1585 */
1586 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1587 }
1588
1589 msr.data = data;
1590 msr.index = index;
1591 msr.host_initiated = host_initiated;
1592
1593 return kvm_x86_ops.set_msr(vcpu, &msr);
1594 }
1595
1596 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1597 u32 index, u64 data, bool host_initiated)
1598 {
1599 int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1600
1601 if (ret == KVM_MSR_RET_INVALID)
1602 if (kvm_msr_ignored_check(vcpu, index, data, true))
1603 ret = 0;
1604
1605 return ret;
1606 }
1607
1608 /*
1609 * Read the MSR specified by @index into @data. Select MSR specific fault
1610 * checks are bypassed if @host_initiated is %true.
1611 * Returns 0 on success, non-0 otherwise.
1612 * Assumes vcpu_load() was already called.
1613 */
1614 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1615 bool host_initiated)
1616 {
1617 struct msr_data msr;
1618 int ret;
1619
1620 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1621 return KVM_MSR_RET_FILTERED;
1622
1623 msr.index = index;
1624 msr.host_initiated = host_initiated;
1625
1626 ret = kvm_x86_ops.get_msr(vcpu, &msr);
1627 if (!ret)
1628 *data = msr.data;
1629 return ret;
1630 }
1631
1632 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1633 u32 index, u64 *data, bool host_initiated)
1634 {
1635 int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1636
1637 if (ret == KVM_MSR_RET_INVALID) {
1638 /* Unconditionally clear *data for simplicity */
1639 *data = 0;
1640 if (kvm_msr_ignored_check(vcpu, index, 0, false))
1641 ret = 0;
1642 }
1643
1644 return ret;
1645 }
1646
1647 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1648 {
1649 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1650 }
1651 EXPORT_SYMBOL_GPL(kvm_get_msr);
1652
1653 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1654 {
1655 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1656 }
1657 EXPORT_SYMBOL_GPL(kvm_set_msr);
1658
1659 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1660 {
1661 int err = vcpu->run->msr.error;
1662 if (!err) {
1663 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1664 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1665 }
1666
1667 return kvm_x86_ops.complete_emulated_msr(vcpu, err);
1668 }
1669
1670 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1671 {
1672 return kvm_x86_ops.complete_emulated_msr(vcpu, vcpu->run->msr.error);
1673 }
1674
1675 static u64 kvm_msr_reason(int r)
1676 {
1677 switch (r) {
1678 case KVM_MSR_RET_INVALID:
1679 return KVM_MSR_EXIT_REASON_UNKNOWN;
1680 case KVM_MSR_RET_FILTERED:
1681 return KVM_MSR_EXIT_REASON_FILTER;
1682 default:
1683 return KVM_MSR_EXIT_REASON_INVAL;
1684 }
1685 }
1686
1687 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1688 u32 exit_reason, u64 data,
1689 int (*completion)(struct kvm_vcpu *vcpu),
1690 int r)
1691 {
1692 u64 msr_reason = kvm_msr_reason(r);
1693
1694 /* Check if the user wanted to know about this MSR fault */
1695 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1696 return 0;
1697
1698 vcpu->run->exit_reason = exit_reason;
1699 vcpu->run->msr.error = 0;
1700 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1701 vcpu->run->msr.reason = msr_reason;
1702 vcpu->run->msr.index = index;
1703 vcpu->run->msr.data = data;
1704 vcpu->arch.complete_userspace_io = completion;
1705
1706 return 1;
1707 }
1708
1709 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1710 {
1711 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1712 complete_emulated_rdmsr, r);
1713 }
1714
1715 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1716 {
1717 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1718 complete_emulated_wrmsr, r);
1719 }
1720
1721 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1722 {
1723 u32 ecx = kvm_rcx_read(vcpu);
1724 u64 data;
1725 int r;
1726
1727 r = kvm_get_msr(vcpu, ecx, &data);
1728
1729 /* MSR read failed? See if we should ask user space */
1730 if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1731 /* Bounce to user space */
1732 return 0;
1733 }
1734
1735 if (!r) {
1736 trace_kvm_msr_read(ecx, data);
1737
1738 kvm_rax_write(vcpu, data & -1u);
1739 kvm_rdx_write(vcpu, (data >> 32) & -1u);
1740 } else {
1741 trace_kvm_msr_read_ex(ecx);
1742 }
1743
1744 return kvm_x86_ops.complete_emulated_msr(vcpu, r);
1745 }
1746 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1747
1748 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1749 {
1750 u32 ecx = kvm_rcx_read(vcpu);
1751 u64 data = kvm_read_edx_eax(vcpu);
1752 int r;
1753
1754 r = kvm_set_msr(vcpu, ecx, data);
1755
1756 /* MSR write failed? See if we should ask user space */
1757 if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1758 /* Bounce to user space */
1759 return 0;
1760
1761 /* Signal all other negative errors to userspace */
1762 if (r < 0)
1763 return r;
1764
1765 if (!r)
1766 trace_kvm_msr_write(ecx, data);
1767 else
1768 trace_kvm_msr_write_ex(ecx, data);
1769
1770 return kvm_x86_ops.complete_emulated_msr(vcpu, r);
1771 }
1772 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1773
1774 bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1775 {
1776 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1777 xfer_to_guest_mode_work_pending();
1778 }
1779 EXPORT_SYMBOL_GPL(kvm_vcpu_exit_request);
1780
1781 /*
1782 * The fast path for frequent and performance sensitive wrmsr emulation,
1783 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1784 * the latency of virtual IPI by avoiding the expensive bits of transitioning
1785 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1786 * other cases which must be called after interrupts are enabled on the host.
1787 */
1788 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1789 {
1790 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1791 return 1;
1792
1793 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1794 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1795 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1796 ((u32)(data >> 32) != X2APIC_BROADCAST)) {
1797
1798 data &= ~(1 << 12);
1799 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1800 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1801 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1802 trace_kvm_apic_write(APIC_ICR, (u32)data);
1803 return 0;
1804 }
1805
1806 return 1;
1807 }
1808
1809 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1810 {
1811 if (!kvm_can_use_hv_timer(vcpu))
1812 return 1;
1813
1814 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1815 return 0;
1816 }
1817
1818 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1819 {
1820 u32 msr = kvm_rcx_read(vcpu);
1821 u64 data;
1822 fastpath_t ret = EXIT_FASTPATH_NONE;
1823
1824 switch (msr) {
1825 case APIC_BASE_MSR + (APIC_ICR >> 4):
1826 data = kvm_read_edx_eax(vcpu);
1827 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
1828 kvm_skip_emulated_instruction(vcpu);
1829 ret = EXIT_FASTPATH_EXIT_HANDLED;
1830 }
1831 break;
1832 case MSR_IA32_TSCDEADLINE:
1833 data = kvm_read_edx_eax(vcpu);
1834 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
1835 kvm_skip_emulated_instruction(vcpu);
1836 ret = EXIT_FASTPATH_REENTER_GUEST;
1837 }
1838 break;
1839 default:
1840 break;
1841 }
1842
1843 if (ret != EXIT_FASTPATH_NONE)
1844 trace_kvm_msr_write(msr, data);
1845
1846 return ret;
1847 }
1848 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1849
1850 /*
1851 * Adapt set_msr() to msr_io()'s calling convention
1852 */
1853 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1854 {
1855 return kvm_get_msr_ignored_check(vcpu, index, data, true);
1856 }
1857
1858 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1859 {
1860 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
1861 }
1862
1863 #ifdef CONFIG_X86_64
1864 struct pvclock_clock {
1865 int vclock_mode;
1866 u64 cycle_last;
1867 u64 mask;
1868 u32 mult;
1869 u32 shift;
1870 u64 base_cycles;
1871 u64 offset;
1872 };
1873
1874 struct pvclock_gtod_data {
1875 seqcount_t seq;
1876
1877 struct pvclock_clock clock; /* extract of a clocksource struct */
1878 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1879
1880 ktime_t offs_boot;
1881 u64 wall_time_sec;
1882 };
1883
1884 static struct pvclock_gtod_data pvclock_gtod_data;
1885
1886 static void update_pvclock_gtod(struct timekeeper *tk)
1887 {
1888 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1889
1890 write_seqcount_begin(&vdata->seq);
1891
1892 /* copy pvclock gtod data */
1893 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
1894 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1895 vdata->clock.mask = tk->tkr_mono.mask;
1896 vdata->clock.mult = tk->tkr_mono.mult;
1897 vdata->clock.shift = tk->tkr_mono.shift;
1898 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
1899 vdata->clock.offset = tk->tkr_mono.base;
1900
1901 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
1902 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
1903 vdata->raw_clock.mask = tk->tkr_raw.mask;
1904 vdata->raw_clock.mult = tk->tkr_raw.mult;
1905 vdata->raw_clock.shift = tk->tkr_raw.shift;
1906 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
1907 vdata->raw_clock.offset = tk->tkr_raw.base;
1908
1909 vdata->wall_time_sec = tk->xtime_sec;
1910
1911 vdata->offs_boot = tk->offs_boot;
1912
1913 write_seqcount_end(&vdata->seq);
1914 }
1915
1916 static s64 get_kvmclock_base_ns(void)
1917 {
1918 /* Count up from boot time, but with the frequency of the raw clock. */
1919 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
1920 }
1921 #else
1922 static s64 get_kvmclock_base_ns(void)
1923 {
1924 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
1925 return ktime_get_boottime_ns();
1926 }
1927 #endif
1928
1929 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1930 {
1931 int version;
1932 int r;
1933 struct pvclock_wall_clock wc;
1934 u64 wall_nsec;
1935
1936 kvm->arch.wall_clock = wall_clock;
1937
1938 if (!wall_clock)
1939 return;
1940
1941 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1942 if (r)
1943 return;
1944
1945 if (version & 1)
1946 ++version; /* first time write, random junk */
1947
1948 ++version;
1949
1950 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1951 return;
1952
1953 /*
1954 * The guest calculates current wall clock time by adding
1955 * system time (updated by kvm_guest_time_update below) to the
1956 * wall clock specified here. We do the reverse here.
1957 */
1958 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
1959
1960 wc.nsec = do_div(wall_nsec, 1000000000);
1961 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
1962 wc.version = version;
1963
1964 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1965
1966 version++;
1967 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1968 }
1969
1970 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
1971 bool old_msr, bool host_initiated)
1972 {
1973 struct kvm_arch *ka = &vcpu->kvm->arch;
1974
1975 if (vcpu->vcpu_id == 0 && !host_initiated) {
1976 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
1977 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1978
1979 ka->boot_vcpu_runs_old_kvmclock = old_msr;
1980 }
1981
1982 vcpu->arch.time = system_time;
1983 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
1984
1985 /* we verify if the enable bit is set... */
1986 vcpu->arch.pv_time_enabled = false;
1987 if (!(system_time & 1))
1988 return;
1989
1990 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
1991 &vcpu->arch.pv_time, system_time & ~1ULL,
1992 sizeof(struct pvclock_vcpu_time_info)))
1993 vcpu->arch.pv_time_enabled = true;
1994
1995 return;
1996 }
1997
1998 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1999 {
2000 do_shl32_div32(dividend, divisor);
2001 return dividend;
2002 }
2003
2004 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2005 s8 *pshift, u32 *pmultiplier)
2006 {
2007 uint64_t scaled64;
2008 int32_t shift = 0;
2009 uint64_t tps64;
2010 uint32_t tps32;
2011
2012 tps64 = base_hz;
2013 scaled64 = scaled_hz;
2014 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2015 tps64 >>= 1;
2016 shift--;
2017 }
2018
2019 tps32 = (uint32_t)tps64;
2020 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2021 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2022 scaled64 >>= 1;
2023 else
2024 tps32 <<= 1;
2025 shift++;
2026 }
2027
2028 *pshift = shift;
2029 *pmultiplier = div_frac(scaled64, tps32);
2030 }
2031
2032 #ifdef CONFIG_X86_64
2033 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2034 #endif
2035
2036 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2037 static unsigned long max_tsc_khz;
2038
2039 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2040 {
2041 u64 v = (u64)khz * (1000000 + ppm);
2042 do_div(v, 1000000);
2043 return v;
2044 }
2045
2046 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2047 {
2048 u64 ratio;
2049
2050 /* Guest TSC same frequency as host TSC? */
2051 if (!scale) {
2052 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2053 return 0;
2054 }
2055
2056 /* TSC scaling supported? */
2057 if (!kvm_has_tsc_control) {
2058 if (user_tsc_khz > tsc_khz) {
2059 vcpu->arch.tsc_catchup = 1;
2060 vcpu->arch.tsc_always_catchup = 1;
2061 return 0;
2062 } else {
2063 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2064 return -1;
2065 }
2066 }
2067
2068 /* TSC scaling required - calculate ratio */
2069 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2070 user_tsc_khz, tsc_khz);
2071
2072 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2073 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2074 user_tsc_khz);
2075 return -1;
2076 }
2077
2078 vcpu->arch.tsc_scaling_ratio = ratio;
2079 return 0;
2080 }
2081
2082 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2083 {
2084 u32 thresh_lo, thresh_hi;
2085 int use_scaling = 0;
2086
2087 /* tsc_khz can be zero if TSC calibration fails */
2088 if (user_tsc_khz == 0) {
2089 /* set tsc_scaling_ratio to a safe value */
2090 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2091 return -1;
2092 }
2093
2094 /* Compute a scale to convert nanoseconds in TSC cycles */
2095 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2096 &vcpu->arch.virtual_tsc_shift,
2097 &vcpu->arch.virtual_tsc_mult);
2098 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2099
2100 /*
2101 * Compute the variation in TSC rate which is acceptable
2102 * within the range of tolerance and decide if the
2103 * rate being applied is within that bounds of the hardware
2104 * rate. If so, no scaling or compensation need be done.
2105 */
2106 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2107 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2108 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2109 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2110 use_scaling = 1;
2111 }
2112 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2113 }
2114
2115 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2116 {
2117 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2118 vcpu->arch.virtual_tsc_mult,
2119 vcpu->arch.virtual_tsc_shift);
2120 tsc += vcpu->arch.this_tsc_write;
2121 return tsc;
2122 }
2123
2124 static inline int gtod_is_based_on_tsc(int mode)
2125 {
2126 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2127 }
2128
2129 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2130 {
2131 #ifdef CONFIG_X86_64
2132 bool vcpus_matched;
2133 struct kvm_arch *ka = &vcpu->kvm->arch;
2134 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2135
2136 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2137 atomic_read(&vcpu->kvm->online_vcpus));
2138
2139 /*
2140 * Once the masterclock is enabled, always perform request in
2141 * order to update it.
2142 *
2143 * In order to enable masterclock, the host clocksource must be TSC
2144 * and the vcpus need to have matched TSCs. When that happens,
2145 * perform request to enable masterclock.
2146 */
2147 if (ka->use_master_clock ||
2148 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2149 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2150
2151 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2152 atomic_read(&vcpu->kvm->online_vcpus),
2153 ka->use_master_clock, gtod->clock.vclock_mode);
2154 #endif
2155 }
2156
2157 /*
2158 * Multiply tsc by a fixed point number represented by ratio.
2159 *
2160 * The most significant 64-N bits (mult) of ratio represent the
2161 * integral part of the fixed point number; the remaining N bits
2162 * (frac) represent the fractional part, ie. ratio represents a fixed
2163 * point number (mult + frac * 2^(-N)).
2164 *
2165 * N equals to kvm_tsc_scaling_ratio_frac_bits.
2166 */
2167 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2168 {
2169 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2170 }
2171
2172 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
2173 {
2174 u64 _tsc = tsc;
2175 u64 ratio = vcpu->arch.tsc_scaling_ratio;
2176
2177 if (ratio != kvm_default_tsc_scaling_ratio)
2178 _tsc = __scale_tsc(ratio, tsc);
2179
2180 return _tsc;
2181 }
2182 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2183
2184 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2185 {
2186 u64 tsc;
2187
2188 tsc = kvm_scale_tsc(vcpu, rdtsc());
2189
2190 return target_tsc - tsc;
2191 }
2192
2193 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2194 {
2195 return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
2196 }
2197 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2198
2199 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2200 {
2201 vcpu->arch.l1_tsc_offset = offset;
2202 vcpu->arch.tsc_offset = kvm_x86_ops.write_l1_tsc_offset(vcpu, offset);
2203 }
2204
2205 static inline bool kvm_check_tsc_unstable(void)
2206 {
2207 #ifdef CONFIG_X86_64
2208 /*
2209 * TSC is marked unstable when we're running on Hyper-V,
2210 * 'TSC page' clocksource is good.
2211 */
2212 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2213 return false;
2214 #endif
2215 return check_tsc_unstable();
2216 }
2217
2218 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2219 {
2220 struct kvm *kvm = vcpu->kvm;
2221 u64 offset, ns, elapsed;
2222 unsigned long flags;
2223 bool matched;
2224 bool already_matched;
2225 bool synchronizing = false;
2226
2227 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2228 offset = kvm_compute_tsc_offset(vcpu, data);
2229 ns = get_kvmclock_base_ns();
2230 elapsed = ns - kvm->arch.last_tsc_nsec;
2231
2232 if (vcpu->arch.virtual_tsc_khz) {
2233 if (data == 0) {
2234 /*
2235 * detection of vcpu initialization -- need to sync
2236 * with other vCPUs. This particularly helps to keep
2237 * kvm_clock stable after CPU hotplug
2238 */
2239 synchronizing = true;
2240 } else {
2241 u64 tsc_exp = kvm->arch.last_tsc_write +
2242 nsec_to_cycles(vcpu, elapsed);
2243 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2244 /*
2245 * Special case: TSC write with a small delta (1 second)
2246 * of virtual cycle time against real time is
2247 * interpreted as an attempt to synchronize the CPU.
2248 */
2249 synchronizing = data < tsc_exp + tsc_hz &&
2250 data + tsc_hz > tsc_exp;
2251 }
2252 }
2253
2254 /*
2255 * For a reliable TSC, we can match TSC offsets, and for an unstable
2256 * TSC, we add elapsed time in this computation. We could let the
2257 * compensation code attempt to catch up if we fall behind, but
2258 * it's better to try to match offsets from the beginning.
2259 */
2260 if (synchronizing &&
2261 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2262 if (!kvm_check_tsc_unstable()) {
2263 offset = kvm->arch.cur_tsc_offset;
2264 } else {
2265 u64 delta = nsec_to_cycles(vcpu, elapsed);
2266 data += delta;
2267 offset = kvm_compute_tsc_offset(vcpu, data);
2268 }
2269 matched = true;
2270 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2271 } else {
2272 /*
2273 * We split periods of matched TSC writes into generations.
2274 * For each generation, we track the original measured
2275 * nanosecond time, offset, and write, so if TSCs are in
2276 * sync, we can match exact offset, and if not, we can match
2277 * exact software computation in compute_guest_tsc()
2278 *
2279 * These values are tracked in kvm->arch.cur_xxx variables.
2280 */
2281 kvm->arch.cur_tsc_generation++;
2282 kvm->arch.cur_tsc_nsec = ns;
2283 kvm->arch.cur_tsc_write = data;
2284 kvm->arch.cur_tsc_offset = offset;
2285 matched = false;
2286 }
2287
2288 /*
2289 * We also track th most recent recorded KHZ, write and time to
2290 * allow the matching interval to be extended at each write.
2291 */
2292 kvm->arch.last_tsc_nsec = ns;
2293 kvm->arch.last_tsc_write = data;
2294 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2295
2296 vcpu->arch.last_guest_tsc = data;
2297
2298 /* Keep track of which generation this VCPU has synchronized to */
2299 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2300 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2301 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2302
2303 kvm_vcpu_write_tsc_offset(vcpu, offset);
2304 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2305
2306 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
2307 if (!matched) {
2308 kvm->arch.nr_vcpus_matched_tsc = 0;
2309 } else if (!already_matched) {
2310 kvm->arch.nr_vcpus_matched_tsc++;
2311 }
2312
2313 kvm_track_tsc_matching(vcpu);
2314 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
2315 }
2316
2317 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2318 s64 adjustment)
2319 {
2320 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2321 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2322 }
2323
2324 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2325 {
2326 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2327 WARN_ON(adjustment < 0);
2328 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2329 adjust_tsc_offset_guest(vcpu, adjustment);
2330 }
2331
2332 #ifdef CONFIG_X86_64
2333
2334 static u64 read_tsc(void)
2335 {
2336 u64 ret = (u64)rdtsc_ordered();
2337 u64 last = pvclock_gtod_data.clock.cycle_last;
2338
2339 if (likely(ret >= last))
2340 return ret;
2341
2342 /*
2343 * GCC likes to generate cmov here, but this branch is extremely
2344 * predictable (it's just a function of time and the likely is
2345 * very likely) and there's a data dependence, so force GCC
2346 * to generate a branch instead. I don't barrier() because
2347 * we don't actually need a barrier, and if this function
2348 * ever gets inlined it will generate worse code.
2349 */
2350 asm volatile ("");
2351 return last;
2352 }
2353
2354 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2355 int *mode)
2356 {
2357 long v;
2358 u64 tsc_pg_val;
2359
2360 switch (clock->vclock_mode) {
2361 case VDSO_CLOCKMODE_HVCLOCK:
2362 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2363 tsc_timestamp);
2364 if (tsc_pg_val != U64_MAX) {
2365 /* TSC page valid */
2366 *mode = VDSO_CLOCKMODE_HVCLOCK;
2367 v = (tsc_pg_val - clock->cycle_last) &
2368 clock->mask;
2369 } else {
2370 /* TSC page invalid */
2371 *mode = VDSO_CLOCKMODE_NONE;
2372 }
2373 break;
2374 case VDSO_CLOCKMODE_TSC:
2375 *mode = VDSO_CLOCKMODE_TSC;
2376 *tsc_timestamp = read_tsc();
2377 v = (*tsc_timestamp - clock->cycle_last) &
2378 clock->mask;
2379 break;
2380 default:
2381 *mode = VDSO_CLOCKMODE_NONE;
2382 }
2383
2384 if (*mode == VDSO_CLOCKMODE_NONE)
2385 *tsc_timestamp = v = 0;
2386
2387 return v * clock->mult;
2388 }
2389
2390 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2391 {
2392 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2393 unsigned long seq;
2394 int mode;
2395 u64 ns;
2396
2397 do {
2398 seq = read_seqcount_begin(&gtod->seq);
2399 ns = gtod->raw_clock.base_cycles;
2400 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2401 ns >>= gtod->raw_clock.shift;
2402 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2403 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2404 *t = ns;
2405
2406 return mode;
2407 }
2408
2409 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2410 {
2411 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2412 unsigned long seq;
2413 int mode;
2414 u64 ns;
2415
2416 do {
2417 seq = read_seqcount_begin(&gtod->seq);
2418 ts->tv_sec = gtod->wall_time_sec;
2419 ns = gtod->clock.base_cycles;
2420 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2421 ns >>= gtod->clock.shift;
2422 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2423
2424 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2425 ts->tv_nsec = ns;
2426
2427 return mode;
2428 }
2429
2430 /* returns true if host is using TSC based clocksource */
2431 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2432 {
2433 /* checked again under seqlock below */
2434 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2435 return false;
2436
2437 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2438 tsc_timestamp));
2439 }
2440
2441 /* returns true if host is using TSC based clocksource */
2442 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2443 u64 *tsc_timestamp)
2444 {
2445 /* checked again under seqlock below */
2446 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2447 return false;
2448
2449 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2450 }
2451 #endif
2452
2453 /*
2454 *
2455 * Assuming a stable TSC across physical CPUS, and a stable TSC
2456 * across virtual CPUs, the following condition is possible.
2457 * Each numbered line represents an event visible to both
2458 * CPUs at the next numbered event.
2459 *
2460 * "timespecX" represents host monotonic time. "tscX" represents
2461 * RDTSC value.
2462 *
2463 * VCPU0 on CPU0 | VCPU1 on CPU1
2464 *
2465 * 1. read timespec0,tsc0
2466 * 2. | timespec1 = timespec0 + N
2467 * | tsc1 = tsc0 + M
2468 * 3. transition to guest | transition to guest
2469 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2470 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2471 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2472 *
2473 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2474 *
2475 * - ret0 < ret1
2476 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2477 * ...
2478 * - 0 < N - M => M < N
2479 *
2480 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2481 * always the case (the difference between two distinct xtime instances
2482 * might be smaller then the difference between corresponding TSC reads,
2483 * when updating guest vcpus pvclock areas).
2484 *
2485 * To avoid that problem, do not allow visibility of distinct
2486 * system_timestamp/tsc_timestamp values simultaneously: use a master
2487 * copy of host monotonic time values. Update that master copy
2488 * in lockstep.
2489 *
2490 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2491 *
2492 */
2493
2494 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2495 {
2496 #ifdef CONFIG_X86_64
2497 struct kvm_arch *ka = &kvm->arch;
2498 int vclock_mode;
2499 bool host_tsc_clocksource, vcpus_matched;
2500
2501 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2502 atomic_read(&kvm->online_vcpus));
2503
2504 /*
2505 * If the host uses TSC clock, then passthrough TSC as stable
2506 * to the guest.
2507 */
2508 host_tsc_clocksource = kvm_get_time_and_clockread(
2509 &ka->master_kernel_ns,
2510 &ka->master_cycle_now);
2511
2512 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2513 && !ka->backwards_tsc_observed
2514 && !ka->boot_vcpu_runs_old_kvmclock;
2515
2516 if (ka->use_master_clock)
2517 atomic_set(&kvm_guest_has_master_clock, 1);
2518
2519 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2520 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2521 vcpus_matched);
2522 #endif
2523 }
2524
2525 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2526 {
2527 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2528 }
2529
2530 static void kvm_gen_update_masterclock(struct kvm *kvm)
2531 {
2532 #ifdef CONFIG_X86_64
2533 int i;
2534 struct kvm_vcpu *vcpu;
2535 struct kvm_arch *ka = &kvm->arch;
2536
2537 spin_lock(&ka->pvclock_gtod_sync_lock);
2538 kvm_make_mclock_inprogress_request(kvm);
2539 /* no guest entries from this point */
2540 pvclock_update_vm_gtod_copy(kvm);
2541
2542 kvm_for_each_vcpu(i, vcpu, kvm)
2543 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2544
2545 /* guest entries allowed */
2546 kvm_for_each_vcpu(i, vcpu, kvm)
2547 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2548
2549 spin_unlock(&ka->pvclock_gtod_sync_lock);
2550 #endif
2551 }
2552
2553 u64 get_kvmclock_ns(struct kvm *kvm)
2554 {
2555 struct kvm_arch *ka = &kvm->arch;
2556 struct pvclock_vcpu_time_info hv_clock;
2557 u64 ret;
2558
2559 spin_lock(&ka->pvclock_gtod_sync_lock);
2560 if (!ka->use_master_clock) {
2561 spin_unlock(&ka->pvclock_gtod_sync_lock);
2562 return get_kvmclock_base_ns() + ka->kvmclock_offset;
2563 }
2564
2565 hv_clock.tsc_timestamp = ka->master_cycle_now;
2566 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2567 spin_unlock(&ka->pvclock_gtod_sync_lock);
2568
2569 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2570 get_cpu();
2571
2572 if (__this_cpu_read(cpu_tsc_khz)) {
2573 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2574 &hv_clock.tsc_shift,
2575 &hv_clock.tsc_to_system_mul);
2576 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2577 } else
2578 ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2579
2580 put_cpu();
2581
2582 return ret;
2583 }
2584
2585 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2586 {
2587 struct kvm_vcpu_arch *vcpu = &v->arch;
2588 struct pvclock_vcpu_time_info guest_hv_clock;
2589
2590 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2591 &guest_hv_clock, sizeof(guest_hv_clock))))
2592 return;
2593
2594 /* This VCPU is paused, but it's legal for a guest to read another
2595 * VCPU's kvmclock, so we really have to follow the specification where
2596 * it says that version is odd if data is being modified, and even after
2597 * it is consistent.
2598 *
2599 * Version field updates must be kept separate. This is because
2600 * kvm_write_guest_cached might use a "rep movs" instruction, and
2601 * writes within a string instruction are weakly ordered. So there
2602 * are three writes overall.
2603 *
2604 * As a small optimization, only write the version field in the first
2605 * and third write. The vcpu->pv_time cache is still valid, because the
2606 * version field is the first in the struct.
2607 */
2608 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2609
2610 if (guest_hv_clock.version & 1)
2611 ++guest_hv_clock.version; /* first time write, random junk */
2612
2613 vcpu->hv_clock.version = guest_hv_clock.version + 1;
2614 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2615 &vcpu->hv_clock,
2616 sizeof(vcpu->hv_clock.version));
2617
2618 smp_wmb();
2619
2620 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2621 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2622
2623 if (vcpu->pvclock_set_guest_stopped_request) {
2624 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2625 vcpu->pvclock_set_guest_stopped_request = false;
2626 }
2627
2628 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2629
2630 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2631 &vcpu->hv_clock,
2632 sizeof(vcpu->hv_clock));
2633
2634 smp_wmb();
2635
2636 vcpu->hv_clock.version++;
2637 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2638 &vcpu->hv_clock,
2639 sizeof(vcpu->hv_clock.version));
2640 }
2641
2642 static int kvm_guest_time_update(struct kvm_vcpu *v)
2643 {
2644 unsigned long flags, tgt_tsc_khz;
2645 struct kvm_vcpu_arch *vcpu = &v->arch;
2646 struct kvm_arch *ka = &v->kvm->arch;
2647 s64 kernel_ns;
2648 u64 tsc_timestamp, host_tsc;
2649 u8 pvclock_flags;
2650 bool use_master_clock;
2651
2652 kernel_ns = 0;
2653 host_tsc = 0;
2654
2655 /*
2656 * If the host uses TSC clock, then passthrough TSC as stable
2657 * to the guest.
2658 */
2659 spin_lock(&ka->pvclock_gtod_sync_lock);
2660 use_master_clock = ka->use_master_clock;
2661 if (use_master_clock) {
2662 host_tsc = ka->master_cycle_now;
2663 kernel_ns = ka->master_kernel_ns;
2664 }
2665 spin_unlock(&ka->pvclock_gtod_sync_lock);
2666
2667 /* Keep irq disabled to prevent changes to the clock */
2668 local_irq_save(flags);
2669 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2670 if (unlikely(tgt_tsc_khz == 0)) {
2671 local_irq_restore(flags);
2672 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2673 return 1;
2674 }
2675 if (!use_master_clock) {
2676 host_tsc = rdtsc();
2677 kernel_ns = get_kvmclock_base_ns();
2678 }
2679
2680 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2681
2682 /*
2683 * We may have to catch up the TSC to match elapsed wall clock
2684 * time for two reasons, even if kvmclock is used.
2685 * 1) CPU could have been running below the maximum TSC rate
2686 * 2) Broken TSC compensation resets the base at each VCPU
2687 * entry to avoid unknown leaps of TSC even when running
2688 * again on the same CPU. This may cause apparent elapsed
2689 * time to disappear, and the guest to stand still or run
2690 * very slowly.
2691 */
2692 if (vcpu->tsc_catchup) {
2693 u64 tsc = compute_guest_tsc(v, kernel_ns);
2694 if (tsc > tsc_timestamp) {
2695 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2696 tsc_timestamp = tsc;
2697 }
2698 }
2699
2700 local_irq_restore(flags);
2701
2702 /* With all the info we got, fill in the values */
2703
2704 if (kvm_has_tsc_control)
2705 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2706
2707 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2708 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2709 &vcpu->hv_clock.tsc_shift,
2710 &vcpu->hv_clock.tsc_to_system_mul);
2711 vcpu->hw_tsc_khz = tgt_tsc_khz;
2712 }
2713
2714 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2715 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2716 vcpu->last_guest_tsc = tsc_timestamp;
2717
2718 /* If the host uses TSC clocksource, then it is stable */
2719 pvclock_flags = 0;
2720 if (use_master_clock)
2721 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2722
2723 vcpu->hv_clock.flags = pvclock_flags;
2724
2725 if (vcpu->pv_time_enabled)
2726 kvm_setup_pvclock_page(v);
2727 if (v == kvm_get_vcpu(v->kvm, 0))
2728 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2729 return 0;
2730 }
2731
2732 /*
2733 * kvmclock updates which are isolated to a given vcpu, such as
2734 * vcpu->cpu migration, should not allow system_timestamp from
2735 * the rest of the vcpus to remain static. Otherwise ntp frequency
2736 * correction applies to one vcpu's system_timestamp but not
2737 * the others.
2738 *
2739 * So in those cases, request a kvmclock update for all vcpus.
2740 * We need to rate-limit these requests though, as they can
2741 * considerably slow guests that have a large number of vcpus.
2742 * The time for a remote vcpu to update its kvmclock is bound
2743 * by the delay we use to rate-limit the updates.
2744 */
2745
2746 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2747
2748 static void kvmclock_update_fn(struct work_struct *work)
2749 {
2750 int i;
2751 struct delayed_work *dwork = to_delayed_work(work);
2752 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2753 kvmclock_update_work);
2754 struct kvm *kvm = container_of(ka, struct kvm, arch);
2755 struct kvm_vcpu *vcpu;
2756
2757 kvm_for_each_vcpu(i, vcpu, kvm) {
2758 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2759 kvm_vcpu_kick(vcpu);
2760 }
2761 }
2762
2763 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2764 {
2765 struct kvm *kvm = v->kvm;
2766
2767 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2768 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2769 KVMCLOCK_UPDATE_DELAY);
2770 }
2771
2772 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2773
2774 static void kvmclock_sync_fn(struct work_struct *work)
2775 {
2776 struct delayed_work *dwork = to_delayed_work(work);
2777 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2778 kvmclock_sync_work);
2779 struct kvm *kvm = container_of(ka, struct kvm, arch);
2780
2781 if (!kvmclock_periodic_sync)
2782 return;
2783
2784 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2785 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2786 KVMCLOCK_SYNC_PERIOD);
2787 }
2788
2789 /*
2790 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2791 */
2792 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2793 {
2794 /* McStatusWrEn enabled? */
2795 if (guest_cpuid_is_amd_or_hygon(vcpu))
2796 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2797
2798 return false;
2799 }
2800
2801 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2802 {
2803 u64 mcg_cap = vcpu->arch.mcg_cap;
2804 unsigned bank_num = mcg_cap & 0xff;
2805 u32 msr = msr_info->index;
2806 u64 data = msr_info->data;
2807
2808 switch (msr) {
2809 case MSR_IA32_MCG_STATUS:
2810 vcpu->arch.mcg_status = data;
2811 break;
2812 case MSR_IA32_MCG_CTL:
2813 if (!(mcg_cap & MCG_CTL_P) &&
2814 (data || !msr_info->host_initiated))
2815 return 1;
2816 if (data != 0 && data != ~(u64)0)
2817 return 1;
2818 vcpu->arch.mcg_ctl = data;
2819 break;
2820 default:
2821 if (msr >= MSR_IA32_MC0_CTL &&
2822 msr < MSR_IA32_MCx_CTL(bank_num)) {
2823 u32 offset = array_index_nospec(
2824 msr - MSR_IA32_MC0_CTL,
2825 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2826
2827 /* only 0 or all 1s can be written to IA32_MCi_CTL
2828 * some Linux kernels though clear bit 10 in bank 4 to
2829 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2830 * this to avoid an uncatched #GP in the guest
2831 */
2832 if ((offset & 0x3) == 0 &&
2833 data != 0 && (data | (1 << 10)) != ~(u64)0)
2834 return -1;
2835
2836 /* MCi_STATUS */
2837 if (!msr_info->host_initiated &&
2838 (offset & 0x3) == 1 && data != 0) {
2839 if (!can_set_mci_status(vcpu))
2840 return -1;
2841 }
2842
2843 vcpu->arch.mce_banks[offset] = data;
2844 break;
2845 }
2846 return 1;
2847 }
2848 return 0;
2849 }
2850
2851 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2852 {
2853 struct kvm *kvm = vcpu->kvm;
2854 int lm = is_long_mode(vcpu);
2855 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2856 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2857 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2858 : kvm->arch.xen_hvm_config.blob_size_32;
2859 u32 page_num = data & ~PAGE_MASK;
2860 u64 page_addr = data & PAGE_MASK;
2861 u8 *page;
2862
2863 if (page_num >= blob_size)
2864 return 1;
2865
2866 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2867 if (IS_ERR(page))
2868 return PTR_ERR(page);
2869
2870 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) {
2871 kfree(page);
2872 return 1;
2873 }
2874 return 0;
2875 }
2876
2877 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
2878 {
2879 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
2880
2881 return (vcpu->arch.apf.msr_en_val & mask) == mask;
2882 }
2883
2884 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2885 {
2886 gpa_t gpa = data & ~0x3f;
2887
2888 /* Bits 4:5 are reserved, Should be zero */
2889 if (data & 0x30)
2890 return 1;
2891
2892 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
2893 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
2894 return 1;
2895
2896 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
2897 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
2898 return 1;
2899
2900 if (!lapic_in_kernel(vcpu))
2901 return data ? 1 : 0;
2902
2903 vcpu->arch.apf.msr_en_val = data;
2904
2905 if (!kvm_pv_async_pf_enabled(vcpu)) {
2906 kvm_clear_async_pf_completion_queue(vcpu);
2907 kvm_async_pf_hash_reset(vcpu);
2908 return 0;
2909 }
2910
2911 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2912 sizeof(u64)))
2913 return 1;
2914
2915 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2916 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2917
2918 kvm_async_pf_wakeup_all(vcpu);
2919
2920 return 0;
2921 }
2922
2923 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
2924 {
2925 /* Bits 8-63 are reserved */
2926 if (data >> 8)
2927 return 1;
2928
2929 if (!lapic_in_kernel(vcpu))
2930 return 1;
2931
2932 vcpu->arch.apf.msr_int_val = data;
2933
2934 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
2935
2936 return 0;
2937 }
2938
2939 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2940 {
2941 vcpu->arch.pv_time_enabled = false;
2942 vcpu->arch.time = 0;
2943 }
2944
2945 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
2946 {
2947 ++vcpu->stat.tlb_flush;
2948 kvm_x86_ops.tlb_flush_all(vcpu);
2949 }
2950
2951 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
2952 {
2953 ++vcpu->stat.tlb_flush;
2954 kvm_x86_ops.tlb_flush_guest(vcpu);
2955 }
2956
2957 static void record_steal_time(struct kvm_vcpu *vcpu)
2958 {
2959 struct kvm_host_map map;
2960 struct kvm_steal_time *st;
2961
2962 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2963 return;
2964
2965 /* -EAGAIN is returned in atomic context so we can just return. */
2966 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
2967 &map, &vcpu->arch.st.cache, false))
2968 return;
2969
2970 st = map.hva +
2971 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
2972
2973 /*
2974 * Doing a TLB flush here, on the guest's behalf, can avoid
2975 * expensive IPIs.
2976 */
2977 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
2978 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
2979 st->preempted & KVM_VCPU_FLUSH_TLB);
2980 if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB)
2981 kvm_vcpu_flush_tlb_guest(vcpu);
2982 }
2983
2984 vcpu->arch.st.preempted = 0;
2985
2986 if (st->version & 1)
2987 st->version += 1; /* first time write, random junk */
2988
2989 st->version += 1;
2990
2991 smp_wmb();
2992
2993 st->steal += current->sched_info.run_delay -
2994 vcpu->arch.st.last_steal;
2995 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2996
2997 smp_wmb();
2998
2999 st->version += 1;
3000
3001 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
3002 }
3003
3004 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3005 {
3006 bool pr = false;
3007 u32 msr = msr_info->index;
3008 u64 data = msr_info->data;
3009
3010 switch (msr) {
3011 case MSR_AMD64_NB_CFG:
3012 case MSR_IA32_UCODE_WRITE:
3013 case MSR_VM_HSAVE_PA:
3014 case MSR_AMD64_PATCH_LOADER:
3015 case MSR_AMD64_BU_CFG2:
3016 case MSR_AMD64_DC_CFG:
3017 case MSR_F15H_EX_CFG:
3018 break;
3019
3020 case MSR_IA32_UCODE_REV:
3021 if (msr_info->host_initiated)
3022 vcpu->arch.microcode_version = data;
3023 break;
3024 case MSR_IA32_ARCH_CAPABILITIES:
3025 if (!msr_info->host_initiated)
3026 return 1;
3027 vcpu->arch.arch_capabilities = data;
3028 break;
3029 case MSR_IA32_PERF_CAPABILITIES: {
3030 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3031
3032 if (!msr_info->host_initiated)
3033 return 1;
3034 if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent))
3035 return 1;
3036 if (data & ~msr_ent.data)
3037 return 1;
3038
3039 vcpu->arch.perf_capabilities = data;
3040
3041 return 0;
3042 }
3043 case MSR_EFER:
3044 return set_efer(vcpu, msr_info);
3045 case MSR_K7_HWCR:
3046 data &= ~(u64)0x40; /* ignore flush filter disable */
3047 data &= ~(u64)0x100; /* ignore ignne emulation enable */
3048 data &= ~(u64)0x8; /* ignore TLB cache disable */
3049
3050 /* Handle McStatusWrEn */
3051 if (data == BIT_ULL(18)) {
3052 vcpu->arch.msr_hwcr = data;
3053 } else if (data != 0) {
3054 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3055 data);
3056 return 1;
3057 }
3058 break;
3059 case MSR_FAM10H_MMIO_CONF_BASE:
3060 if (data != 0) {
3061 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3062 "0x%llx\n", data);
3063 return 1;
3064 }
3065 break;
3066 case MSR_IA32_DEBUGCTLMSR:
3067 if (!data) {
3068 /* We support the non-activated case already */
3069 break;
3070 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
3071 /* Values other than LBR and BTF are vendor-specific,
3072 thus reserved and should throw a #GP */
3073 return 1;
3074 } else if (report_ignored_msrs)
3075 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
3076 __func__, data);
3077 break;
3078 case 0x200 ... 0x2ff:
3079 return kvm_mtrr_set_msr(vcpu, msr, data);
3080 case MSR_IA32_APICBASE:
3081 return kvm_set_apic_base(vcpu, msr_info);
3082 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3083 return kvm_x2apic_msr_write(vcpu, msr, data);
3084 case MSR_IA32_TSCDEADLINE:
3085 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3086 break;
3087 case MSR_IA32_TSC_ADJUST:
3088 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3089 if (!msr_info->host_initiated) {
3090 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3091 adjust_tsc_offset_guest(vcpu, adj);
3092 }
3093 vcpu->arch.ia32_tsc_adjust_msr = data;
3094 }
3095 break;
3096 case MSR_IA32_MISC_ENABLE:
3097 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3098 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3099 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3100 return 1;
3101 vcpu->arch.ia32_misc_enable_msr = data;
3102 kvm_update_cpuid_runtime(vcpu);
3103 } else {
3104 vcpu->arch.ia32_misc_enable_msr = data;
3105 }
3106 break;
3107 case MSR_IA32_SMBASE:
3108 if (!msr_info->host_initiated)
3109 return 1;
3110 vcpu->arch.smbase = data;
3111 break;
3112 case MSR_IA32_POWER_CTL:
3113 vcpu->arch.msr_ia32_power_ctl = data;
3114 break;
3115 case MSR_IA32_TSC:
3116 if (msr_info->host_initiated) {
3117 kvm_synchronize_tsc(vcpu, data);
3118 } else {
3119 u64 adj = kvm_compute_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3120 adjust_tsc_offset_guest(vcpu, adj);
3121 vcpu->arch.ia32_tsc_adjust_msr += adj;
3122 }
3123 break;
3124 case MSR_IA32_XSS:
3125 if (!msr_info->host_initiated &&
3126 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3127 return 1;
3128 /*
3129 * KVM supports exposing PT to the guest, but does not support
3130 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3131 * XSAVES/XRSTORS to save/restore PT MSRs.
3132 */
3133 if (data & ~supported_xss)
3134 return 1;
3135 vcpu->arch.ia32_xss = data;
3136 break;
3137 case MSR_SMI_COUNT:
3138 if (!msr_info->host_initiated)
3139 return 1;
3140 vcpu->arch.smi_count = data;
3141 break;
3142 case MSR_KVM_WALL_CLOCK_NEW:
3143 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3144 return 1;
3145
3146 kvm_write_wall_clock(vcpu->kvm, data);
3147 break;
3148 case MSR_KVM_WALL_CLOCK:
3149 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3150 return 1;
3151
3152 kvm_write_wall_clock(vcpu->kvm, data);
3153 break;
3154 case MSR_KVM_SYSTEM_TIME_NEW:
3155 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3156 return 1;
3157
3158 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3159 break;
3160 case MSR_KVM_SYSTEM_TIME:
3161 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3162 return 1;
3163
3164 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
3165 break;
3166 case MSR_KVM_ASYNC_PF_EN:
3167 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3168 return 1;
3169
3170 if (kvm_pv_enable_async_pf(vcpu, data))
3171 return 1;
3172 break;
3173 case MSR_KVM_ASYNC_PF_INT:
3174 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3175 return 1;
3176
3177 if (kvm_pv_enable_async_pf_int(vcpu, data))
3178 return 1;
3179 break;
3180 case MSR_KVM_ASYNC_PF_ACK:
3181 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3182 return 1;
3183 if (data & 0x1) {
3184 vcpu->arch.apf.pageready_pending = false;
3185 kvm_check_async_pf_completion(vcpu);
3186 }
3187 break;
3188 case MSR_KVM_STEAL_TIME:
3189 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3190 return 1;
3191
3192 if (unlikely(!sched_info_on()))
3193 return 1;
3194
3195 if (data & KVM_STEAL_RESERVED_MASK)
3196 return 1;
3197
3198 vcpu->arch.st.msr_val = data;
3199
3200 if (!(data & KVM_MSR_ENABLED))
3201 break;
3202
3203 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3204
3205 break;
3206 case MSR_KVM_PV_EOI_EN:
3207 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3208 return 1;
3209
3210 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3211 return 1;
3212 break;
3213
3214 case MSR_KVM_POLL_CONTROL:
3215 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3216 return 1;
3217
3218 /* only enable bit supported */
3219 if (data & (-1ULL << 1))
3220 return 1;
3221
3222 vcpu->arch.msr_kvm_poll_control = data;
3223 break;
3224
3225 case MSR_IA32_MCG_CTL:
3226 case MSR_IA32_MCG_STATUS:
3227 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3228 return set_msr_mce(vcpu, msr_info);
3229
3230 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3231 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3232 pr = true;
3233 fallthrough;
3234 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3235 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3236 if (kvm_pmu_is_valid_msr(vcpu, msr))
3237 return kvm_pmu_set_msr(vcpu, msr_info);
3238
3239 if (pr || data != 0)
3240 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3241 "0x%x data 0x%llx\n", msr, data);
3242 break;
3243 case MSR_K7_CLK_CTL:
3244 /*
3245 * Ignore all writes to this no longer documented MSR.
3246 * Writes are only relevant for old K7 processors,
3247 * all pre-dating SVM, but a recommended workaround from
3248 * AMD for these chips. It is possible to specify the
3249 * affected processor models on the command line, hence
3250 * the need to ignore the workaround.
3251 */
3252 break;
3253 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3254 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3255 case HV_X64_MSR_SYNDBG_OPTIONS:
3256 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3257 case HV_X64_MSR_CRASH_CTL:
3258 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3259 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3260 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3261 case HV_X64_MSR_TSC_EMULATION_STATUS:
3262 return kvm_hv_set_msr_common(vcpu, msr, data,
3263 msr_info->host_initiated);
3264 case MSR_IA32_BBL_CR_CTL3:
3265 /* Drop writes to this legacy MSR -- see rdmsr
3266 * counterpart for further detail.
3267 */
3268 if (report_ignored_msrs)
3269 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3270 msr, data);
3271 break;
3272 case MSR_AMD64_OSVW_ID_LENGTH:
3273 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3274 return 1;
3275 vcpu->arch.osvw.length = data;
3276 break;
3277 case MSR_AMD64_OSVW_STATUS:
3278 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3279 return 1;
3280 vcpu->arch.osvw.status = data;
3281 break;
3282 case MSR_PLATFORM_INFO:
3283 if (!msr_info->host_initiated ||
3284 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3285 cpuid_fault_enabled(vcpu)))
3286 return 1;
3287 vcpu->arch.msr_platform_info = data;
3288 break;
3289 case MSR_MISC_FEATURES_ENABLES:
3290 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3291 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3292 !supports_cpuid_fault(vcpu)))
3293 return 1;
3294 vcpu->arch.msr_misc_features_enables = data;
3295 break;
3296 default:
3297 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
3298 return xen_hvm_config(vcpu, data);
3299 if (kvm_pmu_is_valid_msr(vcpu, msr))
3300 return kvm_pmu_set_msr(vcpu, msr_info);
3301 return KVM_MSR_RET_INVALID;
3302 }
3303 return 0;
3304 }
3305 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3306
3307 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3308 {
3309 u64 data;
3310 u64 mcg_cap = vcpu->arch.mcg_cap;
3311 unsigned bank_num = mcg_cap & 0xff;
3312
3313 switch (msr) {
3314 case MSR_IA32_P5_MC_ADDR:
3315 case MSR_IA32_P5_MC_TYPE:
3316 data = 0;
3317 break;
3318 case MSR_IA32_MCG_CAP:
3319 data = vcpu->arch.mcg_cap;
3320 break;
3321 case MSR_IA32_MCG_CTL:
3322 if (!(mcg_cap & MCG_CTL_P) && !host)
3323 return 1;
3324 data = vcpu->arch.mcg_ctl;
3325 break;
3326 case MSR_IA32_MCG_STATUS:
3327 data = vcpu->arch.mcg_status;
3328 break;
3329 default:
3330 if (msr >= MSR_IA32_MC0_CTL &&
3331 msr < MSR_IA32_MCx_CTL(bank_num)) {
3332 u32 offset = array_index_nospec(
3333 msr - MSR_IA32_MC0_CTL,
3334 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3335
3336 data = vcpu->arch.mce_banks[offset];
3337 break;
3338 }
3339 return 1;
3340 }
3341 *pdata = data;
3342 return 0;
3343 }
3344
3345 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3346 {
3347 switch (msr_info->index) {
3348 case MSR_IA32_PLATFORM_ID:
3349 case MSR_IA32_EBL_CR_POWERON:
3350 case MSR_IA32_DEBUGCTLMSR:
3351 case MSR_IA32_LASTBRANCHFROMIP:
3352 case MSR_IA32_LASTBRANCHTOIP:
3353 case MSR_IA32_LASTINTFROMIP:
3354 case MSR_IA32_LASTINTTOIP:
3355 case MSR_K8_SYSCFG:
3356 case MSR_K8_TSEG_ADDR:
3357 case MSR_K8_TSEG_MASK:
3358 case MSR_VM_HSAVE_PA:
3359 case MSR_K8_INT_PENDING_MSG:
3360 case MSR_AMD64_NB_CFG:
3361 case MSR_FAM10H_MMIO_CONF_BASE:
3362 case MSR_AMD64_BU_CFG2:
3363 case MSR_IA32_PERF_CTL:
3364 case MSR_AMD64_DC_CFG:
3365 case MSR_F15H_EX_CFG:
3366 /*
3367 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3368 * limit) MSRs. Just return 0, as we do not want to expose the host
3369 * data here. Do not conditionalize this on CPUID, as KVM does not do
3370 * so for existing CPU-specific MSRs.
3371 */
3372 case MSR_RAPL_POWER_UNIT:
3373 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
3374 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
3375 case MSR_PKG_ENERGY_STATUS: /* Total package */
3376 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
3377 msr_info->data = 0;
3378 break;
3379 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3380 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3381 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3382 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3383 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3384 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3385 return kvm_pmu_get_msr(vcpu, msr_info);
3386 msr_info->data = 0;
3387 break;
3388 case MSR_IA32_UCODE_REV:
3389 msr_info->data = vcpu->arch.microcode_version;
3390 break;
3391 case MSR_IA32_ARCH_CAPABILITIES:
3392 if (!msr_info->host_initiated &&
3393 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3394 return 1;
3395 msr_info->data = vcpu->arch.arch_capabilities;
3396 break;
3397 case MSR_IA32_PERF_CAPABILITIES:
3398 if (!msr_info->host_initiated &&
3399 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3400 return 1;
3401 msr_info->data = vcpu->arch.perf_capabilities;
3402 break;
3403 case MSR_IA32_POWER_CTL:
3404 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3405 break;
3406 case MSR_IA32_TSC: {
3407 /*
3408 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3409 * even when not intercepted. AMD manual doesn't explicitly
3410 * state this but appears to behave the same.
3411 *
3412 * On userspace reads and writes, however, we unconditionally
3413 * return L1's TSC value to ensure backwards-compatible
3414 * behavior for migration.
3415 */
3416 u64 tsc_offset = msr_info->host_initiated ? vcpu->arch.l1_tsc_offset :
3417 vcpu->arch.tsc_offset;
3418
3419 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + tsc_offset;
3420 break;
3421 }
3422 case MSR_MTRRcap:
3423 case 0x200 ... 0x2ff:
3424 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3425 case 0xcd: /* fsb frequency */
3426 msr_info->data = 3;
3427 break;
3428 /*
3429 * MSR_EBC_FREQUENCY_ID
3430 * Conservative value valid for even the basic CPU models.
3431 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3432 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3433 * and 266MHz for model 3, or 4. Set Core Clock
3434 * Frequency to System Bus Frequency Ratio to 1 (bits
3435 * 31:24) even though these are only valid for CPU
3436 * models > 2, however guests may end up dividing or
3437 * multiplying by zero otherwise.
3438 */
3439 case MSR_EBC_FREQUENCY_ID:
3440 msr_info->data = 1 << 24;
3441 break;
3442 case MSR_IA32_APICBASE:
3443 msr_info->data = kvm_get_apic_base(vcpu);
3444 break;
3445 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3446 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3447 case MSR_IA32_TSCDEADLINE:
3448 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3449 break;
3450 case MSR_IA32_TSC_ADJUST:
3451 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3452 break;
3453 case MSR_IA32_MISC_ENABLE:
3454 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3455 break;
3456 case MSR_IA32_SMBASE:
3457 if (!msr_info->host_initiated)
3458 return 1;
3459 msr_info->data = vcpu->arch.smbase;
3460 break;
3461 case MSR_SMI_COUNT:
3462 msr_info->data = vcpu->arch.smi_count;
3463 break;
3464 case MSR_IA32_PERF_STATUS:
3465 /* TSC increment by tick */
3466 msr_info->data = 1000ULL;
3467 /* CPU multiplier */
3468 msr_info->data |= (((uint64_t)4ULL) << 40);
3469 break;
3470 case MSR_EFER:
3471 msr_info->data = vcpu->arch.efer;
3472 break;
3473 case MSR_KVM_WALL_CLOCK:
3474 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3475 return 1;
3476
3477 msr_info->data = vcpu->kvm->arch.wall_clock;
3478 break;
3479 case MSR_KVM_WALL_CLOCK_NEW:
3480 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3481 return 1;
3482
3483 msr_info->data = vcpu->kvm->arch.wall_clock;
3484 break;
3485 case MSR_KVM_SYSTEM_TIME:
3486 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3487 return 1;
3488
3489 msr_info->data = vcpu->arch.time;
3490 break;
3491 case MSR_KVM_SYSTEM_TIME_NEW:
3492 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3493 return 1;
3494
3495 msr_info->data = vcpu->arch.time;
3496 break;
3497 case MSR_KVM_ASYNC_PF_EN:
3498 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3499 return 1;
3500
3501 msr_info->data = vcpu->arch.apf.msr_en_val;
3502 break;
3503 case MSR_KVM_ASYNC_PF_INT:
3504 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3505 return 1;
3506
3507 msr_info->data = vcpu->arch.apf.msr_int_val;
3508 break;
3509 case MSR_KVM_ASYNC_PF_ACK:
3510 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3511 return 1;
3512
3513 msr_info->data = 0;
3514 break;
3515 case MSR_KVM_STEAL_TIME:
3516 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3517 return 1;
3518
3519 msr_info->data = vcpu->arch.st.msr_val;
3520 break;
3521 case MSR_KVM_PV_EOI_EN:
3522 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3523 return 1;
3524
3525 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3526 break;
3527 case MSR_KVM_POLL_CONTROL:
3528 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3529 return 1;
3530
3531 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3532 break;
3533 case MSR_IA32_P5_MC_ADDR:
3534 case MSR_IA32_P5_MC_TYPE:
3535 case MSR_IA32_MCG_CAP:
3536 case MSR_IA32_MCG_CTL:
3537 case MSR_IA32_MCG_STATUS:
3538 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3539 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3540 msr_info->host_initiated);
3541 case MSR_IA32_XSS:
3542 if (!msr_info->host_initiated &&
3543 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3544 return 1;
3545 msr_info->data = vcpu->arch.ia32_xss;
3546 break;
3547 case MSR_K7_CLK_CTL:
3548 /*
3549 * Provide expected ramp-up count for K7. All other
3550 * are set to zero, indicating minimum divisors for
3551 * every field.
3552 *
3553 * This prevents guest kernels on AMD host with CPU
3554 * type 6, model 8 and higher from exploding due to
3555 * the rdmsr failing.
3556 */
3557 msr_info->data = 0x20000000;
3558 break;
3559 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3560 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3561 case HV_X64_MSR_SYNDBG_OPTIONS:
3562 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3563 case HV_X64_MSR_CRASH_CTL:
3564 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3565 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3566 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3567 case HV_X64_MSR_TSC_EMULATION_STATUS:
3568 return kvm_hv_get_msr_common(vcpu,
3569 msr_info->index, &msr_info->data,
3570 msr_info->host_initiated);
3571 case MSR_IA32_BBL_CR_CTL3:
3572 /* This legacy MSR exists but isn't fully documented in current
3573 * silicon. It is however accessed by winxp in very narrow
3574 * scenarios where it sets bit #19, itself documented as
3575 * a "reserved" bit. Best effort attempt to source coherent
3576 * read data here should the balance of the register be
3577 * interpreted by the guest:
3578 *
3579 * L2 cache control register 3: 64GB range, 256KB size,
3580 * enabled, latency 0x1, configured
3581 */
3582 msr_info->data = 0xbe702111;
3583 break;
3584 case MSR_AMD64_OSVW_ID_LENGTH:
3585 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3586 return 1;
3587 msr_info->data = vcpu->arch.osvw.length;
3588 break;
3589 case MSR_AMD64_OSVW_STATUS:
3590 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3591 return 1;
3592 msr_info->data = vcpu->arch.osvw.status;
3593 break;
3594 case MSR_PLATFORM_INFO:
3595 if (!msr_info->host_initiated &&
3596 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3597 return 1;
3598 msr_info->data = vcpu->arch.msr_platform_info;
3599 break;
3600 case MSR_MISC_FEATURES_ENABLES:
3601 msr_info->data = vcpu->arch.msr_misc_features_enables;
3602 break;
3603 case MSR_K7_HWCR:
3604 msr_info->data = vcpu->arch.msr_hwcr;
3605 break;
3606 default:
3607 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3608 return kvm_pmu_get_msr(vcpu, msr_info);
3609 return KVM_MSR_RET_INVALID;
3610 }
3611 return 0;
3612 }
3613 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3614
3615 /*
3616 * Read or write a bunch of msrs. All parameters are kernel addresses.
3617 *
3618 * @return number of msrs set successfully.
3619 */
3620 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3621 struct kvm_msr_entry *entries,
3622 int (*do_msr)(struct kvm_vcpu *vcpu,
3623 unsigned index, u64 *data))
3624 {
3625 int i;
3626
3627 for (i = 0; i < msrs->nmsrs; ++i)
3628 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3629 break;
3630
3631 return i;
3632 }
3633
3634 /*
3635 * Read or write a bunch of msrs. Parameters are user addresses.
3636 *
3637 * @return number of msrs set successfully.
3638 */
3639 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3640 int (*do_msr)(struct kvm_vcpu *vcpu,
3641 unsigned index, u64 *data),
3642 int writeback)
3643 {
3644 struct kvm_msrs msrs;
3645 struct kvm_msr_entry *entries;
3646 int r, n;
3647 unsigned size;
3648
3649 r = -EFAULT;
3650 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3651 goto out;
3652
3653 r = -E2BIG;
3654 if (msrs.nmsrs >= MAX_IO_MSRS)
3655 goto out;
3656
3657 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3658 entries = memdup_user(user_msrs->entries, size);
3659 if (IS_ERR(entries)) {
3660 r = PTR_ERR(entries);
3661 goto out;
3662 }
3663
3664 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3665 if (r < 0)
3666 goto out_free;
3667
3668 r = -EFAULT;
3669 if (writeback && copy_to_user(user_msrs->entries, entries, size))
3670 goto out_free;
3671
3672 r = n;
3673
3674 out_free:
3675 kfree(entries);
3676 out:
3677 return r;
3678 }
3679
3680 static inline bool kvm_can_mwait_in_guest(void)
3681 {
3682 return boot_cpu_has(X86_FEATURE_MWAIT) &&
3683 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3684 boot_cpu_has(X86_FEATURE_ARAT);
3685 }
3686
3687 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
3688 struct kvm_cpuid2 __user *cpuid_arg)
3689 {
3690 struct kvm_cpuid2 cpuid;
3691 int r;
3692
3693 r = -EFAULT;
3694 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3695 return r;
3696
3697 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3698 if (r)
3699 return r;
3700
3701 r = -EFAULT;
3702 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3703 return r;
3704
3705 return 0;
3706 }
3707
3708 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3709 {
3710 int r = 0;
3711
3712 switch (ext) {
3713 case KVM_CAP_IRQCHIP:
3714 case KVM_CAP_HLT:
3715 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3716 case KVM_CAP_SET_TSS_ADDR:
3717 case KVM_CAP_EXT_CPUID:
3718 case KVM_CAP_EXT_EMUL_CPUID:
3719 case KVM_CAP_CLOCKSOURCE:
3720 case KVM_CAP_PIT:
3721 case KVM_CAP_NOP_IO_DELAY:
3722 case KVM_CAP_MP_STATE:
3723 case KVM_CAP_SYNC_MMU:
3724 case KVM_CAP_USER_NMI:
3725 case KVM_CAP_REINJECT_CONTROL:
3726 case KVM_CAP_IRQ_INJECT_STATUS:
3727 case KVM_CAP_IOEVENTFD:
3728 case KVM_CAP_IOEVENTFD_NO_LENGTH:
3729 case KVM_CAP_PIT2:
3730 case KVM_CAP_PIT_STATE2:
3731 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3732 case KVM_CAP_XEN_HVM:
3733 case KVM_CAP_VCPU_EVENTS:
3734 case KVM_CAP_HYPERV:
3735 case KVM_CAP_HYPERV_VAPIC:
3736 case KVM_CAP_HYPERV_SPIN:
3737 case KVM_CAP_HYPERV_SYNIC:
3738 case KVM_CAP_HYPERV_SYNIC2:
3739 case KVM_CAP_HYPERV_VP_INDEX:
3740 case KVM_CAP_HYPERV_EVENTFD:
3741 case KVM_CAP_HYPERV_TLBFLUSH:
3742 case KVM_CAP_HYPERV_SEND_IPI:
3743 case KVM_CAP_HYPERV_CPUID:
3744 case KVM_CAP_SYS_HYPERV_CPUID:
3745 case KVM_CAP_PCI_SEGMENT:
3746 case KVM_CAP_DEBUGREGS:
3747 case KVM_CAP_X86_ROBUST_SINGLESTEP:
3748 case KVM_CAP_XSAVE:
3749 case KVM_CAP_ASYNC_PF:
3750 case KVM_CAP_ASYNC_PF_INT:
3751 case KVM_CAP_GET_TSC_KHZ:
3752 case KVM_CAP_KVMCLOCK_CTRL:
3753 case KVM_CAP_READONLY_MEM:
3754 case KVM_CAP_HYPERV_TIME:
3755 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3756 case KVM_CAP_TSC_DEADLINE_TIMER:
3757 case KVM_CAP_DISABLE_QUIRKS:
3758 case KVM_CAP_SET_BOOT_CPU_ID:
3759 case KVM_CAP_SPLIT_IRQCHIP:
3760 case KVM_CAP_IMMEDIATE_EXIT:
3761 case KVM_CAP_PMU_EVENT_FILTER:
3762 case KVM_CAP_GET_MSR_FEATURES:
3763 case KVM_CAP_MSR_PLATFORM_INFO:
3764 case KVM_CAP_EXCEPTION_PAYLOAD:
3765 case KVM_CAP_SET_GUEST_DEBUG:
3766 case KVM_CAP_LAST_CPU:
3767 case KVM_CAP_X86_USER_SPACE_MSR:
3768 case KVM_CAP_X86_MSR_FILTER:
3769 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
3770 r = 1;
3771 break;
3772 case KVM_CAP_SYNC_REGS:
3773 r = KVM_SYNC_X86_VALID_FIELDS;
3774 break;
3775 case KVM_CAP_ADJUST_CLOCK:
3776 r = KVM_CLOCK_TSC_STABLE;
3777 break;
3778 case KVM_CAP_X86_DISABLE_EXITS:
3779 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3780 KVM_X86_DISABLE_EXITS_CSTATE;
3781 if(kvm_can_mwait_in_guest())
3782 r |= KVM_X86_DISABLE_EXITS_MWAIT;
3783 break;
3784 case KVM_CAP_X86_SMM:
3785 /* SMBASE is usually relocated above 1M on modern chipsets,
3786 * and SMM handlers might indeed rely on 4G segment limits,
3787 * so do not report SMM to be available if real mode is
3788 * emulated via vm86 mode. Still, do not go to great lengths
3789 * to avoid userspace's usage of the feature, because it is a
3790 * fringe case that is not enabled except via specific settings
3791 * of the module parameters.
3792 */
3793 r = kvm_x86_ops.has_emulated_msr(kvm, MSR_IA32_SMBASE);
3794 break;
3795 case KVM_CAP_VAPIC:
3796 r = !kvm_x86_ops.cpu_has_accelerated_tpr();
3797 break;
3798 case KVM_CAP_NR_VCPUS:
3799 r = KVM_SOFT_MAX_VCPUS;
3800 break;
3801 case KVM_CAP_MAX_VCPUS:
3802 r = KVM_MAX_VCPUS;
3803 break;
3804 case KVM_CAP_MAX_VCPU_ID:
3805 r = KVM_MAX_VCPU_ID;
3806 break;
3807 case KVM_CAP_PV_MMU: /* obsolete */
3808 r = 0;
3809 break;
3810 case KVM_CAP_MCE:
3811 r = KVM_MAX_MCE_BANKS;
3812 break;
3813 case KVM_CAP_XCRS:
3814 r = boot_cpu_has(X86_FEATURE_XSAVE);
3815 break;
3816 case KVM_CAP_TSC_CONTROL:
3817 r = kvm_has_tsc_control;
3818 break;
3819 case KVM_CAP_X2APIC_API:
3820 r = KVM_X2APIC_API_VALID_FLAGS;
3821 break;
3822 case KVM_CAP_NESTED_STATE:
3823 r = kvm_x86_ops.nested_ops->get_state ?
3824 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
3825 break;
3826 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3827 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
3828 break;
3829 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3830 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
3831 break;
3832 case KVM_CAP_SMALLER_MAXPHYADDR:
3833 r = (int) allow_smaller_maxphyaddr;
3834 break;
3835 case KVM_CAP_STEAL_TIME:
3836 r = sched_info_on();
3837 break;
3838 default:
3839 break;
3840 }
3841 return r;
3842
3843 }
3844
3845 long kvm_arch_dev_ioctl(struct file *filp,
3846 unsigned int ioctl, unsigned long arg)
3847 {
3848 void __user *argp = (void __user *)arg;
3849 long r;
3850
3851 switch (ioctl) {
3852 case KVM_GET_MSR_INDEX_LIST: {
3853 struct kvm_msr_list __user *user_msr_list = argp;
3854 struct kvm_msr_list msr_list;
3855 unsigned n;
3856
3857 r = -EFAULT;
3858 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3859 goto out;
3860 n = msr_list.nmsrs;
3861 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3862 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3863 goto out;
3864 r = -E2BIG;
3865 if (n < msr_list.nmsrs)
3866 goto out;
3867 r = -EFAULT;
3868 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3869 num_msrs_to_save * sizeof(u32)))
3870 goto out;
3871 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3872 &emulated_msrs,
3873 num_emulated_msrs * sizeof(u32)))
3874 goto out;
3875 r = 0;
3876 break;
3877 }
3878 case KVM_GET_SUPPORTED_CPUID:
3879 case KVM_GET_EMULATED_CPUID: {
3880 struct kvm_cpuid2 __user *cpuid_arg = argp;
3881 struct kvm_cpuid2 cpuid;
3882
3883 r = -EFAULT;
3884 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3885 goto out;
3886
3887 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3888 ioctl);
3889 if (r)
3890 goto out;
3891
3892 r = -EFAULT;
3893 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3894 goto out;
3895 r = 0;
3896 break;
3897 }
3898 case KVM_X86_GET_MCE_CAP_SUPPORTED:
3899 r = -EFAULT;
3900 if (copy_to_user(argp, &kvm_mce_cap_supported,
3901 sizeof(kvm_mce_cap_supported)))
3902 goto out;
3903 r = 0;
3904 break;
3905 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3906 struct kvm_msr_list __user *user_msr_list = argp;
3907 struct kvm_msr_list msr_list;
3908 unsigned int n;
3909
3910 r = -EFAULT;
3911 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3912 goto out;
3913 n = msr_list.nmsrs;
3914 msr_list.nmsrs = num_msr_based_features;
3915 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3916 goto out;
3917 r = -E2BIG;
3918 if (n < msr_list.nmsrs)
3919 goto out;
3920 r = -EFAULT;
3921 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3922 num_msr_based_features * sizeof(u32)))
3923 goto out;
3924 r = 0;
3925 break;
3926 }
3927 case KVM_GET_MSRS:
3928 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3929 break;
3930 case KVM_GET_SUPPORTED_HV_CPUID:
3931 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
3932 break;
3933 default:
3934 r = -EINVAL;
3935 break;
3936 }
3937 out:
3938 return r;
3939 }
3940
3941 static void wbinvd_ipi(void *garbage)
3942 {
3943 wbinvd();
3944 }
3945
3946 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3947 {
3948 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3949 }
3950
3951 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3952 {
3953 /* Address WBINVD may be executed by guest */
3954 if (need_emulate_wbinvd(vcpu)) {
3955 if (kvm_x86_ops.has_wbinvd_exit())
3956 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3957 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3958 smp_call_function_single(vcpu->cpu,
3959 wbinvd_ipi, NULL, 1);
3960 }
3961
3962 kvm_x86_ops.vcpu_load(vcpu, cpu);
3963
3964 /* Save host pkru register if supported */
3965 vcpu->arch.host_pkru = read_pkru();
3966
3967 /* Apply any externally detected TSC adjustments (due to suspend) */
3968 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3969 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3970 vcpu->arch.tsc_offset_adjustment = 0;
3971 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3972 }
3973
3974 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3975 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3976 rdtsc() - vcpu->arch.last_host_tsc;
3977 if (tsc_delta < 0)
3978 mark_tsc_unstable("KVM discovered backwards TSC");
3979
3980 if (kvm_check_tsc_unstable()) {
3981 u64 offset = kvm_compute_tsc_offset(vcpu,
3982 vcpu->arch.last_guest_tsc);
3983 kvm_vcpu_write_tsc_offset(vcpu, offset);
3984 vcpu->arch.tsc_catchup = 1;
3985 }
3986
3987 if (kvm_lapic_hv_timer_in_use(vcpu))
3988 kvm_lapic_restart_hv_timer(vcpu);
3989
3990 /*
3991 * On a host with synchronized TSC, there is no need to update
3992 * kvmclock on vcpu->cpu migration
3993 */
3994 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3995 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3996 if (vcpu->cpu != cpu)
3997 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3998 vcpu->cpu = cpu;
3999 }
4000
4001 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4002 }
4003
4004 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4005 {
4006 struct kvm_host_map map;
4007 struct kvm_steal_time *st;
4008
4009 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4010 return;
4011
4012 if (vcpu->arch.st.preempted)
4013 return;
4014
4015 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
4016 &vcpu->arch.st.cache, true))
4017 return;
4018
4019 st = map.hva +
4020 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
4021
4022 st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4023
4024 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
4025 }
4026
4027 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4028 {
4029 int idx;
4030
4031 if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4032 vcpu->arch.preempted_in_kernel = !kvm_x86_ops.get_cpl(vcpu);
4033
4034 /*
4035 * Disable page faults because we're in atomic context here.
4036 * kvm_write_guest_offset_cached() would call might_fault()
4037 * that relies on pagefault_disable() to tell if there's a
4038 * bug. NOTE: the write to guest memory may not go through if
4039 * during postcopy live migration or if there's heavy guest
4040 * paging.
4041 */
4042 pagefault_disable();
4043 /*
4044 * kvm_memslots() will be called by
4045 * kvm_write_guest_offset_cached() so take the srcu lock.
4046 */
4047 idx = srcu_read_lock(&vcpu->kvm->srcu);
4048 kvm_steal_time_set_preempted(vcpu);
4049 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4050 pagefault_enable();
4051 kvm_x86_ops.vcpu_put(vcpu);
4052 vcpu->arch.last_host_tsc = rdtsc();
4053 /*
4054 * If userspace has set any breakpoints or watchpoints, dr6 is restored
4055 * on every vmexit, but if not, we might have a stale dr6 from the
4056 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
4057 */
4058 set_debugreg(0, 6);
4059 }
4060
4061 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4062 struct kvm_lapic_state *s)
4063 {
4064 if (vcpu->arch.apicv_active)
4065 kvm_x86_ops.sync_pir_to_irr(vcpu);
4066
4067 return kvm_apic_get_state(vcpu, s);
4068 }
4069
4070 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4071 struct kvm_lapic_state *s)
4072 {
4073 int r;
4074
4075 r = kvm_apic_set_state(vcpu, s);
4076 if (r)
4077 return r;
4078 update_cr8_intercept(vcpu);
4079
4080 return 0;
4081 }
4082
4083 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4084 {
4085 /*
4086 * We can accept userspace's request for interrupt injection
4087 * as long as we have a place to store the interrupt number.
4088 * The actual injection will happen when the CPU is able to
4089 * deliver the interrupt.
4090 */
4091 if (kvm_cpu_has_extint(vcpu))
4092 return false;
4093
4094 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
4095 return (!lapic_in_kernel(vcpu) ||
4096 kvm_apic_accept_pic_intr(vcpu));
4097 }
4098
4099 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4100 {
4101 return kvm_arch_interrupt_allowed(vcpu) &&
4102 kvm_cpu_accept_dm_intr(vcpu);
4103 }
4104
4105 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4106 struct kvm_interrupt *irq)
4107 {
4108 if (irq->irq >= KVM_NR_INTERRUPTS)
4109 return -EINVAL;
4110
4111 if (!irqchip_in_kernel(vcpu->kvm)) {
4112 kvm_queue_interrupt(vcpu, irq->irq, false);
4113 kvm_make_request(KVM_REQ_EVENT, vcpu);
4114 return 0;
4115 }
4116
4117 /*
4118 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4119 * fail for in-kernel 8259.
4120 */
4121 if (pic_in_kernel(vcpu->kvm))
4122 return -ENXIO;
4123
4124 if (vcpu->arch.pending_external_vector != -1)
4125 return -EEXIST;
4126
4127 vcpu->arch.pending_external_vector = irq->irq;
4128 kvm_make_request(KVM_REQ_EVENT, vcpu);
4129 return 0;
4130 }
4131
4132 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4133 {
4134 kvm_inject_nmi(vcpu);
4135
4136 return 0;
4137 }
4138
4139 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4140 {
4141 kvm_make_request(KVM_REQ_SMI, vcpu);
4142
4143 return 0;
4144 }
4145
4146 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4147 struct kvm_tpr_access_ctl *tac)
4148 {
4149 if (tac->flags)
4150 return -EINVAL;
4151 vcpu->arch.tpr_access_reporting = !!tac->enabled;
4152 return 0;
4153 }
4154
4155 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4156 u64 mcg_cap)
4157 {
4158 int r;
4159 unsigned bank_num = mcg_cap & 0xff, bank;
4160
4161 r = -EINVAL;
4162 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4163 goto out;
4164 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4165 goto out;
4166 r = 0;
4167 vcpu->arch.mcg_cap = mcg_cap;
4168 /* Init IA32_MCG_CTL to all 1s */
4169 if (mcg_cap & MCG_CTL_P)
4170 vcpu->arch.mcg_ctl = ~(u64)0;
4171 /* Init IA32_MCi_CTL to all 1s */
4172 for (bank = 0; bank < bank_num; bank++)
4173 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4174
4175 kvm_x86_ops.setup_mce(vcpu);
4176 out:
4177 return r;
4178 }
4179
4180 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4181 struct kvm_x86_mce *mce)
4182 {
4183 u64 mcg_cap = vcpu->arch.mcg_cap;
4184 unsigned bank_num = mcg_cap & 0xff;
4185 u64 *banks = vcpu->arch.mce_banks;
4186
4187 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4188 return -EINVAL;
4189 /*
4190 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4191 * reporting is disabled
4192 */
4193 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4194 vcpu->arch.mcg_ctl != ~(u64)0)
4195 return 0;
4196 banks += 4 * mce->bank;
4197 /*
4198 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4199 * reporting is disabled for the bank
4200 */
4201 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4202 return 0;
4203 if (mce->status & MCI_STATUS_UC) {
4204 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4205 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4206 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4207 return 0;
4208 }
4209 if (banks[1] & MCI_STATUS_VAL)
4210 mce->status |= MCI_STATUS_OVER;
4211 banks[2] = mce->addr;
4212 banks[3] = mce->misc;
4213 vcpu->arch.mcg_status = mce->mcg_status;
4214 banks[1] = mce->status;
4215 kvm_queue_exception(vcpu, MC_VECTOR);
4216 } else if (!(banks[1] & MCI_STATUS_VAL)
4217 || !(banks[1] & MCI_STATUS_UC)) {
4218 if (banks[1] & MCI_STATUS_VAL)
4219 mce->status |= MCI_STATUS_OVER;
4220 banks[2] = mce->addr;
4221 banks[3] = mce->misc;
4222 banks[1] = mce->status;
4223 } else
4224 banks[1] |= MCI_STATUS_OVER;
4225 return 0;
4226 }
4227
4228 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4229 struct kvm_vcpu_events *events)
4230 {
4231 process_nmi(vcpu);
4232
4233 /*
4234 * In guest mode, payload delivery should be deferred,
4235 * so that the L1 hypervisor can intercept #PF before
4236 * CR2 is modified (or intercept #DB before DR6 is
4237 * modified under nVMX). Unless the per-VM capability,
4238 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4239 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4240 * opportunistically defer the exception payload, deliver it if the
4241 * capability hasn't been requested before processing a
4242 * KVM_GET_VCPU_EVENTS.
4243 */
4244 if (!vcpu->kvm->arch.exception_payload_enabled &&
4245 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4246 kvm_deliver_exception_payload(vcpu);
4247
4248 /*
4249 * The API doesn't provide the instruction length for software
4250 * exceptions, so don't report them. As long as the guest RIP
4251 * isn't advanced, we should expect to encounter the exception
4252 * again.
4253 */
4254 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4255 events->exception.injected = 0;
4256 events->exception.pending = 0;
4257 } else {
4258 events->exception.injected = vcpu->arch.exception.injected;
4259 events->exception.pending = vcpu->arch.exception.pending;
4260 /*
4261 * For ABI compatibility, deliberately conflate
4262 * pending and injected exceptions when
4263 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4264 */
4265 if (!vcpu->kvm->arch.exception_payload_enabled)
4266 events->exception.injected |=
4267 vcpu->arch.exception.pending;
4268 }
4269 events->exception.nr = vcpu->arch.exception.nr;
4270 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4271 events->exception.error_code = vcpu->arch.exception.error_code;
4272 events->exception_has_payload = vcpu->arch.exception.has_payload;
4273 events->exception_payload = vcpu->arch.exception.payload;
4274
4275 events->interrupt.injected =
4276 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4277 events->interrupt.nr = vcpu->arch.interrupt.nr;
4278 events->interrupt.soft = 0;
4279 events->interrupt.shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
4280
4281 events->nmi.injected = vcpu->arch.nmi_injected;
4282 events->nmi.pending = vcpu->arch.nmi_pending != 0;
4283 events->nmi.masked = kvm_x86_ops.get_nmi_mask(vcpu);
4284 events->nmi.pad = 0;
4285
4286 events->sipi_vector = 0; /* never valid when reporting to user space */
4287
4288 events->smi.smm = is_smm(vcpu);
4289 events->smi.pending = vcpu->arch.smi_pending;
4290 events->smi.smm_inside_nmi =
4291 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4292 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4293
4294 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4295 | KVM_VCPUEVENT_VALID_SHADOW
4296 | KVM_VCPUEVENT_VALID_SMM);
4297 if (vcpu->kvm->arch.exception_payload_enabled)
4298 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4299
4300 memset(&events->reserved, 0, sizeof(events->reserved));
4301 }
4302
4303 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
4304
4305 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4306 struct kvm_vcpu_events *events)
4307 {
4308 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4309 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4310 | KVM_VCPUEVENT_VALID_SHADOW
4311 | KVM_VCPUEVENT_VALID_SMM
4312 | KVM_VCPUEVENT_VALID_PAYLOAD))
4313 return -EINVAL;
4314
4315 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4316 if (!vcpu->kvm->arch.exception_payload_enabled)
4317 return -EINVAL;
4318 if (events->exception.pending)
4319 events->exception.injected = 0;
4320 else
4321 events->exception_has_payload = 0;
4322 } else {
4323 events->exception.pending = 0;
4324 events->exception_has_payload = 0;
4325 }
4326
4327 if ((events->exception.injected || events->exception.pending) &&
4328 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4329 return -EINVAL;
4330
4331 /* INITs are latched while in SMM */
4332 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4333 (events->smi.smm || events->smi.pending) &&
4334 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4335 return -EINVAL;
4336
4337 process_nmi(vcpu);
4338 vcpu->arch.exception.injected = events->exception.injected;
4339 vcpu->arch.exception.pending = events->exception.pending;
4340 vcpu->arch.exception.nr = events->exception.nr;
4341 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4342 vcpu->arch.exception.error_code = events->exception.error_code;
4343 vcpu->arch.exception.has_payload = events->exception_has_payload;
4344 vcpu->arch.exception.payload = events->exception_payload;
4345
4346 vcpu->arch.interrupt.injected = events->interrupt.injected;
4347 vcpu->arch.interrupt.nr = events->interrupt.nr;
4348 vcpu->arch.interrupt.soft = events->interrupt.soft;
4349 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4350 kvm_x86_ops.set_interrupt_shadow(vcpu,
4351 events->interrupt.shadow);
4352
4353 vcpu->arch.nmi_injected = events->nmi.injected;
4354 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4355 vcpu->arch.nmi_pending = events->nmi.pending;
4356 kvm_x86_ops.set_nmi_mask(vcpu, events->nmi.masked);
4357
4358 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4359 lapic_in_kernel(vcpu))
4360 vcpu->arch.apic->sipi_vector = events->sipi_vector;
4361
4362 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4363 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4364 if (events->smi.smm)
4365 vcpu->arch.hflags |= HF_SMM_MASK;
4366 else
4367 vcpu->arch.hflags &= ~HF_SMM_MASK;
4368 kvm_smm_changed(vcpu);
4369 }
4370
4371 vcpu->arch.smi_pending = events->smi.pending;
4372
4373 if (events->smi.smm) {
4374 if (events->smi.smm_inside_nmi)
4375 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4376 else
4377 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4378 }
4379
4380 if (lapic_in_kernel(vcpu)) {
4381 if (events->smi.latched_init)
4382 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4383 else
4384 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4385 }
4386 }
4387
4388 kvm_make_request(KVM_REQ_EVENT, vcpu);
4389
4390 return 0;
4391 }
4392
4393 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4394 struct kvm_debugregs *dbgregs)
4395 {
4396 unsigned long val;
4397
4398 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4399 kvm_get_dr(vcpu, 6, &val);
4400 dbgregs->dr6 = val;
4401 dbgregs->dr7 = vcpu->arch.dr7;
4402 dbgregs->flags = 0;
4403 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4404 }
4405
4406 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4407 struct kvm_debugregs *dbgregs)
4408 {
4409 if (dbgregs->flags)
4410 return -EINVAL;
4411
4412 if (dbgregs->dr6 & ~0xffffffffull)
4413 return -EINVAL;
4414 if (dbgregs->dr7 & ~0xffffffffull)
4415 return -EINVAL;
4416
4417 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4418 kvm_update_dr0123(vcpu);
4419 vcpu->arch.dr6 = dbgregs->dr6;
4420 vcpu->arch.dr7 = dbgregs->dr7;
4421 kvm_update_dr7(vcpu);
4422
4423 return 0;
4424 }
4425
4426 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4427
4428 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4429 {
4430 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4431 u64 xstate_bv = xsave->header.xfeatures;
4432 u64 valid;
4433
4434 /*
4435 * Copy legacy XSAVE area, to avoid complications with CPUID
4436 * leaves 0 and 1 in the loop below.
4437 */
4438 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4439
4440 /* Set XSTATE_BV */
4441 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4442 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4443
4444 /*
4445 * Copy each region from the possibly compacted offset to the
4446 * non-compacted offset.
4447 */
4448 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4449 while (valid) {
4450 u64 xfeature_mask = valid & -valid;
4451 int xfeature_nr = fls64(xfeature_mask) - 1;
4452 void *src = get_xsave_addr(xsave, xfeature_nr);
4453
4454 if (src) {
4455 u32 size, offset, ecx, edx;
4456 cpuid_count(XSTATE_CPUID, xfeature_nr,
4457 &size, &offset, &ecx, &edx);
4458 if (xfeature_nr == XFEATURE_PKRU)
4459 memcpy(dest + offset, &vcpu->arch.pkru,
4460 sizeof(vcpu->arch.pkru));
4461 else
4462 memcpy(dest + offset, src, size);
4463
4464 }
4465
4466 valid -= xfeature_mask;
4467 }
4468 }
4469
4470 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4471 {
4472 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4473 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4474 u64 valid;
4475
4476 /*
4477 * Copy legacy XSAVE area, to avoid complications with CPUID
4478 * leaves 0 and 1 in the loop below.
4479 */
4480 memcpy(xsave, src, XSAVE_HDR_OFFSET);
4481
4482 /* Set XSTATE_BV and possibly XCOMP_BV. */
4483 xsave->header.xfeatures = xstate_bv;
4484 if (boot_cpu_has(X86_FEATURE_XSAVES))
4485 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4486
4487 /*
4488 * Copy each region from the non-compacted offset to the
4489 * possibly compacted offset.
4490 */
4491 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4492 while (valid) {
4493 u64 xfeature_mask = valid & -valid;
4494 int xfeature_nr = fls64(xfeature_mask) - 1;
4495 void *dest = get_xsave_addr(xsave, xfeature_nr);
4496
4497 if (dest) {
4498 u32 size, offset, ecx, edx;
4499 cpuid_count(XSTATE_CPUID, xfeature_nr,
4500 &size, &offset, &ecx, &edx);
4501 if (xfeature_nr == XFEATURE_PKRU)
4502 memcpy(&vcpu->arch.pkru, src + offset,
4503 sizeof(vcpu->arch.pkru));
4504 else
4505 memcpy(dest, src + offset, size);
4506 }
4507
4508 valid -= xfeature_mask;
4509 }
4510 }
4511
4512 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4513 struct kvm_xsave *guest_xsave)
4514 {
4515 if (!vcpu->arch.guest_fpu)
4516 return;
4517
4518 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4519 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4520 fill_xsave((u8 *) guest_xsave->region, vcpu);
4521 } else {
4522 memcpy(guest_xsave->region,
4523 &vcpu->arch.guest_fpu->state.fxsave,
4524 sizeof(struct fxregs_state));
4525 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4526 XFEATURE_MASK_FPSSE;
4527 }
4528 }
4529
4530 #define XSAVE_MXCSR_OFFSET 24
4531
4532 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4533 struct kvm_xsave *guest_xsave)
4534 {
4535 u64 xstate_bv;
4536 u32 mxcsr;
4537
4538 if (!vcpu->arch.guest_fpu)
4539 return 0;
4540
4541 xstate_bv = *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4542 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4543
4544 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4545 /*
4546 * Here we allow setting states that are not present in
4547 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
4548 * with old userspace.
4549 */
4550 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4551 return -EINVAL;
4552 load_xsave(vcpu, (u8 *)guest_xsave->region);
4553 } else {
4554 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4555 mxcsr & ~mxcsr_feature_mask)
4556 return -EINVAL;
4557 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4558 guest_xsave->region, sizeof(struct fxregs_state));
4559 }
4560 return 0;
4561 }
4562
4563 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4564 struct kvm_xcrs *guest_xcrs)
4565 {
4566 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4567 guest_xcrs->nr_xcrs = 0;
4568 return;
4569 }
4570
4571 guest_xcrs->nr_xcrs = 1;
4572 guest_xcrs->flags = 0;
4573 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4574 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4575 }
4576
4577 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4578 struct kvm_xcrs *guest_xcrs)
4579 {
4580 int i, r = 0;
4581
4582 if (!boot_cpu_has(X86_FEATURE_XSAVE))
4583 return -EINVAL;
4584
4585 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4586 return -EINVAL;
4587
4588 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4589 /* Only support XCR0 currently */
4590 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4591 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4592 guest_xcrs->xcrs[i].value);
4593 break;
4594 }
4595 if (r)
4596 r = -EINVAL;
4597 return r;
4598 }
4599
4600 /*
4601 * kvm_set_guest_paused() indicates to the guest kernel that it has been
4602 * stopped by the hypervisor. This function will be called from the host only.
4603 * EINVAL is returned when the host attempts to set the flag for a guest that
4604 * does not support pv clocks.
4605 */
4606 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4607 {
4608 if (!vcpu->arch.pv_time_enabled)
4609 return -EINVAL;
4610 vcpu->arch.pvclock_set_guest_stopped_request = true;
4611 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4612 return 0;
4613 }
4614
4615 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4616 struct kvm_enable_cap *cap)
4617 {
4618 int r;
4619 uint16_t vmcs_version;
4620 void __user *user_ptr;
4621
4622 if (cap->flags)
4623 return -EINVAL;
4624
4625 switch (cap->cap) {
4626 case KVM_CAP_HYPERV_SYNIC2:
4627 if (cap->args[0])
4628 return -EINVAL;
4629 fallthrough;
4630
4631 case KVM_CAP_HYPERV_SYNIC:
4632 if (!irqchip_in_kernel(vcpu->kvm))
4633 return -EINVAL;
4634 return kvm_hv_activate_synic(vcpu, cap->cap ==
4635 KVM_CAP_HYPERV_SYNIC2);
4636 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4637 if (!kvm_x86_ops.nested_ops->enable_evmcs)
4638 return -ENOTTY;
4639 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4640 if (!r) {
4641 user_ptr = (void __user *)(uintptr_t)cap->args[0];
4642 if (copy_to_user(user_ptr, &vmcs_version,
4643 sizeof(vmcs_version)))
4644 r = -EFAULT;
4645 }
4646 return r;
4647 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4648 if (!kvm_x86_ops.enable_direct_tlbflush)
4649 return -ENOTTY;
4650
4651 return kvm_x86_ops.enable_direct_tlbflush(vcpu);
4652
4653 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4654 vcpu->arch.pv_cpuid.enforce = cap->args[0];
4655 if (vcpu->arch.pv_cpuid.enforce)
4656 kvm_update_pv_runtime(vcpu);
4657
4658 return 0;
4659
4660 default:
4661 return -EINVAL;
4662 }
4663 }
4664
4665 long kvm_arch_vcpu_ioctl(struct file *filp,
4666 unsigned int ioctl, unsigned long arg)
4667 {
4668 struct kvm_vcpu *vcpu = filp->private_data;
4669 void __user *argp = (void __user *)arg;
4670 int r;
4671 union {
4672 struct kvm_lapic_state *lapic;
4673 struct kvm_xsave *xsave;
4674 struct kvm_xcrs *xcrs;
4675 void *buffer;
4676 } u;
4677
4678 vcpu_load(vcpu);
4679
4680 u.buffer = NULL;
4681 switch (ioctl) {
4682 case KVM_GET_LAPIC: {
4683 r = -EINVAL;
4684 if (!lapic_in_kernel(vcpu))
4685 goto out;
4686 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4687 GFP_KERNEL_ACCOUNT);
4688
4689 r = -ENOMEM;
4690 if (!u.lapic)
4691 goto out;
4692 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4693 if (r)
4694 goto out;
4695 r = -EFAULT;
4696 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4697 goto out;
4698 r = 0;
4699 break;
4700 }
4701 case KVM_SET_LAPIC: {
4702 r = -EINVAL;
4703 if (!lapic_in_kernel(vcpu))
4704 goto out;
4705 u.lapic = memdup_user(argp, sizeof(*u.lapic));
4706 if (IS_ERR(u.lapic)) {
4707 r = PTR_ERR(u.lapic);
4708 goto out_nofree;
4709 }
4710
4711 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4712 break;
4713 }
4714 case KVM_INTERRUPT: {
4715 struct kvm_interrupt irq;
4716
4717 r = -EFAULT;
4718 if (copy_from_user(&irq, argp, sizeof(irq)))
4719 goto out;
4720 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4721 break;
4722 }
4723 case KVM_NMI: {
4724 r = kvm_vcpu_ioctl_nmi(vcpu);
4725 break;
4726 }
4727 case KVM_SMI: {
4728 r = kvm_vcpu_ioctl_smi(vcpu);
4729 break;
4730 }
4731 case KVM_SET_CPUID: {
4732 struct kvm_cpuid __user *cpuid_arg = argp;
4733 struct kvm_cpuid cpuid;
4734
4735 r = -EFAULT;
4736 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4737 goto out;
4738 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4739 break;
4740 }
4741 case KVM_SET_CPUID2: {
4742 struct kvm_cpuid2 __user *cpuid_arg = argp;
4743 struct kvm_cpuid2 cpuid;
4744
4745 r = -EFAULT;
4746 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4747 goto out;
4748 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4749 cpuid_arg->entries);
4750 break;
4751 }
4752 case KVM_GET_CPUID2: {
4753 struct kvm_cpuid2 __user *cpuid_arg = argp;
4754 struct kvm_cpuid2 cpuid;
4755
4756 r = -EFAULT;
4757 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4758 goto out;
4759 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4760 cpuid_arg->entries);
4761 if (r)
4762 goto out;
4763 r = -EFAULT;
4764 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4765 goto out;
4766 r = 0;
4767 break;
4768 }
4769 case KVM_GET_MSRS: {
4770 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4771 r = msr_io(vcpu, argp, do_get_msr, 1);
4772 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4773 break;
4774 }
4775 case KVM_SET_MSRS: {
4776 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4777 r = msr_io(vcpu, argp, do_set_msr, 0);
4778 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4779 break;
4780 }
4781 case KVM_TPR_ACCESS_REPORTING: {
4782 struct kvm_tpr_access_ctl tac;
4783
4784 r = -EFAULT;
4785 if (copy_from_user(&tac, argp, sizeof(tac)))
4786 goto out;
4787 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4788 if (r)
4789 goto out;
4790 r = -EFAULT;
4791 if (copy_to_user(argp, &tac, sizeof(tac)))
4792 goto out;
4793 r = 0;
4794 break;
4795 };
4796 case KVM_SET_VAPIC_ADDR: {
4797 struct kvm_vapic_addr va;
4798 int idx;
4799
4800 r = -EINVAL;
4801 if (!lapic_in_kernel(vcpu))
4802 goto out;
4803 r = -EFAULT;
4804 if (copy_from_user(&va, argp, sizeof(va)))
4805 goto out;
4806 idx = srcu_read_lock(&vcpu->kvm->srcu);
4807 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4808 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4809 break;
4810 }
4811 case KVM_X86_SETUP_MCE: {
4812 u64 mcg_cap;
4813
4814 r = -EFAULT;
4815 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4816 goto out;
4817 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4818 break;
4819 }
4820 case KVM_X86_SET_MCE: {
4821 struct kvm_x86_mce mce;
4822
4823 r = -EFAULT;
4824 if (copy_from_user(&mce, argp, sizeof(mce)))
4825 goto out;
4826 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4827 break;
4828 }
4829 case KVM_GET_VCPU_EVENTS: {
4830 struct kvm_vcpu_events events;
4831
4832 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4833
4834 r = -EFAULT;
4835 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4836 break;
4837 r = 0;
4838 break;
4839 }
4840 case KVM_SET_VCPU_EVENTS: {
4841 struct kvm_vcpu_events events;
4842
4843 r = -EFAULT;
4844 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4845 break;
4846
4847 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4848 break;
4849 }
4850 case KVM_GET_DEBUGREGS: {
4851 struct kvm_debugregs dbgregs;
4852
4853 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4854
4855 r = -EFAULT;
4856 if (copy_to_user(argp, &dbgregs,
4857 sizeof(struct kvm_debugregs)))
4858 break;
4859 r = 0;
4860 break;
4861 }
4862 case KVM_SET_DEBUGREGS: {
4863 struct kvm_debugregs dbgregs;
4864
4865 r = -EFAULT;
4866 if (copy_from_user(&dbgregs, argp,
4867 sizeof(struct kvm_debugregs)))
4868 break;
4869
4870 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4871 break;
4872 }
4873 case KVM_GET_XSAVE: {
4874 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4875 r = -ENOMEM;
4876 if (!u.xsave)
4877 break;
4878
4879 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4880
4881 r = -EFAULT;
4882 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4883 break;
4884 r = 0;
4885 break;
4886 }
4887 case KVM_SET_XSAVE: {
4888 u.xsave = memdup_user(argp, sizeof(*u.xsave));
4889 if (IS_ERR(u.xsave)) {
4890 r = PTR_ERR(u.xsave);
4891 goto out_nofree;
4892 }
4893
4894 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4895 break;
4896 }
4897 case KVM_GET_XCRS: {
4898 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4899 r = -ENOMEM;
4900 if (!u.xcrs)
4901 break;
4902
4903 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4904
4905 r = -EFAULT;
4906 if (copy_to_user(argp, u.xcrs,
4907 sizeof(struct kvm_xcrs)))
4908 break;
4909 r = 0;
4910 break;
4911 }
4912 case KVM_SET_XCRS: {
4913 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4914 if (IS_ERR(u.xcrs)) {
4915 r = PTR_ERR(u.xcrs);
4916 goto out_nofree;
4917 }
4918
4919 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4920 break;
4921 }
4922 case KVM_SET_TSC_KHZ: {
4923 u32 user_tsc_khz;
4924
4925 r = -EINVAL;
4926 user_tsc_khz = (u32)arg;
4927
4928 if (kvm_has_tsc_control &&
4929 user_tsc_khz >= kvm_max_guest_tsc_khz)
4930 goto out;
4931
4932 if (user_tsc_khz == 0)
4933 user_tsc_khz = tsc_khz;
4934
4935 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4936 r = 0;
4937
4938 goto out;
4939 }
4940 case KVM_GET_TSC_KHZ: {
4941 r = vcpu->arch.virtual_tsc_khz;
4942 goto out;
4943 }
4944 case KVM_KVMCLOCK_CTRL: {
4945 r = kvm_set_guest_paused(vcpu);
4946 goto out;
4947 }
4948 case KVM_ENABLE_CAP: {
4949 struct kvm_enable_cap cap;
4950
4951 r = -EFAULT;
4952 if (copy_from_user(&cap, argp, sizeof(cap)))
4953 goto out;
4954 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4955 break;
4956 }
4957 case KVM_GET_NESTED_STATE: {
4958 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4959 u32 user_data_size;
4960
4961 r = -EINVAL;
4962 if (!kvm_x86_ops.nested_ops->get_state)
4963 break;
4964
4965 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4966 r = -EFAULT;
4967 if (get_user(user_data_size, &user_kvm_nested_state->size))
4968 break;
4969
4970 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
4971 user_data_size);
4972 if (r < 0)
4973 break;
4974
4975 if (r > user_data_size) {
4976 if (put_user(r, &user_kvm_nested_state->size))
4977 r = -EFAULT;
4978 else
4979 r = -E2BIG;
4980 break;
4981 }
4982
4983 r = 0;
4984 break;
4985 }
4986 case KVM_SET_NESTED_STATE: {
4987 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4988 struct kvm_nested_state kvm_state;
4989 int idx;
4990
4991 r = -EINVAL;
4992 if (!kvm_x86_ops.nested_ops->set_state)
4993 break;
4994
4995 r = -EFAULT;
4996 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4997 break;
4998
4999 r = -EINVAL;
5000 if (kvm_state.size < sizeof(kvm_state))
5001 break;
5002
5003 if (kvm_state.flags &
5004 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5005 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5006 | KVM_STATE_NESTED_GIF_SET))
5007 break;
5008
5009 /* nested_run_pending implies guest_mode. */
5010 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5011 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5012 break;
5013
5014 idx = srcu_read_lock(&vcpu->kvm->srcu);
5015 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5016 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5017 break;
5018 }
5019 case KVM_GET_SUPPORTED_HV_CPUID:
5020 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5021 break;
5022 default:
5023 r = -EINVAL;
5024 }
5025 out:
5026 kfree(u.buffer);
5027 out_nofree:
5028 vcpu_put(vcpu);
5029 return r;
5030 }
5031
5032 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5033 {
5034 return VM_FAULT_SIGBUS;
5035 }
5036
5037 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5038 {
5039 int ret;
5040
5041 if (addr > (unsigned int)(-3 * PAGE_SIZE))
5042 return -EINVAL;
5043 ret = kvm_x86_ops.set_tss_addr(kvm, addr);
5044 return ret;
5045 }
5046
5047 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5048 u64 ident_addr)
5049 {
5050 return kvm_x86_ops.set_identity_map_addr(kvm, ident_addr);
5051 }
5052
5053 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5054 unsigned long kvm_nr_mmu_pages)
5055 {
5056 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5057 return -EINVAL;
5058
5059 mutex_lock(&kvm->slots_lock);
5060
5061 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5062 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5063
5064 mutex_unlock(&kvm->slots_lock);
5065 return 0;
5066 }
5067
5068 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5069 {
5070 return kvm->arch.n_max_mmu_pages;
5071 }
5072
5073 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5074 {
5075 struct kvm_pic *pic = kvm->arch.vpic;
5076 int r;
5077
5078 r = 0;
5079 switch (chip->chip_id) {
5080 case KVM_IRQCHIP_PIC_MASTER:
5081 memcpy(&chip->chip.pic, &pic->pics[0],
5082 sizeof(struct kvm_pic_state));
5083 break;
5084 case KVM_IRQCHIP_PIC_SLAVE:
5085 memcpy(&chip->chip.pic, &pic->pics[1],
5086 sizeof(struct kvm_pic_state));
5087 break;
5088 case KVM_IRQCHIP_IOAPIC:
5089 kvm_get_ioapic(kvm, &chip->chip.ioapic);
5090 break;
5091 default:
5092 r = -EINVAL;
5093 break;
5094 }
5095 return r;
5096 }
5097
5098 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5099 {
5100 struct kvm_pic *pic = kvm->arch.vpic;
5101 int r;
5102
5103 r = 0;
5104 switch (chip->chip_id) {
5105 case KVM_IRQCHIP_PIC_MASTER:
5106 spin_lock(&pic->lock);
5107 memcpy(&pic->pics[0], &chip->chip.pic,
5108 sizeof(struct kvm_pic_state));
5109 spin_unlock(&pic->lock);
5110 break;
5111 case KVM_IRQCHIP_PIC_SLAVE:
5112 spin_lock(&pic->lock);
5113 memcpy(&pic->pics[1], &chip->chip.pic,
5114 sizeof(struct kvm_pic_state));
5115 spin_unlock(&pic->lock);
5116 break;
5117 case KVM_IRQCHIP_IOAPIC:
5118 kvm_set_ioapic(kvm, &chip->chip.ioapic);
5119 break;
5120 default:
5121 r = -EINVAL;
5122 break;
5123 }
5124 kvm_pic_update_irq(pic);
5125 return r;
5126 }
5127
5128 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5129 {
5130 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5131
5132 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5133
5134 mutex_lock(&kps->lock);
5135 memcpy(ps, &kps->channels, sizeof(*ps));
5136 mutex_unlock(&kps->lock);
5137 return 0;
5138 }
5139
5140 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5141 {
5142 int i;
5143 struct kvm_pit *pit = kvm->arch.vpit;
5144
5145 mutex_lock(&pit->pit_state.lock);
5146 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5147 for (i = 0; i < 3; i++)
5148 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5149 mutex_unlock(&pit->pit_state.lock);
5150 return 0;
5151 }
5152
5153 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5154 {
5155 mutex_lock(&kvm->arch.vpit->pit_state.lock);
5156 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5157 sizeof(ps->channels));
5158 ps->flags = kvm->arch.vpit->pit_state.flags;
5159 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5160 memset(&ps->reserved, 0, sizeof(ps->reserved));
5161 return 0;
5162 }
5163
5164 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5165 {
5166 int start = 0;
5167 int i;
5168 u32 prev_legacy, cur_legacy;
5169 struct kvm_pit *pit = kvm->arch.vpit;
5170
5171 mutex_lock(&pit->pit_state.lock);
5172 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5173 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5174 if (!prev_legacy && cur_legacy)
5175 start = 1;
5176 memcpy(&pit->pit_state.channels, &ps->channels,
5177 sizeof(pit->pit_state.channels));
5178 pit->pit_state.flags = ps->flags;
5179 for (i = 0; i < 3; i++)
5180 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5181 start && i == 0);
5182 mutex_unlock(&pit->pit_state.lock);
5183 return 0;
5184 }
5185
5186 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5187 struct kvm_reinject_control *control)
5188 {
5189 struct kvm_pit *pit = kvm->arch.vpit;
5190
5191 /* pit->pit_state.lock was overloaded to prevent userspace from getting
5192 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5193 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
5194 */
5195 mutex_lock(&pit->pit_state.lock);
5196 kvm_pit_set_reinject(pit, control->pit_reinject);
5197 mutex_unlock(&pit->pit_state.lock);
5198
5199 return 0;
5200 }
5201
5202 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5203 {
5204 /*
5205 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
5206 */
5207 if (kvm_x86_ops.flush_log_dirty)
5208 kvm_x86_ops.flush_log_dirty(kvm);
5209 }
5210
5211 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5212 bool line_status)
5213 {
5214 if (!irqchip_in_kernel(kvm))
5215 return -ENXIO;
5216
5217 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5218 irq_event->irq, irq_event->level,
5219 line_status);
5220 return 0;
5221 }
5222
5223 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5224 struct kvm_enable_cap *cap)
5225 {
5226 int r;
5227
5228 if (cap->flags)
5229 return -EINVAL;
5230
5231 switch (cap->cap) {
5232 case KVM_CAP_DISABLE_QUIRKS:
5233 kvm->arch.disabled_quirks = cap->args[0];
5234 r = 0;
5235 break;
5236 case KVM_CAP_SPLIT_IRQCHIP: {
5237 mutex_lock(&kvm->lock);
5238 r = -EINVAL;
5239 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5240 goto split_irqchip_unlock;
5241 r = -EEXIST;
5242 if (irqchip_in_kernel(kvm))
5243 goto split_irqchip_unlock;
5244 if (kvm->created_vcpus)
5245 goto split_irqchip_unlock;
5246 r = kvm_setup_empty_irq_routing(kvm);
5247 if (r)
5248 goto split_irqchip_unlock;
5249 /* Pairs with irqchip_in_kernel. */
5250 smp_wmb();
5251 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5252 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5253 r = 0;
5254 split_irqchip_unlock:
5255 mutex_unlock(&kvm->lock);
5256 break;
5257 }
5258 case KVM_CAP_X2APIC_API:
5259 r = -EINVAL;
5260 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5261 break;
5262
5263 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5264 kvm->arch.x2apic_format = true;
5265 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5266 kvm->arch.x2apic_broadcast_quirk_disabled = true;
5267
5268 r = 0;
5269 break;
5270 case KVM_CAP_X86_DISABLE_EXITS:
5271 r = -EINVAL;
5272 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5273 break;
5274
5275 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5276 kvm_can_mwait_in_guest())
5277 kvm->arch.mwait_in_guest = true;
5278 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5279 kvm->arch.hlt_in_guest = true;
5280 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5281 kvm->arch.pause_in_guest = true;
5282 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5283 kvm->arch.cstate_in_guest = true;
5284 r = 0;
5285 break;
5286 case KVM_CAP_MSR_PLATFORM_INFO:
5287 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5288 r = 0;
5289 break;
5290 case KVM_CAP_EXCEPTION_PAYLOAD:
5291 kvm->arch.exception_payload_enabled = cap->args[0];
5292 r = 0;
5293 break;
5294 case KVM_CAP_X86_USER_SPACE_MSR:
5295 kvm->arch.user_space_msr_mask = cap->args[0];
5296 r = 0;
5297 break;
5298 default:
5299 r = -EINVAL;
5300 break;
5301 }
5302 return r;
5303 }
5304
5305 static void kvm_clear_msr_filter(struct kvm *kvm)
5306 {
5307 u32 i;
5308 u32 count = kvm->arch.msr_filter.count;
5309 struct msr_bitmap_range ranges[16];
5310
5311 mutex_lock(&kvm->lock);
5312 kvm->arch.msr_filter.count = 0;
5313 memcpy(ranges, kvm->arch.msr_filter.ranges, count * sizeof(ranges[0]));
5314 mutex_unlock(&kvm->lock);
5315 synchronize_srcu(&kvm->srcu);
5316
5317 for (i = 0; i < count; i++)
5318 kfree(ranges[i].bitmap);
5319 }
5320
5321 static int kvm_add_msr_filter(struct kvm *kvm, struct kvm_msr_filter_range *user_range)
5322 {
5323 struct msr_bitmap_range *ranges = kvm->arch.msr_filter.ranges;
5324 struct msr_bitmap_range range;
5325 unsigned long *bitmap = NULL;
5326 size_t bitmap_size;
5327 int r;
5328
5329 if (!user_range->nmsrs)
5330 return 0;
5331
5332 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5333 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5334 return -EINVAL;
5335
5336 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5337 if (IS_ERR(bitmap))
5338 return PTR_ERR(bitmap);
5339
5340 range = (struct msr_bitmap_range) {
5341 .flags = user_range->flags,
5342 .base = user_range->base,
5343 .nmsrs = user_range->nmsrs,
5344 .bitmap = bitmap,
5345 };
5346
5347 if (range.flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE)) {
5348 r = -EINVAL;
5349 goto err;
5350 }
5351
5352 if (!range.flags) {
5353 r = -EINVAL;
5354 goto err;
5355 }
5356
5357 /* Everything ok, add this range identifier to our global pool */
5358 ranges[kvm->arch.msr_filter.count] = range;
5359 /* Make sure we filled the array before we tell anyone to walk it */
5360 smp_wmb();
5361 kvm->arch.msr_filter.count++;
5362
5363 return 0;
5364 err:
5365 kfree(bitmap);
5366 return r;
5367 }
5368
5369 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
5370 {
5371 struct kvm_msr_filter __user *user_msr_filter = argp;
5372 struct kvm_msr_filter filter;
5373 bool default_allow;
5374 int r = 0;
5375 bool empty = true;
5376 u32 i;
5377
5378 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5379 return -EFAULT;
5380
5381 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
5382 empty &= !filter.ranges[i].nmsrs;
5383
5384 default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
5385 if (empty && !default_allow)
5386 return -EINVAL;
5387
5388 kvm_clear_msr_filter(kvm);
5389
5390 kvm->arch.msr_filter.default_allow = default_allow;
5391
5392 /*
5393 * Protect from concurrent calls to this function that could trigger
5394 * a TOCTOU violation on kvm->arch.msr_filter.count.
5395 */
5396 mutex_lock(&kvm->lock);
5397 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5398 r = kvm_add_msr_filter(kvm, &filter.ranges[i]);
5399 if (r)
5400 break;
5401 }
5402
5403 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5404 mutex_unlock(&kvm->lock);
5405
5406 return r;
5407 }
5408
5409 long kvm_arch_vm_ioctl(struct file *filp,
5410 unsigned int ioctl, unsigned long arg)
5411 {
5412 struct kvm *kvm = filp->private_data;
5413 void __user *argp = (void __user *)arg;
5414 int r = -ENOTTY;
5415 /*
5416 * This union makes it completely explicit to gcc-3.x
5417 * that these two variables' stack usage should be
5418 * combined, not added together.
5419 */
5420 union {
5421 struct kvm_pit_state ps;
5422 struct kvm_pit_state2 ps2;
5423 struct kvm_pit_config pit_config;
5424 } u;
5425
5426 switch (ioctl) {
5427 case KVM_SET_TSS_ADDR:
5428 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5429 break;
5430 case KVM_SET_IDENTITY_MAP_ADDR: {
5431 u64 ident_addr;
5432
5433 mutex_lock(&kvm->lock);
5434 r = -EINVAL;
5435 if (kvm->created_vcpus)
5436 goto set_identity_unlock;
5437 r = -EFAULT;
5438 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5439 goto set_identity_unlock;
5440 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5441 set_identity_unlock:
5442 mutex_unlock(&kvm->lock);
5443 break;
5444 }
5445 case KVM_SET_NR_MMU_PAGES:
5446 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5447 break;
5448 case KVM_GET_NR_MMU_PAGES:
5449 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5450 break;
5451 case KVM_CREATE_IRQCHIP: {
5452 mutex_lock(&kvm->lock);
5453
5454 r = -EEXIST;
5455 if (irqchip_in_kernel(kvm))
5456 goto create_irqchip_unlock;
5457
5458 r = -EINVAL;
5459 if (kvm->created_vcpus)
5460 goto create_irqchip_unlock;
5461
5462 r = kvm_pic_init(kvm);
5463 if (r)
5464 goto create_irqchip_unlock;
5465
5466 r = kvm_ioapic_init(kvm);
5467 if (r) {
5468 kvm_pic_destroy(kvm);
5469 goto create_irqchip_unlock;
5470 }
5471
5472 r = kvm_setup_default_irq_routing(kvm);
5473 if (r) {
5474 kvm_ioapic_destroy(kvm);
5475 kvm_pic_destroy(kvm);
5476 goto create_irqchip_unlock;
5477 }
5478 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5479 smp_wmb();
5480 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5481 create_irqchip_unlock:
5482 mutex_unlock(&kvm->lock);
5483 break;
5484 }
5485 case KVM_CREATE_PIT:
5486 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5487 goto create_pit;
5488 case KVM_CREATE_PIT2:
5489 r = -EFAULT;
5490 if (copy_from_user(&u.pit_config, argp,
5491 sizeof(struct kvm_pit_config)))
5492 goto out;
5493 create_pit:
5494 mutex_lock(&kvm->lock);
5495 r = -EEXIST;
5496 if (kvm->arch.vpit)
5497 goto create_pit_unlock;
5498 r = -ENOMEM;
5499 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5500 if (kvm->arch.vpit)
5501 r = 0;
5502 create_pit_unlock:
5503 mutex_unlock(&kvm->lock);
5504 break;
5505 case KVM_GET_IRQCHIP: {
5506 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5507 struct kvm_irqchip *chip;
5508
5509 chip = memdup_user(argp, sizeof(*chip));
5510 if (IS_ERR(chip)) {
5511 r = PTR_ERR(chip);
5512 goto out;
5513 }
5514
5515 r = -ENXIO;
5516 if (!irqchip_kernel(kvm))
5517 goto get_irqchip_out;
5518 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5519 if (r)
5520 goto get_irqchip_out;
5521 r = -EFAULT;
5522 if (copy_to_user(argp, chip, sizeof(*chip)))
5523 goto get_irqchip_out;
5524 r = 0;
5525 get_irqchip_out:
5526 kfree(chip);
5527 break;
5528 }
5529 case KVM_SET_IRQCHIP: {
5530 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5531 struct kvm_irqchip *chip;
5532
5533 chip = memdup_user(argp, sizeof(*chip));
5534 if (IS_ERR(chip)) {
5535 r = PTR_ERR(chip);
5536 goto out;
5537 }
5538
5539 r = -ENXIO;
5540 if (!irqchip_kernel(kvm))
5541 goto set_irqchip_out;
5542 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5543 set_irqchip_out:
5544 kfree(chip);
5545 break;
5546 }
5547 case KVM_GET_PIT: {
5548 r = -EFAULT;
5549 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5550 goto out;
5551 r = -ENXIO;
5552 if (!kvm->arch.vpit)
5553 goto out;
5554 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5555 if (r)
5556 goto out;
5557 r = -EFAULT;
5558 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5559 goto out;
5560 r = 0;
5561 break;
5562 }
5563 case KVM_SET_PIT: {
5564 r = -EFAULT;
5565 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5566 goto out;
5567 mutex_lock(&kvm->lock);
5568 r = -ENXIO;
5569 if (!kvm->arch.vpit)
5570 goto set_pit_out;
5571 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5572 set_pit_out:
5573 mutex_unlock(&kvm->lock);
5574 break;
5575 }
5576 case KVM_GET_PIT2: {
5577 r = -ENXIO;
5578 if (!kvm->arch.vpit)
5579 goto out;
5580 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5581 if (r)
5582 goto out;
5583 r = -EFAULT;
5584 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5585 goto out;
5586 r = 0;
5587 break;
5588 }
5589 case KVM_SET_PIT2: {
5590 r = -EFAULT;
5591 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5592 goto out;
5593 mutex_lock(&kvm->lock);
5594 r = -ENXIO;
5595 if (!kvm->arch.vpit)
5596 goto set_pit2_out;
5597 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5598 set_pit2_out:
5599 mutex_unlock(&kvm->lock);
5600 break;
5601 }
5602 case KVM_REINJECT_CONTROL: {
5603 struct kvm_reinject_control control;
5604 r = -EFAULT;
5605 if (copy_from_user(&control, argp, sizeof(control)))
5606 goto out;
5607 r = -ENXIO;
5608 if (!kvm->arch.vpit)
5609 goto out;
5610 r = kvm_vm_ioctl_reinject(kvm, &control);
5611 break;
5612 }
5613 case KVM_SET_BOOT_CPU_ID:
5614 r = 0;
5615 mutex_lock(&kvm->lock);
5616 if (kvm->created_vcpus)
5617 r = -EBUSY;
5618 else
5619 kvm->arch.bsp_vcpu_id = arg;
5620 mutex_unlock(&kvm->lock);
5621 break;
5622 case KVM_XEN_HVM_CONFIG: {
5623 struct kvm_xen_hvm_config xhc;
5624 r = -EFAULT;
5625 if (copy_from_user(&xhc, argp, sizeof(xhc)))
5626 goto out;
5627 r = -EINVAL;
5628 if (xhc.flags)
5629 goto out;
5630 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
5631 r = 0;
5632 break;
5633 }
5634 case KVM_SET_CLOCK: {
5635 struct kvm_clock_data user_ns;
5636 u64 now_ns;
5637
5638 r = -EFAULT;
5639 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5640 goto out;
5641
5642 r = -EINVAL;
5643 if (user_ns.flags)
5644 goto out;
5645
5646 r = 0;
5647 /*
5648 * TODO: userspace has to take care of races with VCPU_RUN, so
5649 * kvm_gen_update_masterclock() can be cut down to locked
5650 * pvclock_update_vm_gtod_copy().
5651 */
5652 kvm_gen_update_masterclock(kvm);
5653 now_ns = get_kvmclock_ns(kvm);
5654 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5655 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5656 break;
5657 }
5658 case KVM_GET_CLOCK: {
5659 struct kvm_clock_data user_ns;
5660 u64 now_ns;
5661
5662 now_ns = get_kvmclock_ns(kvm);
5663 user_ns.clock = now_ns;
5664 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5665 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5666
5667 r = -EFAULT;
5668 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5669 goto out;
5670 r = 0;
5671 break;
5672 }
5673 case KVM_MEMORY_ENCRYPT_OP: {
5674 r = -ENOTTY;
5675 if (kvm_x86_ops.mem_enc_op)
5676 r = kvm_x86_ops.mem_enc_op(kvm, argp);
5677 break;
5678 }
5679 case KVM_MEMORY_ENCRYPT_REG_REGION: {
5680 struct kvm_enc_region region;
5681
5682 r = -EFAULT;
5683 if (copy_from_user(&region, argp, sizeof(region)))
5684 goto out;
5685
5686 r = -ENOTTY;
5687 if (kvm_x86_ops.mem_enc_reg_region)
5688 r = kvm_x86_ops.mem_enc_reg_region(kvm, &region);
5689 break;
5690 }
5691 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5692 struct kvm_enc_region region;
5693
5694 r = -EFAULT;
5695 if (copy_from_user(&region, argp, sizeof(region)))
5696 goto out;
5697
5698 r = -ENOTTY;
5699 if (kvm_x86_ops.mem_enc_unreg_region)
5700 r = kvm_x86_ops.mem_enc_unreg_region(kvm, &region);
5701 break;
5702 }
5703 case KVM_HYPERV_EVENTFD: {
5704 struct kvm_hyperv_eventfd hvevfd;
5705
5706 r = -EFAULT;
5707 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5708 goto out;
5709 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5710 break;
5711 }
5712 case KVM_SET_PMU_EVENT_FILTER:
5713 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5714 break;
5715 case KVM_X86_SET_MSR_FILTER:
5716 r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
5717 break;
5718 default:
5719 r = -ENOTTY;
5720 }
5721 out:
5722 return r;
5723 }
5724
5725 static void kvm_init_msr_list(void)
5726 {
5727 struct x86_pmu_capability x86_pmu;
5728 u32 dummy[2];
5729 unsigned i;
5730
5731 BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5732 "Please update the fixed PMCs in msrs_to_saved_all[]");
5733
5734 perf_get_x86_pmu_capability(&x86_pmu);
5735
5736 num_msrs_to_save = 0;
5737 num_emulated_msrs = 0;
5738 num_msr_based_features = 0;
5739
5740 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5741 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5742 continue;
5743
5744 /*
5745 * Even MSRs that are valid in the host may not be exposed
5746 * to the guests in some cases.
5747 */
5748 switch (msrs_to_save_all[i]) {
5749 case MSR_IA32_BNDCFGS:
5750 if (!kvm_mpx_supported())
5751 continue;
5752 break;
5753 case MSR_TSC_AUX:
5754 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
5755 continue;
5756 break;
5757 case MSR_IA32_UMWAIT_CONTROL:
5758 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
5759 continue;
5760 break;
5761 case MSR_IA32_RTIT_CTL:
5762 case MSR_IA32_RTIT_STATUS:
5763 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
5764 continue;
5765 break;
5766 case MSR_IA32_RTIT_CR3_MATCH:
5767 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5768 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5769 continue;
5770 break;
5771 case MSR_IA32_RTIT_OUTPUT_BASE:
5772 case MSR_IA32_RTIT_OUTPUT_MASK:
5773 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5774 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5775 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5776 continue;
5777 break;
5778 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
5779 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5780 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5781 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5782 continue;
5783 break;
5784 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5785 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5786 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5787 continue;
5788 break;
5789 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5790 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5791 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5792 continue;
5793 break;
5794 default:
5795 break;
5796 }
5797
5798 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
5799 }
5800
5801 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
5802 if (!kvm_x86_ops.has_emulated_msr(NULL, emulated_msrs_all[i]))
5803 continue;
5804
5805 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
5806 }
5807
5808 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
5809 struct kvm_msr_entry msr;
5810
5811 msr.index = msr_based_features_all[i];
5812 if (kvm_get_msr_feature(&msr))
5813 continue;
5814
5815 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
5816 }
5817 }
5818
5819 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5820 const void *v)
5821 {
5822 int handled = 0;
5823 int n;
5824
5825 do {
5826 n = min(len, 8);
5827 if (!(lapic_in_kernel(vcpu) &&
5828 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5829 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5830 break;
5831 handled += n;
5832 addr += n;
5833 len -= n;
5834 v += n;
5835 } while (len);
5836
5837 return handled;
5838 }
5839
5840 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5841 {
5842 int handled = 0;
5843 int n;
5844
5845 do {
5846 n = min(len, 8);
5847 if (!(lapic_in_kernel(vcpu) &&
5848 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5849 addr, n, v))
5850 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5851 break;
5852 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5853 handled += n;
5854 addr += n;
5855 len -= n;
5856 v += n;
5857 } while (len);
5858
5859 return handled;
5860 }
5861
5862 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5863 struct kvm_segment *var, int seg)
5864 {
5865 kvm_x86_ops.set_segment(vcpu, var, seg);
5866 }
5867
5868 void kvm_get_segment(struct kvm_vcpu *vcpu,
5869 struct kvm_segment *var, int seg)
5870 {
5871 kvm_x86_ops.get_segment(vcpu, var, seg);
5872 }
5873
5874 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5875 struct x86_exception *exception)
5876 {
5877 gpa_t t_gpa;
5878
5879 BUG_ON(!mmu_is_nested(vcpu));
5880
5881 /* NPT walks are always user-walks */
5882 access |= PFERR_USER_MASK;
5883 t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5884
5885 return t_gpa;
5886 }
5887
5888 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5889 struct x86_exception *exception)
5890 {
5891 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5892 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5893 }
5894
5895 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5896 struct x86_exception *exception)
5897 {
5898 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5899 access |= PFERR_FETCH_MASK;
5900 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5901 }
5902
5903 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5904 struct x86_exception *exception)
5905 {
5906 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5907 access |= PFERR_WRITE_MASK;
5908 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5909 }
5910
5911 /* uses this to access any guest's mapped memory without checking CPL */
5912 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5913 struct x86_exception *exception)
5914 {
5915 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5916 }
5917
5918 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5919 struct kvm_vcpu *vcpu, u32 access,
5920 struct x86_exception *exception)
5921 {
5922 void *data = val;
5923 int r = X86EMUL_CONTINUE;
5924
5925 while (bytes) {
5926 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5927 exception);
5928 unsigned offset = addr & (PAGE_SIZE-1);
5929 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5930 int ret;
5931
5932 if (gpa == UNMAPPED_GVA)
5933 return X86EMUL_PROPAGATE_FAULT;
5934 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5935 offset, toread);
5936 if (ret < 0) {
5937 r = X86EMUL_IO_NEEDED;
5938 goto out;
5939 }
5940
5941 bytes -= toread;
5942 data += toread;
5943 addr += toread;
5944 }
5945 out:
5946 return r;
5947 }
5948
5949 /* used for instruction fetching */
5950 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5951 gva_t addr, void *val, unsigned int bytes,
5952 struct x86_exception *exception)
5953 {
5954 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5955 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5956 unsigned offset;
5957 int ret;
5958
5959 /* Inline kvm_read_guest_virt_helper for speed. */
5960 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5961 exception);
5962 if (unlikely(gpa == UNMAPPED_GVA))
5963 return X86EMUL_PROPAGATE_FAULT;
5964
5965 offset = addr & (PAGE_SIZE-1);
5966 if (WARN_ON(offset + bytes > PAGE_SIZE))
5967 bytes = (unsigned)PAGE_SIZE - offset;
5968 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5969 offset, bytes);
5970 if (unlikely(ret < 0))
5971 return X86EMUL_IO_NEEDED;
5972
5973 return X86EMUL_CONTINUE;
5974 }
5975
5976 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5977 gva_t addr, void *val, unsigned int bytes,
5978 struct x86_exception *exception)
5979 {
5980 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5981
5982 /*
5983 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5984 * is returned, but our callers are not ready for that and they blindly
5985 * call kvm_inject_page_fault. Ensure that they at least do not leak
5986 * uninitialized kernel stack memory into cr2 and error code.
5987 */
5988 memset(exception, 0, sizeof(*exception));
5989 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5990 exception);
5991 }
5992 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5993
5994 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5995 gva_t addr, void *val, unsigned int bytes,
5996 struct x86_exception *exception, bool system)
5997 {
5998 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5999 u32 access = 0;
6000
6001 if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
6002 access |= PFERR_USER_MASK;
6003
6004 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6005 }
6006
6007 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6008 unsigned long addr, void *val, unsigned int bytes)
6009 {
6010 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6011 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6012
6013 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6014 }
6015
6016 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6017 struct kvm_vcpu *vcpu, u32 access,
6018 struct x86_exception *exception)
6019 {
6020 void *data = val;
6021 int r = X86EMUL_CONTINUE;
6022
6023 while (bytes) {
6024 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6025 access,
6026 exception);
6027 unsigned offset = addr & (PAGE_SIZE-1);
6028 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6029 int ret;
6030
6031 if (gpa == UNMAPPED_GVA)
6032 return X86EMUL_PROPAGATE_FAULT;
6033 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6034 if (ret < 0) {
6035 r = X86EMUL_IO_NEEDED;
6036 goto out;
6037 }
6038
6039 bytes -= towrite;
6040 data += towrite;
6041 addr += towrite;
6042 }
6043 out:
6044 return r;
6045 }
6046
6047 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6048 unsigned int bytes, struct x86_exception *exception,
6049 bool system)
6050 {
6051 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6052 u32 access = PFERR_WRITE_MASK;
6053
6054 if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
6055 access |= PFERR_USER_MASK;
6056
6057 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6058 access, exception);
6059 }
6060
6061 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6062 unsigned int bytes, struct x86_exception *exception)
6063 {
6064 /* kvm_write_guest_virt_system can pull in tons of pages. */
6065 vcpu->arch.l1tf_flush_l1d = true;
6066
6067 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6068 PFERR_WRITE_MASK, exception);
6069 }
6070 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6071
6072 int handle_ud(struct kvm_vcpu *vcpu)
6073 {
6074 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6075 int emul_type = EMULTYPE_TRAP_UD;
6076 char sig[5]; /* ud2; .ascii "kvm" */
6077 struct x86_exception e;
6078
6079 if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, NULL, 0)))
6080 return 1;
6081
6082 if (force_emulation_prefix &&
6083 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6084 sig, sizeof(sig), &e) == 0 &&
6085 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6086 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6087 emul_type = EMULTYPE_TRAP_UD_FORCED;
6088 }
6089
6090 return kvm_emulate_instruction(vcpu, emul_type);
6091 }
6092 EXPORT_SYMBOL_GPL(handle_ud);
6093
6094 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6095 gpa_t gpa, bool write)
6096 {
6097 /* For APIC access vmexit */
6098 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6099 return 1;
6100
6101 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6102 trace_vcpu_match_mmio(gva, gpa, write, true);
6103 return 1;
6104 }
6105
6106 return 0;
6107 }
6108
6109 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6110 gpa_t *gpa, struct x86_exception *exception,
6111 bool write)
6112 {
6113 u32 access = ((kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
6114 | (write ? PFERR_WRITE_MASK : 0);
6115
6116 /*
6117 * currently PKRU is only applied to ept enabled guest so
6118 * there is no pkey in EPT page table for L1 guest or EPT
6119 * shadow page table for L2 guest.
6120 */
6121 if (vcpu_match_mmio_gva(vcpu, gva)
6122 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
6123 vcpu->arch.mmio_access, 0, access)) {
6124 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6125 (gva & (PAGE_SIZE - 1));
6126 trace_vcpu_match_mmio(gva, *gpa, write, false);
6127 return 1;
6128 }
6129
6130 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6131
6132 if (*gpa == UNMAPPED_GVA)
6133 return -1;
6134
6135 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6136 }
6137
6138 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6139 const void *val, int bytes)
6140 {
6141 int ret;
6142
6143 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6144 if (ret < 0)
6145 return 0;
6146 kvm_page_track_write(vcpu, gpa, val, bytes);
6147 return 1;
6148 }
6149
6150 struct read_write_emulator_ops {
6151 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6152 int bytes);
6153 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6154 void *val, int bytes);
6155 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6156 int bytes, void *val);
6157 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6158 void *val, int bytes);
6159 bool write;
6160 };
6161
6162 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6163 {
6164 if (vcpu->mmio_read_completed) {
6165 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6166 vcpu->mmio_fragments[0].gpa, val);
6167 vcpu->mmio_read_completed = 0;
6168 return 1;
6169 }
6170
6171 return 0;
6172 }
6173
6174 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6175 void *val, int bytes)
6176 {
6177 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6178 }
6179
6180 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6181 void *val, int bytes)
6182 {
6183 return emulator_write_phys(vcpu, gpa, val, bytes);
6184 }
6185
6186 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6187 {
6188 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6189 return vcpu_mmio_write(vcpu, gpa, bytes, val);
6190 }
6191
6192 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6193 void *val, int bytes)
6194 {
6195 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6196 return X86EMUL_IO_NEEDED;
6197 }
6198
6199 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6200 void *val, int bytes)
6201 {
6202 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6203
6204 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6205 return X86EMUL_CONTINUE;
6206 }
6207
6208 static const struct read_write_emulator_ops read_emultor = {
6209 .read_write_prepare = read_prepare,
6210 .read_write_emulate = read_emulate,
6211 .read_write_mmio = vcpu_mmio_read,
6212 .read_write_exit_mmio = read_exit_mmio,
6213 };
6214
6215 static const struct read_write_emulator_ops write_emultor = {
6216 .read_write_emulate = write_emulate,
6217 .read_write_mmio = write_mmio,
6218 .read_write_exit_mmio = write_exit_mmio,
6219 .write = true,
6220 };
6221
6222 static int emulator_read_write_onepage(unsigned long addr, void *val,
6223 unsigned int bytes,
6224 struct x86_exception *exception,
6225 struct kvm_vcpu *vcpu,
6226 const struct read_write_emulator_ops *ops)
6227 {
6228 gpa_t gpa;
6229 int handled, ret;
6230 bool write = ops->write;
6231 struct kvm_mmio_fragment *frag;
6232 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6233
6234 /*
6235 * If the exit was due to a NPF we may already have a GPA.
6236 * If the GPA is present, use it to avoid the GVA to GPA table walk.
6237 * Note, this cannot be used on string operations since string
6238 * operation using rep will only have the initial GPA from the NPF
6239 * occurred.
6240 */
6241 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6242 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6243 gpa = ctxt->gpa_val;
6244 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6245 } else {
6246 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6247 if (ret < 0)
6248 return X86EMUL_PROPAGATE_FAULT;
6249 }
6250
6251 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6252 return X86EMUL_CONTINUE;
6253
6254 /*
6255 * Is this MMIO handled locally?
6256 */
6257 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6258 if (handled == bytes)
6259 return X86EMUL_CONTINUE;
6260
6261 gpa += handled;
6262 bytes -= handled;
6263 val += handled;
6264
6265 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6266 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6267 frag->gpa = gpa;
6268 frag->data = val;
6269 frag->len = bytes;
6270 return X86EMUL_CONTINUE;
6271 }
6272
6273 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6274 unsigned long addr,
6275 void *val, unsigned int bytes,
6276 struct x86_exception *exception,
6277 const struct read_write_emulator_ops *ops)
6278 {
6279 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6280 gpa_t gpa;
6281 int rc;
6282
6283 if (ops->read_write_prepare &&
6284 ops->read_write_prepare(vcpu, val, bytes))
6285 return X86EMUL_CONTINUE;
6286
6287 vcpu->mmio_nr_fragments = 0;
6288
6289 /* Crossing a page boundary? */
6290 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6291 int now;
6292
6293 now = -addr & ~PAGE_MASK;
6294 rc = emulator_read_write_onepage(addr, val, now, exception,
6295 vcpu, ops);
6296
6297 if (rc != X86EMUL_CONTINUE)
6298 return rc;
6299 addr += now;
6300 if (ctxt->mode != X86EMUL_MODE_PROT64)
6301 addr = (u32)addr;
6302 val += now;
6303 bytes -= now;
6304 }
6305
6306 rc = emulator_read_write_onepage(addr, val, bytes, exception,
6307 vcpu, ops);
6308 if (rc != X86EMUL_CONTINUE)
6309 return rc;
6310
6311 if (!vcpu->mmio_nr_fragments)
6312 return rc;
6313
6314 gpa = vcpu->mmio_fragments[0].gpa;
6315
6316 vcpu->mmio_needed = 1;
6317 vcpu->mmio_cur_fragment = 0;
6318
6319 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6320 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6321 vcpu->run->exit_reason = KVM_EXIT_MMIO;
6322 vcpu->run->mmio.phys_addr = gpa;
6323
6324 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6325 }
6326
6327 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6328 unsigned long addr,
6329 void *val,
6330 unsigned int bytes,
6331 struct x86_exception *exception)
6332 {
6333 return emulator_read_write(ctxt, addr, val, bytes,
6334 exception, &read_emultor);
6335 }
6336
6337 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6338 unsigned long addr,
6339 const void *val,
6340 unsigned int bytes,
6341 struct x86_exception *exception)
6342 {
6343 return emulator_read_write(ctxt, addr, (void *)val, bytes,
6344 exception, &write_emultor);
6345 }
6346
6347 #define CMPXCHG_TYPE(t, ptr, old, new) \
6348 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6349
6350 #ifdef CONFIG_X86_64
6351 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6352 #else
6353 # define CMPXCHG64(ptr, old, new) \
6354 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6355 #endif
6356
6357 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6358 unsigned long addr,
6359 const void *old,
6360 const void *new,
6361 unsigned int bytes,
6362 struct x86_exception *exception)
6363 {
6364 struct kvm_host_map map;
6365 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6366 u64 page_line_mask;
6367 gpa_t gpa;
6368 char *kaddr;
6369 bool exchanged;
6370
6371 /* guests cmpxchg8b have to be emulated atomically */
6372 if (bytes > 8 || (bytes & (bytes - 1)))
6373 goto emul_write;
6374
6375 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6376
6377 if (gpa == UNMAPPED_GVA ||
6378 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6379 goto emul_write;
6380
6381 /*
6382 * Emulate the atomic as a straight write to avoid #AC if SLD is
6383 * enabled in the host and the access splits a cache line.
6384 */
6385 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6386 page_line_mask = ~(cache_line_size() - 1);
6387 else
6388 page_line_mask = PAGE_MASK;
6389
6390 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6391 goto emul_write;
6392
6393 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6394 goto emul_write;
6395
6396 kaddr = map.hva + offset_in_page(gpa);
6397
6398 switch (bytes) {
6399 case 1:
6400 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6401 break;
6402 case 2:
6403 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6404 break;
6405 case 4:
6406 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6407 break;
6408 case 8:
6409 exchanged = CMPXCHG64(kaddr, old, new);
6410 break;
6411 default:
6412 BUG();
6413 }
6414
6415 kvm_vcpu_unmap(vcpu, &map, true);
6416
6417 if (!exchanged)
6418 return X86EMUL_CMPXCHG_FAILED;
6419
6420 kvm_page_track_write(vcpu, gpa, new, bytes);
6421
6422 return X86EMUL_CONTINUE;
6423
6424 emul_write:
6425 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6426
6427 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6428 }
6429
6430 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6431 {
6432 int r = 0, i;
6433
6434 for (i = 0; i < vcpu->arch.pio.count; i++) {
6435 if (vcpu->arch.pio.in)
6436 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6437 vcpu->arch.pio.size, pd);
6438 else
6439 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6440 vcpu->arch.pio.port, vcpu->arch.pio.size,
6441 pd);
6442 if (r)
6443 break;
6444 pd += vcpu->arch.pio.size;
6445 }
6446 return r;
6447 }
6448
6449 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6450 unsigned short port, void *val,
6451 unsigned int count, bool in)
6452 {
6453 vcpu->arch.pio.port = port;
6454 vcpu->arch.pio.in = in;
6455 vcpu->arch.pio.count = count;
6456 vcpu->arch.pio.size = size;
6457
6458 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
6459 vcpu->arch.pio.count = 0;
6460 return 1;
6461 }
6462
6463 vcpu->run->exit_reason = KVM_EXIT_IO;
6464 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6465 vcpu->run->io.size = size;
6466 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6467 vcpu->run->io.count = count;
6468 vcpu->run->io.port = port;
6469
6470 return 0;
6471 }
6472
6473 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6474 unsigned short port, void *val, unsigned int count)
6475 {
6476 int ret;
6477
6478 if (vcpu->arch.pio.count)
6479 goto data_avail;
6480
6481 memset(vcpu->arch.pio_data, 0, size * count);
6482
6483 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
6484 if (ret) {
6485 data_avail:
6486 memcpy(val, vcpu->arch.pio_data, size * count);
6487 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
6488 vcpu->arch.pio.count = 0;
6489 return 1;
6490 }
6491
6492 return 0;
6493 }
6494
6495 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6496 int size, unsigned short port, void *val,
6497 unsigned int count)
6498 {
6499 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6500
6501 }
6502
6503 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6504 unsigned short port, const void *val,
6505 unsigned int count)
6506 {
6507 memcpy(vcpu->arch.pio_data, val, size * count);
6508 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6509 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6510 }
6511
6512 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6513 int size, unsigned short port,
6514 const void *val, unsigned int count)
6515 {
6516 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6517 }
6518
6519 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6520 {
6521 return kvm_x86_ops.get_segment_base(vcpu, seg);
6522 }
6523
6524 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6525 {
6526 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6527 }
6528
6529 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6530 {
6531 if (!need_emulate_wbinvd(vcpu))
6532 return X86EMUL_CONTINUE;
6533
6534 if (kvm_x86_ops.has_wbinvd_exit()) {
6535 int cpu = get_cpu();
6536
6537 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6538 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
6539 wbinvd_ipi, NULL, 1);
6540 put_cpu();
6541 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6542 } else
6543 wbinvd();
6544 return X86EMUL_CONTINUE;
6545 }
6546
6547 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6548 {
6549 kvm_emulate_wbinvd_noskip(vcpu);
6550 return kvm_skip_emulated_instruction(vcpu);
6551 }
6552 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6553
6554
6555
6556 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6557 {
6558 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6559 }
6560
6561 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6562 unsigned long *dest)
6563 {
6564 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6565 }
6566
6567 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6568 unsigned long value)
6569 {
6570
6571 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6572 }
6573
6574 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6575 {
6576 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6577 }
6578
6579 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6580 {
6581 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6582 unsigned long value;
6583
6584 switch (cr) {
6585 case 0:
6586 value = kvm_read_cr0(vcpu);
6587 break;
6588 case 2:
6589 value = vcpu->arch.cr2;
6590 break;
6591 case 3:
6592 value = kvm_read_cr3(vcpu);
6593 break;
6594 case 4:
6595 value = kvm_read_cr4(vcpu);
6596 break;
6597 case 8:
6598 value = kvm_get_cr8(vcpu);
6599 break;
6600 default:
6601 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6602 return 0;
6603 }
6604
6605 return value;
6606 }
6607
6608 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6609 {
6610 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6611 int res = 0;
6612
6613 switch (cr) {
6614 case 0:
6615 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6616 break;
6617 case 2:
6618 vcpu->arch.cr2 = val;
6619 break;
6620 case 3:
6621 res = kvm_set_cr3(vcpu, val);
6622 break;
6623 case 4:
6624 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6625 break;
6626 case 8:
6627 res = kvm_set_cr8(vcpu, val);
6628 break;
6629 default:
6630 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6631 res = -1;
6632 }
6633
6634 return res;
6635 }
6636
6637 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6638 {
6639 return kvm_x86_ops.get_cpl(emul_to_vcpu(ctxt));
6640 }
6641
6642 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6643 {
6644 kvm_x86_ops.get_gdt(emul_to_vcpu(ctxt), dt);
6645 }
6646
6647 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6648 {
6649 kvm_x86_ops.get_idt(emul_to_vcpu(ctxt), dt);
6650 }
6651
6652 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6653 {
6654 kvm_x86_ops.set_gdt(emul_to_vcpu(ctxt), dt);
6655 }
6656
6657 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6658 {
6659 kvm_x86_ops.set_idt(emul_to_vcpu(ctxt), dt);
6660 }
6661
6662 static unsigned long emulator_get_cached_segment_base(
6663 struct x86_emulate_ctxt *ctxt, int seg)
6664 {
6665 return get_segment_base(emul_to_vcpu(ctxt), seg);
6666 }
6667
6668 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6669 struct desc_struct *desc, u32 *base3,
6670 int seg)
6671 {
6672 struct kvm_segment var;
6673
6674 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6675 *selector = var.selector;
6676
6677 if (var.unusable) {
6678 memset(desc, 0, sizeof(*desc));
6679 if (base3)
6680 *base3 = 0;
6681 return false;
6682 }
6683
6684 if (var.g)
6685 var.limit >>= 12;
6686 set_desc_limit(desc, var.limit);
6687 set_desc_base(desc, (unsigned long)var.base);
6688 #ifdef CONFIG_X86_64
6689 if (base3)
6690 *base3 = var.base >> 32;
6691 #endif
6692 desc->type = var.type;
6693 desc->s = var.s;
6694 desc->dpl = var.dpl;
6695 desc->p = var.present;
6696 desc->avl = var.avl;
6697 desc->l = var.l;
6698 desc->d = var.db;
6699 desc->g = var.g;
6700
6701 return true;
6702 }
6703
6704 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6705 struct desc_struct *desc, u32 base3,
6706 int seg)
6707 {
6708 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6709 struct kvm_segment var;
6710
6711 var.selector = selector;
6712 var.base = get_desc_base(desc);
6713 #ifdef CONFIG_X86_64
6714 var.base |= ((u64)base3) << 32;
6715 #endif
6716 var.limit = get_desc_limit(desc);
6717 if (desc->g)
6718 var.limit = (var.limit << 12) | 0xfff;
6719 var.type = desc->type;
6720 var.dpl = desc->dpl;
6721 var.db = desc->d;
6722 var.s = desc->s;
6723 var.l = desc->l;
6724 var.g = desc->g;
6725 var.avl = desc->avl;
6726 var.present = desc->p;
6727 var.unusable = !var.present;
6728 var.padding = 0;
6729
6730 kvm_set_segment(vcpu, &var, seg);
6731 return;
6732 }
6733
6734 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6735 u32 msr_index, u64 *pdata)
6736 {
6737 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6738 int r;
6739
6740 r = kvm_get_msr(vcpu, msr_index, pdata);
6741
6742 if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
6743 /* Bounce to user space */
6744 return X86EMUL_IO_NEEDED;
6745 }
6746
6747 return r;
6748 }
6749
6750 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6751 u32 msr_index, u64 data)
6752 {
6753 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6754 int r;
6755
6756 r = kvm_set_msr(vcpu, msr_index, data);
6757
6758 if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
6759 /* Bounce to user space */
6760 return X86EMUL_IO_NEEDED;
6761 }
6762
6763 return r;
6764 }
6765
6766 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6767 {
6768 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6769
6770 return vcpu->arch.smbase;
6771 }
6772
6773 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6774 {
6775 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6776
6777 vcpu->arch.smbase = smbase;
6778 }
6779
6780 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6781 u32 pmc)
6782 {
6783 return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
6784 }
6785
6786 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6787 u32 pmc, u64 *pdata)
6788 {
6789 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6790 }
6791
6792 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6793 {
6794 emul_to_vcpu(ctxt)->arch.halt_request = 1;
6795 }
6796
6797 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6798 struct x86_instruction_info *info,
6799 enum x86_intercept_stage stage)
6800 {
6801 return kvm_x86_ops.check_intercept(emul_to_vcpu(ctxt), info, stage,
6802 &ctxt->exception);
6803 }
6804
6805 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6806 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
6807 bool exact_only)
6808 {
6809 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
6810 }
6811
6812 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
6813 {
6814 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
6815 }
6816
6817 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
6818 {
6819 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
6820 }
6821
6822 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
6823 {
6824 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
6825 }
6826
6827 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6828 {
6829 return kvm_register_read(emul_to_vcpu(ctxt), reg);
6830 }
6831
6832 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6833 {
6834 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6835 }
6836
6837 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6838 {
6839 kvm_x86_ops.set_nmi_mask(emul_to_vcpu(ctxt), masked);
6840 }
6841
6842 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6843 {
6844 return emul_to_vcpu(ctxt)->arch.hflags;
6845 }
6846
6847 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6848 {
6849 emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6850 }
6851
6852 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6853 const char *smstate)
6854 {
6855 return kvm_x86_ops.pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6856 }
6857
6858 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6859 {
6860 kvm_smm_changed(emul_to_vcpu(ctxt));
6861 }
6862
6863 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6864 {
6865 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6866 }
6867
6868 static const struct x86_emulate_ops emulate_ops = {
6869 .read_gpr = emulator_read_gpr,
6870 .write_gpr = emulator_write_gpr,
6871 .read_std = emulator_read_std,
6872 .write_std = emulator_write_std,
6873 .read_phys = kvm_read_guest_phys_system,
6874 .fetch = kvm_fetch_guest_virt,
6875 .read_emulated = emulator_read_emulated,
6876 .write_emulated = emulator_write_emulated,
6877 .cmpxchg_emulated = emulator_cmpxchg_emulated,
6878 .invlpg = emulator_invlpg,
6879 .pio_in_emulated = emulator_pio_in_emulated,
6880 .pio_out_emulated = emulator_pio_out_emulated,
6881 .get_segment = emulator_get_segment,
6882 .set_segment = emulator_set_segment,
6883 .get_cached_segment_base = emulator_get_cached_segment_base,
6884 .get_gdt = emulator_get_gdt,
6885 .get_idt = emulator_get_idt,
6886 .set_gdt = emulator_set_gdt,
6887 .set_idt = emulator_set_idt,
6888 .get_cr = emulator_get_cr,
6889 .set_cr = emulator_set_cr,
6890 .cpl = emulator_get_cpl,
6891 .get_dr = emulator_get_dr,
6892 .set_dr = emulator_set_dr,
6893 .get_smbase = emulator_get_smbase,
6894 .set_smbase = emulator_set_smbase,
6895 .set_msr = emulator_set_msr,
6896 .get_msr = emulator_get_msr,
6897 .check_pmc = emulator_check_pmc,
6898 .read_pmc = emulator_read_pmc,
6899 .halt = emulator_halt,
6900 .wbinvd = emulator_wbinvd,
6901 .fix_hypercall = emulator_fix_hypercall,
6902 .intercept = emulator_intercept,
6903 .get_cpuid = emulator_get_cpuid,
6904 .guest_has_long_mode = emulator_guest_has_long_mode,
6905 .guest_has_movbe = emulator_guest_has_movbe,
6906 .guest_has_fxsr = emulator_guest_has_fxsr,
6907 .set_nmi_mask = emulator_set_nmi_mask,
6908 .get_hflags = emulator_get_hflags,
6909 .set_hflags = emulator_set_hflags,
6910 .pre_leave_smm = emulator_pre_leave_smm,
6911 .post_leave_smm = emulator_post_leave_smm,
6912 .set_xcr = emulator_set_xcr,
6913 };
6914
6915 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6916 {
6917 u32 int_shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
6918 /*
6919 * an sti; sti; sequence only disable interrupts for the first
6920 * instruction. So, if the last instruction, be it emulated or
6921 * not, left the system with the INT_STI flag enabled, it
6922 * means that the last instruction is an sti. We should not
6923 * leave the flag on in this case. The same goes for mov ss
6924 */
6925 if (int_shadow & mask)
6926 mask = 0;
6927 if (unlikely(int_shadow || mask)) {
6928 kvm_x86_ops.set_interrupt_shadow(vcpu, mask);
6929 if (!mask)
6930 kvm_make_request(KVM_REQ_EVENT, vcpu);
6931 }
6932 }
6933
6934 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6935 {
6936 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6937 if (ctxt->exception.vector == PF_VECTOR)
6938 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
6939
6940 if (ctxt->exception.error_code_valid)
6941 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6942 ctxt->exception.error_code);
6943 else
6944 kvm_queue_exception(vcpu, ctxt->exception.vector);
6945 return false;
6946 }
6947
6948 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
6949 {
6950 struct x86_emulate_ctxt *ctxt;
6951
6952 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
6953 if (!ctxt) {
6954 pr_err("kvm: failed to allocate vcpu's emulator\n");
6955 return NULL;
6956 }
6957
6958 ctxt->vcpu = vcpu;
6959 ctxt->ops = &emulate_ops;
6960 vcpu->arch.emulate_ctxt = ctxt;
6961
6962 return ctxt;
6963 }
6964
6965 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6966 {
6967 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6968 int cs_db, cs_l;
6969
6970 kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6971
6972 ctxt->gpa_available = false;
6973 ctxt->eflags = kvm_get_rflags(vcpu);
6974 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6975
6976 ctxt->eip = kvm_rip_read(vcpu);
6977 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
6978 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
6979 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
6980 cs_db ? X86EMUL_MODE_PROT32 :
6981 X86EMUL_MODE_PROT16;
6982 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6983 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6984 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6985
6986 init_decode_cache(ctxt);
6987 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6988 }
6989
6990 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6991 {
6992 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6993 int ret;
6994
6995 init_emulate_ctxt(vcpu);
6996
6997 ctxt->op_bytes = 2;
6998 ctxt->ad_bytes = 2;
6999 ctxt->_eip = ctxt->eip + inc_eip;
7000 ret = emulate_int_real(ctxt, irq);
7001
7002 if (ret != X86EMUL_CONTINUE) {
7003 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7004 } else {
7005 ctxt->eip = ctxt->_eip;
7006 kvm_rip_write(vcpu, ctxt->eip);
7007 kvm_set_rflags(vcpu, ctxt->eflags);
7008 }
7009 }
7010 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7011
7012 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7013 {
7014 ++vcpu->stat.insn_emulation_fail;
7015 trace_kvm_emulate_insn_failed(vcpu);
7016
7017 if (emulation_type & EMULTYPE_VMWARE_GP) {
7018 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7019 return 1;
7020 }
7021
7022 if (emulation_type & EMULTYPE_SKIP) {
7023 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7024 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7025 vcpu->run->internal.ndata = 0;
7026 return 0;
7027 }
7028
7029 kvm_queue_exception(vcpu, UD_VECTOR);
7030
7031 if (!is_guest_mode(vcpu) && kvm_x86_ops.get_cpl(vcpu) == 0) {
7032 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7033 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7034 vcpu->run->internal.ndata = 0;
7035 return 0;
7036 }
7037
7038 return 1;
7039 }
7040
7041 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7042 bool write_fault_to_shadow_pgtable,
7043 int emulation_type)
7044 {
7045 gpa_t gpa = cr2_or_gpa;
7046 kvm_pfn_t pfn;
7047
7048 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7049 return false;
7050
7051 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7052 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7053 return false;
7054
7055 if (!vcpu->arch.mmu->direct_map) {
7056 /*
7057 * Write permission should be allowed since only
7058 * write access need to be emulated.
7059 */
7060 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7061
7062 /*
7063 * If the mapping is invalid in guest, let cpu retry
7064 * it to generate fault.
7065 */
7066 if (gpa == UNMAPPED_GVA)
7067 return true;
7068 }
7069
7070 /*
7071 * Do not retry the unhandleable instruction if it faults on the
7072 * readonly host memory, otherwise it will goto a infinite loop:
7073 * retry instruction -> write #PF -> emulation fail -> retry
7074 * instruction -> ...
7075 */
7076 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7077
7078 /*
7079 * If the instruction failed on the error pfn, it can not be fixed,
7080 * report the error to userspace.
7081 */
7082 if (is_error_noslot_pfn(pfn))
7083 return false;
7084
7085 kvm_release_pfn_clean(pfn);
7086
7087 /* The instructions are well-emulated on direct mmu. */
7088 if (vcpu->arch.mmu->direct_map) {
7089 unsigned int indirect_shadow_pages;
7090
7091 spin_lock(&vcpu->kvm->mmu_lock);
7092 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7093 spin_unlock(&vcpu->kvm->mmu_lock);
7094
7095 if (indirect_shadow_pages)
7096 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7097
7098 return true;
7099 }
7100
7101 /*
7102 * if emulation was due to access to shadowed page table
7103 * and it failed try to unshadow page and re-enter the
7104 * guest to let CPU execute the instruction.
7105 */
7106 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7107
7108 /*
7109 * If the access faults on its page table, it can not
7110 * be fixed by unprotecting shadow page and it should
7111 * be reported to userspace.
7112 */
7113 return !write_fault_to_shadow_pgtable;
7114 }
7115
7116 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7117 gpa_t cr2_or_gpa, int emulation_type)
7118 {
7119 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7120 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7121
7122 last_retry_eip = vcpu->arch.last_retry_eip;
7123 last_retry_addr = vcpu->arch.last_retry_addr;
7124
7125 /*
7126 * If the emulation is caused by #PF and it is non-page_table
7127 * writing instruction, it means the VM-EXIT is caused by shadow
7128 * page protected, we can zap the shadow page and retry this
7129 * instruction directly.
7130 *
7131 * Note: if the guest uses a non-page-table modifying instruction
7132 * on the PDE that points to the instruction, then we will unmap
7133 * the instruction and go to an infinite loop. So, we cache the
7134 * last retried eip and the last fault address, if we meet the eip
7135 * and the address again, we can break out of the potential infinite
7136 * loop.
7137 */
7138 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7139
7140 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7141 return false;
7142
7143 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7144 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7145 return false;
7146
7147 if (x86_page_table_writing_insn(ctxt))
7148 return false;
7149
7150 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7151 return false;
7152
7153 vcpu->arch.last_retry_eip = ctxt->eip;
7154 vcpu->arch.last_retry_addr = cr2_or_gpa;
7155
7156 if (!vcpu->arch.mmu->direct_map)
7157 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7158
7159 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7160
7161 return true;
7162 }
7163
7164 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7165 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7166
7167 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
7168 {
7169 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
7170 /* This is a good place to trace that we are exiting SMM. */
7171 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
7172
7173 /* Process a latched INIT or SMI, if any. */
7174 kvm_make_request(KVM_REQ_EVENT, vcpu);
7175 }
7176
7177 kvm_mmu_reset_context(vcpu);
7178 }
7179
7180 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7181 unsigned long *db)
7182 {
7183 u32 dr6 = 0;
7184 int i;
7185 u32 enable, rwlen;
7186
7187 enable = dr7;
7188 rwlen = dr7 >> 16;
7189 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7190 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7191 dr6 |= (1 << i);
7192 return dr6;
7193 }
7194
7195 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7196 {
7197 struct kvm_run *kvm_run = vcpu->run;
7198
7199 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7200 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
7201 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7202 kvm_run->debug.arch.exception = DB_VECTOR;
7203 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7204 return 0;
7205 }
7206 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7207 return 1;
7208 }
7209
7210 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7211 {
7212 unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
7213 int r;
7214
7215 r = kvm_x86_ops.skip_emulated_instruction(vcpu);
7216 if (unlikely(!r))
7217 return 0;
7218
7219 /*
7220 * rflags is the old, "raw" value of the flags. The new value has
7221 * not been saved yet.
7222 *
7223 * This is correct even for TF set by the guest, because "the
7224 * processor will not generate this exception after the instruction
7225 * that sets the TF flag".
7226 */
7227 if (unlikely(rflags & X86_EFLAGS_TF))
7228 r = kvm_vcpu_do_singlestep(vcpu);
7229 return r;
7230 }
7231 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7232
7233 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
7234 {
7235 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7236 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7237 struct kvm_run *kvm_run = vcpu->run;
7238 unsigned long eip = kvm_get_linear_rip(vcpu);
7239 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7240 vcpu->arch.guest_debug_dr7,
7241 vcpu->arch.eff_db);
7242
7243 if (dr6 != 0) {
7244 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
7245 kvm_run->debug.arch.pc = eip;
7246 kvm_run->debug.arch.exception = DB_VECTOR;
7247 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7248 *r = 0;
7249 return true;
7250 }
7251 }
7252
7253 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7254 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7255 unsigned long eip = kvm_get_linear_rip(vcpu);
7256 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7257 vcpu->arch.dr7,
7258 vcpu->arch.db);
7259
7260 if (dr6 != 0) {
7261 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
7262 *r = 1;
7263 return true;
7264 }
7265 }
7266
7267 return false;
7268 }
7269
7270 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7271 {
7272 switch (ctxt->opcode_len) {
7273 case 1:
7274 switch (ctxt->b) {
7275 case 0xe4: /* IN */
7276 case 0xe5:
7277 case 0xec:
7278 case 0xed:
7279 case 0xe6: /* OUT */
7280 case 0xe7:
7281 case 0xee:
7282 case 0xef:
7283 case 0x6c: /* INS */
7284 case 0x6d:
7285 case 0x6e: /* OUTS */
7286 case 0x6f:
7287 return true;
7288 }
7289 break;
7290 case 2:
7291 switch (ctxt->b) {
7292 case 0x33: /* RDPMC */
7293 return true;
7294 }
7295 break;
7296 }
7297
7298 return false;
7299 }
7300
7301 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7302 int emulation_type, void *insn, int insn_len)
7303 {
7304 int r;
7305 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7306 bool writeback = true;
7307 bool write_fault_to_spt;
7308
7309 if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, insn, insn_len)))
7310 return 1;
7311
7312 vcpu->arch.l1tf_flush_l1d = true;
7313
7314 /*
7315 * Clear write_fault_to_shadow_pgtable here to ensure it is
7316 * never reused.
7317 */
7318 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
7319 vcpu->arch.write_fault_to_shadow_pgtable = false;
7320 kvm_clear_exception_queue(vcpu);
7321
7322 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
7323 init_emulate_ctxt(vcpu);
7324
7325 /*
7326 * We will reenter on the same instruction since
7327 * we do not set complete_userspace_io. This does not
7328 * handle watchpoints yet, those would be handled in
7329 * the emulate_ops.
7330 */
7331 if (!(emulation_type & EMULTYPE_SKIP) &&
7332 kvm_vcpu_check_breakpoint(vcpu, &r))
7333 return r;
7334
7335 ctxt->interruptibility = 0;
7336 ctxt->have_exception = false;
7337 ctxt->exception.vector = -1;
7338 ctxt->perm_ok = false;
7339
7340 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
7341
7342 r = x86_decode_insn(ctxt, insn, insn_len);
7343
7344 trace_kvm_emulate_insn_start(vcpu);
7345 ++vcpu->stat.insn_emulation;
7346 if (r != EMULATION_OK) {
7347 if ((emulation_type & EMULTYPE_TRAP_UD) ||
7348 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
7349 kvm_queue_exception(vcpu, UD_VECTOR);
7350 return 1;
7351 }
7352 if (reexecute_instruction(vcpu, cr2_or_gpa,
7353 write_fault_to_spt,
7354 emulation_type))
7355 return 1;
7356 if (ctxt->have_exception) {
7357 /*
7358 * #UD should result in just EMULATION_FAILED, and trap-like
7359 * exception should not be encountered during decode.
7360 */
7361 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
7362 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
7363 inject_emulated_exception(vcpu);
7364 return 1;
7365 }
7366 return handle_emulation_failure(vcpu, emulation_type);
7367 }
7368 }
7369
7370 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
7371 !is_vmware_backdoor_opcode(ctxt)) {
7372 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7373 return 1;
7374 }
7375
7376 /*
7377 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
7378 * for kvm_skip_emulated_instruction(). The caller is responsible for
7379 * updating interruptibility state and injecting single-step #DBs.
7380 */
7381 if (emulation_type & EMULTYPE_SKIP) {
7382 kvm_rip_write(vcpu, ctxt->_eip);
7383 if (ctxt->eflags & X86_EFLAGS_RF)
7384 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
7385 return 1;
7386 }
7387
7388 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
7389 return 1;
7390
7391 /* this is needed for vmware backdoor interface to work since it
7392 changes registers values during IO operation */
7393 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7394 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7395 emulator_invalidate_register_cache(ctxt);
7396 }
7397
7398 restart:
7399 if (emulation_type & EMULTYPE_PF) {
7400 /* Save the faulting GPA (cr2) in the address field */
7401 ctxt->exception.address = cr2_or_gpa;
7402
7403 /* With shadow page tables, cr2 contains a GVA or nGPA. */
7404 if (vcpu->arch.mmu->direct_map) {
7405 ctxt->gpa_available = true;
7406 ctxt->gpa_val = cr2_or_gpa;
7407 }
7408 } else {
7409 /* Sanitize the address out of an abundance of paranoia. */
7410 ctxt->exception.address = 0;
7411 }
7412
7413 r = x86_emulate_insn(ctxt);
7414
7415 if (r == EMULATION_INTERCEPTED)
7416 return 1;
7417
7418 if (r == EMULATION_FAILED) {
7419 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
7420 emulation_type))
7421 return 1;
7422
7423 return handle_emulation_failure(vcpu, emulation_type);
7424 }
7425
7426 if (ctxt->have_exception) {
7427 r = 1;
7428 if (inject_emulated_exception(vcpu))
7429 return r;
7430 } else if (vcpu->arch.pio.count) {
7431 if (!vcpu->arch.pio.in) {
7432 /* FIXME: return into emulator if single-stepping. */
7433 vcpu->arch.pio.count = 0;
7434 } else {
7435 writeback = false;
7436 vcpu->arch.complete_userspace_io = complete_emulated_pio;
7437 }
7438 r = 0;
7439 } else if (vcpu->mmio_needed) {
7440 ++vcpu->stat.mmio_exits;
7441
7442 if (!vcpu->mmio_is_write)
7443 writeback = false;
7444 r = 0;
7445 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7446 } else if (r == EMULATION_RESTART)
7447 goto restart;
7448 else
7449 r = 1;
7450
7451 if (writeback) {
7452 unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
7453 toggle_interruptibility(vcpu, ctxt->interruptibility);
7454 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7455 if (!ctxt->have_exception ||
7456 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7457 kvm_rip_write(vcpu, ctxt->eip);
7458 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7459 r = kvm_vcpu_do_singlestep(vcpu);
7460 if (kvm_x86_ops.update_emulated_instruction)
7461 kvm_x86_ops.update_emulated_instruction(vcpu);
7462 __kvm_set_rflags(vcpu, ctxt->eflags);
7463 }
7464
7465 /*
7466 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7467 * do nothing, and it will be requested again as soon as
7468 * the shadow expires. But we still need to check here,
7469 * because POPF has no interrupt shadow.
7470 */
7471 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7472 kvm_make_request(KVM_REQ_EVENT, vcpu);
7473 } else
7474 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
7475
7476 return r;
7477 }
7478
7479 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7480 {
7481 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
7482 }
7483 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
7484
7485 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
7486 void *insn, int insn_len)
7487 {
7488 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
7489 }
7490 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
7491
7492 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
7493 {
7494 vcpu->arch.pio.count = 0;
7495 return 1;
7496 }
7497
7498 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
7499 {
7500 vcpu->arch.pio.count = 0;
7501
7502 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
7503 return 1;
7504
7505 return kvm_skip_emulated_instruction(vcpu);
7506 }
7507
7508 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
7509 unsigned short port)
7510 {
7511 unsigned long val = kvm_rax_read(vcpu);
7512 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
7513
7514 if (ret)
7515 return ret;
7516
7517 /*
7518 * Workaround userspace that relies on old KVM behavior of %rip being
7519 * incremented prior to exiting to userspace to handle "OUT 0x7e".
7520 */
7521 if (port == 0x7e &&
7522 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
7523 vcpu->arch.complete_userspace_io =
7524 complete_fast_pio_out_port_0x7e;
7525 kvm_skip_emulated_instruction(vcpu);
7526 } else {
7527 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7528 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
7529 }
7530 return 0;
7531 }
7532
7533 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
7534 {
7535 unsigned long val;
7536
7537 /* We should only ever be called with arch.pio.count equal to 1 */
7538 BUG_ON(vcpu->arch.pio.count != 1);
7539
7540 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
7541 vcpu->arch.pio.count = 0;
7542 return 1;
7543 }
7544
7545 /* For size less than 4 we merge, else we zero extend */
7546 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
7547
7548 /*
7549 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
7550 * the copy and tracing
7551 */
7552 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
7553 kvm_rax_write(vcpu, val);
7554
7555 return kvm_skip_emulated_instruction(vcpu);
7556 }
7557
7558 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
7559 unsigned short port)
7560 {
7561 unsigned long val;
7562 int ret;
7563
7564 /* For size less than 4 we merge, else we zero extend */
7565 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
7566
7567 ret = emulator_pio_in(vcpu, size, port, &val, 1);
7568 if (ret) {
7569 kvm_rax_write(vcpu, val);
7570 return ret;
7571 }
7572
7573 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7574 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7575
7576 return 0;
7577 }
7578
7579 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7580 {
7581 int ret;
7582
7583 if (in)
7584 ret = kvm_fast_pio_in(vcpu, size, port);
7585 else
7586 ret = kvm_fast_pio_out(vcpu, size, port);
7587 return ret && kvm_skip_emulated_instruction(vcpu);
7588 }
7589 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7590
7591 static int kvmclock_cpu_down_prep(unsigned int cpu)
7592 {
7593 __this_cpu_write(cpu_tsc_khz, 0);
7594 return 0;
7595 }
7596
7597 static void tsc_khz_changed(void *data)
7598 {
7599 struct cpufreq_freqs *freq = data;
7600 unsigned long khz = 0;
7601
7602 if (data)
7603 khz = freq->new;
7604 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7605 khz = cpufreq_quick_get(raw_smp_processor_id());
7606 if (!khz)
7607 khz = tsc_khz;
7608 __this_cpu_write(cpu_tsc_khz, khz);
7609 }
7610
7611 #ifdef CONFIG_X86_64
7612 static void kvm_hyperv_tsc_notifier(void)
7613 {
7614 struct kvm *kvm;
7615 struct kvm_vcpu *vcpu;
7616 int cpu;
7617
7618 mutex_lock(&kvm_lock);
7619 list_for_each_entry(kvm, &vm_list, vm_list)
7620 kvm_make_mclock_inprogress_request(kvm);
7621
7622 hyperv_stop_tsc_emulation();
7623
7624 /* TSC frequency always matches when on Hyper-V */
7625 for_each_present_cpu(cpu)
7626 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7627 kvm_max_guest_tsc_khz = tsc_khz;
7628
7629 list_for_each_entry(kvm, &vm_list, vm_list) {
7630 struct kvm_arch *ka = &kvm->arch;
7631
7632 spin_lock(&ka->pvclock_gtod_sync_lock);
7633
7634 pvclock_update_vm_gtod_copy(kvm);
7635
7636 kvm_for_each_vcpu(cpu, vcpu, kvm)
7637 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7638
7639 kvm_for_each_vcpu(cpu, vcpu, kvm)
7640 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7641
7642 spin_unlock(&ka->pvclock_gtod_sync_lock);
7643 }
7644 mutex_unlock(&kvm_lock);
7645 }
7646 #endif
7647
7648 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7649 {
7650 struct kvm *kvm;
7651 struct kvm_vcpu *vcpu;
7652 int i, send_ipi = 0;
7653
7654 /*
7655 * We allow guests to temporarily run on slowing clocks,
7656 * provided we notify them after, or to run on accelerating
7657 * clocks, provided we notify them before. Thus time never
7658 * goes backwards.
7659 *
7660 * However, we have a problem. We can't atomically update
7661 * the frequency of a given CPU from this function; it is
7662 * merely a notifier, which can be called from any CPU.
7663 * Changing the TSC frequency at arbitrary points in time
7664 * requires a recomputation of local variables related to
7665 * the TSC for each VCPU. We must flag these local variables
7666 * to be updated and be sure the update takes place with the
7667 * new frequency before any guests proceed.
7668 *
7669 * Unfortunately, the combination of hotplug CPU and frequency
7670 * change creates an intractable locking scenario; the order
7671 * of when these callouts happen is undefined with respect to
7672 * CPU hotplug, and they can race with each other. As such,
7673 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7674 * undefined; you can actually have a CPU frequency change take
7675 * place in between the computation of X and the setting of the
7676 * variable. To protect against this problem, all updates of
7677 * the per_cpu tsc_khz variable are done in an interrupt
7678 * protected IPI, and all callers wishing to update the value
7679 * must wait for a synchronous IPI to complete (which is trivial
7680 * if the caller is on the CPU already). This establishes the
7681 * necessary total order on variable updates.
7682 *
7683 * Note that because a guest time update may take place
7684 * anytime after the setting of the VCPU's request bit, the
7685 * correct TSC value must be set before the request. However,
7686 * to ensure the update actually makes it to any guest which
7687 * starts running in hardware virtualization between the set
7688 * and the acquisition of the spinlock, we must also ping the
7689 * CPU after setting the request bit.
7690 *
7691 */
7692
7693 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7694
7695 mutex_lock(&kvm_lock);
7696 list_for_each_entry(kvm, &vm_list, vm_list) {
7697 kvm_for_each_vcpu(i, vcpu, kvm) {
7698 if (vcpu->cpu != cpu)
7699 continue;
7700 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7701 if (vcpu->cpu != raw_smp_processor_id())
7702 send_ipi = 1;
7703 }
7704 }
7705 mutex_unlock(&kvm_lock);
7706
7707 if (freq->old < freq->new && send_ipi) {
7708 /*
7709 * We upscale the frequency. Must make the guest
7710 * doesn't see old kvmclock values while running with
7711 * the new frequency, otherwise we risk the guest sees
7712 * time go backwards.
7713 *
7714 * In case we update the frequency for another cpu
7715 * (which might be in guest context) send an interrupt
7716 * to kick the cpu out of guest context. Next time
7717 * guest context is entered kvmclock will be updated,
7718 * so the guest will not see stale values.
7719 */
7720 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7721 }
7722 }
7723
7724 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7725 void *data)
7726 {
7727 struct cpufreq_freqs *freq = data;
7728 int cpu;
7729
7730 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7731 return 0;
7732 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7733 return 0;
7734
7735 for_each_cpu(cpu, freq->policy->cpus)
7736 __kvmclock_cpufreq_notifier(freq, cpu);
7737
7738 return 0;
7739 }
7740
7741 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7742 .notifier_call = kvmclock_cpufreq_notifier
7743 };
7744
7745 static int kvmclock_cpu_online(unsigned int cpu)
7746 {
7747 tsc_khz_changed(NULL);
7748 return 0;
7749 }
7750
7751 static void kvm_timer_init(void)
7752 {
7753 max_tsc_khz = tsc_khz;
7754
7755 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7756 #ifdef CONFIG_CPU_FREQ
7757 struct cpufreq_policy *policy;
7758 int cpu;
7759
7760 cpu = get_cpu();
7761 policy = cpufreq_cpu_get(cpu);
7762 if (policy) {
7763 if (policy->cpuinfo.max_freq)
7764 max_tsc_khz = policy->cpuinfo.max_freq;
7765 cpufreq_cpu_put(policy);
7766 }
7767 put_cpu();
7768 #endif
7769 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7770 CPUFREQ_TRANSITION_NOTIFIER);
7771 }
7772
7773 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7774 kvmclock_cpu_online, kvmclock_cpu_down_prep);
7775 }
7776
7777 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7778 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7779
7780 int kvm_is_in_guest(void)
7781 {
7782 return __this_cpu_read(current_vcpu) != NULL;
7783 }
7784
7785 static int kvm_is_user_mode(void)
7786 {
7787 int user_mode = 3;
7788
7789 if (__this_cpu_read(current_vcpu))
7790 user_mode = kvm_x86_ops.get_cpl(__this_cpu_read(current_vcpu));
7791
7792 return user_mode != 0;
7793 }
7794
7795 static unsigned long kvm_get_guest_ip(void)
7796 {
7797 unsigned long ip = 0;
7798
7799 if (__this_cpu_read(current_vcpu))
7800 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7801
7802 return ip;
7803 }
7804
7805 static void kvm_handle_intel_pt_intr(void)
7806 {
7807 struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7808
7809 kvm_make_request(KVM_REQ_PMI, vcpu);
7810 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7811 (unsigned long *)&vcpu->arch.pmu.global_status);
7812 }
7813
7814 static struct perf_guest_info_callbacks kvm_guest_cbs = {
7815 .is_in_guest = kvm_is_in_guest,
7816 .is_user_mode = kvm_is_user_mode,
7817 .get_guest_ip = kvm_get_guest_ip,
7818 .handle_intel_pt_intr = kvm_handle_intel_pt_intr,
7819 };
7820
7821 #ifdef CONFIG_X86_64
7822 static void pvclock_gtod_update_fn(struct work_struct *work)
7823 {
7824 struct kvm *kvm;
7825
7826 struct kvm_vcpu *vcpu;
7827 int i;
7828
7829 mutex_lock(&kvm_lock);
7830 list_for_each_entry(kvm, &vm_list, vm_list)
7831 kvm_for_each_vcpu(i, vcpu, kvm)
7832 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7833 atomic_set(&kvm_guest_has_master_clock, 0);
7834 mutex_unlock(&kvm_lock);
7835 }
7836
7837 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7838
7839 /*
7840 * Notification about pvclock gtod data update.
7841 */
7842 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7843 void *priv)
7844 {
7845 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7846 struct timekeeper *tk = priv;
7847
7848 update_pvclock_gtod(tk);
7849
7850 /* disable master clock if host does not trust, or does not
7851 * use, TSC based clocksource.
7852 */
7853 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7854 atomic_read(&kvm_guest_has_master_clock) != 0)
7855 queue_work(system_long_wq, &pvclock_gtod_work);
7856
7857 return 0;
7858 }
7859
7860 static struct notifier_block pvclock_gtod_notifier = {
7861 .notifier_call = pvclock_gtod_notify,
7862 };
7863 #endif
7864
7865 int kvm_arch_init(void *opaque)
7866 {
7867 struct kvm_x86_init_ops *ops = opaque;
7868 int r;
7869
7870 if (kvm_x86_ops.hardware_enable) {
7871 printk(KERN_ERR "kvm: already loaded the other module\n");
7872 r = -EEXIST;
7873 goto out;
7874 }
7875
7876 if (!ops->cpu_has_kvm_support()) {
7877 pr_err_ratelimited("kvm: no hardware support\n");
7878 r = -EOPNOTSUPP;
7879 goto out;
7880 }
7881 if (ops->disabled_by_bios()) {
7882 pr_err_ratelimited("kvm: disabled by bios\n");
7883 r = -EOPNOTSUPP;
7884 goto out;
7885 }
7886
7887 /*
7888 * KVM explicitly assumes that the guest has an FPU and
7889 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7890 * vCPU's FPU state as a fxregs_state struct.
7891 */
7892 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7893 printk(KERN_ERR "kvm: inadequate fpu\n");
7894 r = -EOPNOTSUPP;
7895 goto out;
7896 }
7897
7898 r = -ENOMEM;
7899 x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7900 __alignof__(struct fpu), SLAB_ACCOUNT,
7901 NULL);
7902 if (!x86_fpu_cache) {
7903 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7904 goto out;
7905 }
7906
7907 x86_emulator_cache = kvm_alloc_emulator_cache();
7908 if (!x86_emulator_cache) {
7909 pr_err("kvm: failed to allocate cache for x86 emulator\n");
7910 goto out_free_x86_fpu_cache;
7911 }
7912
7913 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
7914 if (!user_return_msrs) {
7915 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
7916 goto out_free_x86_emulator_cache;
7917 }
7918
7919 r = kvm_mmu_module_init();
7920 if (r)
7921 goto out_free_percpu;
7922
7923 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7924 PT_DIRTY_MASK, PT64_NX_MASK, 0,
7925 PT_PRESENT_MASK, 0, sme_me_mask);
7926 kvm_timer_init();
7927
7928 perf_register_guest_info_callbacks(&kvm_guest_cbs);
7929
7930 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
7931 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7932 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
7933 }
7934
7935 kvm_lapic_init();
7936 if (pi_inject_timer == -1)
7937 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
7938 #ifdef CONFIG_X86_64
7939 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7940
7941 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7942 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7943 #endif
7944
7945 return 0;
7946
7947 out_free_percpu:
7948 free_percpu(user_return_msrs);
7949 out_free_x86_emulator_cache:
7950 kmem_cache_destroy(x86_emulator_cache);
7951 out_free_x86_fpu_cache:
7952 kmem_cache_destroy(x86_fpu_cache);
7953 out:
7954 return r;
7955 }
7956
7957 void kvm_arch_exit(void)
7958 {
7959 #ifdef CONFIG_X86_64
7960 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7961 clear_hv_tscchange_cb();
7962 #endif
7963 kvm_lapic_exit();
7964 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7965
7966 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7967 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7968 CPUFREQ_TRANSITION_NOTIFIER);
7969 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7970 #ifdef CONFIG_X86_64
7971 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7972 #endif
7973 kvm_x86_ops.hardware_enable = NULL;
7974 kvm_mmu_module_exit();
7975 free_percpu(user_return_msrs);
7976 kmem_cache_destroy(x86_fpu_cache);
7977 }
7978
7979 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7980 {
7981 ++vcpu->stat.halt_exits;
7982 if (lapic_in_kernel(vcpu)) {
7983 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7984 return 1;
7985 } else {
7986 vcpu->run->exit_reason = KVM_EXIT_HLT;
7987 return 0;
7988 }
7989 }
7990 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7991
7992 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7993 {
7994 int ret = kvm_skip_emulated_instruction(vcpu);
7995 /*
7996 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7997 * KVM_EXIT_DEBUG here.
7998 */
7999 return kvm_vcpu_halt(vcpu) && ret;
8000 }
8001 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8002
8003 #ifdef CONFIG_X86_64
8004 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8005 unsigned long clock_type)
8006 {
8007 struct kvm_clock_pairing clock_pairing;
8008 struct timespec64 ts;
8009 u64 cycle;
8010 int ret;
8011
8012 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8013 return -KVM_EOPNOTSUPP;
8014
8015 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
8016 return -KVM_EOPNOTSUPP;
8017
8018 clock_pairing.sec = ts.tv_sec;
8019 clock_pairing.nsec = ts.tv_nsec;
8020 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8021 clock_pairing.flags = 0;
8022 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8023
8024 ret = 0;
8025 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8026 sizeof(struct kvm_clock_pairing)))
8027 ret = -KVM_EFAULT;
8028
8029 return ret;
8030 }
8031 #endif
8032
8033 /*
8034 * kvm_pv_kick_cpu_op: Kick a vcpu.
8035 *
8036 * @apicid - apicid of vcpu to be kicked.
8037 */
8038 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8039 {
8040 struct kvm_lapic_irq lapic_irq;
8041
8042 lapic_irq.shorthand = APIC_DEST_NOSHORT;
8043 lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8044 lapic_irq.level = 0;
8045 lapic_irq.dest_id = apicid;
8046 lapic_irq.msi_redir_hint = false;
8047
8048 lapic_irq.delivery_mode = APIC_DM_REMRD;
8049 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8050 }
8051
8052 bool kvm_apicv_activated(struct kvm *kvm)
8053 {
8054 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8055 }
8056 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8057
8058 void kvm_apicv_init(struct kvm *kvm, bool enable)
8059 {
8060 if (enable)
8061 clear_bit(APICV_INHIBIT_REASON_DISABLE,
8062 &kvm->arch.apicv_inhibit_reasons);
8063 else
8064 set_bit(APICV_INHIBIT_REASON_DISABLE,
8065 &kvm->arch.apicv_inhibit_reasons);
8066 }
8067 EXPORT_SYMBOL_GPL(kvm_apicv_init);
8068
8069 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
8070 {
8071 struct kvm_vcpu *target = NULL;
8072 struct kvm_apic_map *map;
8073
8074 rcu_read_lock();
8075 map = rcu_dereference(kvm->arch.apic_map);
8076
8077 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8078 target = map->phys_map[dest_id]->vcpu;
8079
8080 rcu_read_unlock();
8081
8082 if (target && READ_ONCE(target->ready))
8083 kvm_vcpu_yield_to(target);
8084 }
8085
8086 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8087 {
8088 unsigned long nr, a0, a1, a2, a3, ret;
8089 int op_64_bit;
8090
8091 if (kvm_hv_hypercall_enabled(vcpu->kvm))
8092 return kvm_hv_hypercall(vcpu);
8093
8094 nr = kvm_rax_read(vcpu);
8095 a0 = kvm_rbx_read(vcpu);
8096 a1 = kvm_rcx_read(vcpu);
8097 a2 = kvm_rdx_read(vcpu);
8098 a3 = kvm_rsi_read(vcpu);
8099
8100 trace_kvm_hypercall(nr, a0, a1, a2, a3);
8101
8102 op_64_bit = is_64_bit_mode(vcpu);
8103 if (!op_64_bit) {
8104 nr &= 0xFFFFFFFF;
8105 a0 &= 0xFFFFFFFF;
8106 a1 &= 0xFFFFFFFF;
8107 a2 &= 0xFFFFFFFF;
8108 a3 &= 0xFFFFFFFF;
8109 }
8110
8111 if (kvm_x86_ops.get_cpl(vcpu) != 0) {
8112 ret = -KVM_EPERM;
8113 goto out;
8114 }
8115
8116 ret = -KVM_ENOSYS;
8117
8118 switch (nr) {
8119 case KVM_HC_VAPIC_POLL_IRQ:
8120 ret = 0;
8121 break;
8122 case KVM_HC_KICK_CPU:
8123 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8124 break;
8125
8126 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8127 kvm_sched_yield(vcpu->kvm, a1);
8128 ret = 0;
8129 break;
8130 #ifdef CONFIG_X86_64
8131 case KVM_HC_CLOCK_PAIRING:
8132 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8133 break;
8134 #endif
8135 case KVM_HC_SEND_IPI:
8136 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8137 break;
8138
8139 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8140 break;
8141 case KVM_HC_SCHED_YIELD:
8142 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8143 break;
8144
8145 kvm_sched_yield(vcpu->kvm, a0);
8146 ret = 0;
8147 break;
8148 default:
8149 ret = -KVM_ENOSYS;
8150 break;
8151 }
8152 out:
8153 if (!op_64_bit)
8154 ret = (u32)ret;
8155 kvm_rax_write(vcpu, ret);
8156
8157 ++vcpu->stat.hypercalls;
8158 return kvm_skip_emulated_instruction(vcpu);
8159 }
8160 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8161
8162 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8163 {
8164 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8165 char instruction[3];
8166 unsigned long rip = kvm_rip_read(vcpu);
8167
8168 kvm_x86_ops.patch_hypercall(vcpu, instruction);
8169
8170 return emulator_write_emulated(ctxt, rip, instruction, 3,
8171 &ctxt->exception);
8172 }
8173
8174 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8175 {
8176 return vcpu->run->request_interrupt_window &&
8177 likely(!pic_in_kernel(vcpu->kvm));
8178 }
8179
8180 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8181 {
8182 struct kvm_run *kvm_run = vcpu->run;
8183
8184 /*
8185 * if_flag is obsolete and useless, so do not bother
8186 * setting it for SEV-ES guests. Userspace can just
8187 * use kvm_run->ready_for_interrupt_injection.
8188 */
8189 kvm_run->if_flag = !vcpu->arch.guest_state_protected
8190 && (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
8191
8192 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
8193 kvm_run->cr8 = kvm_get_cr8(vcpu);
8194 kvm_run->apic_base = kvm_get_apic_base(vcpu);
8195 kvm_run->ready_for_interrupt_injection =
8196 pic_in_kernel(vcpu->kvm) ||
8197 kvm_vcpu_ready_for_interrupt_injection(vcpu);
8198 }
8199
8200 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8201 {
8202 int max_irr, tpr;
8203
8204 if (!kvm_x86_ops.update_cr8_intercept)
8205 return;
8206
8207 if (!lapic_in_kernel(vcpu))
8208 return;
8209
8210 if (vcpu->arch.apicv_active)
8211 return;
8212
8213 if (!vcpu->arch.apic->vapic_addr)
8214 max_irr = kvm_lapic_find_highest_irr(vcpu);
8215 else
8216 max_irr = -1;
8217
8218 if (max_irr != -1)
8219 max_irr >>= 4;
8220
8221 tpr = kvm_lapic_get_cr8(vcpu);
8222
8223 kvm_x86_ops.update_cr8_intercept(vcpu, tpr, max_irr);
8224 }
8225
8226 static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
8227 {
8228 int r;
8229 bool can_inject = true;
8230
8231 /* try to reinject previous events if any */
8232
8233 if (vcpu->arch.exception.injected) {
8234 kvm_x86_ops.queue_exception(vcpu);
8235 can_inject = false;
8236 }
8237 /*
8238 * Do not inject an NMI or interrupt if there is a pending
8239 * exception. Exceptions and interrupts are recognized at
8240 * instruction boundaries, i.e. the start of an instruction.
8241 * Trap-like exceptions, e.g. #DB, have higher priority than
8242 * NMIs and interrupts, i.e. traps are recognized before an
8243 * NMI/interrupt that's pending on the same instruction.
8244 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
8245 * priority, but are only generated (pended) during instruction
8246 * execution, i.e. a pending fault-like exception means the
8247 * fault occurred on the *previous* instruction and must be
8248 * serviced prior to recognizing any new events in order to
8249 * fully complete the previous instruction.
8250 */
8251 else if (!vcpu->arch.exception.pending) {
8252 if (vcpu->arch.nmi_injected) {
8253 kvm_x86_ops.set_nmi(vcpu);
8254 can_inject = false;
8255 } else if (vcpu->arch.interrupt.injected) {
8256 kvm_x86_ops.set_irq(vcpu);
8257 can_inject = false;
8258 }
8259 }
8260
8261 WARN_ON_ONCE(vcpu->arch.exception.injected &&
8262 vcpu->arch.exception.pending);
8263
8264 /*
8265 * Call check_nested_events() even if we reinjected a previous event
8266 * in order for caller to determine if it should require immediate-exit
8267 * from L2 to L1 due to pending L1 events which require exit
8268 * from L2 to L1.
8269 */
8270 if (is_guest_mode(vcpu)) {
8271 r = kvm_x86_ops.nested_ops->check_events(vcpu);
8272 if (r < 0)
8273 goto busy;
8274 }
8275
8276 /* try to inject new event if pending */
8277 if (vcpu->arch.exception.pending) {
8278 trace_kvm_inj_exception(vcpu->arch.exception.nr,
8279 vcpu->arch.exception.has_error_code,
8280 vcpu->arch.exception.error_code);
8281
8282 vcpu->arch.exception.pending = false;
8283 vcpu->arch.exception.injected = true;
8284
8285 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
8286 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
8287 X86_EFLAGS_RF);
8288
8289 if (vcpu->arch.exception.nr == DB_VECTOR) {
8290 kvm_deliver_exception_payload(vcpu);
8291 if (vcpu->arch.dr7 & DR7_GD) {
8292 vcpu->arch.dr7 &= ~DR7_GD;
8293 kvm_update_dr7(vcpu);
8294 }
8295 }
8296
8297 kvm_x86_ops.queue_exception(vcpu);
8298 can_inject = false;
8299 }
8300
8301 /*
8302 * Finally, inject interrupt events. If an event cannot be injected
8303 * due to architectural conditions (e.g. IF=0) a window-open exit
8304 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
8305 * and can architecturally be injected, but we cannot do it right now:
8306 * an interrupt could have arrived just now and we have to inject it
8307 * as a vmexit, or there could already an event in the queue, which is
8308 * indicated by can_inject. In that case we request an immediate exit
8309 * in order to make progress and get back here for another iteration.
8310 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
8311 */
8312 if (vcpu->arch.smi_pending) {
8313 r = can_inject ? kvm_x86_ops.smi_allowed(vcpu, true) : -EBUSY;
8314 if (r < 0)
8315 goto busy;
8316 if (r) {
8317 vcpu->arch.smi_pending = false;
8318 ++vcpu->arch.smi_count;
8319 enter_smm(vcpu);
8320 can_inject = false;
8321 } else
8322 kvm_x86_ops.enable_smi_window(vcpu);
8323 }
8324
8325 if (vcpu->arch.nmi_pending) {
8326 r = can_inject ? kvm_x86_ops.nmi_allowed(vcpu, true) : -EBUSY;
8327 if (r < 0)
8328 goto busy;
8329 if (r) {
8330 --vcpu->arch.nmi_pending;
8331 vcpu->arch.nmi_injected = true;
8332 kvm_x86_ops.set_nmi(vcpu);
8333 can_inject = false;
8334 WARN_ON(kvm_x86_ops.nmi_allowed(vcpu, true) < 0);
8335 }
8336 if (vcpu->arch.nmi_pending)
8337 kvm_x86_ops.enable_nmi_window(vcpu);
8338 }
8339
8340 if (kvm_cpu_has_injectable_intr(vcpu)) {
8341 r = can_inject ? kvm_x86_ops.interrupt_allowed(vcpu, true) : -EBUSY;
8342 if (r < 0)
8343 goto busy;
8344 if (r) {
8345 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
8346 kvm_x86_ops.set_irq(vcpu);
8347 WARN_ON(kvm_x86_ops.interrupt_allowed(vcpu, true) < 0);
8348 }
8349 if (kvm_cpu_has_injectable_intr(vcpu))
8350 kvm_x86_ops.enable_irq_window(vcpu);
8351 }
8352
8353 if (is_guest_mode(vcpu) &&
8354 kvm_x86_ops.nested_ops->hv_timer_pending &&
8355 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
8356 *req_immediate_exit = true;
8357
8358 WARN_ON(vcpu->arch.exception.pending);
8359 return;
8360
8361 busy:
8362 *req_immediate_exit = true;
8363 return;
8364 }
8365
8366 static void process_nmi(struct kvm_vcpu *vcpu)
8367 {
8368 unsigned limit = 2;
8369
8370 /*
8371 * x86 is limited to one NMI running, and one NMI pending after it.
8372 * If an NMI is already in progress, limit further NMIs to just one.
8373 * Otherwise, allow two (and we'll inject the first one immediately).
8374 */
8375 if (kvm_x86_ops.get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
8376 limit = 1;
8377
8378 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
8379 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
8380 kvm_make_request(KVM_REQ_EVENT, vcpu);
8381 }
8382
8383 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
8384 {
8385 u32 flags = 0;
8386 flags |= seg->g << 23;
8387 flags |= seg->db << 22;
8388 flags |= seg->l << 21;
8389 flags |= seg->avl << 20;
8390 flags |= seg->present << 15;
8391 flags |= seg->dpl << 13;
8392 flags |= seg->s << 12;
8393 flags |= seg->type << 8;
8394 return flags;
8395 }
8396
8397 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
8398 {
8399 struct kvm_segment seg;
8400 int offset;
8401
8402 kvm_get_segment(vcpu, &seg, n);
8403 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
8404
8405 if (n < 3)
8406 offset = 0x7f84 + n * 12;
8407 else
8408 offset = 0x7f2c + (n - 3) * 12;
8409
8410 put_smstate(u32, buf, offset + 8, seg.base);
8411 put_smstate(u32, buf, offset + 4, seg.limit);
8412 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
8413 }
8414
8415 #ifdef CONFIG_X86_64
8416 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
8417 {
8418 struct kvm_segment seg;
8419 int offset;
8420 u16 flags;
8421
8422 kvm_get_segment(vcpu, &seg, n);
8423 offset = 0x7e00 + n * 16;
8424
8425 flags = enter_smm_get_segment_flags(&seg) >> 8;
8426 put_smstate(u16, buf, offset, seg.selector);
8427 put_smstate(u16, buf, offset + 2, flags);
8428 put_smstate(u32, buf, offset + 4, seg.limit);
8429 put_smstate(u64, buf, offset + 8, seg.base);
8430 }
8431 #endif
8432
8433 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
8434 {
8435 struct desc_ptr dt;
8436 struct kvm_segment seg;
8437 unsigned long val;
8438 int i;
8439
8440 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
8441 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
8442 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
8443 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
8444
8445 for (i = 0; i < 8; i++)
8446 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
8447
8448 kvm_get_dr(vcpu, 6, &val);
8449 put_smstate(u32, buf, 0x7fcc, (u32)val);
8450 kvm_get_dr(vcpu, 7, &val);
8451 put_smstate(u32, buf, 0x7fc8, (u32)val);
8452
8453 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8454 put_smstate(u32, buf, 0x7fc4, seg.selector);
8455 put_smstate(u32, buf, 0x7f64, seg.base);
8456 put_smstate(u32, buf, 0x7f60, seg.limit);
8457 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
8458
8459 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8460 put_smstate(u32, buf, 0x7fc0, seg.selector);
8461 put_smstate(u32, buf, 0x7f80, seg.base);
8462 put_smstate(u32, buf, 0x7f7c, seg.limit);
8463 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
8464
8465 kvm_x86_ops.get_gdt(vcpu, &dt);
8466 put_smstate(u32, buf, 0x7f74, dt.address);
8467 put_smstate(u32, buf, 0x7f70, dt.size);
8468
8469 kvm_x86_ops.get_idt(vcpu, &dt);
8470 put_smstate(u32, buf, 0x7f58, dt.address);
8471 put_smstate(u32, buf, 0x7f54, dt.size);
8472
8473 for (i = 0; i < 6; i++)
8474 enter_smm_save_seg_32(vcpu, buf, i);
8475
8476 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
8477
8478 /* revision id */
8479 put_smstate(u32, buf, 0x7efc, 0x00020000);
8480 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
8481 }
8482
8483 #ifdef CONFIG_X86_64
8484 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
8485 {
8486 struct desc_ptr dt;
8487 struct kvm_segment seg;
8488 unsigned long val;
8489 int i;
8490
8491 for (i = 0; i < 16; i++)
8492 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
8493
8494 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
8495 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
8496
8497 kvm_get_dr(vcpu, 6, &val);
8498 put_smstate(u64, buf, 0x7f68, val);
8499 kvm_get_dr(vcpu, 7, &val);
8500 put_smstate(u64, buf, 0x7f60, val);
8501
8502 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
8503 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
8504 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
8505
8506 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
8507
8508 /* revision id */
8509 put_smstate(u32, buf, 0x7efc, 0x00020064);
8510
8511 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
8512
8513 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8514 put_smstate(u16, buf, 0x7e90, seg.selector);
8515 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
8516 put_smstate(u32, buf, 0x7e94, seg.limit);
8517 put_smstate(u64, buf, 0x7e98, seg.base);
8518
8519 kvm_x86_ops.get_idt(vcpu, &dt);
8520 put_smstate(u32, buf, 0x7e84, dt.size);
8521 put_smstate(u64, buf, 0x7e88, dt.address);
8522
8523 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8524 put_smstate(u16, buf, 0x7e70, seg.selector);
8525 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
8526 put_smstate(u32, buf, 0x7e74, seg.limit);
8527 put_smstate(u64, buf, 0x7e78, seg.base);
8528
8529 kvm_x86_ops.get_gdt(vcpu, &dt);
8530 put_smstate(u32, buf, 0x7e64, dt.size);
8531 put_smstate(u64, buf, 0x7e68, dt.address);
8532
8533 for (i = 0; i < 6; i++)
8534 enter_smm_save_seg_64(vcpu, buf, i);
8535 }
8536 #endif
8537
8538 static void enter_smm(struct kvm_vcpu *vcpu)
8539 {
8540 struct kvm_segment cs, ds;
8541 struct desc_ptr dt;
8542 char buf[512];
8543 u32 cr0;
8544
8545 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
8546 memset(buf, 0, 512);
8547 #ifdef CONFIG_X86_64
8548 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8549 enter_smm_save_state_64(vcpu, buf);
8550 else
8551 #endif
8552 enter_smm_save_state_32(vcpu, buf);
8553
8554 /*
8555 * Give pre_enter_smm() a chance to make ISA-specific changes to the
8556 * vCPU state (e.g. leave guest mode) after we've saved the state into
8557 * the SMM state-save area.
8558 */
8559 kvm_x86_ops.pre_enter_smm(vcpu, buf);
8560
8561 vcpu->arch.hflags |= HF_SMM_MASK;
8562 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
8563
8564 if (kvm_x86_ops.get_nmi_mask(vcpu))
8565 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
8566 else
8567 kvm_x86_ops.set_nmi_mask(vcpu, true);
8568
8569 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
8570 kvm_rip_write(vcpu, 0x8000);
8571
8572 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
8573 kvm_x86_ops.set_cr0(vcpu, cr0);
8574 vcpu->arch.cr0 = cr0;
8575
8576 kvm_x86_ops.set_cr4(vcpu, 0);
8577
8578 /* Undocumented: IDT limit is set to zero on entry to SMM. */
8579 dt.address = dt.size = 0;
8580 kvm_x86_ops.set_idt(vcpu, &dt);
8581
8582 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
8583
8584 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
8585 cs.base = vcpu->arch.smbase;
8586
8587 ds.selector = 0;
8588 ds.base = 0;
8589
8590 cs.limit = ds.limit = 0xffffffff;
8591 cs.type = ds.type = 0x3;
8592 cs.dpl = ds.dpl = 0;
8593 cs.db = ds.db = 0;
8594 cs.s = ds.s = 1;
8595 cs.l = ds.l = 0;
8596 cs.g = ds.g = 1;
8597 cs.avl = ds.avl = 0;
8598 cs.present = ds.present = 1;
8599 cs.unusable = ds.unusable = 0;
8600 cs.padding = ds.padding = 0;
8601
8602 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8603 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
8604 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
8605 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
8606 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
8607 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
8608
8609 #ifdef CONFIG_X86_64
8610 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8611 kvm_x86_ops.set_efer(vcpu, 0);
8612 #endif
8613
8614 kvm_update_cpuid_runtime(vcpu);
8615 kvm_mmu_reset_context(vcpu);
8616 }
8617
8618 static void process_smi(struct kvm_vcpu *vcpu)
8619 {
8620 vcpu->arch.smi_pending = true;
8621 kvm_make_request(KVM_REQ_EVENT, vcpu);
8622 }
8623
8624 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
8625 unsigned long *vcpu_bitmap)
8626 {
8627 cpumask_var_t cpus;
8628
8629 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
8630
8631 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
8632 NULL, vcpu_bitmap, cpus);
8633
8634 free_cpumask_var(cpus);
8635 }
8636
8637 void kvm_make_scan_ioapic_request(struct kvm *kvm)
8638 {
8639 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8640 }
8641
8642 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8643 {
8644 if (!lapic_in_kernel(vcpu))
8645 return;
8646
8647 vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
8648 kvm_apic_update_apicv(vcpu);
8649 kvm_x86_ops.refresh_apicv_exec_ctrl(vcpu);
8650 }
8651 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
8652
8653 /*
8654 * NOTE: Do not hold any lock prior to calling this.
8655 *
8656 * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
8657 * locked, because it calls __x86_set_memory_region() which does
8658 * synchronize_srcu(&kvm->srcu).
8659 */
8660 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
8661 {
8662 struct kvm_vcpu *except;
8663 unsigned long old, new, expected;
8664
8665 if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
8666 !kvm_x86_ops.check_apicv_inhibit_reasons(bit))
8667 return;
8668
8669 old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
8670 do {
8671 expected = new = old;
8672 if (activate)
8673 __clear_bit(bit, &new);
8674 else
8675 __set_bit(bit, &new);
8676 if (new == old)
8677 break;
8678 old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
8679 } while (old != expected);
8680
8681 if (!!old == !!new)
8682 return;
8683
8684 trace_kvm_apicv_update_request(activate, bit);
8685 if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
8686 kvm_x86_ops.pre_update_apicv_exec_ctrl(kvm, activate);
8687
8688 /*
8689 * Sending request to update APICV for all other vcpus,
8690 * while update the calling vcpu immediately instead of
8691 * waiting for another #VMEXIT to handle the request.
8692 */
8693 except = kvm_get_running_vcpu();
8694 kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE,
8695 except);
8696 if (except)
8697 kvm_vcpu_update_apicv(except);
8698 }
8699 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
8700
8701 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
8702 {
8703 if (!kvm_apic_present(vcpu))
8704 return;
8705
8706 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
8707
8708 if (irqchip_split(vcpu->kvm))
8709 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
8710 else {
8711 if (vcpu->arch.apicv_active)
8712 kvm_x86_ops.sync_pir_to_irr(vcpu);
8713 if (ioapic_in_kernel(vcpu->kvm))
8714 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
8715 }
8716
8717 if (is_guest_mode(vcpu))
8718 vcpu->arch.load_eoi_exitmap_pending = true;
8719 else
8720 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
8721 }
8722
8723 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8724 {
8725 u64 eoi_exit_bitmap[4];
8726
8727 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
8728 return;
8729
8730 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
8731 vcpu_to_synic(vcpu)->vec_bitmap, 256);
8732 kvm_x86_ops.load_eoi_exitmap(vcpu, eoi_exit_bitmap);
8733 }
8734
8735 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
8736 unsigned long start, unsigned long end)
8737 {
8738 unsigned long apic_address;
8739
8740 /*
8741 * The physical address of apic access page is stored in the VMCS.
8742 * Update it when it becomes invalid.
8743 */
8744 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8745 if (start <= apic_address && apic_address < end)
8746 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
8747 }
8748
8749 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
8750 {
8751 if (!lapic_in_kernel(vcpu))
8752 return;
8753
8754 if (!kvm_x86_ops.set_apic_access_page_addr)
8755 return;
8756
8757 kvm_x86_ops.set_apic_access_page_addr(vcpu);
8758 }
8759
8760 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
8761 {
8762 smp_send_reschedule(vcpu->cpu);
8763 }
8764 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
8765
8766 /*
8767 * Returns 1 to let vcpu_run() continue the guest execution loop without
8768 * exiting to the userspace. Otherwise, the value will be returned to the
8769 * userspace.
8770 */
8771 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
8772 {
8773 int r;
8774 bool req_int_win =
8775 dm_request_for_irq_injection(vcpu) &&
8776 kvm_cpu_accept_dm_intr(vcpu);
8777 fastpath_t exit_fastpath;
8778
8779 bool req_immediate_exit = false;
8780
8781 /* Forbid vmenter if vcpu dirty ring is soft-full */
8782 if (unlikely(vcpu->kvm->dirty_ring_size &&
8783 kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
8784 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
8785 trace_kvm_dirty_ring_exit(vcpu);
8786 r = 0;
8787 goto out;
8788 }
8789
8790 if (kvm_request_pending(vcpu)) {
8791 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
8792 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
8793 r = 0;
8794 goto out;
8795 }
8796 }
8797 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
8798 kvm_mmu_unload(vcpu);
8799 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
8800 __kvm_migrate_timers(vcpu);
8801 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
8802 kvm_gen_update_masterclock(vcpu->kvm);
8803 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
8804 kvm_gen_kvmclock_update(vcpu);
8805 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
8806 r = kvm_guest_time_update(vcpu);
8807 if (unlikely(r))
8808 goto out;
8809 }
8810 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
8811 kvm_mmu_sync_roots(vcpu);
8812 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
8813 kvm_mmu_load_pgd(vcpu);
8814 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
8815 kvm_vcpu_flush_tlb_all(vcpu);
8816
8817 /* Flushing all ASIDs flushes the current ASID... */
8818 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
8819 }
8820 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
8821 kvm_vcpu_flush_tlb_current(vcpu);
8822 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu))
8823 kvm_vcpu_flush_tlb_guest(vcpu);
8824
8825 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
8826 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
8827 r = 0;
8828 goto out;
8829 }
8830 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8831 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
8832 vcpu->mmio_needed = 0;
8833 r = 0;
8834 goto out;
8835 }
8836 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
8837 /* Page is swapped out. Do synthetic halt */
8838 vcpu->arch.apf.halted = true;
8839 r = 1;
8840 goto out;
8841 }
8842 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
8843 record_steal_time(vcpu);
8844 if (kvm_check_request(KVM_REQ_SMI, vcpu))
8845 process_smi(vcpu);
8846 if (kvm_check_request(KVM_REQ_NMI, vcpu))
8847 process_nmi(vcpu);
8848 if (kvm_check_request(KVM_REQ_PMU, vcpu))
8849 kvm_pmu_handle_event(vcpu);
8850 if (kvm_check_request(KVM_REQ_PMI, vcpu))
8851 kvm_pmu_deliver_pmi(vcpu);
8852 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
8853 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
8854 if (test_bit(vcpu->arch.pending_ioapic_eoi,
8855 vcpu->arch.ioapic_handled_vectors)) {
8856 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
8857 vcpu->run->eoi.vector =
8858 vcpu->arch.pending_ioapic_eoi;
8859 r = 0;
8860 goto out;
8861 }
8862 }
8863 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
8864 vcpu_scan_ioapic(vcpu);
8865 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
8866 vcpu_load_eoi_exitmap(vcpu);
8867 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
8868 kvm_vcpu_reload_apic_access_page(vcpu);
8869 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
8870 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8871 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
8872 r = 0;
8873 goto out;
8874 }
8875 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
8876 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8877 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
8878 r = 0;
8879 goto out;
8880 }
8881 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
8882 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
8883 vcpu->run->hyperv = vcpu->arch.hyperv.exit;
8884 r = 0;
8885 goto out;
8886 }
8887
8888 /*
8889 * KVM_REQ_HV_STIMER has to be processed after
8890 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
8891 * depend on the guest clock being up-to-date
8892 */
8893 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
8894 kvm_hv_process_stimers(vcpu);
8895 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
8896 kvm_vcpu_update_apicv(vcpu);
8897 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
8898 kvm_check_async_pf_completion(vcpu);
8899 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
8900 kvm_x86_ops.msr_filter_changed(vcpu);
8901 }
8902
8903 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
8904 ++vcpu->stat.req_event;
8905 kvm_apic_accept_events(vcpu);
8906 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
8907 r = 1;
8908 goto out;
8909 }
8910
8911 inject_pending_event(vcpu, &req_immediate_exit);
8912 if (req_int_win)
8913 kvm_x86_ops.enable_irq_window(vcpu);
8914
8915 if (kvm_lapic_enabled(vcpu)) {
8916 update_cr8_intercept(vcpu);
8917 kvm_lapic_sync_to_vapic(vcpu);
8918 }
8919 }
8920
8921 r = kvm_mmu_reload(vcpu);
8922 if (unlikely(r)) {
8923 goto cancel_injection;
8924 }
8925
8926 preempt_disable();
8927
8928 kvm_x86_ops.prepare_guest_switch(vcpu);
8929
8930 /*
8931 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
8932 * IPI are then delayed after guest entry, which ensures that they
8933 * result in virtual interrupt delivery.
8934 */
8935 local_irq_disable();
8936 vcpu->mode = IN_GUEST_MODE;
8937
8938 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8939
8940 /*
8941 * 1) We should set ->mode before checking ->requests. Please see
8942 * the comment in kvm_vcpu_exiting_guest_mode().
8943 *
8944 * 2) For APICv, we should set ->mode before checking PID.ON. This
8945 * pairs with the memory barrier implicit in pi_test_and_set_on
8946 * (see vmx_deliver_posted_interrupt).
8947 *
8948 * 3) This also orders the write to mode from any reads to the page
8949 * tables done while the VCPU is running. Please see the comment
8950 * in kvm_flush_remote_tlbs.
8951 */
8952 smp_mb__after_srcu_read_unlock();
8953
8954 /*
8955 * This handles the case where a posted interrupt was
8956 * notified with kvm_vcpu_kick.
8957 */
8958 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
8959 kvm_x86_ops.sync_pir_to_irr(vcpu);
8960
8961 if (kvm_vcpu_exit_request(vcpu)) {
8962 vcpu->mode = OUTSIDE_GUEST_MODE;
8963 smp_wmb();
8964 local_irq_enable();
8965 preempt_enable();
8966 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8967 r = 1;
8968 goto cancel_injection;
8969 }
8970
8971 if (req_immediate_exit) {
8972 kvm_make_request(KVM_REQ_EVENT, vcpu);
8973 kvm_x86_ops.request_immediate_exit(vcpu);
8974 }
8975
8976 trace_kvm_entry(vcpu);
8977
8978 fpregs_assert_state_consistent();
8979 if (test_thread_flag(TIF_NEED_FPU_LOAD))
8980 switch_fpu_return();
8981
8982 if (unlikely(vcpu->arch.switch_db_regs)) {
8983 set_debugreg(0, 7);
8984 set_debugreg(vcpu->arch.eff_db[0], 0);
8985 set_debugreg(vcpu->arch.eff_db[1], 1);
8986 set_debugreg(vcpu->arch.eff_db[2], 2);
8987 set_debugreg(vcpu->arch.eff_db[3], 3);
8988 set_debugreg(vcpu->arch.dr6, 6);
8989 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8990 }
8991
8992 exit_fastpath = kvm_x86_ops.run(vcpu);
8993
8994 /*
8995 * Do this here before restoring debug registers on the host. And
8996 * since we do this before handling the vmexit, a DR access vmexit
8997 * can (a) read the correct value of the debug registers, (b) set
8998 * KVM_DEBUGREG_WONT_EXIT again.
8999 */
9000 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
9001 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
9002 kvm_x86_ops.sync_dirty_debug_regs(vcpu);
9003 kvm_update_dr0123(vcpu);
9004 kvm_update_dr7(vcpu);
9005 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9006 }
9007
9008 /*
9009 * If the guest has used debug registers, at least dr7
9010 * will be disabled while returning to the host.
9011 * If we don't have active breakpoints in the host, we don't
9012 * care about the messed up debug address registers. But if
9013 * we have some of them active, restore the old state.
9014 */
9015 if (hw_breakpoint_active())
9016 hw_breakpoint_restore();
9017
9018 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
9019 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
9020
9021 vcpu->mode = OUTSIDE_GUEST_MODE;
9022 smp_wmb();
9023
9024 kvm_x86_ops.handle_exit_irqoff(vcpu);
9025
9026 /*
9027 * Consume any pending interrupts, including the possible source of
9028 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
9029 * An instruction is required after local_irq_enable() to fully unblock
9030 * interrupts on processors that implement an interrupt shadow, the
9031 * stat.exits increment will do nicely.
9032 */
9033 kvm_before_interrupt(vcpu);
9034 local_irq_enable();
9035 ++vcpu->stat.exits;
9036 local_irq_disable();
9037 kvm_after_interrupt(vcpu);
9038
9039 if (lapic_in_kernel(vcpu)) {
9040 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9041 if (delta != S64_MIN) {
9042 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9043 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9044 }
9045 }
9046
9047 local_irq_enable();
9048 preempt_enable();
9049
9050 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9051
9052 /*
9053 * Profile KVM exit RIPs:
9054 */
9055 if (unlikely(prof_on == KVM_PROFILING)) {
9056 unsigned long rip = kvm_rip_read(vcpu);
9057 profile_hit(KVM_PROFILING, (void *)rip);
9058 }
9059
9060 if (unlikely(vcpu->arch.tsc_always_catchup))
9061 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9062
9063 if (vcpu->arch.apic_attention)
9064 kvm_lapic_sync_from_vapic(vcpu);
9065
9066 r = kvm_x86_ops.handle_exit(vcpu, exit_fastpath);
9067 return r;
9068
9069 cancel_injection:
9070 if (req_immediate_exit)
9071 kvm_make_request(KVM_REQ_EVENT, vcpu);
9072 kvm_x86_ops.cancel_injection(vcpu);
9073 if (unlikely(vcpu->arch.apic_attention))
9074 kvm_lapic_sync_from_vapic(vcpu);
9075 out:
9076 return r;
9077 }
9078
9079 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9080 {
9081 if (!kvm_arch_vcpu_runnable(vcpu) &&
9082 (!kvm_x86_ops.pre_block || kvm_x86_ops.pre_block(vcpu) == 0)) {
9083 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9084 kvm_vcpu_block(vcpu);
9085 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9086
9087 if (kvm_x86_ops.post_block)
9088 kvm_x86_ops.post_block(vcpu);
9089
9090 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9091 return 1;
9092 }
9093
9094 kvm_apic_accept_events(vcpu);
9095 switch(vcpu->arch.mp_state) {
9096 case KVM_MP_STATE_HALTED:
9097 vcpu->arch.pv.pv_unhalted = false;
9098 vcpu->arch.mp_state =
9099 KVM_MP_STATE_RUNNABLE;
9100 fallthrough;
9101 case KVM_MP_STATE_RUNNABLE:
9102 vcpu->arch.apf.halted = false;
9103 break;
9104 case KVM_MP_STATE_INIT_RECEIVED:
9105 break;
9106 default:
9107 return -EINTR;
9108 }
9109 return 1;
9110 }
9111
9112 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9113 {
9114 if (is_guest_mode(vcpu))
9115 kvm_x86_ops.nested_ops->check_events(vcpu);
9116
9117 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9118 !vcpu->arch.apf.halted);
9119 }
9120
9121 static int vcpu_run(struct kvm_vcpu *vcpu)
9122 {
9123 int r;
9124 struct kvm *kvm = vcpu->kvm;
9125
9126 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9127 vcpu->arch.l1tf_flush_l1d = true;
9128
9129 for (;;) {
9130 if (kvm_vcpu_running(vcpu)) {
9131 r = vcpu_enter_guest(vcpu);
9132 } else {
9133 r = vcpu_block(kvm, vcpu);
9134 }
9135
9136 if (r <= 0)
9137 break;
9138
9139 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
9140 if (kvm_cpu_has_pending_timer(vcpu))
9141 kvm_inject_pending_timer_irqs(vcpu);
9142
9143 if (dm_request_for_irq_injection(vcpu) &&
9144 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
9145 r = 0;
9146 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
9147 ++vcpu->stat.request_irq_exits;
9148 break;
9149 }
9150
9151 if (__xfer_to_guest_mode_work_pending()) {
9152 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9153 r = xfer_to_guest_mode_handle_work(vcpu);
9154 if (r)
9155 return r;
9156 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9157 }
9158 }
9159
9160 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9161
9162 return r;
9163 }
9164
9165 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
9166 {
9167 int r;
9168
9169 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9170 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
9171 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9172 return r;
9173 }
9174
9175 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
9176 {
9177 BUG_ON(!vcpu->arch.pio.count);
9178
9179 return complete_emulated_io(vcpu);
9180 }
9181
9182 /*
9183 * Implements the following, as a state machine:
9184 *
9185 * read:
9186 * for each fragment
9187 * for each mmio piece in the fragment
9188 * write gpa, len
9189 * exit
9190 * copy data
9191 * execute insn
9192 *
9193 * write:
9194 * for each fragment
9195 * for each mmio piece in the fragment
9196 * write gpa, len
9197 * copy data
9198 * exit
9199 */
9200 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
9201 {
9202 struct kvm_run *run = vcpu->run;
9203 struct kvm_mmio_fragment *frag;
9204 unsigned len;
9205
9206 BUG_ON(!vcpu->mmio_needed);
9207
9208 /* Complete previous fragment */
9209 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
9210 len = min(8u, frag->len);
9211 if (!vcpu->mmio_is_write)
9212 memcpy(frag->data, run->mmio.data, len);
9213
9214 if (frag->len <= 8) {
9215 /* Switch to the next fragment. */
9216 frag++;
9217 vcpu->mmio_cur_fragment++;
9218 } else {
9219 /* Go forward to the next mmio piece. */
9220 frag->data += len;
9221 frag->gpa += len;
9222 frag->len -= len;
9223 }
9224
9225 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
9226 vcpu->mmio_needed = 0;
9227
9228 /* FIXME: return into emulator if single-stepping. */
9229 if (vcpu->mmio_is_write)
9230 return 1;
9231 vcpu->mmio_read_completed = 1;
9232 return complete_emulated_io(vcpu);
9233 }
9234
9235 run->exit_reason = KVM_EXIT_MMIO;
9236 run->mmio.phys_addr = frag->gpa;
9237 if (vcpu->mmio_is_write)
9238 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
9239 run->mmio.len = min(8u, frag->len);
9240 run->mmio.is_write = vcpu->mmio_is_write;
9241 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9242 return 0;
9243 }
9244
9245 static void kvm_save_current_fpu(struct fpu *fpu)
9246 {
9247 /*
9248 * If the target FPU state is not resident in the CPU registers, just
9249 * memcpy() from current, else save CPU state directly to the target.
9250 */
9251 if (test_thread_flag(TIF_NEED_FPU_LOAD))
9252 memcpy(&fpu->state, &current->thread.fpu.state,
9253 fpu_kernel_xstate_size);
9254 else
9255 copy_fpregs_to_fpstate(fpu);
9256 }
9257
9258 /* Swap (qemu) user FPU context for the guest FPU context. */
9259 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
9260 {
9261 fpregs_lock();
9262
9263 kvm_save_current_fpu(vcpu->arch.user_fpu);
9264
9265 /*
9266 * Guests with protected state can't have it set by the hypervisor,
9267 * so skip trying to set it.
9268 */
9269 if (vcpu->arch.guest_fpu)
9270 /* PKRU is separately restored in kvm_x86_ops.run. */
9271 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
9272 ~XFEATURE_MASK_PKRU);
9273
9274 fpregs_mark_activate();
9275 fpregs_unlock();
9276
9277 trace_kvm_fpu(1);
9278 }
9279
9280 /* When vcpu_run ends, restore user space FPU context. */
9281 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
9282 {
9283 fpregs_lock();
9284
9285 /*
9286 * Guests with protected state can't have it read by the hypervisor,
9287 * so skip trying to save it.
9288 */
9289 if (vcpu->arch.guest_fpu)
9290 kvm_save_current_fpu(vcpu->arch.guest_fpu);
9291
9292 copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
9293
9294 fpregs_mark_activate();
9295 fpregs_unlock();
9296
9297 ++vcpu->stat.fpu_reload;
9298 trace_kvm_fpu(0);
9299 }
9300
9301 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
9302 {
9303 struct kvm_run *kvm_run = vcpu->run;
9304 int r;
9305
9306 vcpu_load(vcpu);
9307 kvm_sigset_activate(vcpu);
9308 kvm_load_guest_fpu(vcpu);
9309
9310 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
9311 if (kvm_run->immediate_exit) {
9312 r = -EINTR;
9313 goto out;
9314 }
9315 kvm_vcpu_block(vcpu);
9316 kvm_apic_accept_events(vcpu);
9317 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
9318 r = -EAGAIN;
9319 if (signal_pending(current)) {
9320 r = -EINTR;
9321 kvm_run->exit_reason = KVM_EXIT_INTR;
9322 ++vcpu->stat.signal_exits;
9323 }
9324 goto out;
9325 }
9326
9327 if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
9328 r = -EINVAL;
9329 goto out;
9330 }
9331
9332 if (kvm_run->kvm_dirty_regs) {
9333 r = sync_regs(vcpu);
9334 if (r != 0)
9335 goto out;
9336 }
9337
9338 /* re-sync apic's tpr */
9339 if (!lapic_in_kernel(vcpu)) {
9340 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
9341 r = -EINVAL;
9342 goto out;
9343 }
9344 }
9345
9346 if (unlikely(vcpu->arch.complete_userspace_io)) {
9347 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
9348 vcpu->arch.complete_userspace_io = NULL;
9349 r = cui(vcpu);
9350 if (r <= 0)
9351 goto out;
9352 } else
9353 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
9354
9355 if (kvm_run->immediate_exit)
9356 r = -EINTR;
9357 else
9358 r = vcpu_run(vcpu);
9359
9360 out:
9361 kvm_put_guest_fpu(vcpu);
9362 if (kvm_run->kvm_valid_regs)
9363 store_regs(vcpu);
9364 post_kvm_run_save(vcpu);
9365 kvm_sigset_deactivate(vcpu);
9366
9367 vcpu_put(vcpu);
9368 return r;
9369 }
9370
9371 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9372 {
9373 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
9374 /*
9375 * We are here if userspace calls get_regs() in the middle of
9376 * instruction emulation. Registers state needs to be copied
9377 * back from emulation context to vcpu. Userspace shouldn't do
9378 * that usually, but some bad designed PV devices (vmware
9379 * backdoor interface) need this to work
9380 */
9381 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
9382 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9383 }
9384 regs->rax = kvm_rax_read(vcpu);
9385 regs->rbx = kvm_rbx_read(vcpu);
9386 regs->rcx = kvm_rcx_read(vcpu);
9387 regs->rdx = kvm_rdx_read(vcpu);
9388 regs->rsi = kvm_rsi_read(vcpu);
9389 regs->rdi = kvm_rdi_read(vcpu);
9390 regs->rsp = kvm_rsp_read(vcpu);
9391 regs->rbp = kvm_rbp_read(vcpu);
9392 #ifdef CONFIG_X86_64
9393 regs->r8 = kvm_r8_read(vcpu);
9394 regs->r9 = kvm_r9_read(vcpu);
9395 regs->r10 = kvm_r10_read(vcpu);
9396 regs->r11 = kvm_r11_read(vcpu);
9397 regs->r12 = kvm_r12_read(vcpu);
9398 regs->r13 = kvm_r13_read(vcpu);
9399 regs->r14 = kvm_r14_read(vcpu);
9400 regs->r15 = kvm_r15_read(vcpu);
9401 #endif
9402
9403 regs->rip = kvm_rip_read(vcpu);
9404 regs->rflags = kvm_get_rflags(vcpu);
9405 }
9406
9407 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9408 {
9409 vcpu_load(vcpu);
9410 __get_regs(vcpu, regs);
9411 vcpu_put(vcpu);
9412 return 0;
9413 }
9414
9415 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9416 {
9417 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
9418 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9419
9420 kvm_rax_write(vcpu, regs->rax);
9421 kvm_rbx_write(vcpu, regs->rbx);
9422 kvm_rcx_write(vcpu, regs->rcx);
9423 kvm_rdx_write(vcpu, regs->rdx);
9424 kvm_rsi_write(vcpu, regs->rsi);
9425 kvm_rdi_write(vcpu, regs->rdi);
9426 kvm_rsp_write(vcpu, regs->rsp);
9427 kvm_rbp_write(vcpu, regs->rbp);
9428 #ifdef CONFIG_X86_64
9429 kvm_r8_write(vcpu, regs->r8);
9430 kvm_r9_write(vcpu, regs->r9);
9431 kvm_r10_write(vcpu, regs->r10);
9432 kvm_r11_write(vcpu, regs->r11);
9433 kvm_r12_write(vcpu, regs->r12);
9434 kvm_r13_write(vcpu, regs->r13);
9435 kvm_r14_write(vcpu, regs->r14);
9436 kvm_r15_write(vcpu, regs->r15);
9437 #endif
9438
9439 kvm_rip_write(vcpu, regs->rip);
9440 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
9441
9442 vcpu->arch.exception.pending = false;
9443
9444 kvm_make_request(KVM_REQ_EVENT, vcpu);
9445 }
9446
9447 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9448 {
9449 vcpu_load(vcpu);
9450 __set_regs(vcpu, regs);
9451 vcpu_put(vcpu);
9452 return 0;
9453 }
9454
9455 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
9456 {
9457 struct kvm_segment cs;
9458
9459 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9460 *db = cs.db;
9461 *l = cs.l;
9462 }
9463 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
9464
9465 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9466 {
9467 struct desc_ptr dt;
9468
9469 if (vcpu->arch.guest_state_protected)
9470 goto skip_protected_regs;
9471
9472 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9473 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9474 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9475 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9476 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9477 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9478
9479 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9480 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9481
9482 kvm_x86_ops.get_idt(vcpu, &dt);
9483 sregs->idt.limit = dt.size;
9484 sregs->idt.base = dt.address;
9485 kvm_x86_ops.get_gdt(vcpu, &dt);
9486 sregs->gdt.limit = dt.size;
9487 sregs->gdt.base = dt.address;
9488
9489 sregs->cr2 = vcpu->arch.cr2;
9490 sregs->cr3 = kvm_read_cr3(vcpu);
9491
9492 skip_protected_regs:
9493 sregs->cr0 = kvm_read_cr0(vcpu);
9494 sregs->cr4 = kvm_read_cr4(vcpu);
9495 sregs->cr8 = kvm_get_cr8(vcpu);
9496 sregs->efer = vcpu->arch.efer;
9497 sregs->apic_base = kvm_get_apic_base(vcpu);
9498
9499 memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
9500
9501 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
9502 set_bit(vcpu->arch.interrupt.nr,
9503 (unsigned long *)sregs->interrupt_bitmap);
9504 }
9505
9506 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
9507 struct kvm_sregs *sregs)
9508 {
9509 vcpu_load(vcpu);
9510 __get_sregs(vcpu, sregs);
9511 vcpu_put(vcpu);
9512 return 0;
9513 }
9514
9515 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
9516 struct kvm_mp_state *mp_state)
9517 {
9518 vcpu_load(vcpu);
9519 if (kvm_mpx_supported())
9520 kvm_load_guest_fpu(vcpu);
9521
9522 kvm_apic_accept_events(vcpu);
9523 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
9524 vcpu->arch.pv.pv_unhalted)
9525 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
9526 else
9527 mp_state->mp_state = vcpu->arch.mp_state;
9528
9529 if (kvm_mpx_supported())
9530 kvm_put_guest_fpu(vcpu);
9531 vcpu_put(vcpu);
9532 return 0;
9533 }
9534
9535 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
9536 struct kvm_mp_state *mp_state)
9537 {
9538 int ret = -EINVAL;
9539
9540 vcpu_load(vcpu);
9541
9542 if (!lapic_in_kernel(vcpu) &&
9543 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
9544 goto out;
9545
9546 /*
9547 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
9548 * INIT state; latched init should be reported using
9549 * KVM_SET_VCPU_EVENTS, so reject it here.
9550 */
9551 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
9552 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
9553 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
9554 goto out;
9555
9556 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
9557 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
9558 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
9559 } else
9560 vcpu->arch.mp_state = mp_state->mp_state;
9561 kvm_make_request(KVM_REQ_EVENT, vcpu);
9562
9563 ret = 0;
9564 out:
9565 vcpu_put(vcpu);
9566 return ret;
9567 }
9568
9569 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
9570 int reason, bool has_error_code, u32 error_code)
9571 {
9572 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9573 int ret;
9574
9575 init_emulate_ctxt(vcpu);
9576
9577 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
9578 has_error_code, error_code);
9579 if (ret) {
9580 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9581 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
9582 vcpu->run->internal.ndata = 0;
9583 return 0;
9584 }
9585
9586 kvm_rip_write(vcpu, ctxt->eip);
9587 kvm_set_rflags(vcpu, ctxt->eflags);
9588 return 1;
9589 }
9590 EXPORT_SYMBOL_GPL(kvm_task_switch);
9591
9592 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9593 {
9594 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
9595 /*
9596 * When EFER.LME and CR0.PG are set, the processor is in
9597 * 64-bit mode (though maybe in a 32-bit code segment).
9598 * CR4.PAE and EFER.LMA must be set.
9599 */
9600 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
9601 return false;
9602 } else {
9603 /*
9604 * Not in 64-bit mode: EFER.LMA is clear and the code
9605 * segment cannot be 64-bit.
9606 */
9607 if (sregs->efer & EFER_LMA || sregs->cs.l)
9608 return false;
9609 }
9610
9611 return kvm_is_valid_cr4(vcpu, sregs->cr4);
9612 }
9613
9614 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9615 {
9616 struct msr_data apic_base_msr;
9617 int mmu_reset_needed = 0;
9618 int pending_vec, max_bits, idx;
9619 struct desc_ptr dt;
9620 int ret = -EINVAL;
9621
9622 if (!kvm_is_valid_sregs(vcpu, sregs))
9623 goto out;
9624
9625 apic_base_msr.data = sregs->apic_base;
9626 apic_base_msr.host_initiated = true;
9627 if (kvm_set_apic_base(vcpu, &apic_base_msr))
9628 goto out;
9629
9630 if (vcpu->arch.guest_state_protected)
9631 goto skip_protected_regs;
9632
9633 dt.size = sregs->idt.limit;
9634 dt.address = sregs->idt.base;
9635 kvm_x86_ops.set_idt(vcpu, &dt);
9636 dt.size = sregs->gdt.limit;
9637 dt.address = sregs->gdt.base;
9638 kvm_x86_ops.set_gdt(vcpu, &dt);
9639
9640 vcpu->arch.cr2 = sregs->cr2;
9641 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
9642 vcpu->arch.cr3 = sregs->cr3;
9643 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
9644
9645 kvm_set_cr8(vcpu, sregs->cr8);
9646
9647 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
9648 kvm_x86_ops.set_efer(vcpu, sregs->efer);
9649
9650 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
9651 kvm_x86_ops.set_cr0(vcpu, sregs->cr0);
9652 vcpu->arch.cr0 = sregs->cr0;
9653
9654 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
9655 kvm_x86_ops.set_cr4(vcpu, sregs->cr4);
9656
9657 idx = srcu_read_lock(&vcpu->kvm->srcu);
9658 if (is_pae_paging(vcpu)) {
9659 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
9660 mmu_reset_needed = 1;
9661 }
9662 srcu_read_unlock(&vcpu->kvm->srcu, idx);
9663
9664 if (mmu_reset_needed)
9665 kvm_mmu_reset_context(vcpu);
9666
9667 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9668 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9669 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9670 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9671 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9672 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9673
9674 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9675 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9676
9677 update_cr8_intercept(vcpu);
9678
9679 /* Older userspace won't unhalt the vcpu on reset. */
9680 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
9681 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
9682 !is_protmode(vcpu))
9683 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9684
9685 skip_protected_regs:
9686 max_bits = KVM_NR_INTERRUPTS;
9687 pending_vec = find_first_bit(
9688 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
9689 if (pending_vec < max_bits) {
9690 kvm_queue_interrupt(vcpu, pending_vec, false);
9691 pr_debug("Set back pending irq %d\n", pending_vec);
9692 }
9693
9694 kvm_make_request(KVM_REQ_EVENT, vcpu);
9695
9696 ret = 0;
9697 out:
9698 return ret;
9699 }
9700
9701 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
9702 struct kvm_sregs *sregs)
9703 {
9704 int ret;
9705
9706 vcpu_load(vcpu);
9707 ret = __set_sregs(vcpu, sregs);
9708 vcpu_put(vcpu);
9709 return ret;
9710 }
9711
9712 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
9713 struct kvm_guest_debug *dbg)
9714 {
9715 unsigned long rflags;
9716 int i, r;
9717
9718 if (vcpu->arch.guest_state_protected)
9719 return -EINVAL;
9720
9721 vcpu_load(vcpu);
9722
9723 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
9724 r = -EBUSY;
9725 if (vcpu->arch.exception.pending)
9726 goto out;
9727 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
9728 kvm_queue_exception(vcpu, DB_VECTOR);
9729 else
9730 kvm_queue_exception(vcpu, BP_VECTOR);
9731 }
9732
9733 /*
9734 * Read rflags as long as potentially injected trace flags are still
9735 * filtered out.
9736 */
9737 rflags = kvm_get_rflags(vcpu);
9738
9739 vcpu->guest_debug = dbg->control;
9740 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
9741 vcpu->guest_debug = 0;
9742
9743 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
9744 for (i = 0; i < KVM_NR_DB_REGS; ++i)
9745 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
9746 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
9747 } else {
9748 for (i = 0; i < KVM_NR_DB_REGS; i++)
9749 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
9750 }
9751 kvm_update_dr7(vcpu);
9752
9753 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9754 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
9755 get_segment_base(vcpu, VCPU_SREG_CS);
9756
9757 /*
9758 * Trigger an rflags update that will inject or remove the trace
9759 * flags.
9760 */
9761 kvm_set_rflags(vcpu, rflags);
9762
9763 kvm_x86_ops.update_exception_bitmap(vcpu);
9764
9765 r = 0;
9766
9767 out:
9768 vcpu_put(vcpu);
9769 return r;
9770 }
9771
9772 /*
9773 * Translate a guest virtual address to a guest physical address.
9774 */
9775 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
9776 struct kvm_translation *tr)
9777 {
9778 unsigned long vaddr = tr->linear_address;
9779 gpa_t gpa;
9780 int idx;
9781
9782 vcpu_load(vcpu);
9783
9784 idx = srcu_read_lock(&vcpu->kvm->srcu);
9785 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
9786 srcu_read_unlock(&vcpu->kvm->srcu, idx);
9787 tr->physical_address = gpa;
9788 tr->valid = gpa != UNMAPPED_GVA;
9789 tr->writeable = 1;
9790 tr->usermode = 0;
9791
9792 vcpu_put(vcpu);
9793 return 0;
9794 }
9795
9796 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9797 {
9798 struct fxregs_state *fxsave;
9799
9800 if (!vcpu->arch.guest_fpu)
9801 return 0;
9802
9803 vcpu_load(vcpu);
9804
9805 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9806 memcpy(fpu->fpr, fxsave->st_space, 128);
9807 fpu->fcw = fxsave->cwd;
9808 fpu->fsw = fxsave->swd;
9809 fpu->ftwx = fxsave->twd;
9810 fpu->last_opcode = fxsave->fop;
9811 fpu->last_ip = fxsave->rip;
9812 fpu->last_dp = fxsave->rdp;
9813 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
9814
9815 vcpu_put(vcpu);
9816 return 0;
9817 }
9818
9819 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9820 {
9821 struct fxregs_state *fxsave;
9822
9823 if (!vcpu->arch.guest_fpu)
9824 return 0;
9825
9826 vcpu_load(vcpu);
9827
9828 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9829
9830 memcpy(fxsave->st_space, fpu->fpr, 128);
9831 fxsave->cwd = fpu->fcw;
9832 fxsave->swd = fpu->fsw;
9833 fxsave->twd = fpu->ftwx;
9834 fxsave->fop = fpu->last_opcode;
9835 fxsave->rip = fpu->last_ip;
9836 fxsave->rdp = fpu->last_dp;
9837 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
9838
9839 vcpu_put(vcpu);
9840 return 0;
9841 }
9842
9843 static void store_regs(struct kvm_vcpu *vcpu)
9844 {
9845 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
9846
9847 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
9848 __get_regs(vcpu, &vcpu->run->s.regs.regs);
9849
9850 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
9851 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
9852
9853 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
9854 kvm_vcpu_ioctl_x86_get_vcpu_events(
9855 vcpu, &vcpu->run->s.regs.events);
9856 }
9857
9858 static int sync_regs(struct kvm_vcpu *vcpu)
9859 {
9860 if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
9861 return -EINVAL;
9862
9863 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
9864 __set_regs(vcpu, &vcpu->run->s.regs.regs);
9865 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
9866 }
9867 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
9868 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
9869 return -EINVAL;
9870 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
9871 }
9872 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
9873 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
9874 vcpu, &vcpu->run->s.regs.events))
9875 return -EINVAL;
9876 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
9877 }
9878
9879 return 0;
9880 }
9881
9882 static void fx_init(struct kvm_vcpu *vcpu)
9883 {
9884 if (!vcpu->arch.guest_fpu)
9885 return;
9886
9887 fpstate_init(&vcpu->arch.guest_fpu->state);
9888 if (boot_cpu_has(X86_FEATURE_XSAVES))
9889 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
9890 host_xcr0 | XSTATE_COMPACTION_ENABLED;
9891
9892 /*
9893 * Ensure guest xcr0 is valid for loading
9894 */
9895 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9896
9897 vcpu->arch.cr0 |= X86_CR0_ET;
9898 }
9899
9900 void kvm_free_guest_fpu(struct kvm_vcpu *vcpu)
9901 {
9902 if (vcpu->arch.guest_fpu) {
9903 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9904 vcpu->arch.guest_fpu = NULL;
9905 }
9906 }
9907 EXPORT_SYMBOL_GPL(kvm_free_guest_fpu);
9908
9909 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
9910 {
9911 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
9912 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
9913 "guest TSC will not be reliable\n");
9914
9915 return 0;
9916 }
9917
9918 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
9919 {
9920 struct page *page;
9921 int r;
9922
9923 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9924 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9925 else
9926 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9927
9928 kvm_set_tsc_khz(vcpu, max_tsc_khz);
9929
9930 r = kvm_mmu_create(vcpu);
9931 if (r < 0)
9932 return r;
9933
9934 if (irqchip_in_kernel(vcpu->kvm)) {
9935 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9936 if (r < 0)
9937 goto fail_mmu_destroy;
9938 if (kvm_apicv_activated(vcpu->kvm))
9939 vcpu->arch.apicv_active = true;
9940 } else
9941 static_key_slow_inc(&kvm_no_apic_vcpu);
9942
9943 r = -ENOMEM;
9944
9945 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
9946 if (!page)
9947 goto fail_free_lapic;
9948 vcpu->arch.pio_data = page_address(page);
9949
9950 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9951 GFP_KERNEL_ACCOUNT);
9952 if (!vcpu->arch.mce_banks)
9953 goto fail_free_pio_data;
9954 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9955
9956 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9957 GFP_KERNEL_ACCOUNT))
9958 goto fail_free_mce_banks;
9959
9960 if (!alloc_emulate_ctxt(vcpu))
9961 goto free_wbinvd_dirty_mask;
9962
9963 vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
9964 GFP_KERNEL_ACCOUNT);
9965 if (!vcpu->arch.user_fpu) {
9966 pr_err("kvm: failed to allocate userspace's fpu\n");
9967 goto free_emulate_ctxt;
9968 }
9969
9970 vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
9971 GFP_KERNEL_ACCOUNT);
9972 if (!vcpu->arch.guest_fpu) {
9973 pr_err("kvm: failed to allocate vcpu's fpu\n");
9974 goto free_user_fpu;
9975 }
9976 fx_init(vcpu);
9977
9978 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9979
9980 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9981
9982 kvm_async_pf_hash_reset(vcpu);
9983 kvm_pmu_init(vcpu);
9984
9985 vcpu->arch.pending_external_vector = -1;
9986 vcpu->arch.preempted_in_kernel = false;
9987
9988 kvm_hv_vcpu_init(vcpu);
9989
9990 r = kvm_x86_ops.vcpu_create(vcpu);
9991 if (r)
9992 goto free_guest_fpu;
9993
9994 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
9995 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
9996 kvm_vcpu_mtrr_init(vcpu);
9997 vcpu_load(vcpu);
9998 kvm_vcpu_reset(vcpu, false);
9999 kvm_init_mmu(vcpu, false);
10000 vcpu_put(vcpu);
10001 return 0;
10002
10003 free_guest_fpu:
10004 kvm_free_guest_fpu(vcpu);
10005 free_user_fpu:
10006 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10007 free_emulate_ctxt:
10008 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10009 free_wbinvd_dirty_mask:
10010 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10011 fail_free_mce_banks:
10012 kfree(vcpu->arch.mce_banks);
10013 fail_free_pio_data:
10014 free_page((unsigned long)vcpu->arch.pio_data);
10015 fail_free_lapic:
10016 kvm_free_lapic(vcpu);
10017 fail_mmu_destroy:
10018 kvm_mmu_destroy(vcpu);
10019 return r;
10020 }
10021
10022 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
10023 {
10024 struct kvm *kvm = vcpu->kvm;
10025
10026 kvm_hv_vcpu_postcreate(vcpu);
10027
10028 if (mutex_lock_killable(&vcpu->mutex))
10029 return;
10030 vcpu_load(vcpu);
10031 kvm_synchronize_tsc(vcpu, 0);
10032 vcpu_put(vcpu);
10033
10034 /* poll control enabled by default */
10035 vcpu->arch.msr_kvm_poll_control = 1;
10036
10037 mutex_unlock(&vcpu->mutex);
10038
10039 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
10040 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
10041 KVMCLOCK_SYNC_PERIOD);
10042 }
10043
10044 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
10045 {
10046 struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
10047 int idx;
10048
10049 kvm_release_pfn(cache->pfn, cache->dirty, cache);
10050
10051 kvmclock_reset(vcpu);
10052
10053 kvm_x86_ops.vcpu_free(vcpu);
10054
10055 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10056 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10057 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10058 kvm_free_guest_fpu(vcpu);
10059
10060 kvm_hv_vcpu_uninit(vcpu);
10061 kvm_pmu_destroy(vcpu);
10062 kfree(vcpu->arch.mce_banks);
10063 kvm_free_lapic(vcpu);
10064 idx = srcu_read_lock(&vcpu->kvm->srcu);
10065 kvm_mmu_destroy(vcpu);
10066 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10067 free_page((unsigned long)vcpu->arch.pio_data);
10068 kvfree(vcpu->arch.cpuid_entries);
10069 if (!lapic_in_kernel(vcpu))
10070 static_key_slow_dec(&kvm_no_apic_vcpu);
10071 }
10072
10073 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
10074 {
10075 kvm_lapic_reset(vcpu, init_event);
10076
10077 vcpu->arch.hflags = 0;
10078
10079 vcpu->arch.smi_pending = 0;
10080 vcpu->arch.smi_count = 0;
10081 atomic_set(&vcpu->arch.nmi_queued, 0);
10082 vcpu->arch.nmi_pending = 0;
10083 vcpu->arch.nmi_injected = false;
10084 kvm_clear_interrupt_queue(vcpu);
10085 kvm_clear_exception_queue(vcpu);
10086
10087 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
10088 kvm_update_dr0123(vcpu);
10089 vcpu->arch.dr6 = DR6_INIT;
10090 vcpu->arch.dr7 = DR7_FIXED_1;
10091 kvm_update_dr7(vcpu);
10092
10093 vcpu->arch.cr2 = 0;
10094
10095 kvm_make_request(KVM_REQ_EVENT, vcpu);
10096 vcpu->arch.apf.msr_en_val = 0;
10097 vcpu->arch.apf.msr_int_val = 0;
10098 vcpu->arch.st.msr_val = 0;
10099
10100 kvmclock_reset(vcpu);
10101
10102 kvm_clear_async_pf_completion_queue(vcpu);
10103 kvm_async_pf_hash_reset(vcpu);
10104 vcpu->arch.apf.halted = false;
10105
10106 if (vcpu->arch.guest_fpu && kvm_mpx_supported()) {
10107 void *mpx_state_buffer;
10108
10109 /*
10110 * To avoid have the INIT path from kvm_apic_has_events() that be
10111 * called with loaded FPU and does not let userspace fix the state.
10112 */
10113 if (init_event)
10114 kvm_put_guest_fpu(vcpu);
10115 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10116 XFEATURE_BNDREGS);
10117 if (mpx_state_buffer)
10118 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
10119 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10120 XFEATURE_BNDCSR);
10121 if (mpx_state_buffer)
10122 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
10123 if (init_event)
10124 kvm_load_guest_fpu(vcpu);
10125 }
10126
10127 if (!init_event) {
10128 kvm_pmu_reset(vcpu);
10129 vcpu->arch.smbase = 0x30000;
10130
10131 vcpu->arch.msr_misc_features_enables = 0;
10132
10133 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10134 }
10135
10136 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
10137 vcpu->arch.regs_avail = ~0;
10138 vcpu->arch.regs_dirty = ~0;
10139
10140 vcpu->arch.ia32_xss = 0;
10141
10142 kvm_x86_ops.vcpu_reset(vcpu, init_event);
10143 }
10144
10145 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
10146 {
10147 struct kvm_segment cs;
10148
10149 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10150 cs.selector = vector << 8;
10151 cs.base = vector << 12;
10152 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10153 kvm_rip_write(vcpu, 0);
10154 }
10155
10156 int kvm_arch_hardware_enable(void)
10157 {
10158 struct kvm *kvm;
10159 struct kvm_vcpu *vcpu;
10160 int i;
10161 int ret;
10162 u64 local_tsc;
10163 u64 max_tsc = 0;
10164 bool stable, backwards_tsc = false;
10165
10166 kvm_user_return_msr_cpu_online();
10167 ret = kvm_x86_ops.hardware_enable();
10168 if (ret != 0)
10169 return ret;
10170
10171 local_tsc = rdtsc();
10172 stable = !kvm_check_tsc_unstable();
10173 list_for_each_entry(kvm, &vm_list, vm_list) {
10174 kvm_for_each_vcpu(i, vcpu, kvm) {
10175 if (!stable && vcpu->cpu == smp_processor_id())
10176 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10177 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
10178 backwards_tsc = true;
10179 if (vcpu->arch.last_host_tsc > max_tsc)
10180 max_tsc = vcpu->arch.last_host_tsc;
10181 }
10182 }
10183 }
10184
10185 /*
10186 * Sometimes, even reliable TSCs go backwards. This happens on
10187 * platforms that reset TSC during suspend or hibernate actions, but
10188 * maintain synchronization. We must compensate. Fortunately, we can
10189 * detect that condition here, which happens early in CPU bringup,
10190 * before any KVM threads can be running. Unfortunately, we can't
10191 * bring the TSCs fully up to date with real time, as we aren't yet far
10192 * enough into CPU bringup that we know how much real time has actually
10193 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
10194 * variables that haven't been updated yet.
10195 *
10196 * So we simply find the maximum observed TSC above, then record the
10197 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
10198 * the adjustment will be applied. Note that we accumulate
10199 * adjustments, in case multiple suspend cycles happen before some VCPU
10200 * gets a chance to run again. In the event that no KVM threads get a
10201 * chance to run, we will miss the entire elapsed period, as we'll have
10202 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
10203 * loose cycle time. This isn't too big a deal, since the loss will be
10204 * uniform across all VCPUs (not to mention the scenario is extremely
10205 * unlikely). It is possible that a second hibernate recovery happens
10206 * much faster than a first, causing the observed TSC here to be
10207 * smaller; this would require additional padding adjustment, which is
10208 * why we set last_host_tsc to the local tsc observed here.
10209 *
10210 * N.B. - this code below runs only on platforms with reliable TSC,
10211 * as that is the only way backwards_tsc is set above. Also note
10212 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
10213 * have the same delta_cyc adjustment applied if backwards_tsc
10214 * is detected. Note further, this adjustment is only done once,
10215 * as we reset last_host_tsc on all VCPUs to stop this from being
10216 * called multiple times (one for each physical CPU bringup).
10217 *
10218 * Platforms with unreliable TSCs don't have to deal with this, they
10219 * will be compensated by the logic in vcpu_load, which sets the TSC to
10220 * catchup mode. This will catchup all VCPUs to real time, but cannot
10221 * guarantee that they stay in perfect synchronization.
10222 */
10223 if (backwards_tsc) {
10224 u64 delta_cyc = max_tsc - local_tsc;
10225 list_for_each_entry(kvm, &vm_list, vm_list) {
10226 kvm->arch.backwards_tsc_observed = true;
10227 kvm_for_each_vcpu(i, vcpu, kvm) {
10228 vcpu->arch.tsc_offset_adjustment += delta_cyc;
10229 vcpu->arch.last_host_tsc = local_tsc;
10230 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
10231 }
10232
10233 /*
10234 * We have to disable TSC offset matching.. if you were
10235 * booting a VM while issuing an S4 host suspend....
10236 * you may have some problem. Solving this issue is
10237 * left as an exercise to the reader.
10238 */
10239 kvm->arch.last_tsc_nsec = 0;
10240 kvm->arch.last_tsc_write = 0;
10241 }
10242
10243 }
10244 return 0;
10245 }
10246
10247 void kvm_arch_hardware_disable(void)
10248 {
10249 kvm_x86_ops.hardware_disable();
10250 drop_user_return_notifiers();
10251 }
10252
10253 int kvm_arch_hardware_setup(void *opaque)
10254 {
10255 struct kvm_x86_init_ops *ops = opaque;
10256 int r;
10257
10258 rdmsrl_safe(MSR_EFER, &host_efer);
10259
10260 if (boot_cpu_has(X86_FEATURE_XSAVES))
10261 rdmsrl(MSR_IA32_XSS, host_xss);
10262
10263 r = ops->hardware_setup();
10264 if (r != 0)
10265 return r;
10266
10267 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
10268
10269 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
10270 supported_xss = 0;
10271
10272 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
10273 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
10274 #undef __kvm_cpu_cap_has
10275
10276 if (kvm_has_tsc_control) {
10277 /*
10278 * Make sure the user can only configure tsc_khz values that
10279 * fit into a signed integer.
10280 * A min value is not calculated because it will always
10281 * be 1 on all machines.
10282 */
10283 u64 max = min(0x7fffffffULL,
10284 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
10285 kvm_max_guest_tsc_khz = max;
10286
10287 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
10288 }
10289
10290 kvm_init_msr_list();
10291 return 0;
10292 }
10293
10294 void kvm_arch_hardware_unsetup(void)
10295 {
10296 kvm_x86_ops.hardware_unsetup();
10297 }
10298
10299 int kvm_arch_check_processor_compat(void *opaque)
10300 {
10301 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
10302 struct kvm_x86_init_ops *ops = opaque;
10303
10304 WARN_ON(!irqs_disabled());
10305
10306 if (__cr4_reserved_bits(cpu_has, c) !=
10307 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
10308 return -EIO;
10309
10310 return ops->check_processor_compatibility();
10311 }
10312
10313 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
10314 {
10315 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
10316 }
10317 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
10318
10319 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
10320 {
10321 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
10322 }
10323
10324 struct static_key kvm_no_apic_vcpu __read_mostly;
10325 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
10326
10327 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
10328 {
10329 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
10330
10331 vcpu->arch.l1tf_flush_l1d = true;
10332 if (pmu->version && unlikely(pmu->event_count)) {
10333 pmu->need_cleanup = true;
10334 kvm_make_request(KVM_REQ_PMU, vcpu);
10335 }
10336 kvm_x86_ops.sched_in(vcpu, cpu);
10337 }
10338
10339 void kvm_arch_free_vm(struct kvm *kvm)
10340 {
10341 kfree(kvm->arch.hyperv.hv_pa_pg);
10342 vfree(kvm);
10343 }
10344
10345
10346 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
10347 {
10348 if (type)
10349 return -EINVAL;
10350
10351 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
10352 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
10353 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
10354 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
10355 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
10356 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
10357
10358 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
10359 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
10360 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
10361 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
10362 &kvm->arch.irq_sources_bitmap);
10363
10364 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
10365 mutex_init(&kvm->arch.apic_map_lock);
10366 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
10367
10368 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
10369 pvclock_update_vm_gtod_copy(kvm);
10370
10371 kvm->arch.guest_can_read_msr_platform_info = true;
10372
10373 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
10374 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
10375
10376 kvm_hv_init_vm(kvm);
10377 kvm_page_track_init(kvm);
10378 kvm_mmu_init_vm(kvm);
10379
10380 return kvm_x86_ops.vm_init(kvm);
10381 }
10382
10383 int kvm_arch_post_init_vm(struct kvm *kvm)
10384 {
10385 return kvm_mmu_post_init_vm(kvm);
10386 }
10387
10388 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
10389 {
10390 vcpu_load(vcpu);
10391 kvm_mmu_unload(vcpu);
10392 vcpu_put(vcpu);
10393 }
10394
10395 static void kvm_free_vcpus(struct kvm *kvm)
10396 {
10397 unsigned int i;
10398 struct kvm_vcpu *vcpu;
10399
10400 /*
10401 * Unpin any mmu pages first.
10402 */
10403 kvm_for_each_vcpu(i, vcpu, kvm) {
10404 kvm_clear_async_pf_completion_queue(vcpu);
10405 kvm_unload_vcpu_mmu(vcpu);
10406 }
10407 kvm_for_each_vcpu(i, vcpu, kvm)
10408 kvm_vcpu_destroy(vcpu);
10409
10410 mutex_lock(&kvm->lock);
10411 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
10412 kvm->vcpus[i] = NULL;
10413
10414 atomic_set(&kvm->online_vcpus, 0);
10415 mutex_unlock(&kvm->lock);
10416 }
10417
10418 void kvm_arch_sync_events(struct kvm *kvm)
10419 {
10420 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
10421 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
10422 kvm_free_pit(kvm);
10423 }
10424
10425 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
10426
10427 /**
10428 * __x86_set_memory_region: Setup KVM internal memory slot
10429 *
10430 * @kvm: the kvm pointer to the VM.
10431 * @id: the slot ID to setup.
10432 * @gpa: the GPA to install the slot (unused when @size == 0).
10433 * @size: the size of the slot. Set to zero to uninstall a slot.
10434 *
10435 * This function helps to setup a KVM internal memory slot. Specify
10436 * @size > 0 to install a new slot, while @size == 0 to uninstall a
10437 * slot. The return code can be one of the following:
10438 *
10439 * HVA: on success (uninstall will return a bogus HVA)
10440 * -errno: on error
10441 *
10442 * The caller should always use IS_ERR() to check the return value
10443 * before use. Note, the KVM internal memory slots are guaranteed to
10444 * remain valid and unchanged until the VM is destroyed, i.e., the
10445 * GPA->HVA translation will not change. However, the HVA is a user
10446 * address, i.e. its accessibility is not guaranteed, and must be
10447 * accessed via __copy_{to,from}_user().
10448 */
10449 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
10450 u32 size)
10451 {
10452 int i, r;
10453 unsigned long hva, old_npages;
10454 struct kvm_memslots *slots = kvm_memslots(kvm);
10455 struct kvm_memory_slot *slot;
10456
10457 /* Called with kvm->slots_lock held. */
10458 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
10459 return ERR_PTR_USR(-EINVAL);
10460
10461 slot = id_to_memslot(slots, id);
10462 if (size) {
10463 if (slot && slot->npages)
10464 return ERR_PTR_USR(-EEXIST);
10465
10466 /*
10467 * MAP_SHARED to prevent internal slot pages from being moved
10468 * by fork()/COW.
10469 */
10470 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
10471 MAP_SHARED | MAP_ANONYMOUS, 0);
10472 if (IS_ERR((void *)hva))
10473 return (void __user *)hva;
10474 } else {
10475 if (!slot || !slot->npages)
10476 return 0;
10477
10478 old_npages = slot->npages;
10479 hva = 0;
10480 }
10481
10482 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
10483 struct kvm_userspace_memory_region m;
10484
10485 m.slot = id | (i << 16);
10486 m.flags = 0;
10487 m.guest_phys_addr = gpa;
10488 m.userspace_addr = hva;
10489 m.memory_size = size;
10490 r = __kvm_set_memory_region(kvm, &m);
10491 if (r < 0)
10492 return ERR_PTR_USR(r);
10493 }
10494
10495 if (!size)
10496 vm_munmap(hva, old_npages * PAGE_SIZE);
10497
10498 return (void __user *)hva;
10499 }
10500 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
10501
10502 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
10503 {
10504 kvm_mmu_pre_destroy_vm(kvm);
10505 }
10506
10507 void kvm_arch_destroy_vm(struct kvm *kvm)
10508 {
10509 u32 i;
10510
10511 if (current->mm == kvm->mm) {
10512 /*
10513 * Free memory regions allocated on behalf of userspace,
10514 * unless the the memory map has changed due to process exit
10515 * or fd copying.
10516 */
10517 mutex_lock(&kvm->slots_lock);
10518 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
10519 0, 0);
10520 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
10521 0, 0);
10522 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
10523 mutex_unlock(&kvm->slots_lock);
10524 }
10525 if (kvm_x86_ops.vm_destroy)
10526 kvm_x86_ops.vm_destroy(kvm);
10527 for (i = 0; i < kvm->arch.msr_filter.count; i++)
10528 kfree(kvm->arch.msr_filter.ranges[i].bitmap);
10529 kvm_pic_destroy(kvm);
10530 kvm_ioapic_destroy(kvm);
10531 kvm_free_vcpus(kvm);
10532 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
10533 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
10534 kvm_mmu_uninit_vm(kvm);
10535 kvm_page_track_cleanup(kvm);
10536 kvm_hv_destroy_vm(kvm);
10537 }
10538
10539 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
10540 {
10541 int i;
10542
10543 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10544 kvfree(slot->arch.rmap[i]);
10545 slot->arch.rmap[i] = NULL;
10546
10547 if (i == 0)
10548 continue;
10549
10550 kvfree(slot->arch.lpage_info[i - 1]);
10551 slot->arch.lpage_info[i - 1] = NULL;
10552 }
10553
10554 kvm_page_track_free_memslot(slot);
10555 }
10556
10557 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot,
10558 unsigned long npages)
10559 {
10560 int i;
10561
10562 /*
10563 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
10564 * old arrays will be freed by __kvm_set_memory_region() if installing
10565 * the new memslot is successful.
10566 */
10567 memset(&slot->arch, 0, sizeof(slot->arch));
10568
10569 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10570 struct kvm_lpage_info *linfo;
10571 unsigned long ugfn;
10572 int lpages;
10573 int level = i + 1;
10574
10575 lpages = gfn_to_index(slot->base_gfn + npages - 1,
10576 slot->base_gfn, level) + 1;
10577
10578 slot->arch.rmap[i] =
10579 kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
10580 GFP_KERNEL_ACCOUNT);
10581 if (!slot->arch.rmap[i])
10582 goto out_free;
10583 if (i == 0)
10584 continue;
10585
10586 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
10587 if (!linfo)
10588 goto out_free;
10589
10590 slot->arch.lpage_info[i - 1] = linfo;
10591
10592 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
10593 linfo[0].disallow_lpage = 1;
10594 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
10595 linfo[lpages - 1].disallow_lpage = 1;
10596 ugfn = slot->userspace_addr >> PAGE_SHIFT;
10597 /*
10598 * If the gfn and userspace address are not aligned wrt each
10599 * other, disable large page support for this slot.
10600 */
10601 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
10602 unsigned long j;
10603
10604 for (j = 0; j < lpages; ++j)
10605 linfo[j].disallow_lpage = 1;
10606 }
10607 }
10608
10609 if (kvm_page_track_create_memslot(slot, npages))
10610 goto out_free;
10611
10612 return 0;
10613
10614 out_free:
10615 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10616 kvfree(slot->arch.rmap[i]);
10617 slot->arch.rmap[i] = NULL;
10618 if (i == 0)
10619 continue;
10620
10621 kvfree(slot->arch.lpage_info[i - 1]);
10622 slot->arch.lpage_info[i - 1] = NULL;
10623 }
10624 return -ENOMEM;
10625 }
10626
10627 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
10628 {
10629 struct kvm_vcpu *vcpu;
10630 int i;
10631
10632 /*
10633 * memslots->generation has been incremented.
10634 * mmio generation may have reached its maximum value.
10635 */
10636 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
10637
10638 /* Force re-initialization of steal_time cache */
10639 kvm_for_each_vcpu(i, vcpu, kvm)
10640 kvm_vcpu_kick(vcpu);
10641 }
10642
10643 int kvm_arch_prepare_memory_region(struct kvm *kvm,
10644 struct kvm_memory_slot *memslot,
10645 const struct kvm_userspace_memory_region *mem,
10646 enum kvm_mr_change change)
10647 {
10648 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
10649 return kvm_alloc_memslot_metadata(memslot,
10650 mem->memory_size >> PAGE_SHIFT);
10651 return 0;
10652 }
10653
10654 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
10655 struct kvm_memory_slot *old,
10656 struct kvm_memory_slot *new,
10657 enum kvm_mr_change change)
10658 {
10659 /*
10660 * Nothing to do for RO slots or CREATE/MOVE/DELETE of a slot.
10661 * See comments below.
10662 */
10663 if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
10664 return;
10665
10666 /*
10667 * Dirty logging tracks sptes in 4k granularity, meaning that large
10668 * sptes have to be split. If live migration is successful, the guest
10669 * in the source machine will be destroyed and large sptes will be
10670 * created in the destination. However, if the guest continues to run
10671 * in the source machine (for example if live migration fails), small
10672 * sptes will remain around and cause bad performance.
10673 *
10674 * Scan sptes if dirty logging has been stopped, dropping those
10675 * which can be collapsed into a single large-page spte. Later
10676 * page faults will create the large-page sptes.
10677 *
10678 * There is no need to do this in any of the following cases:
10679 * CREATE: No dirty mappings will already exist.
10680 * MOVE/DELETE: The old mappings will already have been cleaned up by
10681 * kvm_arch_flush_shadow_memslot()
10682 */
10683 if ((old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
10684 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
10685 kvm_mmu_zap_collapsible_sptes(kvm, new);
10686
10687 /*
10688 * Enable or disable dirty logging for the slot.
10689 *
10690 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of the old
10691 * slot have been zapped so no dirty logging updates are needed for
10692 * the old slot.
10693 * For KVM_MR_CREATE and KVM_MR_MOVE, once the new slot is visible
10694 * any mappings that might be created in it will consume the
10695 * properties of the new slot and do not need to be updated here.
10696 *
10697 * When PML is enabled, the kvm_x86_ops dirty logging hooks are
10698 * called to enable/disable dirty logging.
10699 *
10700 * When disabling dirty logging with PML enabled, the D-bit is set
10701 * for sptes in the slot in order to prevent unnecessary GPA
10702 * logging in the PML buffer (and potential PML buffer full VMEXIT).
10703 * This guarantees leaving PML enabled for the guest's lifetime
10704 * won't have any additional overhead from PML when the guest is
10705 * running with dirty logging disabled.
10706 *
10707 * When enabling dirty logging, large sptes are write-protected
10708 * so they can be split on first write. New large sptes cannot
10709 * be created for this slot until the end of the logging.
10710 * See the comments in fast_page_fault().
10711 * For small sptes, nothing is done if the dirty log is in the
10712 * initial-all-set state. Otherwise, depending on whether pml
10713 * is enabled the D-bit or the W-bit will be cleared.
10714 */
10715 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
10716 if (kvm_x86_ops.slot_enable_log_dirty) {
10717 kvm_x86_ops.slot_enable_log_dirty(kvm, new);
10718 } else {
10719 int level =
10720 kvm_dirty_log_manual_protect_and_init_set(kvm) ?
10721 PG_LEVEL_2M : PG_LEVEL_4K;
10722
10723 /*
10724 * If we're with initial-all-set, we don't need
10725 * to write protect any small page because
10726 * they're reported as dirty already. However
10727 * we still need to write-protect huge pages
10728 * so that the page split can happen lazily on
10729 * the first write to the huge page.
10730 */
10731 kvm_mmu_slot_remove_write_access(kvm, new, level);
10732 }
10733 } else {
10734 if (kvm_x86_ops.slot_disable_log_dirty)
10735 kvm_x86_ops.slot_disable_log_dirty(kvm, new);
10736 }
10737 }
10738
10739 void kvm_arch_commit_memory_region(struct kvm *kvm,
10740 const struct kvm_userspace_memory_region *mem,
10741 struct kvm_memory_slot *old,
10742 const struct kvm_memory_slot *new,
10743 enum kvm_mr_change change)
10744 {
10745 if (!kvm->arch.n_requested_mmu_pages)
10746 kvm_mmu_change_mmu_pages(kvm,
10747 kvm_mmu_calculate_default_mmu_pages(kvm));
10748
10749 /*
10750 * FIXME: const-ify all uses of struct kvm_memory_slot.
10751 */
10752 kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change);
10753
10754 /* Free the arrays associated with the old memslot. */
10755 if (change == KVM_MR_MOVE)
10756 kvm_arch_free_memslot(kvm, old);
10757 }
10758
10759 void kvm_arch_flush_shadow_all(struct kvm *kvm)
10760 {
10761 kvm_mmu_zap_all(kvm);
10762 }
10763
10764 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
10765 struct kvm_memory_slot *slot)
10766 {
10767 kvm_page_track_flush_slot(kvm, slot);
10768 }
10769
10770 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
10771 {
10772 return (is_guest_mode(vcpu) &&
10773 kvm_x86_ops.guest_apic_has_interrupt &&
10774 kvm_x86_ops.guest_apic_has_interrupt(vcpu));
10775 }
10776
10777 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
10778 {
10779 if (!list_empty_careful(&vcpu->async_pf.done))
10780 return true;
10781
10782 if (kvm_apic_has_events(vcpu))
10783 return true;
10784
10785 if (vcpu->arch.pv.pv_unhalted)
10786 return true;
10787
10788 if (vcpu->arch.exception.pending)
10789 return true;
10790
10791 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10792 (vcpu->arch.nmi_pending &&
10793 kvm_x86_ops.nmi_allowed(vcpu, false)))
10794 return true;
10795
10796 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
10797 (vcpu->arch.smi_pending &&
10798 kvm_x86_ops.smi_allowed(vcpu, false)))
10799 return true;
10800
10801 if (kvm_arch_interrupt_allowed(vcpu) &&
10802 (kvm_cpu_has_interrupt(vcpu) ||
10803 kvm_guest_apic_has_interrupt(vcpu)))
10804 return true;
10805
10806 if (kvm_hv_has_stimer_pending(vcpu))
10807 return true;
10808
10809 if (is_guest_mode(vcpu) &&
10810 kvm_x86_ops.nested_ops->hv_timer_pending &&
10811 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
10812 return true;
10813
10814 return false;
10815 }
10816
10817 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
10818 {
10819 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
10820 }
10821
10822 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
10823 {
10824 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
10825 return true;
10826
10827 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10828 kvm_test_request(KVM_REQ_SMI, vcpu) ||
10829 kvm_test_request(KVM_REQ_EVENT, vcpu))
10830 return true;
10831
10832 if (vcpu->arch.apicv_active && kvm_x86_ops.dy_apicv_has_pending_interrupt(vcpu))
10833 return true;
10834
10835 return false;
10836 }
10837
10838 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
10839 {
10840 return vcpu->arch.preempted_in_kernel;
10841 }
10842
10843 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
10844 {
10845 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
10846 }
10847
10848 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
10849 {
10850 return kvm_x86_ops.interrupt_allowed(vcpu, false);
10851 }
10852
10853 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
10854 {
10855 /* Can't read the RIP when guest state is protected, just return 0 */
10856 if (vcpu->arch.guest_state_protected)
10857 return 0;
10858
10859 if (is_64_bit_mode(vcpu))
10860 return kvm_rip_read(vcpu);
10861 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
10862 kvm_rip_read(vcpu));
10863 }
10864 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
10865
10866 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
10867 {
10868 return kvm_get_linear_rip(vcpu) == linear_rip;
10869 }
10870 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
10871
10872 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
10873 {
10874 unsigned long rflags;
10875
10876 rflags = kvm_x86_ops.get_rflags(vcpu);
10877 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10878 rflags &= ~X86_EFLAGS_TF;
10879 return rflags;
10880 }
10881 EXPORT_SYMBOL_GPL(kvm_get_rflags);
10882
10883 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10884 {
10885 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
10886 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
10887 rflags |= X86_EFLAGS_TF;
10888 kvm_x86_ops.set_rflags(vcpu, rflags);
10889 }
10890
10891 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10892 {
10893 __kvm_set_rflags(vcpu, rflags);
10894 kvm_make_request(KVM_REQ_EVENT, vcpu);
10895 }
10896 EXPORT_SYMBOL_GPL(kvm_set_rflags);
10897
10898 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
10899 {
10900 int r;
10901
10902 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
10903 work->wakeup_all)
10904 return;
10905
10906 r = kvm_mmu_reload(vcpu);
10907 if (unlikely(r))
10908 return;
10909
10910 if (!vcpu->arch.mmu->direct_map &&
10911 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
10912 return;
10913
10914 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
10915 }
10916
10917 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
10918 {
10919 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
10920
10921 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
10922 }
10923
10924 static inline u32 kvm_async_pf_next_probe(u32 key)
10925 {
10926 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
10927 }
10928
10929 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10930 {
10931 u32 key = kvm_async_pf_hash_fn(gfn);
10932
10933 while (vcpu->arch.apf.gfns[key] != ~0)
10934 key = kvm_async_pf_next_probe(key);
10935
10936 vcpu->arch.apf.gfns[key] = gfn;
10937 }
10938
10939 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
10940 {
10941 int i;
10942 u32 key = kvm_async_pf_hash_fn(gfn);
10943
10944 for (i = 0; i < ASYNC_PF_PER_VCPU &&
10945 (vcpu->arch.apf.gfns[key] != gfn &&
10946 vcpu->arch.apf.gfns[key] != ~0); i++)
10947 key = kvm_async_pf_next_probe(key);
10948
10949 return key;
10950 }
10951
10952 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10953 {
10954 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
10955 }
10956
10957 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10958 {
10959 u32 i, j, k;
10960
10961 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
10962
10963 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
10964 return;
10965
10966 while (true) {
10967 vcpu->arch.apf.gfns[i] = ~0;
10968 do {
10969 j = kvm_async_pf_next_probe(j);
10970 if (vcpu->arch.apf.gfns[j] == ~0)
10971 return;
10972 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
10973 /*
10974 * k lies cyclically in ]i,j]
10975 * | i.k.j |
10976 * |....j i.k.| or |.k..j i...|
10977 */
10978 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
10979 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
10980 i = j;
10981 }
10982 }
10983
10984 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
10985 {
10986 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
10987
10988 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
10989 sizeof(reason));
10990 }
10991
10992 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
10993 {
10994 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
10995
10996 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
10997 &token, offset, sizeof(token));
10998 }
10999
11000 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
11001 {
11002 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11003 u32 val;
11004
11005 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11006 &val, offset, sizeof(val)))
11007 return false;
11008
11009 return !val;
11010 }
11011
11012 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
11013 {
11014 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
11015 return false;
11016
11017 if (!kvm_pv_async_pf_enabled(vcpu) ||
11018 (vcpu->arch.apf.send_user_only && kvm_x86_ops.get_cpl(vcpu) == 0))
11019 return false;
11020
11021 return true;
11022 }
11023
11024 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
11025 {
11026 if (unlikely(!lapic_in_kernel(vcpu) ||
11027 kvm_event_needs_reinjection(vcpu) ||
11028 vcpu->arch.exception.pending))
11029 return false;
11030
11031 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
11032 return false;
11033
11034 /*
11035 * If interrupts are off we cannot even use an artificial
11036 * halt state.
11037 */
11038 return kvm_arch_interrupt_allowed(vcpu);
11039 }
11040
11041 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
11042 struct kvm_async_pf *work)
11043 {
11044 struct x86_exception fault;
11045
11046 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
11047 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
11048
11049 if (kvm_can_deliver_async_pf(vcpu) &&
11050 !apf_put_user_notpresent(vcpu)) {
11051 fault.vector = PF_VECTOR;
11052 fault.error_code_valid = true;
11053 fault.error_code = 0;
11054 fault.nested_page_fault = false;
11055 fault.address = work->arch.token;
11056 fault.async_page_fault = true;
11057 kvm_inject_page_fault(vcpu, &fault);
11058 return true;
11059 } else {
11060 /*
11061 * It is not possible to deliver a paravirtualized asynchronous
11062 * page fault, but putting the guest in an artificial halt state
11063 * can be beneficial nevertheless: if an interrupt arrives, we
11064 * can deliver it timely and perhaps the guest will schedule
11065 * another process. When the instruction that triggered a page
11066 * fault is retried, hopefully the page will be ready in the host.
11067 */
11068 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
11069 return false;
11070 }
11071 }
11072
11073 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
11074 struct kvm_async_pf *work)
11075 {
11076 struct kvm_lapic_irq irq = {
11077 .delivery_mode = APIC_DM_FIXED,
11078 .vector = vcpu->arch.apf.vec
11079 };
11080
11081 if (work->wakeup_all)
11082 work->arch.token = ~0; /* broadcast wakeup */
11083 else
11084 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
11085 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
11086
11087 if ((work->wakeup_all || work->notpresent_injected) &&
11088 kvm_pv_async_pf_enabled(vcpu) &&
11089 !apf_put_user_ready(vcpu, work->arch.token)) {
11090 vcpu->arch.apf.pageready_pending = true;
11091 kvm_apic_set_irq(vcpu, &irq, NULL);
11092 }
11093
11094 vcpu->arch.apf.halted = false;
11095 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11096 }
11097
11098 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
11099 {
11100 kvm_make_request(KVM_REQ_APF_READY, vcpu);
11101 if (!vcpu->arch.apf.pageready_pending)
11102 kvm_vcpu_kick(vcpu);
11103 }
11104
11105 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
11106 {
11107 if (!kvm_pv_async_pf_enabled(vcpu))
11108 return true;
11109 else
11110 return apf_pageready_slot_free(vcpu);
11111 }
11112
11113 void kvm_arch_start_assignment(struct kvm *kvm)
11114 {
11115 atomic_inc(&kvm->arch.assigned_device_count);
11116 }
11117 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
11118
11119 void kvm_arch_end_assignment(struct kvm *kvm)
11120 {
11121 atomic_dec(&kvm->arch.assigned_device_count);
11122 }
11123 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
11124
11125 bool kvm_arch_has_assigned_device(struct kvm *kvm)
11126 {
11127 return atomic_read(&kvm->arch.assigned_device_count);
11128 }
11129 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
11130
11131 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
11132 {
11133 atomic_inc(&kvm->arch.noncoherent_dma_count);
11134 }
11135 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
11136
11137 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
11138 {
11139 atomic_dec(&kvm->arch.noncoherent_dma_count);
11140 }
11141 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
11142
11143 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
11144 {
11145 return atomic_read(&kvm->arch.noncoherent_dma_count);
11146 }
11147 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
11148
11149 bool kvm_arch_has_irq_bypass(void)
11150 {
11151 return true;
11152 }
11153
11154 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
11155 struct irq_bypass_producer *prod)
11156 {
11157 struct kvm_kernel_irqfd *irqfd =
11158 container_of(cons, struct kvm_kernel_irqfd, consumer);
11159 int ret;
11160
11161 irqfd->producer = prod;
11162 kvm_arch_start_assignment(irqfd->kvm);
11163 ret = kvm_x86_ops.update_pi_irte(irqfd->kvm,
11164 prod->irq, irqfd->gsi, 1);
11165
11166 if (ret)
11167 kvm_arch_end_assignment(irqfd->kvm);
11168
11169 return ret;
11170 }
11171
11172 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
11173 struct irq_bypass_producer *prod)
11174 {
11175 int ret;
11176 struct kvm_kernel_irqfd *irqfd =
11177 container_of(cons, struct kvm_kernel_irqfd, consumer);
11178
11179 WARN_ON(irqfd->producer != prod);
11180 irqfd->producer = NULL;
11181
11182 /*
11183 * When producer of consumer is unregistered, we change back to
11184 * remapped mode, so we can re-use the current implementation
11185 * when the irq is masked/disabled or the consumer side (KVM
11186 * int this case doesn't want to receive the interrupts.
11187 */
11188 ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
11189 if (ret)
11190 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
11191 " fails: %d\n", irqfd->consumer.token, ret);
11192
11193 kvm_arch_end_assignment(irqfd->kvm);
11194 }
11195
11196 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
11197 uint32_t guest_irq, bool set)
11198 {
11199 return kvm_x86_ops.update_pi_irte(kvm, host_irq, guest_irq, set);
11200 }
11201
11202 bool kvm_vector_hashing_enabled(void)
11203 {
11204 return vector_hashing;
11205 }
11206
11207 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
11208 {
11209 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
11210 }
11211 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
11212
11213
11214 int kvm_spec_ctrl_test_value(u64 value)
11215 {
11216 /*
11217 * test that setting IA32_SPEC_CTRL to given value
11218 * is allowed by the host processor
11219 */
11220
11221 u64 saved_value;
11222 unsigned long flags;
11223 int ret = 0;
11224
11225 local_irq_save(flags);
11226
11227 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
11228 ret = 1;
11229 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
11230 ret = 1;
11231 else
11232 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
11233
11234 local_irq_restore(flags);
11235
11236 return ret;
11237 }
11238 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
11239
11240 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
11241 {
11242 struct x86_exception fault;
11243 u32 access = error_code &
11244 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
11245
11246 if (!(error_code & PFERR_PRESENT_MASK) ||
11247 vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
11248 /*
11249 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
11250 * tables probably do not match the TLB. Just proceed
11251 * with the error code that the processor gave.
11252 */
11253 fault.vector = PF_VECTOR;
11254 fault.error_code_valid = true;
11255 fault.error_code = error_code;
11256 fault.nested_page_fault = false;
11257 fault.address = gva;
11258 }
11259 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
11260 }
11261 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
11262
11263 /*
11264 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
11265 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
11266 * indicates whether exit to userspace is needed.
11267 */
11268 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
11269 struct x86_exception *e)
11270 {
11271 if (r == X86EMUL_PROPAGATE_FAULT) {
11272 kvm_inject_emulated_page_fault(vcpu, e);
11273 return 1;
11274 }
11275
11276 /*
11277 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
11278 * while handling a VMX instruction KVM could've handled the request
11279 * correctly by exiting to userspace and performing I/O but there
11280 * doesn't seem to be a real use-case behind such requests, just return
11281 * KVM_EXIT_INTERNAL_ERROR for now.
11282 */
11283 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11284 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11285 vcpu->run->internal.ndata = 0;
11286
11287 return 0;
11288 }
11289 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
11290
11291 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
11292 {
11293 bool pcid_enabled;
11294 struct x86_exception e;
11295 unsigned i;
11296 unsigned long roots_to_free = 0;
11297 struct {
11298 u64 pcid;
11299 u64 gla;
11300 } operand;
11301 int r;
11302
11303 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
11304 if (r != X86EMUL_CONTINUE)
11305 return kvm_handle_memory_failure(vcpu, r, &e);
11306
11307 if (operand.pcid >> 12 != 0) {
11308 kvm_inject_gp(vcpu, 0);
11309 return 1;
11310 }
11311
11312 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
11313
11314 switch (type) {
11315 case INVPCID_TYPE_INDIV_ADDR:
11316 if ((!pcid_enabled && (operand.pcid != 0)) ||
11317 is_noncanonical_address(operand.gla, vcpu)) {
11318 kvm_inject_gp(vcpu, 0);
11319 return 1;
11320 }
11321 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
11322 return kvm_skip_emulated_instruction(vcpu);
11323
11324 case INVPCID_TYPE_SINGLE_CTXT:
11325 if (!pcid_enabled && (operand.pcid != 0)) {
11326 kvm_inject_gp(vcpu, 0);
11327 return 1;
11328 }
11329
11330 if (kvm_get_active_pcid(vcpu) == operand.pcid) {
11331 kvm_mmu_sync_roots(vcpu);
11332 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
11333 }
11334
11335 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
11336 if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].pgd)
11337 == operand.pcid)
11338 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
11339
11340 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
11341 /*
11342 * If neither the current cr3 nor any of the prev_roots use the
11343 * given PCID, then nothing needs to be done here because a
11344 * resync will happen anyway before switching to any other CR3.
11345 */
11346
11347 return kvm_skip_emulated_instruction(vcpu);
11348
11349 case INVPCID_TYPE_ALL_NON_GLOBAL:
11350 /*
11351 * Currently, KVM doesn't mark global entries in the shadow
11352 * page tables, so a non-global flush just degenerates to a
11353 * global flush. If needed, we could optimize this later by
11354 * keeping track of global entries in shadow page tables.
11355 */
11356
11357 fallthrough;
11358 case INVPCID_TYPE_ALL_INCL_GLOBAL:
11359 kvm_mmu_unload(vcpu);
11360 return kvm_skip_emulated_instruction(vcpu);
11361
11362 default:
11363 BUG(); /* We have already checked above that type <= 3 */
11364 }
11365 }
11366 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
11367
11368 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
11369 {
11370 struct kvm_run *run = vcpu->run;
11371 struct kvm_mmio_fragment *frag;
11372 unsigned int len;
11373
11374 BUG_ON(!vcpu->mmio_needed);
11375
11376 /* Complete previous fragment */
11377 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11378 len = min(8u, frag->len);
11379 if (!vcpu->mmio_is_write)
11380 memcpy(frag->data, run->mmio.data, len);
11381
11382 if (frag->len <= 8) {
11383 /* Switch to the next fragment. */
11384 frag++;
11385 vcpu->mmio_cur_fragment++;
11386 } else {
11387 /* Go forward to the next mmio piece. */
11388 frag->data += len;
11389 frag->gpa += len;
11390 frag->len -= len;
11391 }
11392
11393 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11394 vcpu->mmio_needed = 0;
11395
11396 // VMG change, at this point, we're always done
11397 // RIP has already been advanced
11398 return 1;
11399 }
11400
11401 // More MMIO is needed
11402 run->mmio.phys_addr = frag->gpa;
11403 run->mmio.len = min(8u, frag->len);
11404 run->mmio.is_write = vcpu->mmio_is_write;
11405 if (run->mmio.is_write)
11406 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11407 run->exit_reason = KVM_EXIT_MMIO;
11408
11409 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11410
11411 return 0;
11412 }
11413
11414 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
11415 void *data)
11416 {
11417 int handled;
11418 struct kvm_mmio_fragment *frag;
11419
11420 if (!data)
11421 return -EINVAL;
11422
11423 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
11424 if (handled == bytes)
11425 return 1;
11426
11427 bytes -= handled;
11428 gpa += handled;
11429 data += handled;
11430
11431 /*TODO: Check if need to increment number of frags */
11432 frag = vcpu->mmio_fragments;
11433 vcpu->mmio_nr_fragments = 1;
11434 frag->len = bytes;
11435 frag->gpa = gpa;
11436 frag->data = data;
11437
11438 vcpu->mmio_needed = 1;
11439 vcpu->mmio_cur_fragment = 0;
11440
11441 vcpu->run->mmio.phys_addr = gpa;
11442 vcpu->run->mmio.len = min(8u, frag->len);
11443 vcpu->run->mmio.is_write = 1;
11444 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
11445 vcpu->run->exit_reason = KVM_EXIT_MMIO;
11446
11447 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11448
11449 return 0;
11450 }
11451 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
11452
11453 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
11454 void *data)
11455 {
11456 int handled;
11457 struct kvm_mmio_fragment *frag;
11458
11459 if (!data)
11460 return -EINVAL;
11461
11462 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
11463 if (handled == bytes)
11464 return 1;
11465
11466 bytes -= handled;
11467 gpa += handled;
11468 data += handled;
11469
11470 /*TODO: Check if need to increment number of frags */
11471 frag = vcpu->mmio_fragments;
11472 vcpu->mmio_nr_fragments = 1;
11473 frag->len = bytes;
11474 frag->gpa = gpa;
11475 frag->data = data;
11476
11477 vcpu->mmio_needed = 1;
11478 vcpu->mmio_cur_fragment = 0;
11479
11480 vcpu->run->mmio.phys_addr = gpa;
11481 vcpu->run->mmio.len = min(8u, frag->len);
11482 vcpu->run->mmio.is_write = 0;
11483 vcpu->run->exit_reason = KVM_EXIT_MMIO;
11484
11485 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11486
11487 return 0;
11488 }
11489 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
11490
11491 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
11492 {
11493 memcpy(vcpu->arch.guest_ins_data, vcpu->arch.pio_data,
11494 vcpu->arch.pio.count * vcpu->arch.pio.size);
11495 vcpu->arch.pio.count = 0;
11496
11497 return 1;
11498 }
11499
11500 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
11501 unsigned int port, void *data, unsigned int count)
11502 {
11503 int ret;
11504
11505 ret = emulator_pio_out_emulated(vcpu->arch.emulate_ctxt, size, port,
11506 data, count);
11507 if (ret)
11508 return ret;
11509
11510 vcpu->arch.pio.count = 0;
11511
11512 return 0;
11513 }
11514
11515 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
11516 unsigned int port, void *data, unsigned int count)
11517 {
11518 int ret;
11519
11520 ret = emulator_pio_in_emulated(vcpu->arch.emulate_ctxt, size, port,
11521 data, count);
11522 if (ret) {
11523 vcpu->arch.pio.count = 0;
11524 } else {
11525 vcpu->arch.guest_ins_data = data;
11526 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
11527 }
11528
11529 return 0;
11530 }
11531
11532 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
11533 unsigned int port, void *data, unsigned int count,
11534 int in)
11535 {
11536 return in ? kvm_sev_es_ins(vcpu, size, port, data, count)
11537 : kvm_sev_es_outs(vcpu, size, port, data, count);
11538 }
11539 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
11540
11541 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
11542 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
11543 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
11544 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
11545 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
11546 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
11547 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
11548 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
11549 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
11550 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
11551 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
11552 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
11553 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
11554 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
11555 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
11556 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
11557 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
11558 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
11559 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
11560 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
11561 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
11562 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
11563 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
11564 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
11565 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
11566 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);