]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kvm/x86.c
KVM: x86: Take srcu lock in post_kvm_run_save()
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * derived from drivers/kvm/kvm_main.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
17 */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 #include <linux/suspend.h>
62
63 #include <trace/events/kvm.h>
64
65 #include <asm/debugreg.h>
66 #include <asm/msr.h>
67 #include <asm/desc.h>
68 #include <asm/mce.h>
69 #include <asm/pkru.h>
70 #include <linux/kernel_stat.h>
71 #include <asm/fpu/internal.h> /* Ugh! */
72 #include <asm/pvclock.h>
73 #include <asm/div64.h>
74 #include <asm/irq_remapping.h>
75 #include <asm/mshyperv.h>
76 #include <asm/hypervisor.h>
77 #include <asm/tlbflush.h>
78 #include <asm/intel_pt.h>
79 #include <asm/emulate_prefix.h>
80 #include <asm/sgx.h>
81 #include <clocksource/hyperv_timer.h>
82
83 #define CREATE_TRACE_POINTS
84 #include "trace.h"
85
86 #define MAX_IO_MSRS 256
87 #define KVM_MAX_MCE_BANKS 32
88 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
89 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
90
91 #define emul_to_vcpu(ctxt) \
92 ((struct kvm_vcpu *)(ctxt)->vcpu)
93
94 /* EFER defaults:
95 * - enable syscall per default because its emulated by KVM
96 * - enable LME and LMA per default on 64 bit KVM
97 */
98 #ifdef CONFIG_X86_64
99 static
100 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
101 #else
102 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
103 #endif
104
105 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
106
107 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
108
109 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
110 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
111
112 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
113 static void process_nmi(struct kvm_vcpu *vcpu);
114 static void process_smi(struct kvm_vcpu *vcpu);
115 static void enter_smm(struct kvm_vcpu *vcpu);
116 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
117 static void store_regs(struct kvm_vcpu *vcpu);
118 static int sync_regs(struct kvm_vcpu *vcpu);
119
120 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
121 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
122
123 struct kvm_x86_ops kvm_x86_ops __read_mostly;
124 EXPORT_SYMBOL_GPL(kvm_x86_ops);
125
126 #define KVM_X86_OP(func) \
127 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
128 *(((struct kvm_x86_ops *)0)->func));
129 #define KVM_X86_OP_NULL KVM_X86_OP
130 #include <asm/kvm-x86-ops.h>
131 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
132 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
133 EXPORT_STATIC_CALL_GPL(kvm_x86_tlb_flush_current);
134
135 static bool __read_mostly ignore_msrs = 0;
136 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
137
138 bool __read_mostly report_ignored_msrs = true;
139 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
140 EXPORT_SYMBOL_GPL(report_ignored_msrs);
141
142 unsigned int min_timer_period_us = 200;
143 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
144
145 static bool __read_mostly kvmclock_periodic_sync = true;
146 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
147
148 bool __read_mostly kvm_has_tsc_control;
149 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
150 u32 __read_mostly kvm_max_guest_tsc_khz;
151 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
152 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
153 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
154 u64 __read_mostly kvm_max_tsc_scaling_ratio;
155 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
156 u64 __read_mostly kvm_default_tsc_scaling_ratio;
157 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
158 bool __read_mostly kvm_has_bus_lock_exit;
159 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
160
161 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
162 static u32 __read_mostly tsc_tolerance_ppm = 250;
163 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
164
165 /*
166 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables
167 * adaptive tuning starting from default advancement of 1000ns. '0' disables
168 * advancement entirely. Any other value is used as-is and disables adaptive
169 * tuning, i.e. allows privileged userspace to set an exact advancement time.
170 */
171 static int __read_mostly lapic_timer_advance_ns = -1;
172 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
173
174 static bool __read_mostly vector_hashing = true;
175 module_param(vector_hashing, bool, S_IRUGO);
176
177 bool __read_mostly enable_vmware_backdoor = false;
178 module_param(enable_vmware_backdoor, bool, S_IRUGO);
179 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
180
181 static bool __read_mostly force_emulation_prefix = false;
182 module_param(force_emulation_prefix, bool, S_IRUGO);
183
184 int __read_mostly pi_inject_timer = -1;
185 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
186
187 /*
188 * Restoring the host value for MSRs that are only consumed when running in
189 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
190 * returns to userspace, i.e. the kernel can run with the guest's value.
191 */
192 #define KVM_MAX_NR_USER_RETURN_MSRS 16
193
194 struct kvm_user_return_msrs {
195 struct user_return_notifier urn;
196 bool registered;
197 struct kvm_user_return_msr_values {
198 u64 host;
199 u64 curr;
200 } values[KVM_MAX_NR_USER_RETURN_MSRS];
201 };
202
203 u32 __read_mostly kvm_nr_uret_msrs;
204 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
205 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
206 static struct kvm_user_return_msrs __percpu *user_return_msrs;
207
208 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
209 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
210 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
211 | XFEATURE_MASK_PKRU)
212
213 u64 __read_mostly host_efer;
214 EXPORT_SYMBOL_GPL(host_efer);
215
216 bool __read_mostly allow_smaller_maxphyaddr = 0;
217 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
218
219 bool __read_mostly enable_apicv = true;
220 EXPORT_SYMBOL_GPL(enable_apicv);
221
222 u64 __read_mostly host_xss;
223 EXPORT_SYMBOL_GPL(host_xss);
224 u64 __read_mostly supported_xss;
225 EXPORT_SYMBOL_GPL(supported_xss);
226
227 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
228 KVM_GENERIC_VM_STATS(),
229 STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
230 STATS_DESC_COUNTER(VM, mmu_pte_write),
231 STATS_DESC_COUNTER(VM, mmu_pde_zapped),
232 STATS_DESC_COUNTER(VM, mmu_flooded),
233 STATS_DESC_COUNTER(VM, mmu_recycled),
234 STATS_DESC_COUNTER(VM, mmu_cache_miss),
235 STATS_DESC_ICOUNTER(VM, mmu_unsync),
236 STATS_DESC_ICOUNTER(VM, pages_4k),
237 STATS_DESC_ICOUNTER(VM, pages_2m),
238 STATS_DESC_ICOUNTER(VM, pages_1g),
239 STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
240 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
241 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
242 };
243
244 const struct kvm_stats_header kvm_vm_stats_header = {
245 .name_size = KVM_STATS_NAME_SIZE,
246 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
247 .id_offset = sizeof(struct kvm_stats_header),
248 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
249 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
250 sizeof(kvm_vm_stats_desc),
251 };
252
253 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
254 KVM_GENERIC_VCPU_STATS(),
255 STATS_DESC_COUNTER(VCPU, pf_fixed),
256 STATS_DESC_COUNTER(VCPU, pf_guest),
257 STATS_DESC_COUNTER(VCPU, tlb_flush),
258 STATS_DESC_COUNTER(VCPU, invlpg),
259 STATS_DESC_COUNTER(VCPU, exits),
260 STATS_DESC_COUNTER(VCPU, io_exits),
261 STATS_DESC_COUNTER(VCPU, mmio_exits),
262 STATS_DESC_COUNTER(VCPU, signal_exits),
263 STATS_DESC_COUNTER(VCPU, irq_window_exits),
264 STATS_DESC_COUNTER(VCPU, nmi_window_exits),
265 STATS_DESC_COUNTER(VCPU, l1d_flush),
266 STATS_DESC_COUNTER(VCPU, halt_exits),
267 STATS_DESC_COUNTER(VCPU, request_irq_exits),
268 STATS_DESC_COUNTER(VCPU, irq_exits),
269 STATS_DESC_COUNTER(VCPU, host_state_reload),
270 STATS_DESC_COUNTER(VCPU, fpu_reload),
271 STATS_DESC_COUNTER(VCPU, insn_emulation),
272 STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
273 STATS_DESC_COUNTER(VCPU, hypercalls),
274 STATS_DESC_COUNTER(VCPU, irq_injections),
275 STATS_DESC_COUNTER(VCPU, nmi_injections),
276 STATS_DESC_COUNTER(VCPU, req_event),
277 STATS_DESC_COUNTER(VCPU, nested_run),
278 STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
279 STATS_DESC_COUNTER(VCPU, directed_yield_successful),
280 STATS_DESC_ICOUNTER(VCPU, guest_mode)
281 };
282
283 const struct kvm_stats_header kvm_vcpu_stats_header = {
284 .name_size = KVM_STATS_NAME_SIZE,
285 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
286 .id_offset = sizeof(struct kvm_stats_header),
287 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
288 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
289 sizeof(kvm_vcpu_stats_desc),
290 };
291
292 u64 __read_mostly host_xcr0;
293 u64 __read_mostly supported_xcr0;
294 EXPORT_SYMBOL_GPL(supported_xcr0);
295
296 static struct kmem_cache *x86_fpu_cache;
297
298 static struct kmem_cache *x86_emulator_cache;
299
300 /*
301 * When called, it means the previous get/set msr reached an invalid msr.
302 * Return true if we want to ignore/silent this failed msr access.
303 */
304 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
305 {
306 const char *op = write ? "wrmsr" : "rdmsr";
307
308 if (ignore_msrs) {
309 if (report_ignored_msrs)
310 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
311 op, msr, data);
312 /* Mask the error */
313 return true;
314 } else {
315 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
316 op, msr, data);
317 return false;
318 }
319 }
320
321 static struct kmem_cache *kvm_alloc_emulator_cache(void)
322 {
323 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
324 unsigned int size = sizeof(struct x86_emulate_ctxt);
325
326 return kmem_cache_create_usercopy("x86_emulator", size,
327 __alignof__(struct x86_emulate_ctxt),
328 SLAB_ACCOUNT, useroffset,
329 size - useroffset, NULL);
330 }
331
332 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
333
334 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
335 {
336 int i;
337 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
338 vcpu->arch.apf.gfns[i] = ~0;
339 }
340
341 static void kvm_on_user_return(struct user_return_notifier *urn)
342 {
343 unsigned slot;
344 struct kvm_user_return_msrs *msrs
345 = container_of(urn, struct kvm_user_return_msrs, urn);
346 struct kvm_user_return_msr_values *values;
347 unsigned long flags;
348
349 /*
350 * Disabling irqs at this point since the following code could be
351 * interrupted and executed through kvm_arch_hardware_disable()
352 */
353 local_irq_save(flags);
354 if (msrs->registered) {
355 msrs->registered = false;
356 user_return_notifier_unregister(urn);
357 }
358 local_irq_restore(flags);
359 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
360 values = &msrs->values[slot];
361 if (values->host != values->curr) {
362 wrmsrl(kvm_uret_msrs_list[slot], values->host);
363 values->curr = values->host;
364 }
365 }
366 }
367
368 static int kvm_probe_user_return_msr(u32 msr)
369 {
370 u64 val;
371 int ret;
372
373 preempt_disable();
374 ret = rdmsrl_safe(msr, &val);
375 if (ret)
376 goto out;
377 ret = wrmsrl_safe(msr, val);
378 out:
379 preempt_enable();
380 return ret;
381 }
382
383 int kvm_add_user_return_msr(u32 msr)
384 {
385 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
386
387 if (kvm_probe_user_return_msr(msr))
388 return -1;
389
390 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
391 return kvm_nr_uret_msrs++;
392 }
393 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
394
395 int kvm_find_user_return_msr(u32 msr)
396 {
397 int i;
398
399 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
400 if (kvm_uret_msrs_list[i] == msr)
401 return i;
402 }
403 return -1;
404 }
405 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
406
407 static void kvm_user_return_msr_cpu_online(void)
408 {
409 unsigned int cpu = smp_processor_id();
410 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
411 u64 value;
412 int i;
413
414 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
415 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
416 msrs->values[i].host = value;
417 msrs->values[i].curr = value;
418 }
419 }
420
421 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
422 {
423 unsigned int cpu = smp_processor_id();
424 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
425 int err;
426
427 value = (value & mask) | (msrs->values[slot].host & ~mask);
428 if (value == msrs->values[slot].curr)
429 return 0;
430 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
431 if (err)
432 return 1;
433
434 msrs->values[slot].curr = value;
435 if (!msrs->registered) {
436 msrs->urn.on_user_return = kvm_on_user_return;
437 user_return_notifier_register(&msrs->urn);
438 msrs->registered = true;
439 }
440 return 0;
441 }
442 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
443
444 static void drop_user_return_notifiers(void)
445 {
446 unsigned int cpu = smp_processor_id();
447 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
448
449 if (msrs->registered)
450 kvm_on_user_return(&msrs->urn);
451 }
452
453 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
454 {
455 return vcpu->arch.apic_base;
456 }
457 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
458
459 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
460 {
461 return kvm_apic_mode(kvm_get_apic_base(vcpu));
462 }
463 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
464
465 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
466 {
467 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
468 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
469 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
470 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
471
472 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
473 return 1;
474 if (!msr_info->host_initiated) {
475 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
476 return 1;
477 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
478 return 1;
479 }
480
481 kvm_lapic_set_base(vcpu, msr_info->data);
482 kvm_recalculate_apic_map(vcpu->kvm);
483 return 0;
484 }
485 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
486
487 /*
488 * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
489 *
490 * Hardware virtualization extension instructions may fault if a reboot turns
491 * off virtualization while processes are running. Usually after catching the
492 * fault we just panic; during reboot instead the instruction is ignored.
493 */
494 noinstr void kvm_spurious_fault(void)
495 {
496 /* Fault while not rebooting. We want the trace. */
497 BUG_ON(!kvm_rebooting);
498 }
499 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
500
501 #define EXCPT_BENIGN 0
502 #define EXCPT_CONTRIBUTORY 1
503 #define EXCPT_PF 2
504
505 static int exception_class(int vector)
506 {
507 switch (vector) {
508 case PF_VECTOR:
509 return EXCPT_PF;
510 case DE_VECTOR:
511 case TS_VECTOR:
512 case NP_VECTOR:
513 case SS_VECTOR:
514 case GP_VECTOR:
515 return EXCPT_CONTRIBUTORY;
516 default:
517 break;
518 }
519 return EXCPT_BENIGN;
520 }
521
522 #define EXCPT_FAULT 0
523 #define EXCPT_TRAP 1
524 #define EXCPT_ABORT 2
525 #define EXCPT_INTERRUPT 3
526
527 static int exception_type(int vector)
528 {
529 unsigned int mask;
530
531 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
532 return EXCPT_INTERRUPT;
533
534 mask = 1 << vector;
535
536 /* #DB is trap, as instruction watchpoints are handled elsewhere */
537 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
538 return EXCPT_TRAP;
539
540 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
541 return EXCPT_ABORT;
542
543 /* Reserved exceptions will result in fault */
544 return EXCPT_FAULT;
545 }
546
547 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
548 {
549 unsigned nr = vcpu->arch.exception.nr;
550 bool has_payload = vcpu->arch.exception.has_payload;
551 unsigned long payload = vcpu->arch.exception.payload;
552
553 if (!has_payload)
554 return;
555
556 switch (nr) {
557 case DB_VECTOR:
558 /*
559 * "Certain debug exceptions may clear bit 0-3. The
560 * remaining contents of the DR6 register are never
561 * cleared by the processor".
562 */
563 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
564 /*
565 * In order to reflect the #DB exception payload in guest
566 * dr6, three components need to be considered: active low
567 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
568 * DR6_BS and DR6_BT)
569 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
570 * In the target guest dr6:
571 * FIXED_1 bits should always be set.
572 * Active low bits should be cleared if 1-setting in payload.
573 * Active high bits should be set if 1-setting in payload.
574 *
575 * Note, the payload is compatible with the pending debug
576 * exceptions/exit qualification under VMX, that active_low bits
577 * are active high in payload.
578 * So they need to be flipped for DR6.
579 */
580 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
581 vcpu->arch.dr6 |= payload;
582 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
583
584 /*
585 * The #DB payload is defined as compatible with the 'pending
586 * debug exceptions' field under VMX, not DR6. While bit 12 is
587 * defined in the 'pending debug exceptions' field (enabled
588 * breakpoint), it is reserved and must be zero in DR6.
589 */
590 vcpu->arch.dr6 &= ~BIT(12);
591 break;
592 case PF_VECTOR:
593 vcpu->arch.cr2 = payload;
594 break;
595 }
596
597 vcpu->arch.exception.has_payload = false;
598 vcpu->arch.exception.payload = 0;
599 }
600 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
601
602 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
603 unsigned nr, bool has_error, u32 error_code,
604 bool has_payload, unsigned long payload, bool reinject)
605 {
606 u32 prev_nr;
607 int class1, class2;
608
609 kvm_make_request(KVM_REQ_EVENT, vcpu);
610
611 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
612 queue:
613 if (reinject) {
614 /*
615 * On vmentry, vcpu->arch.exception.pending is only
616 * true if an event injection was blocked by
617 * nested_run_pending. In that case, however,
618 * vcpu_enter_guest requests an immediate exit,
619 * and the guest shouldn't proceed far enough to
620 * need reinjection.
621 */
622 WARN_ON_ONCE(vcpu->arch.exception.pending);
623 vcpu->arch.exception.injected = true;
624 if (WARN_ON_ONCE(has_payload)) {
625 /*
626 * A reinjected event has already
627 * delivered its payload.
628 */
629 has_payload = false;
630 payload = 0;
631 }
632 } else {
633 vcpu->arch.exception.pending = true;
634 vcpu->arch.exception.injected = false;
635 }
636 vcpu->arch.exception.has_error_code = has_error;
637 vcpu->arch.exception.nr = nr;
638 vcpu->arch.exception.error_code = error_code;
639 vcpu->arch.exception.has_payload = has_payload;
640 vcpu->arch.exception.payload = payload;
641 if (!is_guest_mode(vcpu))
642 kvm_deliver_exception_payload(vcpu);
643 return;
644 }
645
646 /* to check exception */
647 prev_nr = vcpu->arch.exception.nr;
648 if (prev_nr == DF_VECTOR) {
649 /* triple fault -> shutdown */
650 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
651 return;
652 }
653 class1 = exception_class(prev_nr);
654 class2 = exception_class(nr);
655 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
656 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
657 /*
658 * Generate double fault per SDM Table 5-5. Set
659 * exception.pending = true so that the double fault
660 * can trigger a nested vmexit.
661 */
662 vcpu->arch.exception.pending = true;
663 vcpu->arch.exception.injected = false;
664 vcpu->arch.exception.has_error_code = true;
665 vcpu->arch.exception.nr = DF_VECTOR;
666 vcpu->arch.exception.error_code = 0;
667 vcpu->arch.exception.has_payload = false;
668 vcpu->arch.exception.payload = 0;
669 } else
670 /* replace previous exception with a new one in a hope
671 that instruction re-execution will regenerate lost
672 exception */
673 goto queue;
674 }
675
676 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
677 {
678 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
679 }
680 EXPORT_SYMBOL_GPL(kvm_queue_exception);
681
682 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
683 {
684 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
685 }
686 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
687
688 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
689 unsigned long payload)
690 {
691 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
692 }
693 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
694
695 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
696 u32 error_code, unsigned long payload)
697 {
698 kvm_multiple_exception(vcpu, nr, true, error_code,
699 true, payload, false);
700 }
701
702 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
703 {
704 if (err)
705 kvm_inject_gp(vcpu, 0);
706 else
707 return kvm_skip_emulated_instruction(vcpu);
708
709 return 1;
710 }
711 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
712
713 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
714 {
715 ++vcpu->stat.pf_guest;
716 vcpu->arch.exception.nested_apf =
717 is_guest_mode(vcpu) && fault->async_page_fault;
718 if (vcpu->arch.exception.nested_apf) {
719 vcpu->arch.apf.nested_apf_token = fault->address;
720 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
721 } else {
722 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
723 fault->address);
724 }
725 }
726 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
727
728 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
729 struct x86_exception *fault)
730 {
731 struct kvm_mmu *fault_mmu;
732 WARN_ON_ONCE(fault->vector != PF_VECTOR);
733
734 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
735 vcpu->arch.walk_mmu;
736
737 /*
738 * Invalidate the TLB entry for the faulting address, if it exists,
739 * else the access will fault indefinitely (and to emulate hardware).
740 */
741 if ((fault->error_code & PFERR_PRESENT_MASK) &&
742 !(fault->error_code & PFERR_RSVD_MASK))
743 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
744 fault_mmu->root_hpa);
745
746 fault_mmu->inject_page_fault(vcpu, fault);
747 return fault->nested_page_fault;
748 }
749 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
750
751 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
752 {
753 atomic_inc(&vcpu->arch.nmi_queued);
754 kvm_make_request(KVM_REQ_NMI, vcpu);
755 }
756 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
757
758 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
759 {
760 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
761 }
762 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
763
764 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
765 {
766 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
767 }
768 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
769
770 /*
771 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
772 * a #GP and return false.
773 */
774 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
775 {
776 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
777 return true;
778 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
779 return false;
780 }
781 EXPORT_SYMBOL_GPL(kvm_require_cpl);
782
783 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
784 {
785 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
786 return true;
787
788 kvm_queue_exception(vcpu, UD_VECTOR);
789 return false;
790 }
791 EXPORT_SYMBOL_GPL(kvm_require_dr);
792
793 /*
794 * This function will be used to read from the physical memory of the currently
795 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
796 * can read from guest physical or from the guest's guest physical memory.
797 */
798 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
799 gfn_t ngfn, void *data, int offset, int len,
800 u32 access)
801 {
802 struct x86_exception exception;
803 gfn_t real_gfn;
804 gpa_t ngpa;
805
806 ngpa = gfn_to_gpa(ngfn);
807 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
808 if (real_gfn == UNMAPPED_GVA)
809 return -EFAULT;
810
811 real_gfn = gpa_to_gfn(real_gfn);
812
813 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
814 }
815 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
816
817 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
818 {
819 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
820 }
821
822 /*
823 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
824 */
825 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
826 {
827 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
828 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
829 int i;
830 int ret;
831 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
832
833 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
834 offset * sizeof(u64), sizeof(pdpte),
835 PFERR_USER_MASK|PFERR_WRITE_MASK);
836 if (ret < 0) {
837 ret = 0;
838 goto out;
839 }
840 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
841 if ((pdpte[i] & PT_PRESENT_MASK) &&
842 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
843 ret = 0;
844 goto out;
845 }
846 }
847 ret = 1;
848
849 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
850 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
851 vcpu->arch.pdptrs_from_userspace = false;
852
853 out:
854
855 return ret;
856 }
857 EXPORT_SYMBOL_GPL(load_pdptrs);
858
859 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
860 {
861 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
862 kvm_clear_async_pf_completion_queue(vcpu);
863 kvm_async_pf_hash_reset(vcpu);
864 }
865
866 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
867 kvm_mmu_reset_context(vcpu);
868
869 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
870 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
871 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
872 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
873 }
874 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
875
876 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
877 {
878 unsigned long old_cr0 = kvm_read_cr0(vcpu);
879 unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
880
881 cr0 |= X86_CR0_ET;
882
883 #ifdef CONFIG_X86_64
884 if (cr0 & 0xffffffff00000000UL)
885 return 1;
886 #endif
887
888 cr0 &= ~CR0_RESERVED_BITS;
889
890 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
891 return 1;
892
893 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
894 return 1;
895
896 #ifdef CONFIG_X86_64
897 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
898 (cr0 & X86_CR0_PG)) {
899 int cs_db, cs_l;
900
901 if (!is_pae(vcpu))
902 return 1;
903 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
904 if (cs_l)
905 return 1;
906 }
907 #endif
908 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
909 is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
910 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
911 return 1;
912
913 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
914 return 1;
915
916 static_call(kvm_x86_set_cr0)(vcpu, cr0);
917
918 kvm_post_set_cr0(vcpu, old_cr0, cr0);
919
920 return 0;
921 }
922 EXPORT_SYMBOL_GPL(kvm_set_cr0);
923
924 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
925 {
926 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
927 }
928 EXPORT_SYMBOL_GPL(kvm_lmsw);
929
930 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
931 {
932 if (vcpu->arch.guest_state_protected)
933 return;
934
935 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
936
937 if (vcpu->arch.xcr0 != host_xcr0)
938 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
939
940 if (vcpu->arch.xsaves_enabled &&
941 vcpu->arch.ia32_xss != host_xss)
942 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
943 }
944
945 if (static_cpu_has(X86_FEATURE_PKU) &&
946 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
947 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
948 vcpu->arch.pkru != vcpu->arch.host_pkru)
949 write_pkru(vcpu->arch.pkru);
950 }
951 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
952
953 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
954 {
955 if (vcpu->arch.guest_state_protected)
956 return;
957
958 if (static_cpu_has(X86_FEATURE_PKU) &&
959 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
960 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
961 vcpu->arch.pkru = rdpkru();
962 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
963 write_pkru(vcpu->arch.host_pkru);
964 }
965
966 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
967
968 if (vcpu->arch.xcr0 != host_xcr0)
969 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
970
971 if (vcpu->arch.xsaves_enabled &&
972 vcpu->arch.ia32_xss != host_xss)
973 wrmsrl(MSR_IA32_XSS, host_xss);
974 }
975
976 }
977 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
978
979 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
980 {
981 u64 xcr0 = xcr;
982 u64 old_xcr0 = vcpu->arch.xcr0;
983 u64 valid_bits;
984
985 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
986 if (index != XCR_XFEATURE_ENABLED_MASK)
987 return 1;
988 if (!(xcr0 & XFEATURE_MASK_FP))
989 return 1;
990 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
991 return 1;
992
993 /*
994 * Do not allow the guest to set bits that we do not support
995 * saving. However, xcr0 bit 0 is always set, even if the
996 * emulated CPU does not support XSAVE (see fx_init).
997 */
998 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
999 if (xcr0 & ~valid_bits)
1000 return 1;
1001
1002 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1003 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1004 return 1;
1005
1006 if (xcr0 & XFEATURE_MASK_AVX512) {
1007 if (!(xcr0 & XFEATURE_MASK_YMM))
1008 return 1;
1009 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1010 return 1;
1011 }
1012 vcpu->arch.xcr0 = xcr0;
1013
1014 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1015 kvm_update_cpuid_runtime(vcpu);
1016 return 0;
1017 }
1018
1019 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1020 {
1021 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1022 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1023 kvm_inject_gp(vcpu, 0);
1024 return 1;
1025 }
1026
1027 return kvm_skip_emulated_instruction(vcpu);
1028 }
1029 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1030
1031 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1032 {
1033 if (cr4 & cr4_reserved_bits)
1034 return false;
1035
1036 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1037 return false;
1038
1039 return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1040 }
1041 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1042
1043 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1044 {
1045 if (((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) ||
1046 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1047 kvm_mmu_reset_context(vcpu);
1048 }
1049 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1050
1051 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1052 {
1053 unsigned long old_cr4 = kvm_read_cr4(vcpu);
1054 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1055 X86_CR4_SMEP;
1056
1057 if (!kvm_is_valid_cr4(vcpu, cr4))
1058 return 1;
1059
1060 if (is_long_mode(vcpu)) {
1061 if (!(cr4 & X86_CR4_PAE))
1062 return 1;
1063 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1064 return 1;
1065 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1066 && ((cr4 ^ old_cr4) & pdptr_bits)
1067 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1068 kvm_read_cr3(vcpu)))
1069 return 1;
1070
1071 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1072 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1073 return 1;
1074
1075 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1076 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1077 return 1;
1078 }
1079
1080 static_call(kvm_x86_set_cr4)(vcpu, cr4);
1081
1082 kvm_post_set_cr4(vcpu, old_cr4, cr4);
1083
1084 return 0;
1085 }
1086 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1087
1088 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1089 {
1090 struct kvm_mmu *mmu = vcpu->arch.mmu;
1091 unsigned long roots_to_free = 0;
1092 int i;
1093
1094 /*
1095 * If neither the current CR3 nor any of the prev_roots use the given
1096 * PCID, then nothing needs to be done here because a resync will
1097 * happen anyway before switching to any other CR3.
1098 */
1099 if (kvm_get_active_pcid(vcpu) == pcid) {
1100 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1101 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1102 }
1103
1104 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1105 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1106 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1107
1108 kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
1109 }
1110
1111 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1112 {
1113 bool skip_tlb_flush = false;
1114 unsigned long pcid = 0;
1115 #ifdef CONFIG_X86_64
1116 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1117
1118 if (pcid_enabled) {
1119 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1120 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1121 pcid = cr3 & X86_CR3_PCID_MASK;
1122 }
1123 #endif
1124
1125 /* PDPTRs are always reloaded for PAE paging. */
1126 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1127 goto handle_tlb_flush;
1128
1129 /*
1130 * Do not condition the GPA check on long mode, this helper is used to
1131 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1132 * the current vCPU mode is accurate.
1133 */
1134 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1135 return 1;
1136
1137 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1138 return 1;
1139
1140 if (cr3 != kvm_read_cr3(vcpu))
1141 kvm_mmu_new_pgd(vcpu, cr3);
1142
1143 vcpu->arch.cr3 = cr3;
1144 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1145
1146 handle_tlb_flush:
1147 /*
1148 * A load of CR3 that flushes the TLB flushes only the current PCID,
1149 * even if PCID is disabled, in which case PCID=0 is flushed. It's a
1150 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1151 * and it's impossible to use a non-zero PCID when PCID is disabled,
1152 * i.e. only PCID=0 can be relevant.
1153 */
1154 if (!skip_tlb_flush)
1155 kvm_invalidate_pcid(vcpu, pcid);
1156
1157 return 0;
1158 }
1159 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1160
1161 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1162 {
1163 if (cr8 & CR8_RESERVED_BITS)
1164 return 1;
1165 if (lapic_in_kernel(vcpu))
1166 kvm_lapic_set_tpr(vcpu, cr8);
1167 else
1168 vcpu->arch.cr8 = cr8;
1169 return 0;
1170 }
1171 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1172
1173 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1174 {
1175 if (lapic_in_kernel(vcpu))
1176 return kvm_lapic_get_cr8(vcpu);
1177 else
1178 return vcpu->arch.cr8;
1179 }
1180 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1181
1182 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1183 {
1184 int i;
1185
1186 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1187 for (i = 0; i < KVM_NR_DB_REGS; i++)
1188 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1189 }
1190 }
1191
1192 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1193 {
1194 unsigned long dr7;
1195
1196 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1197 dr7 = vcpu->arch.guest_debug_dr7;
1198 else
1199 dr7 = vcpu->arch.dr7;
1200 static_call(kvm_x86_set_dr7)(vcpu, dr7);
1201 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1202 if (dr7 & DR7_BP_EN_MASK)
1203 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1204 }
1205 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1206
1207 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1208 {
1209 u64 fixed = DR6_FIXED_1;
1210
1211 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1212 fixed |= DR6_RTM;
1213
1214 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1215 fixed |= DR6_BUS_LOCK;
1216 return fixed;
1217 }
1218
1219 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1220 {
1221 size_t size = ARRAY_SIZE(vcpu->arch.db);
1222
1223 switch (dr) {
1224 case 0 ... 3:
1225 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1226 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1227 vcpu->arch.eff_db[dr] = val;
1228 break;
1229 case 4:
1230 case 6:
1231 if (!kvm_dr6_valid(val))
1232 return 1; /* #GP */
1233 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1234 break;
1235 case 5:
1236 default: /* 7 */
1237 if (!kvm_dr7_valid(val))
1238 return 1; /* #GP */
1239 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1240 kvm_update_dr7(vcpu);
1241 break;
1242 }
1243
1244 return 0;
1245 }
1246 EXPORT_SYMBOL_GPL(kvm_set_dr);
1247
1248 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1249 {
1250 size_t size = ARRAY_SIZE(vcpu->arch.db);
1251
1252 switch (dr) {
1253 case 0 ... 3:
1254 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1255 break;
1256 case 4:
1257 case 6:
1258 *val = vcpu->arch.dr6;
1259 break;
1260 case 5:
1261 default: /* 7 */
1262 *val = vcpu->arch.dr7;
1263 break;
1264 }
1265 }
1266 EXPORT_SYMBOL_GPL(kvm_get_dr);
1267
1268 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1269 {
1270 u32 ecx = kvm_rcx_read(vcpu);
1271 u64 data;
1272
1273 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1274 kvm_inject_gp(vcpu, 0);
1275 return 1;
1276 }
1277
1278 kvm_rax_write(vcpu, (u32)data);
1279 kvm_rdx_write(vcpu, data >> 32);
1280 return kvm_skip_emulated_instruction(vcpu);
1281 }
1282 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1283
1284 /*
1285 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1286 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1287 *
1288 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1289 * extract the supported MSRs from the related const lists.
1290 * msrs_to_save is selected from the msrs_to_save_all to reflect the
1291 * capabilities of the host cpu. This capabilities test skips MSRs that are
1292 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1293 * may depend on host virtualization features rather than host cpu features.
1294 */
1295
1296 static const u32 msrs_to_save_all[] = {
1297 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1298 MSR_STAR,
1299 #ifdef CONFIG_X86_64
1300 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1301 #endif
1302 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1303 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1304 MSR_IA32_SPEC_CTRL,
1305 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1306 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1307 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1308 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1309 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1310 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1311 MSR_IA32_UMWAIT_CONTROL,
1312
1313 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1314 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1315 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1316 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1317 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1318 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1319 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1320 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1321 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1322 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1323 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1324 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1325 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1326 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1327 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1328 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1329 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1330 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1331 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1332 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1333 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1334 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1335
1336 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1337 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1338 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1339 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1340 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1341 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1342 };
1343
1344 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1345 static unsigned num_msrs_to_save;
1346
1347 static const u32 emulated_msrs_all[] = {
1348 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1349 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1350 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1351 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1352 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1353 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1354 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1355 HV_X64_MSR_RESET,
1356 HV_X64_MSR_VP_INDEX,
1357 HV_X64_MSR_VP_RUNTIME,
1358 HV_X64_MSR_SCONTROL,
1359 HV_X64_MSR_STIMER0_CONFIG,
1360 HV_X64_MSR_VP_ASSIST_PAGE,
1361 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1362 HV_X64_MSR_TSC_EMULATION_STATUS,
1363 HV_X64_MSR_SYNDBG_OPTIONS,
1364 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1365 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1366 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1367
1368 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1369 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1370
1371 MSR_IA32_TSC_ADJUST,
1372 MSR_IA32_TSC_DEADLINE,
1373 MSR_IA32_ARCH_CAPABILITIES,
1374 MSR_IA32_PERF_CAPABILITIES,
1375 MSR_IA32_MISC_ENABLE,
1376 MSR_IA32_MCG_STATUS,
1377 MSR_IA32_MCG_CTL,
1378 MSR_IA32_MCG_EXT_CTL,
1379 MSR_IA32_SMBASE,
1380 MSR_SMI_COUNT,
1381 MSR_PLATFORM_INFO,
1382 MSR_MISC_FEATURES_ENABLES,
1383 MSR_AMD64_VIRT_SPEC_CTRL,
1384 MSR_IA32_POWER_CTL,
1385 MSR_IA32_UCODE_REV,
1386
1387 /*
1388 * The following list leaves out MSRs whose values are determined
1389 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1390 * We always support the "true" VMX control MSRs, even if the host
1391 * processor does not, so I am putting these registers here rather
1392 * than in msrs_to_save_all.
1393 */
1394 MSR_IA32_VMX_BASIC,
1395 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1396 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1397 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1398 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1399 MSR_IA32_VMX_MISC,
1400 MSR_IA32_VMX_CR0_FIXED0,
1401 MSR_IA32_VMX_CR4_FIXED0,
1402 MSR_IA32_VMX_VMCS_ENUM,
1403 MSR_IA32_VMX_PROCBASED_CTLS2,
1404 MSR_IA32_VMX_EPT_VPID_CAP,
1405 MSR_IA32_VMX_VMFUNC,
1406
1407 MSR_K7_HWCR,
1408 MSR_KVM_POLL_CONTROL,
1409 };
1410
1411 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1412 static unsigned num_emulated_msrs;
1413
1414 /*
1415 * List of msr numbers which are used to expose MSR-based features that
1416 * can be used by a hypervisor to validate requested CPU features.
1417 */
1418 static const u32 msr_based_features_all[] = {
1419 MSR_IA32_VMX_BASIC,
1420 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1421 MSR_IA32_VMX_PINBASED_CTLS,
1422 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1423 MSR_IA32_VMX_PROCBASED_CTLS,
1424 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1425 MSR_IA32_VMX_EXIT_CTLS,
1426 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1427 MSR_IA32_VMX_ENTRY_CTLS,
1428 MSR_IA32_VMX_MISC,
1429 MSR_IA32_VMX_CR0_FIXED0,
1430 MSR_IA32_VMX_CR0_FIXED1,
1431 MSR_IA32_VMX_CR4_FIXED0,
1432 MSR_IA32_VMX_CR4_FIXED1,
1433 MSR_IA32_VMX_VMCS_ENUM,
1434 MSR_IA32_VMX_PROCBASED_CTLS2,
1435 MSR_IA32_VMX_EPT_VPID_CAP,
1436 MSR_IA32_VMX_VMFUNC,
1437
1438 MSR_F10H_DECFG,
1439 MSR_IA32_UCODE_REV,
1440 MSR_IA32_ARCH_CAPABILITIES,
1441 MSR_IA32_PERF_CAPABILITIES,
1442 };
1443
1444 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1445 static unsigned int num_msr_based_features;
1446
1447 static u64 kvm_get_arch_capabilities(void)
1448 {
1449 u64 data = 0;
1450
1451 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1452 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1453
1454 /*
1455 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1456 * the nested hypervisor runs with NX huge pages. If it is not,
1457 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1458 * L1 guests, so it need not worry about its own (L2) guests.
1459 */
1460 data |= ARCH_CAP_PSCHANGE_MC_NO;
1461
1462 /*
1463 * If we're doing cache flushes (either "always" or "cond")
1464 * we will do one whenever the guest does a vmlaunch/vmresume.
1465 * If an outer hypervisor is doing the cache flush for us
1466 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1467 * capability to the guest too, and if EPT is disabled we're not
1468 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1469 * require a nested hypervisor to do a flush of its own.
1470 */
1471 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1472 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1473
1474 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1475 data |= ARCH_CAP_RDCL_NO;
1476 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1477 data |= ARCH_CAP_SSB_NO;
1478 if (!boot_cpu_has_bug(X86_BUG_MDS))
1479 data |= ARCH_CAP_MDS_NO;
1480
1481 if (!boot_cpu_has(X86_FEATURE_RTM)) {
1482 /*
1483 * If RTM=0 because the kernel has disabled TSX, the host might
1484 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1485 * and therefore knows that there cannot be TAA) but keep
1486 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1487 * and we want to allow migrating those guests to tsx=off hosts.
1488 */
1489 data &= ~ARCH_CAP_TAA_NO;
1490 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1491 data |= ARCH_CAP_TAA_NO;
1492 } else {
1493 /*
1494 * Nothing to do here; we emulate TSX_CTRL if present on the
1495 * host so the guest can choose between disabling TSX or
1496 * using VERW to clear CPU buffers.
1497 */
1498 }
1499
1500 return data;
1501 }
1502
1503 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1504 {
1505 switch (msr->index) {
1506 case MSR_IA32_ARCH_CAPABILITIES:
1507 msr->data = kvm_get_arch_capabilities();
1508 break;
1509 case MSR_IA32_UCODE_REV:
1510 rdmsrl_safe(msr->index, &msr->data);
1511 break;
1512 default:
1513 return static_call(kvm_x86_get_msr_feature)(msr);
1514 }
1515 return 0;
1516 }
1517
1518 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1519 {
1520 struct kvm_msr_entry msr;
1521 int r;
1522
1523 msr.index = index;
1524 r = kvm_get_msr_feature(&msr);
1525
1526 if (r == KVM_MSR_RET_INVALID) {
1527 /* Unconditionally clear the output for simplicity */
1528 *data = 0;
1529 if (kvm_msr_ignored_check(index, 0, false))
1530 r = 0;
1531 }
1532
1533 if (r)
1534 return r;
1535
1536 *data = msr.data;
1537
1538 return 0;
1539 }
1540
1541 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1542 {
1543 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1544 return false;
1545
1546 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1547 return false;
1548
1549 if (efer & (EFER_LME | EFER_LMA) &&
1550 !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1551 return false;
1552
1553 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1554 return false;
1555
1556 return true;
1557
1558 }
1559 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1560 {
1561 if (efer & efer_reserved_bits)
1562 return false;
1563
1564 return __kvm_valid_efer(vcpu, efer);
1565 }
1566 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1567
1568 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1569 {
1570 u64 old_efer = vcpu->arch.efer;
1571 u64 efer = msr_info->data;
1572 int r;
1573
1574 if (efer & efer_reserved_bits)
1575 return 1;
1576
1577 if (!msr_info->host_initiated) {
1578 if (!__kvm_valid_efer(vcpu, efer))
1579 return 1;
1580
1581 if (is_paging(vcpu) &&
1582 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1583 return 1;
1584 }
1585
1586 efer &= ~EFER_LMA;
1587 efer |= vcpu->arch.efer & EFER_LMA;
1588
1589 r = static_call(kvm_x86_set_efer)(vcpu, efer);
1590 if (r) {
1591 WARN_ON(r > 0);
1592 return r;
1593 }
1594
1595 /* Update reserved bits */
1596 if ((efer ^ old_efer) & EFER_NX)
1597 kvm_mmu_reset_context(vcpu);
1598
1599 return 0;
1600 }
1601
1602 void kvm_enable_efer_bits(u64 mask)
1603 {
1604 efer_reserved_bits &= ~mask;
1605 }
1606 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1607
1608 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1609 {
1610 struct kvm_x86_msr_filter *msr_filter;
1611 struct msr_bitmap_range *ranges;
1612 struct kvm *kvm = vcpu->kvm;
1613 bool allowed;
1614 int idx;
1615 u32 i;
1616
1617 /* x2APIC MSRs do not support filtering. */
1618 if (index >= 0x800 && index <= 0x8ff)
1619 return true;
1620
1621 idx = srcu_read_lock(&kvm->srcu);
1622
1623 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1624 if (!msr_filter) {
1625 allowed = true;
1626 goto out;
1627 }
1628
1629 allowed = msr_filter->default_allow;
1630 ranges = msr_filter->ranges;
1631
1632 for (i = 0; i < msr_filter->count; i++) {
1633 u32 start = ranges[i].base;
1634 u32 end = start + ranges[i].nmsrs;
1635 u32 flags = ranges[i].flags;
1636 unsigned long *bitmap = ranges[i].bitmap;
1637
1638 if ((index >= start) && (index < end) && (flags & type)) {
1639 allowed = !!test_bit(index - start, bitmap);
1640 break;
1641 }
1642 }
1643
1644 out:
1645 srcu_read_unlock(&kvm->srcu, idx);
1646
1647 return allowed;
1648 }
1649 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1650
1651 /*
1652 * Write @data into the MSR specified by @index. Select MSR specific fault
1653 * checks are bypassed if @host_initiated is %true.
1654 * Returns 0 on success, non-0 otherwise.
1655 * Assumes vcpu_load() was already called.
1656 */
1657 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1658 bool host_initiated)
1659 {
1660 struct msr_data msr;
1661
1662 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1663 return KVM_MSR_RET_FILTERED;
1664
1665 switch (index) {
1666 case MSR_FS_BASE:
1667 case MSR_GS_BASE:
1668 case MSR_KERNEL_GS_BASE:
1669 case MSR_CSTAR:
1670 case MSR_LSTAR:
1671 if (is_noncanonical_address(data, vcpu))
1672 return 1;
1673 break;
1674 case MSR_IA32_SYSENTER_EIP:
1675 case MSR_IA32_SYSENTER_ESP:
1676 /*
1677 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1678 * non-canonical address is written on Intel but not on
1679 * AMD (which ignores the top 32-bits, because it does
1680 * not implement 64-bit SYSENTER).
1681 *
1682 * 64-bit code should hence be able to write a non-canonical
1683 * value on AMD. Making the address canonical ensures that
1684 * vmentry does not fail on Intel after writing a non-canonical
1685 * value, and that something deterministic happens if the guest
1686 * invokes 64-bit SYSENTER.
1687 */
1688 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1689 break;
1690 case MSR_TSC_AUX:
1691 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1692 return 1;
1693
1694 if (!host_initiated &&
1695 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1696 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1697 return 1;
1698
1699 /*
1700 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1701 * incomplete and conflicting architectural behavior. Current
1702 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1703 * reserved and always read as zeros. Enforce Intel's reserved
1704 * bits check if and only if the guest CPU is Intel, and clear
1705 * the bits in all other cases. This ensures cross-vendor
1706 * migration will provide consistent behavior for the guest.
1707 */
1708 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1709 return 1;
1710
1711 data = (u32)data;
1712 break;
1713 }
1714
1715 msr.data = data;
1716 msr.index = index;
1717 msr.host_initiated = host_initiated;
1718
1719 return static_call(kvm_x86_set_msr)(vcpu, &msr);
1720 }
1721
1722 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1723 u32 index, u64 data, bool host_initiated)
1724 {
1725 int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1726
1727 if (ret == KVM_MSR_RET_INVALID)
1728 if (kvm_msr_ignored_check(index, data, true))
1729 ret = 0;
1730
1731 return ret;
1732 }
1733
1734 /*
1735 * Read the MSR specified by @index into @data. Select MSR specific fault
1736 * checks are bypassed if @host_initiated is %true.
1737 * Returns 0 on success, non-0 otherwise.
1738 * Assumes vcpu_load() was already called.
1739 */
1740 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1741 bool host_initiated)
1742 {
1743 struct msr_data msr;
1744 int ret;
1745
1746 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1747 return KVM_MSR_RET_FILTERED;
1748
1749 switch (index) {
1750 case MSR_TSC_AUX:
1751 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1752 return 1;
1753
1754 if (!host_initiated &&
1755 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1756 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1757 return 1;
1758 break;
1759 }
1760
1761 msr.index = index;
1762 msr.host_initiated = host_initiated;
1763
1764 ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1765 if (!ret)
1766 *data = msr.data;
1767 return ret;
1768 }
1769
1770 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1771 u32 index, u64 *data, bool host_initiated)
1772 {
1773 int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1774
1775 if (ret == KVM_MSR_RET_INVALID) {
1776 /* Unconditionally clear *data for simplicity */
1777 *data = 0;
1778 if (kvm_msr_ignored_check(index, 0, false))
1779 ret = 0;
1780 }
1781
1782 return ret;
1783 }
1784
1785 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1786 {
1787 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1788 }
1789 EXPORT_SYMBOL_GPL(kvm_get_msr);
1790
1791 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1792 {
1793 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1794 }
1795 EXPORT_SYMBOL_GPL(kvm_set_msr);
1796
1797 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1798 {
1799 int err = vcpu->run->msr.error;
1800 if (!err) {
1801 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1802 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1803 }
1804
1805 return static_call(kvm_x86_complete_emulated_msr)(vcpu, err);
1806 }
1807
1808 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1809 {
1810 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1811 }
1812
1813 static u64 kvm_msr_reason(int r)
1814 {
1815 switch (r) {
1816 case KVM_MSR_RET_INVALID:
1817 return KVM_MSR_EXIT_REASON_UNKNOWN;
1818 case KVM_MSR_RET_FILTERED:
1819 return KVM_MSR_EXIT_REASON_FILTER;
1820 default:
1821 return KVM_MSR_EXIT_REASON_INVAL;
1822 }
1823 }
1824
1825 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1826 u32 exit_reason, u64 data,
1827 int (*completion)(struct kvm_vcpu *vcpu),
1828 int r)
1829 {
1830 u64 msr_reason = kvm_msr_reason(r);
1831
1832 /* Check if the user wanted to know about this MSR fault */
1833 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1834 return 0;
1835
1836 vcpu->run->exit_reason = exit_reason;
1837 vcpu->run->msr.error = 0;
1838 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1839 vcpu->run->msr.reason = msr_reason;
1840 vcpu->run->msr.index = index;
1841 vcpu->run->msr.data = data;
1842 vcpu->arch.complete_userspace_io = completion;
1843
1844 return 1;
1845 }
1846
1847 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1848 {
1849 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1850 complete_emulated_rdmsr, r);
1851 }
1852
1853 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1854 {
1855 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1856 complete_emulated_wrmsr, r);
1857 }
1858
1859 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1860 {
1861 u32 ecx = kvm_rcx_read(vcpu);
1862 u64 data;
1863 int r;
1864
1865 r = kvm_get_msr(vcpu, ecx, &data);
1866
1867 /* MSR read failed? See if we should ask user space */
1868 if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1869 /* Bounce to user space */
1870 return 0;
1871 }
1872
1873 if (!r) {
1874 trace_kvm_msr_read(ecx, data);
1875
1876 kvm_rax_write(vcpu, data & -1u);
1877 kvm_rdx_write(vcpu, (data >> 32) & -1u);
1878 } else {
1879 trace_kvm_msr_read_ex(ecx);
1880 }
1881
1882 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1883 }
1884 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1885
1886 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1887 {
1888 u32 ecx = kvm_rcx_read(vcpu);
1889 u64 data = kvm_read_edx_eax(vcpu);
1890 int r;
1891
1892 r = kvm_set_msr(vcpu, ecx, data);
1893
1894 /* MSR write failed? See if we should ask user space */
1895 if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1896 /* Bounce to user space */
1897 return 0;
1898
1899 /* Signal all other negative errors to userspace */
1900 if (r < 0)
1901 return r;
1902
1903 if (!r)
1904 trace_kvm_msr_write(ecx, data);
1905 else
1906 trace_kvm_msr_write_ex(ecx, data);
1907
1908 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1909 }
1910 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1911
1912 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
1913 {
1914 return kvm_skip_emulated_instruction(vcpu);
1915 }
1916 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
1917
1918 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
1919 {
1920 /* Treat an INVD instruction as a NOP and just skip it. */
1921 return kvm_emulate_as_nop(vcpu);
1922 }
1923 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
1924
1925 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
1926 {
1927 pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
1928 return kvm_emulate_as_nop(vcpu);
1929 }
1930 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
1931
1932 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
1933 {
1934 kvm_queue_exception(vcpu, UD_VECTOR);
1935 return 1;
1936 }
1937 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
1938
1939 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
1940 {
1941 pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
1942 return kvm_emulate_as_nop(vcpu);
1943 }
1944 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
1945
1946 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1947 {
1948 xfer_to_guest_mode_prepare();
1949 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1950 xfer_to_guest_mode_work_pending();
1951 }
1952
1953 /*
1954 * The fast path for frequent and performance sensitive wrmsr emulation,
1955 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1956 * the latency of virtual IPI by avoiding the expensive bits of transitioning
1957 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1958 * other cases which must be called after interrupts are enabled on the host.
1959 */
1960 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1961 {
1962 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1963 return 1;
1964
1965 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1966 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1967 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1968 ((u32)(data >> 32) != X2APIC_BROADCAST)) {
1969
1970 data &= ~(1 << 12);
1971 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1972 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1973 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1974 trace_kvm_apic_write(APIC_ICR, (u32)data);
1975 return 0;
1976 }
1977
1978 return 1;
1979 }
1980
1981 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1982 {
1983 if (!kvm_can_use_hv_timer(vcpu))
1984 return 1;
1985
1986 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1987 return 0;
1988 }
1989
1990 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1991 {
1992 u32 msr = kvm_rcx_read(vcpu);
1993 u64 data;
1994 fastpath_t ret = EXIT_FASTPATH_NONE;
1995
1996 switch (msr) {
1997 case APIC_BASE_MSR + (APIC_ICR >> 4):
1998 data = kvm_read_edx_eax(vcpu);
1999 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2000 kvm_skip_emulated_instruction(vcpu);
2001 ret = EXIT_FASTPATH_EXIT_HANDLED;
2002 }
2003 break;
2004 case MSR_IA32_TSC_DEADLINE:
2005 data = kvm_read_edx_eax(vcpu);
2006 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2007 kvm_skip_emulated_instruction(vcpu);
2008 ret = EXIT_FASTPATH_REENTER_GUEST;
2009 }
2010 break;
2011 default:
2012 break;
2013 }
2014
2015 if (ret != EXIT_FASTPATH_NONE)
2016 trace_kvm_msr_write(msr, data);
2017
2018 return ret;
2019 }
2020 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2021
2022 /*
2023 * Adapt set_msr() to msr_io()'s calling convention
2024 */
2025 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2026 {
2027 return kvm_get_msr_ignored_check(vcpu, index, data, true);
2028 }
2029
2030 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2031 {
2032 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2033 }
2034
2035 #ifdef CONFIG_X86_64
2036 struct pvclock_clock {
2037 int vclock_mode;
2038 u64 cycle_last;
2039 u64 mask;
2040 u32 mult;
2041 u32 shift;
2042 u64 base_cycles;
2043 u64 offset;
2044 };
2045
2046 struct pvclock_gtod_data {
2047 seqcount_t seq;
2048
2049 struct pvclock_clock clock; /* extract of a clocksource struct */
2050 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2051
2052 ktime_t offs_boot;
2053 u64 wall_time_sec;
2054 };
2055
2056 static struct pvclock_gtod_data pvclock_gtod_data;
2057
2058 static void update_pvclock_gtod(struct timekeeper *tk)
2059 {
2060 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2061
2062 write_seqcount_begin(&vdata->seq);
2063
2064 /* copy pvclock gtod data */
2065 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
2066 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
2067 vdata->clock.mask = tk->tkr_mono.mask;
2068 vdata->clock.mult = tk->tkr_mono.mult;
2069 vdata->clock.shift = tk->tkr_mono.shift;
2070 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
2071 vdata->clock.offset = tk->tkr_mono.base;
2072
2073 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
2074 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
2075 vdata->raw_clock.mask = tk->tkr_raw.mask;
2076 vdata->raw_clock.mult = tk->tkr_raw.mult;
2077 vdata->raw_clock.shift = tk->tkr_raw.shift;
2078 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
2079 vdata->raw_clock.offset = tk->tkr_raw.base;
2080
2081 vdata->wall_time_sec = tk->xtime_sec;
2082
2083 vdata->offs_boot = tk->offs_boot;
2084
2085 write_seqcount_end(&vdata->seq);
2086 }
2087
2088 static s64 get_kvmclock_base_ns(void)
2089 {
2090 /* Count up from boot time, but with the frequency of the raw clock. */
2091 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2092 }
2093 #else
2094 static s64 get_kvmclock_base_ns(void)
2095 {
2096 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
2097 return ktime_get_boottime_ns();
2098 }
2099 #endif
2100
2101 void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2102 {
2103 int version;
2104 int r;
2105 struct pvclock_wall_clock wc;
2106 u32 wc_sec_hi;
2107 u64 wall_nsec;
2108
2109 if (!wall_clock)
2110 return;
2111
2112 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2113 if (r)
2114 return;
2115
2116 if (version & 1)
2117 ++version; /* first time write, random junk */
2118
2119 ++version;
2120
2121 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2122 return;
2123
2124 /*
2125 * The guest calculates current wall clock time by adding
2126 * system time (updated by kvm_guest_time_update below) to the
2127 * wall clock specified here. We do the reverse here.
2128 */
2129 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2130
2131 wc.nsec = do_div(wall_nsec, 1000000000);
2132 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2133 wc.version = version;
2134
2135 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2136
2137 if (sec_hi_ofs) {
2138 wc_sec_hi = wall_nsec >> 32;
2139 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2140 &wc_sec_hi, sizeof(wc_sec_hi));
2141 }
2142
2143 version++;
2144 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2145 }
2146
2147 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2148 bool old_msr, bool host_initiated)
2149 {
2150 struct kvm_arch *ka = &vcpu->kvm->arch;
2151
2152 if (vcpu->vcpu_id == 0 && !host_initiated) {
2153 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2154 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2155
2156 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2157 }
2158
2159 vcpu->arch.time = system_time;
2160 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2161
2162 /* we verify if the enable bit is set... */
2163 vcpu->arch.pv_time_enabled = false;
2164 if (!(system_time & 1))
2165 return;
2166
2167 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2168 &vcpu->arch.pv_time, system_time & ~1ULL,
2169 sizeof(struct pvclock_vcpu_time_info)))
2170 vcpu->arch.pv_time_enabled = true;
2171
2172 return;
2173 }
2174
2175 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2176 {
2177 do_shl32_div32(dividend, divisor);
2178 return dividend;
2179 }
2180
2181 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2182 s8 *pshift, u32 *pmultiplier)
2183 {
2184 uint64_t scaled64;
2185 int32_t shift = 0;
2186 uint64_t tps64;
2187 uint32_t tps32;
2188
2189 tps64 = base_hz;
2190 scaled64 = scaled_hz;
2191 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2192 tps64 >>= 1;
2193 shift--;
2194 }
2195
2196 tps32 = (uint32_t)tps64;
2197 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2198 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2199 scaled64 >>= 1;
2200 else
2201 tps32 <<= 1;
2202 shift++;
2203 }
2204
2205 *pshift = shift;
2206 *pmultiplier = div_frac(scaled64, tps32);
2207 }
2208
2209 #ifdef CONFIG_X86_64
2210 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2211 #endif
2212
2213 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2214 static unsigned long max_tsc_khz;
2215
2216 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2217 {
2218 u64 v = (u64)khz * (1000000 + ppm);
2219 do_div(v, 1000000);
2220 return v;
2221 }
2222
2223 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2224
2225 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2226 {
2227 u64 ratio;
2228
2229 /* Guest TSC same frequency as host TSC? */
2230 if (!scale) {
2231 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2232 return 0;
2233 }
2234
2235 /* TSC scaling supported? */
2236 if (!kvm_has_tsc_control) {
2237 if (user_tsc_khz > tsc_khz) {
2238 vcpu->arch.tsc_catchup = 1;
2239 vcpu->arch.tsc_always_catchup = 1;
2240 return 0;
2241 } else {
2242 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2243 return -1;
2244 }
2245 }
2246
2247 /* TSC scaling required - calculate ratio */
2248 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2249 user_tsc_khz, tsc_khz);
2250
2251 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2252 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2253 user_tsc_khz);
2254 return -1;
2255 }
2256
2257 kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2258 return 0;
2259 }
2260
2261 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2262 {
2263 u32 thresh_lo, thresh_hi;
2264 int use_scaling = 0;
2265
2266 /* tsc_khz can be zero if TSC calibration fails */
2267 if (user_tsc_khz == 0) {
2268 /* set tsc_scaling_ratio to a safe value */
2269 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2270 return -1;
2271 }
2272
2273 /* Compute a scale to convert nanoseconds in TSC cycles */
2274 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2275 &vcpu->arch.virtual_tsc_shift,
2276 &vcpu->arch.virtual_tsc_mult);
2277 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2278
2279 /*
2280 * Compute the variation in TSC rate which is acceptable
2281 * within the range of tolerance and decide if the
2282 * rate being applied is within that bounds of the hardware
2283 * rate. If so, no scaling or compensation need be done.
2284 */
2285 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2286 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2287 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2288 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2289 use_scaling = 1;
2290 }
2291 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2292 }
2293
2294 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2295 {
2296 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2297 vcpu->arch.virtual_tsc_mult,
2298 vcpu->arch.virtual_tsc_shift);
2299 tsc += vcpu->arch.this_tsc_write;
2300 return tsc;
2301 }
2302
2303 static inline int gtod_is_based_on_tsc(int mode)
2304 {
2305 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2306 }
2307
2308 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2309 {
2310 #ifdef CONFIG_X86_64
2311 bool vcpus_matched;
2312 struct kvm_arch *ka = &vcpu->kvm->arch;
2313 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2314
2315 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2316 atomic_read(&vcpu->kvm->online_vcpus));
2317
2318 /*
2319 * Once the masterclock is enabled, always perform request in
2320 * order to update it.
2321 *
2322 * In order to enable masterclock, the host clocksource must be TSC
2323 * and the vcpus need to have matched TSCs. When that happens,
2324 * perform request to enable masterclock.
2325 */
2326 if (ka->use_master_clock ||
2327 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2328 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2329
2330 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2331 atomic_read(&vcpu->kvm->online_vcpus),
2332 ka->use_master_clock, gtod->clock.vclock_mode);
2333 #endif
2334 }
2335
2336 /*
2337 * Multiply tsc by a fixed point number represented by ratio.
2338 *
2339 * The most significant 64-N bits (mult) of ratio represent the
2340 * integral part of the fixed point number; the remaining N bits
2341 * (frac) represent the fractional part, ie. ratio represents a fixed
2342 * point number (mult + frac * 2^(-N)).
2343 *
2344 * N equals to kvm_tsc_scaling_ratio_frac_bits.
2345 */
2346 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2347 {
2348 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2349 }
2350
2351 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc, u64 ratio)
2352 {
2353 u64 _tsc = tsc;
2354
2355 if (ratio != kvm_default_tsc_scaling_ratio)
2356 _tsc = __scale_tsc(ratio, tsc);
2357
2358 return _tsc;
2359 }
2360 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2361
2362 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2363 {
2364 u64 tsc;
2365
2366 tsc = kvm_scale_tsc(vcpu, rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2367
2368 return target_tsc - tsc;
2369 }
2370
2371 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2372 {
2373 return vcpu->arch.l1_tsc_offset +
2374 kvm_scale_tsc(vcpu, host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2375 }
2376 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2377
2378 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2379 {
2380 u64 nested_offset;
2381
2382 if (l2_multiplier == kvm_default_tsc_scaling_ratio)
2383 nested_offset = l1_offset;
2384 else
2385 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2386 kvm_tsc_scaling_ratio_frac_bits);
2387
2388 nested_offset += l2_offset;
2389 return nested_offset;
2390 }
2391 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2392
2393 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2394 {
2395 if (l2_multiplier != kvm_default_tsc_scaling_ratio)
2396 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2397 kvm_tsc_scaling_ratio_frac_bits);
2398
2399 return l1_multiplier;
2400 }
2401 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2402
2403 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2404 {
2405 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2406 vcpu->arch.l1_tsc_offset,
2407 l1_offset);
2408
2409 vcpu->arch.l1_tsc_offset = l1_offset;
2410
2411 /*
2412 * If we are here because L1 chose not to trap WRMSR to TSC then
2413 * according to the spec this should set L1's TSC (as opposed to
2414 * setting L1's offset for L2).
2415 */
2416 if (is_guest_mode(vcpu))
2417 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2418 l1_offset,
2419 static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2420 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2421 else
2422 vcpu->arch.tsc_offset = l1_offset;
2423
2424 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2425 }
2426
2427 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2428 {
2429 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2430
2431 /* Userspace is changing the multiplier while L2 is active */
2432 if (is_guest_mode(vcpu))
2433 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2434 l1_multiplier,
2435 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2436 else
2437 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2438
2439 if (kvm_has_tsc_control)
2440 static_call(kvm_x86_write_tsc_multiplier)(
2441 vcpu, vcpu->arch.tsc_scaling_ratio);
2442 }
2443
2444 static inline bool kvm_check_tsc_unstable(void)
2445 {
2446 #ifdef CONFIG_X86_64
2447 /*
2448 * TSC is marked unstable when we're running on Hyper-V,
2449 * 'TSC page' clocksource is good.
2450 */
2451 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2452 return false;
2453 #endif
2454 return check_tsc_unstable();
2455 }
2456
2457 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2458 {
2459 struct kvm *kvm = vcpu->kvm;
2460 u64 offset, ns, elapsed;
2461 unsigned long flags;
2462 bool matched;
2463 bool already_matched;
2464 bool synchronizing = false;
2465
2466 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2467 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2468 ns = get_kvmclock_base_ns();
2469 elapsed = ns - kvm->arch.last_tsc_nsec;
2470
2471 if (vcpu->arch.virtual_tsc_khz) {
2472 if (data == 0) {
2473 /*
2474 * detection of vcpu initialization -- need to sync
2475 * with other vCPUs. This particularly helps to keep
2476 * kvm_clock stable after CPU hotplug
2477 */
2478 synchronizing = true;
2479 } else {
2480 u64 tsc_exp = kvm->arch.last_tsc_write +
2481 nsec_to_cycles(vcpu, elapsed);
2482 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2483 /*
2484 * Special case: TSC write with a small delta (1 second)
2485 * of virtual cycle time against real time is
2486 * interpreted as an attempt to synchronize the CPU.
2487 */
2488 synchronizing = data < tsc_exp + tsc_hz &&
2489 data + tsc_hz > tsc_exp;
2490 }
2491 }
2492
2493 /*
2494 * For a reliable TSC, we can match TSC offsets, and for an unstable
2495 * TSC, we add elapsed time in this computation. We could let the
2496 * compensation code attempt to catch up if we fall behind, but
2497 * it's better to try to match offsets from the beginning.
2498 */
2499 if (synchronizing &&
2500 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2501 if (!kvm_check_tsc_unstable()) {
2502 offset = kvm->arch.cur_tsc_offset;
2503 } else {
2504 u64 delta = nsec_to_cycles(vcpu, elapsed);
2505 data += delta;
2506 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2507 }
2508 matched = true;
2509 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2510 } else {
2511 /*
2512 * We split periods of matched TSC writes into generations.
2513 * For each generation, we track the original measured
2514 * nanosecond time, offset, and write, so if TSCs are in
2515 * sync, we can match exact offset, and if not, we can match
2516 * exact software computation in compute_guest_tsc()
2517 *
2518 * These values are tracked in kvm->arch.cur_xxx variables.
2519 */
2520 kvm->arch.cur_tsc_generation++;
2521 kvm->arch.cur_tsc_nsec = ns;
2522 kvm->arch.cur_tsc_write = data;
2523 kvm->arch.cur_tsc_offset = offset;
2524 matched = false;
2525 }
2526
2527 /*
2528 * We also track th most recent recorded KHZ, write and time to
2529 * allow the matching interval to be extended at each write.
2530 */
2531 kvm->arch.last_tsc_nsec = ns;
2532 kvm->arch.last_tsc_write = data;
2533 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2534
2535 vcpu->arch.last_guest_tsc = data;
2536
2537 /* Keep track of which generation this VCPU has synchronized to */
2538 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2539 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2540 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2541
2542 kvm_vcpu_write_tsc_offset(vcpu, offset);
2543 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2544
2545 raw_spin_lock_irqsave(&kvm->arch.pvclock_gtod_sync_lock, flags);
2546 if (!matched) {
2547 kvm->arch.nr_vcpus_matched_tsc = 0;
2548 } else if (!already_matched) {
2549 kvm->arch.nr_vcpus_matched_tsc++;
2550 }
2551
2552 kvm_track_tsc_matching(vcpu);
2553 raw_spin_unlock_irqrestore(&kvm->arch.pvclock_gtod_sync_lock, flags);
2554 }
2555
2556 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2557 s64 adjustment)
2558 {
2559 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2560 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2561 }
2562
2563 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2564 {
2565 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2566 WARN_ON(adjustment < 0);
2567 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment,
2568 vcpu->arch.l1_tsc_scaling_ratio);
2569 adjust_tsc_offset_guest(vcpu, adjustment);
2570 }
2571
2572 #ifdef CONFIG_X86_64
2573
2574 static u64 read_tsc(void)
2575 {
2576 u64 ret = (u64)rdtsc_ordered();
2577 u64 last = pvclock_gtod_data.clock.cycle_last;
2578
2579 if (likely(ret >= last))
2580 return ret;
2581
2582 /*
2583 * GCC likes to generate cmov here, but this branch is extremely
2584 * predictable (it's just a function of time and the likely is
2585 * very likely) and there's a data dependence, so force GCC
2586 * to generate a branch instead. I don't barrier() because
2587 * we don't actually need a barrier, and if this function
2588 * ever gets inlined it will generate worse code.
2589 */
2590 asm volatile ("");
2591 return last;
2592 }
2593
2594 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2595 int *mode)
2596 {
2597 long v;
2598 u64 tsc_pg_val;
2599
2600 switch (clock->vclock_mode) {
2601 case VDSO_CLOCKMODE_HVCLOCK:
2602 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2603 tsc_timestamp);
2604 if (tsc_pg_val != U64_MAX) {
2605 /* TSC page valid */
2606 *mode = VDSO_CLOCKMODE_HVCLOCK;
2607 v = (tsc_pg_val - clock->cycle_last) &
2608 clock->mask;
2609 } else {
2610 /* TSC page invalid */
2611 *mode = VDSO_CLOCKMODE_NONE;
2612 }
2613 break;
2614 case VDSO_CLOCKMODE_TSC:
2615 *mode = VDSO_CLOCKMODE_TSC;
2616 *tsc_timestamp = read_tsc();
2617 v = (*tsc_timestamp - clock->cycle_last) &
2618 clock->mask;
2619 break;
2620 default:
2621 *mode = VDSO_CLOCKMODE_NONE;
2622 }
2623
2624 if (*mode == VDSO_CLOCKMODE_NONE)
2625 *tsc_timestamp = v = 0;
2626
2627 return v * clock->mult;
2628 }
2629
2630 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2631 {
2632 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2633 unsigned long seq;
2634 int mode;
2635 u64 ns;
2636
2637 do {
2638 seq = read_seqcount_begin(&gtod->seq);
2639 ns = gtod->raw_clock.base_cycles;
2640 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2641 ns >>= gtod->raw_clock.shift;
2642 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2643 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2644 *t = ns;
2645
2646 return mode;
2647 }
2648
2649 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2650 {
2651 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2652 unsigned long seq;
2653 int mode;
2654 u64 ns;
2655
2656 do {
2657 seq = read_seqcount_begin(&gtod->seq);
2658 ts->tv_sec = gtod->wall_time_sec;
2659 ns = gtod->clock.base_cycles;
2660 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2661 ns >>= gtod->clock.shift;
2662 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2663
2664 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2665 ts->tv_nsec = ns;
2666
2667 return mode;
2668 }
2669
2670 /* returns true if host is using TSC based clocksource */
2671 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2672 {
2673 /* checked again under seqlock below */
2674 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2675 return false;
2676
2677 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2678 tsc_timestamp));
2679 }
2680
2681 /* returns true if host is using TSC based clocksource */
2682 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2683 u64 *tsc_timestamp)
2684 {
2685 /* checked again under seqlock below */
2686 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2687 return false;
2688
2689 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2690 }
2691 #endif
2692
2693 /*
2694 *
2695 * Assuming a stable TSC across physical CPUS, and a stable TSC
2696 * across virtual CPUs, the following condition is possible.
2697 * Each numbered line represents an event visible to both
2698 * CPUs at the next numbered event.
2699 *
2700 * "timespecX" represents host monotonic time. "tscX" represents
2701 * RDTSC value.
2702 *
2703 * VCPU0 on CPU0 | VCPU1 on CPU1
2704 *
2705 * 1. read timespec0,tsc0
2706 * 2. | timespec1 = timespec0 + N
2707 * | tsc1 = tsc0 + M
2708 * 3. transition to guest | transition to guest
2709 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2710 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2711 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2712 *
2713 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2714 *
2715 * - ret0 < ret1
2716 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2717 * ...
2718 * - 0 < N - M => M < N
2719 *
2720 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2721 * always the case (the difference between two distinct xtime instances
2722 * might be smaller then the difference between corresponding TSC reads,
2723 * when updating guest vcpus pvclock areas).
2724 *
2725 * To avoid that problem, do not allow visibility of distinct
2726 * system_timestamp/tsc_timestamp values simultaneously: use a master
2727 * copy of host monotonic time values. Update that master copy
2728 * in lockstep.
2729 *
2730 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2731 *
2732 */
2733
2734 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2735 {
2736 #ifdef CONFIG_X86_64
2737 struct kvm_arch *ka = &kvm->arch;
2738 int vclock_mode;
2739 bool host_tsc_clocksource, vcpus_matched;
2740
2741 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2742 atomic_read(&kvm->online_vcpus));
2743
2744 /*
2745 * If the host uses TSC clock, then passthrough TSC as stable
2746 * to the guest.
2747 */
2748 host_tsc_clocksource = kvm_get_time_and_clockread(
2749 &ka->master_kernel_ns,
2750 &ka->master_cycle_now);
2751
2752 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2753 && !ka->backwards_tsc_observed
2754 && !ka->boot_vcpu_runs_old_kvmclock;
2755
2756 if (ka->use_master_clock)
2757 atomic_set(&kvm_guest_has_master_clock, 1);
2758
2759 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2760 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2761 vcpus_matched);
2762 #endif
2763 }
2764
2765 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2766 {
2767 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2768 }
2769
2770 static void kvm_gen_update_masterclock(struct kvm *kvm)
2771 {
2772 #ifdef CONFIG_X86_64
2773 int i;
2774 struct kvm_vcpu *vcpu;
2775 struct kvm_arch *ka = &kvm->arch;
2776 unsigned long flags;
2777
2778 kvm_hv_invalidate_tsc_page(kvm);
2779
2780 kvm_make_mclock_inprogress_request(kvm);
2781
2782 /* no guest entries from this point */
2783 raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2784 pvclock_update_vm_gtod_copy(kvm);
2785 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2786
2787 kvm_for_each_vcpu(i, vcpu, kvm)
2788 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2789
2790 /* guest entries allowed */
2791 kvm_for_each_vcpu(i, vcpu, kvm)
2792 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2793 #endif
2794 }
2795
2796 u64 get_kvmclock_ns(struct kvm *kvm)
2797 {
2798 struct kvm_arch *ka = &kvm->arch;
2799 struct pvclock_vcpu_time_info hv_clock;
2800 unsigned long flags;
2801 u64 ret;
2802
2803 raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2804 if (!ka->use_master_clock) {
2805 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2806 return get_kvmclock_base_ns() + ka->kvmclock_offset;
2807 }
2808
2809 hv_clock.tsc_timestamp = ka->master_cycle_now;
2810 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2811 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2812
2813 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2814 get_cpu();
2815
2816 if (__this_cpu_read(cpu_tsc_khz)) {
2817 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2818 &hv_clock.tsc_shift,
2819 &hv_clock.tsc_to_system_mul);
2820 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2821 } else
2822 ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2823
2824 put_cpu();
2825
2826 return ret;
2827 }
2828
2829 static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2830 struct gfn_to_hva_cache *cache,
2831 unsigned int offset)
2832 {
2833 struct kvm_vcpu_arch *vcpu = &v->arch;
2834 struct pvclock_vcpu_time_info guest_hv_clock;
2835
2836 if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2837 &guest_hv_clock, offset, sizeof(guest_hv_clock))))
2838 return;
2839
2840 /* This VCPU is paused, but it's legal for a guest to read another
2841 * VCPU's kvmclock, so we really have to follow the specification where
2842 * it says that version is odd if data is being modified, and even after
2843 * it is consistent.
2844 *
2845 * Version field updates must be kept separate. This is because
2846 * kvm_write_guest_cached might use a "rep movs" instruction, and
2847 * writes within a string instruction are weakly ordered. So there
2848 * are three writes overall.
2849 *
2850 * As a small optimization, only write the version field in the first
2851 * and third write. The vcpu->pv_time cache is still valid, because the
2852 * version field is the first in the struct.
2853 */
2854 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2855
2856 if (guest_hv_clock.version & 1)
2857 ++guest_hv_clock.version; /* first time write, random junk */
2858
2859 vcpu->hv_clock.version = guest_hv_clock.version + 1;
2860 kvm_write_guest_offset_cached(v->kvm, cache,
2861 &vcpu->hv_clock, offset,
2862 sizeof(vcpu->hv_clock.version));
2863
2864 smp_wmb();
2865
2866 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2867 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2868
2869 if (vcpu->pvclock_set_guest_stopped_request) {
2870 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2871 vcpu->pvclock_set_guest_stopped_request = false;
2872 }
2873
2874 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2875
2876 kvm_write_guest_offset_cached(v->kvm, cache,
2877 &vcpu->hv_clock, offset,
2878 sizeof(vcpu->hv_clock));
2879
2880 smp_wmb();
2881
2882 vcpu->hv_clock.version++;
2883 kvm_write_guest_offset_cached(v->kvm, cache,
2884 &vcpu->hv_clock, offset,
2885 sizeof(vcpu->hv_clock.version));
2886 }
2887
2888 static int kvm_guest_time_update(struct kvm_vcpu *v)
2889 {
2890 unsigned long flags, tgt_tsc_khz;
2891 struct kvm_vcpu_arch *vcpu = &v->arch;
2892 struct kvm_arch *ka = &v->kvm->arch;
2893 s64 kernel_ns;
2894 u64 tsc_timestamp, host_tsc;
2895 u8 pvclock_flags;
2896 bool use_master_clock;
2897
2898 kernel_ns = 0;
2899 host_tsc = 0;
2900
2901 /*
2902 * If the host uses TSC clock, then passthrough TSC as stable
2903 * to the guest.
2904 */
2905 raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2906 use_master_clock = ka->use_master_clock;
2907 if (use_master_clock) {
2908 host_tsc = ka->master_cycle_now;
2909 kernel_ns = ka->master_kernel_ns;
2910 }
2911 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2912
2913 /* Keep irq disabled to prevent changes to the clock */
2914 local_irq_save(flags);
2915 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2916 if (unlikely(tgt_tsc_khz == 0)) {
2917 local_irq_restore(flags);
2918 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2919 return 1;
2920 }
2921 if (!use_master_clock) {
2922 host_tsc = rdtsc();
2923 kernel_ns = get_kvmclock_base_ns();
2924 }
2925
2926 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2927
2928 /*
2929 * We may have to catch up the TSC to match elapsed wall clock
2930 * time for two reasons, even if kvmclock is used.
2931 * 1) CPU could have been running below the maximum TSC rate
2932 * 2) Broken TSC compensation resets the base at each VCPU
2933 * entry to avoid unknown leaps of TSC even when running
2934 * again on the same CPU. This may cause apparent elapsed
2935 * time to disappear, and the guest to stand still or run
2936 * very slowly.
2937 */
2938 if (vcpu->tsc_catchup) {
2939 u64 tsc = compute_guest_tsc(v, kernel_ns);
2940 if (tsc > tsc_timestamp) {
2941 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2942 tsc_timestamp = tsc;
2943 }
2944 }
2945
2946 local_irq_restore(flags);
2947
2948 /* With all the info we got, fill in the values */
2949
2950 if (kvm_has_tsc_control)
2951 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz,
2952 v->arch.l1_tsc_scaling_ratio);
2953
2954 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2955 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2956 &vcpu->hv_clock.tsc_shift,
2957 &vcpu->hv_clock.tsc_to_system_mul);
2958 vcpu->hw_tsc_khz = tgt_tsc_khz;
2959 }
2960
2961 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2962 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2963 vcpu->last_guest_tsc = tsc_timestamp;
2964
2965 /* If the host uses TSC clocksource, then it is stable */
2966 pvclock_flags = 0;
2967 if (use_master_clock)
2968 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2969
2970 vcpu->hv_clock.flags = pvclock_flags;
2971
2972 if (vcpu->pv_time_enabled)
2973 kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
2974 if (vcpu->xen.vcpu_info_set)
2975 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
2976 offsetof(struct compat_vcpu_info, time));
2977 if (vcpu->xen.vcpu_time_info_set)
2978 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
2979 if (!v->vcpu_idx)
2980 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2981 return 0;
2982 }
2983
2984 /*
2985 * kvmclock updates which are isolated to a given vcpu, such as
2986 * vcpu->cpu migration, should not allow system_timestamp from
2987 * the rest of the vcpus to remain static. Otherwise ntp frequency
2988 * correction applies to one vcpu's system_timestamp but not
2989 * the others.
2990 *
2991 * So in those cases, request a kvmclock update for all vcpus.
2992 * We need to rate-limit these requests though, as they can
2993 * considerably slow guests that have a large number of vcpus.
2994 * The time for a remote vcpu to update its kvmclock is bound
2995 * by the delay we use to rate-limit the updates.
2996 */
2997
2998 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2999
3000 static void kvmclock_update_fn(struct work_struct *work)
3001 {
3002 int i;
3003 struct delayed_work *dwork = to_delayed_work(work);
3004 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3005 kvmclock_update_work);
3006 struct kvm *kvm = container_of(ka, struct kvm, arch);
3007 struct kvm_vcpu *vcpu;
3008
3009 kvm_for_each_vcpu(i, vcpu, kvm) {
3010 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3011 kvm_vcpu_kick(vcpu);
3012 }
3013 }
3014
3015 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3016 {
3017 struct kvm *kvm = v->kvm;
3018
3019 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3020 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3021 KVMCLOCK_UPDATE_DELAY);
3022 }
3023
3024 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3025
3026 static void kvmclock_sync_fn(struct work_struct *work)
3027 {
3028 struct delayed_work *dwork = to_delayed_work(work);
3029 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3030 kvmclock_sync_work);
3031 struct kvm *kvm = container_of(ka, struct kvm, arch);
3032
3033 if (!kvmclock_periodic_sync)
3034 return;
3035
3036 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3037 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3038 KVMCLOCK_SYNC_PERIOD);
3039 }
3040
3041 /*
3042 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3043 */
3044 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3045 {
3046 /* McStatusWrEn enabled? */
3047 if (guest_cpuid_is_amd_or_hygon(vcpu))
3048 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3049
3050 return false;
3051 }
3052
3053 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3054 {
3055 u64 mcg_cap = vcpu->arch.mcg_cap;
3056 unsigned bank_num = mcg_cap & 0xff;
3057 u32 msr = msr_info->index;
3058 u64 data = msr_info->data;
3059
3060 switch (msr) {
3061 case MSR_IA32_MCG_STATUS:
3062 vcpu->arch.mcg_status = data;
3063 break;
3064 case MSR_IA32_MCG_CTL:
3065 if (!(mcg_cap & MCG_CTL_P) &&
3066 (data || !msr_info->host_initiated))
3067 return 1;
3068 if (data != 0 && data != ~(u64)0)
3069 return 1;
3070 vcpu->arch.mcg_ctl = data;
3071 break;
3072 default:
3073 if (msr >= MSR_IA32_MC0_CTL &&
3074 msr < MSR_IA32_MCx_CTL(bank_num)) {
3075 u32 offset = array_index_nospec(
3076 msr - MSR_IA32_MC0_CTL,
3077 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3078
3079 /* only 0 or all 1s can be written to IA32_MCi_CTL
3080 * some Linux kernels though clear bit 10 in bank 4 to
3081 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
3082 * this to avoid an uncatched #GP in the guest
3083 */
3084 if ((offset & 0x3) == 0 &&
3085 data != 0 && (data | (1 << 10)) != ~(u64)0)
3086 return -1;
3087
3088 /* MCi_STATUS */
3089 if (!msr_info->host_initiated &&
3090 (offset & 0x3) == 1 && data != 0) {
3091 if (!can_set_mci_status(vcpu))
3092 return -1;
3093 }
3094
3095 vcpu->arch.mce_banks[offset] = data;
3096 break;
3097 }
3098 return 1;
3099 }
3100 return 0;
3101 }
3102
3103 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3104 {
3105 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3106
3107 return (vcpu->arch.apf.msr_en_val & mask) == mask;
3108 }
3109
3110 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3111 {
3112 gpa_t gpa = data & ~0x3f;
3113
3114 /* Bits 4:5 are reserved, Should be zero */
3115 if (data & 0x30)
3116 return 1;
3117
3118 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3119 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3120 return 1;
3121
3122 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3123 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3124 return 1;
3125
3126 if (!lapic_in_kernel(vcpu))
3127 return data ? 1 : 0;
3128
3129 vcpu->arch.apf.msr_en_val = data;
3130
3131 if (!kvm_pv_async_pf_enabled(vcpu)) {
3132 kvm_clear_async_pf_completion_queue(vcpu);
3133 kvm_async_pf_hash_reset(vcpu);
3134 return 0;
3135 }
3136
3137 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3138 sizeof(u64)))
3139 return 1;
3140
3141 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3142 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3143
3144 kvm_async_pf_wakeup_all(vcpu);
3145
3146 return 0;
3147 }
3148
3149 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3150 {
3151 /* Bits 8-63 are reserved */
3152 if (data >> 8)
3153 return 1;
3154
3155 if (!lapic_in_kernel(vcpu))
3156 return 1;
3157
3158 vcpu->arch.apf.msr_int_val = data;
3159
3160 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3161
3162 return 0;
3163 }
3164
3165 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3166 {
3167 vcpu->arch.pv_time_enabled = false;
3168 vcpu->arch.time = 0;
3169 }
3170
3171 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3172 {
3173 ++vcpu->stat.tlb_flush;
3174 static_call(kvm_x86_tlb_flush_all)(vcpu);
3175 }
3176
3177 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3178 {
3179 ++vcpu->stat.tlb_flush;
3180
3181 if (!tdp_enabled) {
3182 /*
3183 * A TLB flush on behalf of the guest is equivalent to
3184 * INVPCID(all), toggling CR4.PGE, etc., which requires
3185 * a forced sync of the shadow page tables. Unload the
3186 * entire MMU here and the subsequent load will sync the
3187 * shadow page tables, and also flush the TLB.
3188 */
3189 kvm_mmu_unload(vcpu);
3190 return;
3191 }
3192
3193 static_call(kvm_x86_tlb_flush_guest)(vcpu);
3194 }
3195
3196 static void record_steal_time(struct kvm_vcpu *vcpu)
3197 {
3198 struct kvm_host_map map;
3199 struct kvm_steal_time *st;
3200
3201 if (kvm_xen_msr_enabled(vcpu->kvm)) {
3202 kvm_xen_runstate_set_running(vcpu);
3203 return;
3204 }
3205
3206 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3207 return;
3208
3209 /* -EAGAIN is returned in atomic context so we can just return. */
3210 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
3211 &map, &vcpu->arch.st.cache, false))
3212 return;
3213
3214 st = map.hva +
3215 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
3216
3217 /*
3218 * Doing a TLB flush here, on the guest's behalf, can avoid
3219 * expensive IPIs.
3220 */
3221 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3222 u8 st_preempted = xchg(&st->preempted, 0);
3223
3224 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3225 st_preempted & KVM_VCPU_FLUSH_TLB);
3226 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3227 kvm_vcpu_flush_tlb_guest(vcpu);
3228 } else {
3229 st->preempted = 0;
3230 }
3231
3232 vcpu->arch.st.preempted = 0;
3233
3234 if (st->version & 1)
3235 st->version += 1; /* first time write, random junk */
3236
3237 st->version += 1;
3238
3239 smp_wmb();
3240
3241 st->steal += current->sched_info.run_delay -
3242 vcpu->arch.st.last_steal;
3243 vcpu->arch.st.last_steal = current->sched_info.run_delay;
3244
3245 smp_wmb();
3246
3247 st->version += 1;
3248
3249 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
3250 }
3251
3252 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3253 {
3254 bool pr = false;
3255 u32 msr = msr_info->index;
3256 u64 data = msr_info->data;
3257
3258 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3259 return kvm_xen_write_hypercall_page(vcpu, data);
3260
3261 switch (msr) {
3262 case MSR_AMD64_NB_CFG:
3263 case MSR_IA32_UCODE_WRITE:
3264 case MSR_VM_HSAVE_PA:
3265 case MSR_AMD64_PATCH_LOADER:
3266 case MSR_AMD64_BU_CFG2:
3267 case MSR_AMD64_DC_CFG:
3268 case MSR_F15H_EX_CFG:
3269 break;
3270
3271 case MSR_IA32_UCODE_REV:
3272 if (msr_info->host_initiated)
3273 vcpu->arch.microcode_version = data;
3274 break;
3275 case MSR_IA32_ARCH_CAPABILITIES:
3276 if (!msr_info->host_initiated)
3277 return 1;
3278 vcpu->arch.arch_capabilities = data;
3279 break;
3280 case MSR_IA32_PERF_CAPABILITIES: {
3281 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3282
3283 if (!msr_info->host_initiated)
3284 return 1;
3285 if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent))
3286 return 1;
3287 if (data & ~msr_ent.data)
3288 return 1;
3289
3290 vcpu->arch.perf_capabilities = data;
3291
3292 return 0;
3293 }
3294 case MSR_EFER:
3295 return set_efer(vcpu, msr_info);
3296 case MSR_K7_HWCR:
3297 data &= ~(u64)0x40; /* ignore flush filter disable */
3298 data &= ~(u64)0x100; /* ignore ignne emulation enable */
3299 data &= ~(u64)0x8; /* ignore TLB cache disable */
3300
3301 /* Handle McStatusWrEn */
3302 if (data == BIT_ULL(18)) {
3303 vcpu->arch.msr_hwcr = data;
3304 } else if (data != 0) {
3305 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3306 data);
3307 return 1;
3308 }
3309 break;
3310 case MSR_FAM10H_MMIO_CONF_BASE:
3311 if (data != 0) {
3312 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3313 "0x%llx\n", data);
3314 return 1;
3315 }
3316 break;
3317 case 0x200 ... 0x2ff:
3318 return kvm_mtrr_set_msr(vcpu, msr, data);
3319 case MSR_IA32_APICBASE:
3320 return kvm_set_apic_base(vcpu, msr_info);
3321 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3322 return kvm_x2apic_msr_write(vcpu, msr, data);
3323 case MSR_IA32_TSC_DEADLINE:
3324 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3325 break;
3326 case MSR_IA32_TSC_ADJUST:
3327 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3328 if (!msr_info->host_initiated) {
3329 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3330 adjust_tsc_offset_guest(vcpu, adj);
3331 /* Before back to guest, tsc_timestamp must be adjusted
3332 * as well, otherwise guest's percpu pvclock time could jump.
3333 */
3334 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3335 }
3336 vcpu->arch.ia32_tsc_adjust_msr = data;
3337 }
3338 break;
3339 case MSR_IA32_MISC_ENABLE:
3340 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3341 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3342 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3343 return 1;
3344 vcpu->arch.ia32_misc_enable_msr = data;
3345 kvm_update_cpuid_runtime(vcpu);
3346 } else {
3347 vcpu->arch.ia32_misc_enable_msr = data;
3348 }
3349 break;
3350 case MSR_IA32_SMBASE:
3351 if (!msr_info->host_initiated)
3352 return 1;
3353 vcpu->arch.smbase = data;
3354 break;
3355 case MSR_IA32_POWER_CTL:
3356 vcpu->arch.msr_ia32_power_ctl = data;
3357 break;
3358 case MSR_IA32_TSC:
3359 if (msr_info->host_initiated) {
3360 kvm_synchronize_tsc(vcpu, data);
3361 } else {
3362 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3363 adjust_tsc_offset_guest(vcpu, adj);
3364 vcpu->arch.ia32_tsc_adjust_msr += adj;
3365 }
3366 break;
3367 case MSR_IA32_XSS:
3368 if (!msr_info->host_initiated &&
3369 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3370 return 1;
3371 /*
3372 * KVM supports exposing PT to the guest, but does not support
3373 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3374 * XSAVES/XRSTORS to save/restore PT MSRs.
3375 */
3376 if (data & ~supported_xss)
3377 return 1;
3378 vcpu->arch.ia32_xss = data;
3379 break;
3380 case MSR_SMI_COUNT:
3381 if (!msr_info->host_initiated)
3382 return 1;
3383 vcpu->arch.smi_count = data;
3384 break;
3385 case MSR_KVM_WALL_CLOCK_NEW:
3386 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3387 return 1;
3388
3389 vcpu->kvm->arch.wall_clock = data;
3390 kvm_write_wall_clock(vcpu->kvm, data, 0);
3391 break;
3392 case MSR_KVM_WALL_CLOCK:
3393 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3394 return 1;
3395
3396 vcpu->kvm->arch.wall_clock = data;
3397 kvm_write_wall_clock(vcpu->kvm, data, 0);
3398 break;
3399 case MSR_KVM_SYSTEM_TIME_NEW:
3400 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3401 return 1;
3402
3403 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3404 break;
3405 case MSR_KVM_SYSTEM_TIME:
3406 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3407 return 1;
3408
3409 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
3410 break;
3411 case MSR_KVM_ASYNC_PF_EN:
3412 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3413 return 1;
3414
3415 if (kvm_pv_enable_async_pf(vcpu, data))
3416 return 1;
3417 break;
3418 case MSR_KVM_ASYNC_PF_INT:
3419 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3420 return 1;
3421
3422 if (kvm_pv_enable_async_pf_int(vcpu, data))
3423 return 1;
3424 break;
3425 case MSR_KVM_ASYNC_PF_ACK:
3426 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3427 return 1;
3428 if (data & 0x1) {
3429 vcpu->arch.apf.pageready_pending = false;
3430 kvm_check_async_pf_completion(vcpu);
3431 }
3432 break;
3433 case MSR_KVM_STEAL_TIME:
3434 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3435 return 1;
3436
3437 if (unlikely(!sched_info_on()))
3438 return 1;
3439
3440 if (data & KVM_STEAL_RESERVED_MASK)
3441 return 1;
3442
3443 vcpu->arch.st.msr_val = data;
3444
3445 if (!(data & KVM_MSR_ENABLED))
3446 break;
3447
3448 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3449
3450 break;
3451 case MSR_KVM_PV_EOI_EN:
3452 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3453 return 1;
3454
3455 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3456 return 1;
3457 break;
3458
3459 case MSR_KVM_POLL_CONTROL:
3460 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3461 return 1;
3462
3463 /* only enable bit supported */
3464 if (data & (-1ULL << 1))
3465 return 1;
3466
3467 vcpu->arch.msr_kvm_poll_control = data;
3468 break;
3469
3470 case MSR_IA32_MCG_CTL:
3471 case MSR_IA32_MCG_STATUS:
3472 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3473 return set_msr_mce(vcpu, msr_info);
3474
3475 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3476 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3477 pr = true;
3478 fallthrough;
3479 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3480 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3481 if (kvm_pmu_is_valid_msr(vcpu, msr))
3482 return kvm_pmu_set_msr(vcpu, msr_info);
3483
3484 if (pr || data != 0)
3485 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3486 "0x%x data 0x%llx\n", msr, data);
3487 break;
3488 case MSR_K7_CLK_CTL:
3489 /*
3490 * Ignore all writes to this no longer documented MSR.
3491 * Writes are only relevant for old K7 processors,
3492 * all pre-dating SVM, but a recommended workaround from
3493 * AMD for these chips. It is possible to specify the
3494 * affected processor models on the command line, hence
3495 * the need to ignore the workaround.
3496 */
3497 break;
3498 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3499 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3500 case HV_X64_MSR_SYNDBG_OPTIONS:
3501 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3502 case HV_X64_MSR_CRASH_CTL:
3503 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3504 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3505 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3506 case HV_X64_MSR_TSC_EMULATION_STATUS:
3507 return kvm_hv_set_msr_common(vcpu, msr, data,
3508 msr_info->host_initiated);
3509 case MSR_IA32_BBL_CR_CTL3:
3510 /* Drop writes to this legacy MSR -- see rdmsr
3511 * counterpart for further detail.
3512 */
3513 if (report_ignored_msrs)
3514 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3515 msr, data);
3516 break;
3517 case MSR_AMD64_OSVW_ID_LENGTH:
3518 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3519 return 1;
3520 vcpu->arch.osvw.length = data;
3521 break;
3522 case MSR_AMD64_OSVW_STATUS:
3523 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3524 return 1;
3525 vcpu->arch.osvw.status = data;
3526 break;
3527 case MSR_PLATFORM_INFO:
3528 if (!msr_info->host_initiated ||
3529 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3530 cpuid_fault_enabled(vcpu)))
3531 return 1;
3532 vcpu->arch.msr_platform_info = data;
3533 break;
3534 case MSR_MISC_FEATURES_ENABLES:
3535 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3536 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3537 !supports_cpuid_fault(vcpu)))
3538 return 1;
3539 vcpu->arch.msr_misc_features_enables = data;
3540 break;
3541 default:
3542 if (kvm_pmu_is_valid_msr(vcpu, msr))
3543 return kvm_pmu_set_msr(vcpu, msr_info);
3544 return KVM_MSR_RET_INVALID;
3545 }
3546 return 0;
3547 }
3548 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3549
3550 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3551 {
3552 u64 data;
3553 u64 mcg_cap = vcpu->arch.mcg_cap;
3554 unsigned bank_num = mcg_cap & 0xff;
3555
3556 switch (msr) {
3557 case MSR_IA32_P5_MC_ADDR:
3558 case MSR_IA32_P5_MC_TYPE:
3559 data = 0;
3560 break;
3561 case MSR_IA32_MCG_CAP:
3562 data = vcpu->arch.mcg_cap;
3563 break;
3564 case MSR_IA32_MCG_CTL:
3565 if (!(mcg_cap & MCG_CTL_P) && !host)
3566 return 1;
3567 data = vcpu->arch.mcg_ctl;
3568 break;
3569 case MSR_IA32_MCG_STATUS:
3570 data = vcpu->arch.mcg_status;
3571 break;
3572 default:
3573 if (msr >= MSR_IA32_MC0_CTL &&
3574 msr < MSR_IA32_MCx_CTL(bank_num)) {
3575 u32 offset = array_index_nospec(
3576 msr - MSR_IA32_MC0_CTL,
3577 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3578
3579 data = vcpu->arch.mce_banks[offset];
3580 break;
3581 }
3582 return 1;
3583 }
3584 *pdata = data;
3585 return 0;
3586 }
3587
3588 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3589 {
3590 switch (msr_info->index) {
3591 case MSR_IA32_PLATFORM_ID:
3592 case MSR_IA32_EBL_CR_POWERON:
3593 case MSR_IA32_LASTBRANCHFROMIP:
3594 case MSR_IA32_LASTBRANCHTOIP:
3595 case MSR_IA32_LASTINTFROMIP:
3596 case MSR_IA32_LASTINTTOIP:
3597 case MSR_AMD64_SYSCFG:
3598 case MSR_K8_TSEG_ADDR:
3599 case MSR_K8_TSEG_MASK:
3600 case MSR_VM_HSAVE_PA:
3601 case MSR_K8_INT_PENDING_MSG:
3602 case MSR_AMD64_NB_CFG:
3603 case MSR_FAM10H_MMIO_CONF_BASE:
3604 case MSR_AMD64_BU_CFG2:
3605 case MSR_IA32_PERF_CTL:
3606 case MSR_AMD64_DC_CFG:
3607 case MSR_F15H_EX_CFG:
3608 /*
3609 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3610 * limit) MSRs. Just return 0, as we do not want to expose the host
3611 * data here. Do not conditionalize this on CPUID, as KVM does not do
3612 * so for existing CPU-specific MSRs.
3613 */
3614 case MSR_RAPL_POWER_UNIT:
3615 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
3616 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
3617 case MSR_PKG_ENERGY_STATUS: /* Total package */
3618 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
3619 msr_info->data = 0;
3620 break;
3621 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3622 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3623 return kvm_pmu_get_msr(vcpu, msr_info);
3624 if (!msr_info->host_initiated)
3625 return 1;
3626 msr_info->data = 0;
3627 break;
3628 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3629 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3630 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3631 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3632 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3633 return kvm_pmu_get_msr(vcpu, msr_info);
3634 msr_info->data = 0;
3635 break;
3636 case MSR_IA32_UCODE_REV:
3637 msr_info->data = vcpu->arch.microcode_version;
3638 break;
3639 case MSR_IA32_ARCH_CAPABILITIES:
3640 if (!msr_info->host_initiated &&
3641 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3642 return 1;
3643 msr_info->data = vcpu->arch.arch_capabilities;
3644 break;
3645 case MSR_IA32_PERF_CAPABILITIES:
3646 if (!msr_info->host_initiated &&
3647 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3648 return 1;
3649 msr_info->data = vcpu->arch.perf_capabilities;
3650 break;
3651 case MSR_IA32_POWER_CTL:
3652 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3653 break;
3654 case MSR_IA32_TSC: {
3655 /*
3656 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3657 * even when not intercepted. AMD manual doesn't explicitly
3658 * state this but appears to behave the same.
3659 *
3660 * On userspace reads and writes, however, we unconditionally
3661 * return L1's TSC value to ensure backwards-compatible
3662 * behavior for migration.
3663 */
3664 u64 offset, ratio;
3665
3666 if (msr_info->host_initiated) {
3667 offset = vcpu->arch.l1_tsc_offset;
3668 ratio = vcpu->arch.l1_tsc_scaling_ratio;
3669 } else {
3670 offset = vcpu->arch.tsc_offset;
3671 ratio = vcpu->arch.tsc_scaling_ratio;
3672 }
3673
3674 msr_info->data = kvm_scale_tsc(vcpu, rdtsc(), ratio) + offset;
3675 break;
3676 }
3677 case MSR_MTRRcap:
3678 case 0x200 ... 0x2ff:
3679 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3680 case 0xcd: /* fsb frequency */
3681 msr_info->data = 3;
3682 break;
3683 /*
3684 * MSR_EBC_FREQUENCY_ID
3685 * Conservative value valid for even the basic CPU models.
3686 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3687 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3688 * and 266MHz for model 3, or 4. Set Core Clock
3689 * Frequency to System Bus Frequency Ratio to 1 (bits
3690 * 31:24) even though these are only valid for CPU
3691 * models > 2, however guests may end up dividing or
3692 * multiplying by zero otherwise.
3693 */
3694 case MSR_EBC_FREQUENCY_ID:
3695 msr_info->data = 1 << 24;
3696 break;
3697 case MSR_IA32_APICBASE:
3698 msr_info->data = kvm_get_apic_base(vcpu);
3699 break;
3700 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3701 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3702 case MSR_IA32_TSC_DEADLINE:
3703 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3704 break;
3705 case MSR_IA32_TSC_ADJUST:
3706 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3707 break;
3708 case MSR_IA32_MISC_ENABLE:
3709 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3710 break;
3711 case MSR_IA32_SMBASE:
3712 if (!msr_info->host_initiated)
3713 return 1;
3714 msr_info->data = vcpu->arch.smbase;
3715 break;
3716 case MSR_SMI_COUNT:
3717 msr_info->data = vcpu->arch.smi_count;
3718 break;
3719 case MSR_IA32_PERF_STATUS:
3720 /* TSC increment by tick */
3721 msr_info->data = 1000ULL;
3722 /* CPU multiplier */
3723 msr_info->data |= (((uint64_t)4ULL) << 40);
3724 break;
3725 case MSR_EFER:
3726 msr_info->data = vcpu->arch.efer;
3727 break;
3728 case MSR_KVM_WALL_CLOCK:
3729 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3730 return 1;
3731
3732 msr_info->data = vcpu->kvm->arch.wall_clock;
3733 break;
3734 case MSR_KVM_WALL_CLOCK_NEW:
3735 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3736 return 1;
3737
3738 msr_info->data = vcpu->kvm->arch.wall_clock;
3739 break;
3740 case MSR_KVM_SYSTEM_TIME:
3741 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3742 return 1;
3743
3744 msr_info->data = vcpu->arch.time;
3745 break;
3746 case MSR_KVM_SYSTEM_TIME_NEW:
3747 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3748 return 1;
3749
3750 msr_info->data = vcpu->arch.time;
3751 break;
3752 case MSR_KVM_ASYNC_PF_EN:
3753 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3754 return 1;
3755
3756 msr_info->data = vcpu->arch.apf.msr_en_val;
3757 break;
3758 case MSR_KVM_ASYNC_PF_INT:
3759 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3760 return 1;
3761
3762 msr_info->data = vcpu->arch.apf.msr_int_val;
3763 break;
3764 case MSR_KVM_ASYNC_PF_ACK:
3765 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3766 return 1;
3767
3768 msr_info->data = 0;
3769 break;
3770 case MSR_KVM_STEAL_TIME:
3771 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3772 return 1;
3773
3774 msr_info->data = vcpu->arch.st.msr_val;
3775 break;
3776 case MSR_KVM_PV_EOI_EN:
3777 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3778 return 1;
3779
3780 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3781 break;
3782 case MSR_KVM_POLL_CONTROL:
3783 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3784 return 1;
3785
3786 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3787 break;
3788 case MSR_IA32_P5_MC_ADDR:
3789 case MSR_IA32_P5_MC_TYPE:
3790 case MSR_IA32_MCG_CAP:
3791 case MSR_IA32_MCG_CTL:
3792 case MSR_IA32_MCG_STATUS:
3793 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3794 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3795 msr_info->host_initiated);
3796 case MSR_IA32_XSS:
3797 if (!msr_info->host_initiated &&
3798 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3799 return 1;
3800 msr_info->data = vcpu->arch.ia32_xss;
3801 break;
3802 case MSR_K7_CLK_CTL:
3803 /*
3804 * Provide expected ramp-up count for K7. All other
3805 * are set to zero, indicating minimum divisors for
3806 * every field.
3807 *
3808 * This prevents guest kernels on AMD host with CPU
3809 * type 6, model 8 and higher from exploding due to
3810 * the rdmsr failing.
3811 */
3812 msr_info->data = 0x20000000;
3813 break;
3814 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3815 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3816 case HV_X64_MSR_SYNDBG_OPTIONS:
3817 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3818 case HV_X64_MSR_CRASH_CTL:
3819 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3820 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3821 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3822 case HV_X64_MSR_TSC_EMULATION_STATUS:
3823 return kvm_hv_get_msr_common(vcpu,
3824 msr_info->index, &msr_info->data,
3825 msr_info->host_initiated);
3826 case MSR_IA32_BBL_CR_CTL3:
3827 /* This legacy MSR exists but isn't fully documented in current
3828 * silicon. It is however accessed by winxp in very narrow
3829 * scenarios where it sets bit #19, itself documented as
3830 * a "reserved" bit. Best effort attempt to source coherent
3831 * read data here should the balance of the register be
3832 * interpreted by the guest:
3833 *
3834 * L2 cache control register 3: 64GB range, 256KB size,
3835 * enabled, latency 0x1, configured
3836 */
3837 msr_info->data = 0xbe702111;
3838 break;
3839 case MSR_AMD64_OSVW_ID_LENGTH:
3840 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3841 return 1;
3842 msr_info->data = vcpu->arch.osvw.length;
3843 break;
3844 case MSR_AMD64_OSVW_STATUS:
3845 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3846 return 1;
3847 msr_info->data = vcpu->arch.osvw.status;
3848 break;
3849 case MSR_PLATFORM_INFO:
3850 if (!msr_info->host_initiated &&
3851 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3852 return 1;
3853 msr_info->data = vcpu->arch.msr_platform_info;
3854 break;
3855 case MSR_MISC_FEATURES_ENABLES:
3856 msr_info->data = vcpu->arch.msr_misc_features_enables;
3857 break;
3858 case MSR_K7_HWCR:
3859 msr_info->data = vcpu->arch.msr_hwcr;
3860 break;
3861 default:
3862 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3863 return kvm_pmu_get_msr(vcpu, msr_info);
3864 return KVM_MSR_RET_INVALID;
3865 }
3866 return 0;
3867 }
3868 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3869
3870 /*
3871 * Read or write a bunch of msrs. All parameters are kernel addresses.
3872 *
3873 * @return number of msrs set successfully.
3874 */
3875 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3876 struct kvm_msr_entry *entries,
3877 int (*do_msr)(struct kvm_vcpu *vcpu,
3878 unsigned index, u64 *data))
3879 {
3880 int i;
3881
3882 for (i = 0; i < msrs->nmsrs; ++i)
3883 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3884 break;
3885
3886 return i;
3887 }
3888
3889 /*
3890 * Read or write a bunch of msrs. Parameters are user addresses.
3891 *
3892 * @return number of msrs set successfully.
3893 */
3894 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3895 int (*do_msr)(struct kvm_vcpu *vcpu,
3896 unsigned index, u64 *data),
3897 int writeback)
3898 {
3899 struct kvm_msrs msrs;
3900 struct kvm_msr_entry *entries;
3901 int r, n;
3902 unsigned size;
3903
3904 r = -EFAULT;
3905 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3906 goto out;
3907
3908 r = -E2BIG;
3909 if (msrs.nmsrs >= MAX_IO_MSRS)
3910 goto out;
3911
3912 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3913 entries = memdup_user(user_msrs->entries, size);
3914 if (IS_ERR(entries)) {
3915 r = PTR_ERR(entries);
3916 goto out;
3917 }
3918
3919 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3920 if (r < 0)
3921 goto out_free;
3922
3923 r = -EFAULT;
3924 if (writeback && copy_to_user(user_msrs->entries, entries, size))
3925 goto out_free;
3926
3927 r = n;
3928
3929 out_free:
3930 kfree(entries);
3931 out:
3932 return r;
3933 }
3934
3935 static inline bool kvm_can_mwait_in_guest(void)
3936 {
3937 return boot_cpu_has(X86_FEATURE_MWAIT) &&
3938 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3939 boot_cpu_has(X86_FEATURE_ARAT);
3940 }
3941
3942 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
3943 struct kvm_cpuid2 __user *cpuid_arg)
3944 {
3945 struct kvm_cpuid2 cpuid;
3946 int r;
3947
3948 r = -EFAULT;
3949 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3950 return r;
3951
3952 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3953 if (r)
3954 return r;
3955
3956 r = -EFAULT;
3957 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3958 return r;
3959
3960 return 0;
3961 }
3962
3963 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3964 {
3965 int r = 0;
3966
3967 switch (ext) {
3968 case KVM_CAP_IRQCHIP:
3969 case KVM_CAP_HLT:
3970 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3971 case KVM_CAP_SET_TSS_ADDR:
3972 case KVM_CAP_EXT_CPUID:
3973 case KVM_CAP_EXT_EMUL_CPUID:
3974 case KVM_CAP_CLOCKSOURCE:
3975 case KVM_CAP_PIT:
3976 case KVM_CAP_NOP_IO_DELAY:
3977 case KVM_CAP_MP_STATE:
3978 case KVM_CAP_SYNC_MMU:
3979 case KVM_CAP_USER_NMI:
3980 case KVM_CAP_REINJECT_CONTROL:
3981 case KVM_CAP_IRQ_INJECT_STATUS:
3982 case KVM_CAP_IOEVENTFD:
3983 case KVM_CAP_IOEVENTFD_NO_LENGTH:
3984 case KVM_CAP_PIT2:
3985 case KVM_CAP_PIT_STATE2:
3986 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3987 case KVM_CAP_VCPU_EVENTS:
3988 case KVM_CAP_HYPERV:
3989 case KVM_CAP_HYPERV_VAPIC:
3990 case KVM_CAP_HYPERV_SPIN:
3991 case KVM_CAP_HYPERV_SYNIC:
3992 case KVM_CAP_HYPERV_SYNIC2:
3993 case KVM_CAP_HYPERV_VP_INDEX:
3994 case KVM_CAP_HYPERV_EVENTFD:
3995 case KVM_CAP_HYPERV_TLBFLUSH:
3996 case KVM_CAP_HYPERV_SEND_IPI:
3997 case KVM_CAP_HYPERV_CPUID:
3998 case KVM_CAP_HYPERV_ENFORCE_CPUID:
3999 case KVM_CAP_SYS_HYPERV_CPUID:
4000 case KVM_CAP_PCI_SEGMENT:
4001 case KVM_CAP_DEBUGREGS:
4002 case KVM_CAP_X86_ROBUST_SINGLESTEP:
4003 case KVM_CAP_XSAVE:
4004 case KVM_CAP_ASYNC_PF:
4005 case KVM_CAP_ASYNC_PF_INT:
4006 case KVM_CAP_GET_TSC_KHZ:
4007 case KVM_CAP_KVMCLOCK_CTRL:
4008 case KVM_CAP_READONLY_MEM:
4009 case KVM_CAP_HYPERV_TIME:
4010 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4011 case KVM_CAP_TSC_DEADLINE_TIMER:
4012 case KVM_CAP_DISABLE_QUIRKS:
4013 case KVM_CAP_SET_BOOT_CPU_ID:
4014 case KVM_CAP_SPLIT_IRQCHIP:
4015 case KVM_CAP_IMMEDIATE_EXIT:
4016 case KVM_CAP_PMU_EVENT_FILTER:
4017 case KVM_CAP_GET_MSR_FEATURES:
4018 case KVM_CAP_MSR_PLATFORM_INFO:
4019 case KVM_CAP_EXCEPTION_PAYLOAD:
4020 case KVM_CAP_SET_GUEST_DEBUG:
4021 case KVM_CAP_LAST_CPU:
4022 case KVM_CAP_X86_USER_SPACE_MSR:
4023 case KVM_CAP_X86_MSR_FILTER:
4024 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4025 #ifdef CONFIG_X86_SGX_KVM
4026 case KVM_CAP_SGX_ATTRIBUTE:
4027 #endif
4028 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4029 case KVM_CAP_SREGS2:
4030 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4031 r = 1;
4032 break;
4033 case KVM_CAP_EXIT_HYPERCALL:
4034 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4035 break;
4036 case KVM_CAP_SET_GUEST_DEBUG2:
4037 return KVM_GUESTDBG_VALID_MASK;
4038 #ifdef CONFIG_KVM_XEN
4039 case KVM_CAP_XEN_HVM:
4040 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4041 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4042 KVM_XEN_HVM_CONFIG_SHARED_INFO;
4043 if (sched_info_on())
4044 r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4045 break;
4046 #endif
4047 case KVM_CAP_SYNC_REGS:
4048 r = KVM_SYNC_X86_VALID_FIELDS;
4049 break;
4050 case KVM_CAP_ADJUST_CLOCK:
4051 r = KVM_CLOCK_TSC_STABLE;
4052 break;
4053 case KVM_CAP_X86_DISABLE_EXITS:
4054 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4055 KVM_X86_DISABLE_EXITS_CSTATE;
4056 if(kvm_can_mwait_in_guest())
4057 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4058 break;
4059 case KVM_CAP_X86_SMM:
4060 /* SMBASE is usually relocated above 1M on modern chipsets,
4061 * and SMM handlers might indeed rely on 4G segment limits,
4062 * so do not report SMM to be available if real mode is
4063 * emulated via vm86 mode. Still, do not go to great lengths
4064 * to avoid userspace's usage of the feature, because it is a
4065 * fringe case that is not enabled except via specific settings
4066 * of the module parameters.
4067 */
4068 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4069 break;
4070 case KVM_CAP_VAPIC:
4071 r = !static_call(kvm_x86_cpu_has_accelerated_tpr)();
4072 break;
4073 case KVM_CAP_NR_VCPUS:
4074 r = KVM_SOFT_MAX_VCPUS;
4075 break;
4076 case KVM_CAP_MAX_VCPUS:
4077 r = KVM_MAX_VCPUS;
4078 break;
4079 case KVM_CAP_MAX_VCPU_ID:
4080 r = KVM_MAX_VCPU_ID;
4081 break;
4082 case KVM_CAP_PV_MMU: /* obsolete */
4083 r = 0;
4084 break;
4085 case KVM_CAP_MCE:
4086 r = KVM_MAX_MCE_BANKS;
4087 break;
4088 case KVM_CAP_XCRS:
4089 r = boot_cpu_has(X86_FEATURE_XSAVE);
4090 break;
4091 case KVM_CAP_TSC_CONTROL:
4092 r = kvm_has_tsc_control;
4093 break;
4094 case KVM_CAP_X2APIC_API:
4095 r = KVM_X2APIC_API_VALID_FLAGS;
4096 break;
4097 case KVM_CAP_NESTED_STATE:
4098 r = kvm_x86_ops.nested_ops->get_state ?
4099 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4100 break;
4101 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4102 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4103 break;
4104 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4105 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4106 break;
4107 case KVM_CAP_SMALLER_MAXPHYADDR:
4108 r = (int) allow_smaller_maxphyaddr;
4109 break;
4110 case KVM_CAP_STEAL_TIME:
4111 r = sched_info_on();
4112 break;
4113 case KVM_CAP_X86_BUS_LOCK_EXIT:
4114 if (kvm_has_bus_lock_exit)
4115 r = KVM_BUS_LOCK_DETECTION_OFF |
4116 KVM_BUS_LOCK_DETECTION_EXIT;
4117 else
4118 r = 0;
4119 break;
4120 default:
4121 break;
4122 }
4123 return r;
4124
4125 }
4126
4127 long kvm_arch_dev_ioctl(struct file *filp,
4128 unsigned int ioctl, unsigned long arg)
4129 {
4130 void __user *argp = (void __user *)arg;
4131 long r;
4132
4133 switch (ioctl) {
4134 case KVM_GET_MSR_INDEX_LIST: {
4135 struct kvm_msr_list __user *user_msr_list = argp;
4136 struct kvm_msr_list msr_list;
4137 unsigned n;
4138
4139 r = -EFAULT;
4140 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4141 goto out;
4142 n = msr_list.nmsrs;
4143 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4144 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4145 goto out;
4146 r = -E2BIG;
4147 if (n < msr_list.nmsrs)
4148 goto out;
4149 r = -EFAULT;
4150 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4151 num_msrs_to_save * sizeof(u32)))
4152 goto out;
4153 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4154 &emulated_msrs,
4155 num_emulated_msrs * sizeof(u32)))
4156 goto out;
4157 r = 0;
4158 break;
4159 }
4160 case KVM_GET_SUPPORTED_CPUID:
4161 case KVM_GET_EMULATED_CPUID: {
4162 struct kvm_cpuid2 __user *cpuid_arg = argp;
4163 struct kvm_cpuid2 cpuid;
4164
4165 r = -EFAULT;
4166 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4167 goto out;
4168
4169 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4170 ioctl);
4171 if (r)
4172 goto out;
4173
4174 r = -EFAULT;
4175 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4176 goto out;
4177 r = 0;
4178 break;
4179 }
4180 case KVM_X86_GET_MCE_CAP_SUPPORTED:
4181 r = -EFAULT;
4182 if (copy_to_user(argp, &kvm_mce_cap_supported,
4183 sizeof(kvm_mce_cap_supported)))
4184 goto out;
4185 r = 0;
4186 break;
4187 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4188 struct kvm_msr_list __user *user_msr_list = argp;
4189 struct kvm_msr_list msr_list;
4190 unsigned int n;
4191
4192 r = -EFAULT;
4193 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4194 goto out;
4195 n = msr_list.nmsrs;
4196 msr_list.nmsrs = num_msr_based_features;
4197 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4198 goto out;
4199 r = -E2BIG;
4200 if (n < msr_list.nmsrs)
4201 goto out;
4202 r = -EFAULT;
4203 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4204 num_msr_based_features * sizeof(u32)))
4205 goto out;
4206 r = 0;
4207 break;
4208 }
4209 case KVM_GET_MSRS:
4210 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4211 break;
4212 case KVM_GET_SUPPORTED_HV_CPUID:
4213 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4214 break;
4215 default:
4216 r = -EINVAL;
4217 break;
4218 }
4219 out:
4220 return r;
4221 }
4222
4223 static void wbinvd_ipi(void *garbage)
4224 {
4225 wbinvd();
4226 }
4227
4228 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4229 {
4230 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4231 }
4232
4233 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4234 {
4235 /* Address WBINVD may be executed by guest */
4236 if (need_emulate_wbinvd(vcpu)) {
4237 if (static_call(kvm_x86_has_wbinvd_exit)())
4238 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4239 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4240 smp_call_function_single(vcpu->cpu,
4241 wbinvd_ipi, NULL, 1);
4242 }
4243
4244 static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4245
4246 /* Save host pkru register if supported */
4247 vcpu->arch.host_pkru = read_pkru();
4248
4249 /* Apply any externally detected TSC adjustments (due to suspend) */
4250 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4251 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4252 vcpu->arch.tsc_offset_adjustment = 0;
4253 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4254 }
4255
4256 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4257 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4258 rdtsc() - vcpu->arch.last_host_tsc;
4259 if (tsc_delta < 0)
4260 mark_tsc_unstable("KVM discovered backwards TSC");
4261
4262 if (kvm_check_tsc_unstable()) {
4263 u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4264 vcpu->arch.last_guest_tsc);
4265 kvm_vcpu_write_tsc_offset(vcpu, offset);
4266 vcpu->arch.tsc_catchup = 1;
4267 }
4268
4269 if (kvm_lapic_hv_timer_in_use(vcpu))
4270 kvm_lapic_restart_hv_timer(vcpu);
4271
4272 /*
4273 * On a host with synchronized TSC, there is no need to update
4274 * kvmclock on vcpu->cpu migration
4275 */
4276 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4277 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4278 if (vcpu->cpu != cpu)
4279 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4280 vcpu->cpu = cpu;
4281 }
4282
4283 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4284 }
4285
4286 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4287 {
4288 struct kvm_host_map map;
4289 struct kvm_steal_time *st;
4290
4291 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4292 return;
4293
4294 if (vcpu->arch.st.preempted)
4295 return;
4296
4297 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
4298 &vcpu->arch.st.cache, true))
4299 return;
4300
4301 st = map.hva +
4302 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
4303
4304 st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4305
4306 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
4307 }
4308
4309 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4310 {
4311 int idx;
4312
4313 if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4314 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4315
4316 /*
4317 * Take the srcu lock as memslots will be accessed to check the gfn
4318 * cache generation against the memslots generation.
4319 */
4320 idx = srcu_read_lock(&vcpu->kvm->srcu);
4321 if (kvm_xen_msr_enabled(vcpu->kvm))
4322 kvm_xen_runstate_set_preempted(vcpu);
4323 else
4324 kvm_steal_time_set_preempted(vcpu);
4325 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4326
4327 static_call(kvm_x86_vcpu_put)(vcpu);
4328 vcpu->arch.last_host_tsc = rdtsc();
4329 }
4330
4331 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4332 struct kvm_lapic_state *s)
4333 {
4334 if (vcpu->arch.apicv_active)
4335 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
4336
4337 return kvm_apic_get_state(vcpu, s);
4338 }
4339
4340 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4341 struct kvm_lapic_state *s)
4342 {
4343 int r;
4344
4345 r = kvm_apic_set_state(vcpu, s);
4346 if (r)
4347 return r;
4348 update_cr8_intercept(vcpu);
4349
4350 return 0;
4351 }
4352
4353 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4354 {
4355 /*
4356 * We can accept userspace's request for interrupt injection
4357 * as long as we have a place to store the interrupt number.
4358 * The actual injection will happen when the CPU is able to
4359 * deliver the interrupt.
4360 */
4361 if (kvm_cpu_has_extint(vcpu))
4362 return false;
4363
4364 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
4365 return (!lapic_in_kernel(vcpu) ||
4366 kvm_apic_accept_pic_intr(vcpu));
4367 }
4368
4369 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4370 {
4371 /*
4372 * Do not cause an interrupt window exit if an exception
4373 * is pending or an event needs reinjection; userspace
4374 * might want to inject the interrupt manually using KVM_SET_REGS
4375 * or KVM_SET_SREGS. For that to work, we must be at an
4376 * instruction boundary and with no events half-injected.
4377 */
4378 return (kvm_arch_interrupt_allowed(vcpu) &&
4379 kvm_cpu_accept_dm_intr(vcpu) &&
4380 !kvm_event_needs_reinjection(vcpu) &&
4381 !vcpu->arch.exception.pending);
4382 }
4383
4384 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4385 struct kvm_interrupt *irq)
4386 {
4387 if (irq->irq >= KVM_NR_INTERRUPTS)
4388 return -EINVAL;
4389
4390 if (!irqchip_in_kernel(vcpu->kvm)) {
4391 kvm_queue_interrupt(vcpu, irq->irq, false);
4392 kvm_make_request(KVM_REQ_EVENT, vcpu);
4393 return 0;
4394 }
4395
4396 /*
4397 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4398 * fail for in-kernel 8259.
4399 */
4400 if (pic_in_kernel(vcpu->kvm))
4401 return -ENXIO;
4402
4403 if (vcpu->arch.pending_external_vector != -1)
4404 return -EEXIST;
4405
4406 vcpu->arch.pending_external_vector = irq->irq;
4407 kvm_make_request(KVM_REQ_EVENT, vcpu);
4408 return 0;
4409 }
4410
4411 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4412 {
4413 kvm_inject_nmi(vcpu);
4414
4415 return 0;
4416 }
4417
4418 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4419 {
4420 kvm_make_request(KVM_REQ_SMI, vcpu);
4421
4422 return 0;
4423 }
4424
4425 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4426 struct kvm_tpr_access_ctl *tac)
4427 {
4428 if (tac->flags)
4429 return -EINVAL;
4430 vcpu->arch.tpr_access_reporting = !!tac->enabled;
4431 return 0;
4432 }
4433
4434 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4435 u64 mcg_cap)
4436 {
4437 int r;
4438 unsigned bank_num = mcg_cap & 0xff, bank;
4439
4440 r = -EINVAL;
4441 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4442 goto out;
4443 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4444 goto out;
4445 r = 0;
4446 vcpu->arch.mcg_cap = mcg_cap;
4447 /* Init IA32_MCG_CTL to all 1s */
4448 if (mcg_cap & MCG_CTL_P)
4449 vcpu->arch.mcg_ctl = ~(u64)0;
4450 /* Init IA32_MCi_CTL to all 1s */
4451 for (bank = 0; bank < bank_num; bank++)
4452 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4453
4454 static_call(kvm_x86_setup_mce)(vcpu);
4455 out:
4456 return r;
4457 }
4458
4459 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4460 struct kvm_x86_mce *mce)
4461 {
4462 u64 mcg_cap = vcpu->arch.mcg_cap;
4463 unsigned bank_num = mcg_cap & 0xff;
4464 u64 *banks = vcpu->arch.mce_banks;
4465
4466 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4467 return -EINVAL;
4468 /*
4469 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4470 * reporting is disabled
4471 */
4472 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4473 vcpu->arch.mcg_ctl != ~(u64)0)
4474 return 0;
4475 banks += 4 * mce->bank;
4476 /*
4477 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4478 * reporting is disabled for the bank
4479 */
4480 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4481 return 0;
4482 if (mce->status & MCI_STATUS_UC) {
4483 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4484 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4485 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4486 return 0;
4487 }
4488 if (banks[1] & MCI_STATUS_VAL)
4489 mce->status |= MCI_STATUS_OVER;
4490 banks[2] = mce->addr;
4491 banks[3] = mce->misc;
4492 vcpu->arch.mcg_status = mce->mcg_status;
4493 banks[1] = mce->status;
4494 kvm_queue_exception(vcpu, MC_VECTOR);
4495 } else if (!(banks[1] & MCI_STATUS_VAL)
4496 || !(banks[1] & MCI_STATUS_UC)) {
4497 if (banks[1] & MCI_STATUS_VAL)
4498 mce->status |= MCI_STATUS_OVER;
4499 banks[2] = mce->addr;
4500 banks[3] = mce->misc;
4501 banks[1] = mce->status;
4502 } else
4503 banks[1] |= MCI_STATUS_OVER;
4504 return 0;
4505 }
4506
4507 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4508 struct kvm_vcpu_events *events)
4509 {
4510 process_nmi(vcpu);
4511
4512 if (kvm_check_request(KVM_REQ_SMI, vcpu))
4513 process_smi(vcpu);
4514
4515 /*
4516 * In guest mode, payload delivery should be deferred,
4517 * so that the L1 hypervisor can intercept #PF before
4518 * CR2 is modified (or intercept #DB before DR6 is
4519 * modified under nVMX). Unless the per-VM capability,
4520 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4521 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4522 * opportunistically defer the exception payload, deliver it if the
4523 * capability hasn't been requested before processing a
4524 * KVM_GET_VCPU_EVENTS.
4525 */
4526 if (!vcpu->kvm->arch.exception_payload_enabled &&
4527 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4528 kvm_deliver_exception_payload(vcpu);
4529
4530 /*
4531 * The API doesn't provide the instruction length for software
4532 * exceptions, so don't report them. As long as the guest RIP
4533 * isn't advanced, we should expect to encounter the exception
4534 * again.
4535 */
4536 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4537 events->exception.injected = 0;
4538 events->exception.pending = 0;
4539 } else {
4540 events->exception.injected = vcpu->arch.exception.injected;
4541 events->exception.pending = vcpu->arch.exception.pending;
4542 /*
4543 * For ABI compatibility, deliberately conflate
4544 * pending and injected exceptions when
4545 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4546 */
4547 if (!vcpu->kvm->arch.exception_payload_enabled)
4548 events->exception.injected |=
4549 vcpu->arch.exception.pending;
4550 }
4551 events->exception.nr = vcpu->arch.exception.nr;
4552 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4553 events->exception.error_code = vcpu->arch.exception.error_code;
4554 events->exception_has_payload = vcpu->arch.exception.has_payload;
4555 events->exception_payload = vcpu->arch.exception.payload;
4556
4557 events->interrupt.injected =
4558 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4559 events->interrupt.nr = vcpu->arch.interrupt.nr;
4560 events->interrupt.soft = 0;
4561 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4562
4563 events->nmi.injected = vcpu->arch.nmi_injected;
4564 events->nmi.pending = vcpu->arch.nmi_pending != 0;
4565 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4566 events->nmi.pad = 0;
4567
4568 events->sipi_vector = 0; /* never valid when reporting to user space */
4569
4570 events->smi.smm = is_smm(vcpu);
4571 events->smi.pending = vcpu->arch.smi_pending;
4572 events->smi.smm_inside_nmi =
4573 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4574 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4575
4576 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4577 | KVM_VCPUEVENT_VALID_SHADOW
4578 | KVM_VCPUEVENT_VALID_SMM);
4579 if (vcpu->kvm->arch.exception_payload_enabled)
4580 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4581
4582 memset(&events->reserved, 0, sizeof(events->reserved));
4583 }
4584
4585 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
4586
4587 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4588 struct kvm_vcpu_events *events)
4589 {
4590 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4591 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4592 | KVM_VCPUEVENT_VALID_SHADOW
4593 | KVM_VCPUEVENT_VALID_SMM
4594 | KVM_VCPUEVENT_VALID_PAYLOAD))
4595 return -EINVAL;
4596
4597 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4598 if (!vcpu->kvm->arch.exception_payload_enabled)
4599 return -EINVAL;
4600 if (events->exception.pending)
4601 events->exception.injected = 0;
4602 else
4603 events->exception_has_payload = 0;
4604 } else {
4605 events->exception.pending = 0;
4606 events->exception_has_payload = 0;
4607 }
4608
4609 if ((events->exception.injected || events->exception.pending) &&
4610 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4611 return -EINVAL;
4612
4613 /* INITs are latched while in SMM */
4614 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4615 (events->smi.smm || events->smi.pending) &&
4616 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4617 return -EINVAL;
4618
4619 process_nmi(vcpu);
4620 vcpu->arch.exception.injected = events->exception.injected;
4621 vcpu->arch.exception.pending = events->exception.pending;
4622 vcpu->arch.exception.nr = events->exception.nr;
4623 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4624 vcpu->arch.exception.error_code = events->exception.error_code;
4625 vcpu->arch.exception.has_payload = events->exception_has_payload;
4626 vcpu->arch.exception.payload = events->exception_payload;
4627
4628 vcpu->arch.interrupt.injected = events->interrupt.injected;
4629 vcpu->arch.interrupt.nr = events->interrupt.nr;
4630 vcpu->arch.interrupt.soft = events->interrupt.soft;
4631 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4632 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4633 events->interrupt.shadow);
4634
4635 vcpu->arch.nmi_injected = events->nmi.injected;
4636 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4637 vcpu->arch.nmi_pending = events->nmi.pending;
4638 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4639
4640 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4641 lapic_in_kernel(vcpu))
4642 vcpu->arch.apic->sipi_vector = events->sipi_vector;
4643
4644 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4645 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm)
4646 kvm_smm_changed(vcpu, events->smi.smm);
4647
4648 vcpu->arch.smi_pending = events->smi.pending;
4649
4650 if (events->smi.smm) {
4651 if (events->smi.smm_inside_nmi)
4652 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4653 else
4654 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4655 }
4656
4657 if (lapic_in_kernel(vcpu)) {
4658 if (events->smi.latched_init)
4659 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4660 else
4661 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4662 }
4663 }
4664
4665 kvm_make_request(KVM_REQ_EVENT, vcpu);
4666
4667 return 0;
4668 }
4669
4670 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4671 struct kvm_debugregs *dbgregs)
4672 {
4673 unsigned long val;
4674
4675 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4676 kvm_get_dr(vcpu, 6, &val);
4677 dbgregs->dr6 = val;
4678 dbgregs->dr7 = vcpu->arch.dr7;
4679 dbgregs->flags = 0;
4680 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4681 }
4682
4683 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4684 struct kvm_debugregs *dbgregs)
4685 {
4686 if (dbgregs->flags)
4687 return -EINVAL;
4688
4689 if (!kvm_dr6_valid(dbgregs->dr6))
4690 return -EINVAL;
4691 if (!kvm_dr7_valid(dbgregs->dr7))
4692 return -EINVAL;
4693
4694 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4695 kvm_update_dr0123(vcpu);
4696 vcpu->arch.dr6 = dbgregs->dr6;
4697 vcpu->arch.dr7 = dbgregs->dr7;
4698 kvm_update_dr7(vcpu);
4699
4700 return 0;
4701 }
4702
4703 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4704
4705 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4706 {
4707 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4708 u64 xstate_bv = xsave->header.xfeatures;
4709 u64 valid;
4710
4711 /*
4712 * Copy legacy XSAVE area, to avoid complications with CPUID
4713 * leaves 0 and 1 in the loop below.
4714 */
4715 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4716
4717 /* Set XSTATE_BV */
4718 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4719 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4720
4721 /*
4722 * Copy each region from the possibly compacted offset to the
4723 * non-compacted offset.
4724 */
4725 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4726 while (valid) {
4727 u32 size, offset, ecx, edx;
4728 u64 xfeature_mask = valid & -valid;
4729 int xfeature_nr = fls64(xfeature_mask) - 1;
4730 void *src;
4731
4732 cpuid_count(XSTATE_CPUID, xfeature_nr,
4733 &size, &offset, &ecx, &edx);
4734
4735 if (xfeature_nr == XFEATURE_PKRU) {
4736 memcpy(dest + offset, &vcpu->arch.pkru,
4737 sizeof(vcpu->arch.pkru));
4738 } else {
4739 src = get_xsave_addr(xsave, xfeature_nr);
4740 if (src)
4741 memcpy(dest + offset, src, size);
4742 }
4743
4744 valid -= xfeature_mask;
4745 }
4746 }
4747
4748 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4749 {
4750 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4751 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4752 u64 valid;
4753
4754 /*
4755 * Copy legacy XSAVE area, to avoid complications with CPUID
4756 * leaves 0 and 1 in the loop below.
4757 */
4758 memcpy(xsave, src, XSAVE_HDR_OFFSET);
4759
4760 /* Set XSTATE_BV and possibly XCOMP_BV. */
4761 xsave->header.xfeatures = xstate_bv;
4762 if (boot_cpu_has(X86_FEATURE_XSAVES))
4763 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4764
4765 /*
4766 * Copy each region from the non-compacted offset to the
4767 * possibly compacted offset.
4768 */
4769 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4770 while (valid) {
4771 u32 size, offset, ecx, edx;
4772 u64 xfeature_mask = valid & -valid;
4773 int xfeature_nr = fls64(xfeature_mask) - 1;
4774
4775 cpuid_count(XSTATE_CPUID, xfeature_nr,
4776 &size, &offset, &ecx, &edx);
4777
4778 if (xfeature_nr == XFEATURE_PKRU) {
4779 memcpy(&vcpu->arch.pkru, src + offset,
4780 sizeof(vcpu->arch.pkru));
4781 } else {
4782 void *dest = get_xsave_addr(xsave, xfeature_nr);
4783
4784 if (dest)
4785 memcpy(dest, src + offset, size);
4786 }
4787
4788 valid -= xfeature_mask;
4789 }
4790 }
4791
4792 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4793 struct kvm_xsave *guest_xsave)
4794 {
4795 if (!vcpu->arch.guest_fpu)
4796 return;
4797
4798 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4799 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4800 fill_xsave((u8 *) guest_xsave->region, vcpu);
4801 } else {
4802 memcpy(guest_xsave->region,
4803 &vcpu->arch.guest_fpu->state.fxsave,
4804 sizeof(struct fxregs_state));
4805 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4806 XFEATURE_MASK_FPSSE;
4807 }
4808 }
4809
4810 #define XSAVE_MXCSR_OFFSET 24
4811
4812 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4813 struct kvm_xsave *guest_xsave)
4814 {
4815 u64 xstate_bv;
4816 u32 mxcsr;
4817
4818 if (!vcpu->arch.guest_fpu)
4819 return 0;
4820
4821 xstate_bv = *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4822 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4823
4824 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4825 /*
4826 * Here we allow setting states that are not present in
4827 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
4828 * with old userspace.
4829 */
4830 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4831 return -EINVAL;
4832 load_xsave(vcpu, (u8 *)guest_xsave->region);
4833 } else {
4834 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4835 mxcsr & ~mxcsr_feature_mask)
4836 return -EINVAL;
4837 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4838 guest_xsave->region, sizeof(struct fxregs_state));
4839 }
4840 return 0;
4841 }
4842
4843 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4844 struct kvm_xcrs *guest_xcrs)
4845 {
4846 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4847 guest_xcrs->nr_xcrs = 0;
4848 return;
4849 }
4850
4851 guest_xcrs->nr_xcrs = 1;
4852 guest_xcrs->flags = 0;
4853 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4854 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4855 }
4856
4857 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4858 struct kvm_xcrs *guest_xcrs)
4859 {
4860 int i, r = 0;
4861
4862 if (!boot_cpu_has(X86_FEATURE_XSAVE))
4863 return -EINVAL;
4864
4865 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4866 return -EINVAL;
4867
4868 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4869 /* Only support XCR0 currently */
4870 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4871 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4872 guest_xcrs->xcrs[i].value);
4873 break;
4874 }
4875 if (r)
4876 r = -EINVAL;
4877 return r;
4878 }
4879
4880 /*
4881 * kvm_set_guest_paused() indicates to the guest kernel that it has been
4882 * stopped by the hypervisor. This function will be called from the host only.
4883 * EINVAL is returned when the host attempts to set the flag for a guest that
4884 * does not support pv clocks.
4885 */
4886 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4887 {
4888 if (!vcpu->arch.pv_time_enabled)
4889 return -EINVAL;
4890 vcpu->arch.pvclock_set_guest_stopped_request = true;
4891 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4892 return 0;
4893 }
4894
4895 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4896 struct kvm_enable_cap *cap)
4897 {
4898 int r;
4899 uint16_t vmcs_version;
4900 void __user *user_ptr;
4901
4902 if (cap->flags)
4903 return -EINVAL;
4904
4905 switch (cap->cap) {
4906 case KVM_CAP_HYPERV_SYNIC2:
4907 if (cap->args[0])
4908 return -EINVAL;
4909 fallthrough;
4910
4911 case KVM_CAP_HYPERV_SYNIC:
4912 if (!irqchip_in_kernel(vcpu->kvm))
4913 return -EINVAL;
4914 return kvm_hv_activate_synic(vcpu, cap->cap ==
4915 KVM_CAP_HYPERV_SYNIC2);
4916 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4917 if (!kvm_x86_ops.nested_ops->enable_evmcs)
4918 return -ENOTTY;
4919 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4920 if (!r) {
4921 user_ptr = (void __user *)(uintptr_t)cap->args[0];
4922 if (copy_to_user(user_ptr, &vmcs_version,
4923 sizeof(vmcs_version)))
4924 r = -EFAULT;
4925 }
4926 return r;
4927 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4928 if (!kvm_x86_ops.enable_direct_tlbflush)
4929 return -ENOTTY;
4930
4931 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
4932
4933 case KVM_CAP_HYPERV_ENFORCE_CPUID:
4934 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
4935
4936 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4937 vcpu->arch.pv_cpuid.enforce = cap->args[0];
4938 if (vcpu->arch.pv_cpuid.enforce)
4939 kvm_update_pv_runtime(vcpu);
4940
4941 return 0;
4942 default:
4943 return -EINVAL;
4944 }
4945 }
4946
4947 long kvm_arch_vcpu_ioctl(struct file *filp,
4948 unsigned int ioctl, unsigned long arg)
4949 {
4950 struct kvm_vcpu *vcpu = filp->private_data;
4951 void __user *argp = (void __user *)arg;
4952 int r;
4953 union {
4954 struct kvm_sregs2 *sregs2;
4955 struct kvm_lapic_state *lapic;
4956 struct kvm_xsave *xsave;
4957 struct kvm_xcrs *xcrs;
4958 void *buffer;
4959 } u;
4960
4961 vcpu_load(vcpu);
4962
4963 u.buffer = NULL;
4964 switch (ioctl) {
4965 case KVM_GET_LAPIC: {
4966 r = -EINVAL;
4967 if (!lapic_in_kernel(vcpu))
4968 goto out;
4969 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4970 GFP_KERNEL_ACCOUNT);
4971
4972 r = -ENOMEM;
4973 if (!u.lapic)
4974 goto out;
4975 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4976 if (r)
4977 goto out;
4978 r = -EFAULT;
4979 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4980 goto out;
4981 r = 0;
4982 break;
4983 }
4984 case KVM_SET_LAPIC: {
4985 r = -EINVAL;
4986 if (!lapic_in_kernel(vcpu))
4987 goto out;
4988 u.lapic = memdup_user(argp, sizeof(*u.lapic));
4989 if (IS_ERR(u.lapic)) {
4990 r = PTR_ERR(u.lapic);
4991 goto out_nofree;
4992 }
4993
4994 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4995 break;
4996 }
4997 case KVM_INTERRUPT: {
4998 struct kvm_interrupt irq;
4999
5000 r = -EFAULT;
5001 if (copy_from_user(&irq, argp, sizeof(irq)))
5002 goto out;
5003 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5004 break;
5005 }
5006 case KVM_NMI: {
5007 r = kvm_vcpu_ioctl_nmi(vcpu);
5008 break;
5009 }
5010 case KVM_SMI: {
5011 r = kvm_vcpu_ioctl_smi(vcpu);
5012 break;
5013 }
5014 case KVM_SET_CPUID: {
5015 struct kvm_cpuid __user *cpuid_arg = argp;
5016 struct kvm_cpuid cpuid;
5017
5018 r = -EFAULT;
5019 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5020 goto out;
5021 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5022 break;
5023 }
5024 case KVM_SET_CPUID2: {
5025 struct kvm_cpuid2 __user *cpuid_arg = argp;
5026 struct kvm_cpuid2 cpuid;
5027
5028 r = -EFAULT;
5029 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5030 goto out;
5031 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5032 cpuid_arg->entries);
5033 break;
5034 }
5035 case KVM_GET_CPUID2: {
5036 struct kvm_cpuid2 __user *cpuid_arg = argp;
5037 struct kvm_cpuid2 cpuid;
5038
5039 r = -EFAULT;
5040 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5041 goto out;
5042 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5043 cpuid_arg->entries);
5044 if (r)
5045 goto out;
5046 r = -EFAULT;
5047 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5048 goto out;
5049 r = 0;
5050 break;
5051 }
5052 case KVM_GET_MSRS: {
5053 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5054 r = msr_io(vcpu, argp, do_get_msr, 1);
5055 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5056 break;
5057 }
5058 case KVM_SET_MSRS: {
5059 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5060 r = msr_io(vcpu, argp, do_set_msr, 0);
5061 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5062 break;
5063 }
5064 case KVM_TPR_ACCESS_REPORTING: {
5065 struct kvm_tpr_access_ctl tac;
5066
5067 r = -EFAULT;
5068 if (copy_from_user(&tac, argp, sizeof(tac)))
5069 goto out;
5070 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5071 if (r)
5072 goto out;
5073 r = -EFAULT;
5074 if (copy_to_user(argp, &tac, sizeof(tac)))
5075 goto out;
5076 r = 0;
5077 break;
5078 };
5079 case KVM_SET_VAPIC_ADDR: {
5080 struct kvm_vapic_addr va;
5081 int idx;
5082
5083 r = -EINVAL;
5084 if (!lapic_in_kernel(vcpu))
5085 goto out;
5086 r = -EFAULT;
5087 if (copy_from_user(&va, argp, sizeof(va)))
5088 goto out;
5089 idx = srcu_read_lock(&vcpu->kvm->srcu);
5090 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5091 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5092 break;
5093 }
5094 case KVM_X86_SETUP_MCE: {
5095 u64 mcg_cap;
5096
5097 r = -EFAULT;
5098 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5099 goto out;
5100 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5101 break;
5102 }
5103 case KVM_X86_SET_MCE: {
5104 struct kvm_x86_mce mce;
5105
5106 r = -EFAULT;
5107 if (copy_from_user(&mce, argp, sizeof(mce)))
5108 goto out;
5109 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5110 break;
5111 }
5112 case KVM_GET_VCPU_EVENTS: {
5113 struct kvm_vcpu_events events;
5114
5115 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5116
5117 r = -EFAULT;
5118 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5119 break;
5120 r = 0;
5121 break;
5122 }
5123 case KVM_SET_VCPU_EVENTS: {
5124 struct kvm_vcpu_events events;
5125
5126 r = -EFAULT;
5127 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5128 break;
5129
5130 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5131 break;
5132 }
5133 case KVM_GET_DEBUGREGS: {
5134 struct kvm_debugregs dbgregs;
5135
5136 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5137
5138 r = -EFAULT;
5139 if (copy_to_user(argp, &dbgregs,
5140 sizeof(struct kvm_debugregs)))
5141 break;
5142 r = 0;
5143 break;
5144 }
5145 case KVM_SET_DEBUGREGS: {
5146 struct kvm_debugregs dbgregs;
5147
5148 r = -EFAULT;
5149 if (copy_from_user(&dbgregs, argp,
5150 sizeof(struct kvm_debugregs)))
5151 break;
5152
5153 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5154 break;
5155 }
5156 case KVM_GET_XSAVE: {
5157 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5158 r = -ENOMEM;
5159 if (!u.xsave)
5160 break;
5161
5162 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5163
5164 r = -EFAULT;
5165 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5166 break;
5167 r = 0;
5168 break;
5169 }
5170 case KVM_SET_XSAVE: {
5171 u.xsave = memdup_user(argp, sizeof(*u.xsave));
5172 if (IS_ERR(u.xsave)) {
5173 r = PTR_ERR(u.xsave);
5174 goto out_nofree;
5175 }
5176
5177 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5178 break;
5179 }
5180 case KVM_GET_XCRS: {
5181 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5182 r = -ENOMEM;
5183 if (!u.xcrs)
5184 break;
5185
5186 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5187
5188 r = -EFAULT;
5189 if (copy_to_user(argp, u.xcrs,
5190 sizeof(struct kvm_xcrs)))
5191 break;
5192 r = 0;
5193 break;
5194 }
5195 case KVM_SET_XCRS: {
5196 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5197 if (IS_ERR(u.xcrs)) {
5198 r = PTR_ERR(u.xcrs);
5199 goto out_nofree;
5200 }
5201
5202 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5203 break;
5204 }
5205 case KVM_SET_TSC_KHZ: {
5206 u32 user_tsc_khz;
5207
5208 r = -EINVAL;
5209 user_tsc_khz = (u32)arg;
5210
5211 if (kvm_has_tsc_control &&
5212 user_tsc_khz >= kvm_max_guest_tsc_khz)
5213 goto out;
5214
5215 if (user_tsc_khz == 0)
5216 user_tsc_khz = tsc_khz;
5217
5218 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5219 r = 0;
5220
5221 goto out;
5222 }
5223 case KVM_GET_TSC_KHZ: {
5224 r = vcpu->arch.virtual_tsc_khz;
5225 goto out;
5226 }
5227 case KVM_KVMCLOCK_CTRL: {
5228 r = kvm_set_guest_paused(vcpu);
5229 goto out;
5230 }
5231 case KVM_ENABLE_CAP: {
5232 struct kvm_enable_cap cap;
5233
5234 r = -EFAULT;
5235 if (copy_from_user(&cap, argp, sizeof(cap)))
5236 goto out;
5237 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5238 break;
5239 }
5240 case KVM_GET_NESTED_STATE: {
5241 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5242 u32 user_data_size;
5243
5244 r = -EINVAL;
5245 if (!kvm_x86_ops.nested_ops->get_state)
5246 break;
5247
5248 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5249 r = -EFAULT;
5250 if (get_user(user_data_size, &user_kvm_nested_state->size))
5251 break;
5252
5253 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5254 user_data_size);
5255 if (r < 0)
5256 break;
5257
5258 if (r > user_data_size) {
5259 if (put_user(r, &user_kvm_nested_state->size))
5260 r = -EFAULT;
5261 else
5262 r = -E2BIG;
5263 break;
5264 }
5265
5266 r = 0;
5267 break;
5268 }
5269 case KVM_SET_NESTED_STATE: {
5270 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5271 struct kvm_nested_state kvm_state;
5272 int idx;
5273
5274 r = -EINVAL;
5275 if (!kvm_x86_ops.nested_ops->set_state)
5276 break;
5277
5278 r = -EFAULT;
5279 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5280 break;
5281
5282 r = -EINVAL;
5283 if (kvm_state.size < sizeof(kvm_state))
5284 break;
5285
5286 if (kvm_state.flags &
5287 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5288 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5289 | KVM_STATE_NESTED_GIF_SET))
5290 break;
5291
5292 /* nested_run_pending implies guest_mode. */
5293 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5294 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5295 break;
5296
5297 idx = srcu_read_lock(&vcpu->kvm->srcu);
5298 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5299 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5300 break;
5301 }
5302 case KVM_GET_SUPPORTED_HV_CPUID:
5303 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5304 break;
5305 #ifdef CONFIG_KVM_XEN
5306 case KVM_XEN_VCPU_GET_ATTR: {
5307 struct kvm_xen_vcpu_attr xva;
5308
5309 r = -EFAULT;
5310 if (copy_from_user(&xva, argp, sizeof(xva)))
5311 goto out;
5312 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5313 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5314 r = -EFAULT;
5315 break;
5316 }
5317 case KVM_XEN_VCPU_SET_ATTR: {
5318 struct kvm_xen_vcpu_attr xva;
5319
5320 r = -EFAULT;
5321 if (copy_from_user(&xva, argp, sizeof(xva)))
5322 goto out;
5323 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5324 break;
5325 }
5326 #endif
5327 case KVM_GET_SREGS2: {
5328 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5329 r = -ENOMEM;
5330 if (!u.sregs2)
5331 goto out;
5332 __get_sregs2(vcpu, u.sregs2);
5333 r = -EFAULT;
5334 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5335 goto out;
5336 r = 0;
5337 break;
5338 }
5339 case KVM_SET_SREGS2: {
5340 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5341 if (IS_ERR(u.sregs2)) {
5342 r = PTR_ERR(u.sregs2);
5343 u.sregs2 = NULL;
5344 goto out;
5345 }
5346 r = __set_sregs2(vcpu, u.sregs2);
5347 break;
5348 }
5349 default:
5350 r = -EINVAL;
5351 }
5352 out:
5353 kfree(u.buffer);
5354 out_nofree:
5355 vcpu_put(vcpu);
5356 return r;
5357 }
5358
5359 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5360 {
5361 return VM_FAULT_SIGBUS;
5362 }
5363
5364 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5365 {
5366 int ret;
5367
5368 if (addr > (unsigned int)(-3 * PAGE_SIZE))
5369 return -EINVAL;
5370 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5371 return ret;
5372 }
5373
5374 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5375 u64 ident_addr)
5376 {
5377 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5378 }
5379
5380 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5381 unsigned long kvm_nr_mmu_pages)
5382 {
5383 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5384 return -EINVAL;
5385
5386 mutex_lock(&kvm->slots_lock);
5387
5388 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5389 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5390
5391 mutex_unlock(&kvm->slots_lock);
5392 return 0;
5393 }
5394
5395 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5396 {
5397 return kvm->arch.n_max_mmu_pages;
5398 }
5399
5400 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5401 {
5402 struct kvm_pic *pic = kvm->arch.vpic;
5403 int r;
5404
5405 r = 0;
5406 switch (chip->chip_id) {
5407 case KVM_IRQCHIP_PIC_MASTER:
5408 memcpy(&chip->chip.pic, &pic->pics[0],
5409 sizeof(struct kvm_pic_state));
5410 break;
5411 case KVM_IRQCHIP_PIC_SLAVE:
5412 memcpy(&chip->chip.pic, &pic->pics[1],
5413 sizeof(struct kvm_pic_state));
5414 break;
5415 case KVM_IRQCHIP_IOAPIC:
5416 kvm_get_ioapic(kvm, &chip->chip.ioapic);
5417 break;
5418 default:
5419 r = -EINVAL;
5420 break;
5421 }
5422 return r;
5423 }
5424
5425 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5426 {
5427 struct kvm_pic *pic = kvm->arch.vpic;
5428 int r;
5429
5430 r = 0;
5431 switch (chip->chip_id) {
5432 case KVM_IRQCHIP_PIC_MASTER:
5433 spin_lock(&pic->lock);
5434 memcpy(&pic->pics[0], &chip->chip.pic,
5435 sizeof(struct kvm_pic_state));
5436 spin_unlock(&pic->lock);
5437 break;
5438 case KVM_IRQCHIP_PIC_SLAVE:
5439 spin_lock(&pic->lock);
5440 memcpy(&pic->pics[1], &chip->chip.pic,
5441 sizeof(struct kvm_pic_state));
5442 spin_unlock(&pic->lock);
5443 break;
5444 case KVM_IRQCHIP_IOAPIC:
5445 kvm_set_ioapic(kvm, &chip->chip.ioapic);
5446 break;
5447 default:
5448 r = -EINVAL;
5449 break;
5450 }
5451 kvm_pic_update_irq(pic);
5452 return r;
5453 }
5454
5455 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5456 {
5457 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5458
5459 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5460
5461 mutex_lock(&kps->lock);
5462 memcpy(ps, &kps->channels, sizeof(*ps));
5463 mutex_unlock(&kps->lock);
5464 return 0;
5465 }
5466
5467 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5468 {
5469 int i;
5470 struct kvm_pit *pit = kvm->arch.vpit;
5471
5472 mutex_lock(&pit->pit_state.lock);
5473 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5474 for (i = 0; i < 3; i++)
5475 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5476 mutex_unlock(&pit->pit_state.lock);
5477 return 0;
5478 }
5479
5480 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5481 {
5482 mutex_lock(&kvm->arch.vpit->pit_state.lock);
5483 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5484 sizeof(ps->channels));
5485 ps->flags = kvm->arch.vpit->pit_state.flags;
5486 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5487 memset(&ps->reserved, 0, sizeof(ps->reserved));
5488 return 0;
5489 }
5490
5491 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5492 {
5493 int start = 0;
5494 int i;
5495 u32 prev_legacy, cur_legacy;
5496 struct kvm_pit *pit = kvm->arch.vpit;
5497
5498 mutex_lock(&pit->pit_state.lock);
5499 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5500 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5501 if (!prev_legacy && cur_legacy)
5502 start = 1;
5503 memcpy(&pit->pit_state.channels, &ps->channels,
5504 sizeof(pit->pit_state.channels));
5505 pit->pit_state.flags = ps->flags;
5506 for (i = 0; i < 3; i++)
5507 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5508 start && i == 0);
5509 mutex_unlock(&pit->pit_state.lock);
5510 return 0;
5511 }
5512
5513 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5514 struct kvm_reinject_control *control)
5515 {
5516 struct kvm_pit *pit = kvm->arch.vpit;
5517
5518 /* pit->pit_state.lock was overloaded to prevent userspace from getting
5519 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5520 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
5521 */
5522 mutex_lock(&pit->pit_state.lock);
5523 kvm_pit_set_reinject(pit, control->pit_reinject);
5524 mutex_unlock(&pit->pit_state.lock);
5525
5526 return 0;
5527 }
5528
5529 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5530 {
5531
5532 /*
5533 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called
5534 * before reporting dirty_bitmap to userspace. KVM flushes the buffers
5535 * on all VM-Exits, thus we only need to kick running vCPUs to force a
5536 * VM-Exit.
5537 */
5538 struct kvm_vcpu *vcpu;
5539 int i;
5540
5541 kvm_for_each_vcpu(i, vcpu, kvm)
5542 kvm_vcpu_kick(vcpu);
5543 }
5544
5545 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5546 bool line_status)
5547 {
5548 if (!irqchip_in_kernel(kvm))
5549 return -ENXIO;
5550
5551 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5552 irq_event->irq, irq_event->level,
5553 line_status);
5554 return 0;
5555 }
5556
5557 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5558 struct kvm_enable_cap *cap)
5559 {
5560 int r;
5561
5562 if (cap->flags)
5563 return -EINVAL;
5564
5565 switch (cap->cap) {
5566 case KVM_CAP_DISABLE_QUIRKS:
5567 kvm->arch.disabled_quirks = cap->args[0];
5568 r = 0;
5569 break;
5570 case KVM_CAP_SPLIT_IRQCHIP: {
5571 mutex_lock(&kvm->lock);
5572 r = -EINVAL;
5573 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5574 goto split_irqchip_unlock;
5575 r = -EEXIST;
5576 if (irqchip_in_kernel(kvm))
5577 goto split_irqchip_unlock;
5578 if (kvm->created_vcpus)
5579 goto split_irqchip_unlock;
5580 r = kvm_setup_empty_irq_routing(kvm);
5581 if (r)
5582 goto split_irqchip_unlock;
5583 /* Pairs with irqchip_in_kernel. */
5584 smp_wmb();
5585 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5586 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5587 r = 0;
5588 split_irqchip_unlock:
5589 mutex_unlock(&kvm->lock);
5590 break;
5591 }
5592 case KVM_CAP_X2APIC_API:
5593 r = -EINVAL;
5594 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5595 break;
5596
5597 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5598 kvm->arch.x2apic_format = true;
5599 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5600 kvm->arch.x2apic_broadcast_quirk_disabled = true;
5601
5602 r = 0;
5603 break;
5604 case KVM_CAP_X86_DISABLE_EXITS:
5605 r = -EINVAL;
5606 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5607 break;
5608
5609 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5610 kvm_can_mwait_in_guest())
5611 kvm->arch.mwait_in_guest = true;
5612 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5613 kvm->arch.hlt_in_guest = true;
5614 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5615 kvm->arch.pause_in_guest = true;
5616 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5617 kvm->arch.cstate_in_guest = true;
5618 r = 0;
5619 break;
5620 case KVM_CAP_MSR_PLATFORM_INFO:
5621 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5622 r = 0;
5623 break;
5624 case KVM_CAP_EXCEPTION_PAYLOAD:
5625 kvm->arch.exception_payload_enabled = cap->args[0];
5626 r = 0;
5627 break;
5628 case KVM_CAP_X86_USER_SPACE_MSR:
5629 kvm->arch.user_space_msr_mask = cap->args[0];
5630 r = 0;
5631 break;
5632 case KVM_CAP_X86_BUS_LOCK_EXIT:
5633 r = -EINVAL;
5634 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5635 break;
5636
5637 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
5638 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
5639 break;
5640
5641 if (kvm_has_bus_lock_exit &&
5642 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
5643 kvm->arch.bus_lock_detection_enabled = true;
5644 r = 0;
5645 break;
5646 #ifdef CONFIG_X86_SGX_KVM
5647 case KVM_CAP_SGX_ATTRIBUTE: {
5648 unsigned long allowed_attributes = 0;
5649
5650 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
5651 if (r)
5652 break;
5653
5654 /* KVM only supports the PROVISIONKEY privileged attribute. */
5655 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
5656 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
5657 kvm->arch.sgx_provisioning_allowed = true;
5658 else
5659 r = -EINVAL;
5660 break;
5661 }
5662 #endif
5663 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
5664 r = -EINVAL;
5665 if (kvm_x86_ops.vm_copy_enc_context_from)
5666 r = kvm_x86_ops.vm_copy_enc_context_from(kvm, cap->args[0]);
5667 return r;
5668 case KVM_CAP_EXIT_HYPERCALL:
5669 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
5670 r = -EINVAL;
5671 break;
5672 }
5673 kvm->arch.hypercall_exit_enabled = cap->args[0];
5674 r = 0;
5675 break;
5676 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
5677 r = -EINVAL;
5678 if (cap->args[0] & ~1)
5679 break;
5680 kvm->arch.exit_on_emulation_error = cap->args[0];
5681 r = 0;
5682 break;
5683 default:
5684 r = -EINVAL;
5685 break;
5686 }
5687 return r;
5688 }
5689
5690 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
5691 {
5692 struct kvm_x86_msr_filter *msr_filter;
5693
5694 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
5695 if (!msr_filter)
5696 return NULL;
5697
5698 msr_filter->default_allow = default_allow;
5699 return msr_filter;
5700 }
5701
5702 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
5703 {
5704 u32 i;
5705
5706 if (!msr_filter)
5707 return;
5708
5709 for (i = 0; i < msr_filter->count; i++)
5710 kfree(msr_filter->ranges[i].bitmap);
5711
5712 kfree(msr_filter);
5713 }
5714
5715 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
5716 struct kvm_msr_filter_range *user_range)
5717 {
5718 unsigned long *bitmap = NULL;
5719 size_t bitmap_size;
5720
5721 if (!user_range->nmsrs)
5722 return 0;
5723
5724 if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
5725 return -EINVAL;
5726
5727 if (!user_range->flags)
5728 return -EINVAL;
5729
5730 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5731 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5732 return -EINVAL;
5733
5734 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5735 if (IS_ERR(bitmap))
5736 return PTR_ERR(bitmap);
5737
5738 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
5739 .flags = user_range->flags,
5740 .base = user_range->base,
5741 .nmsrs = user_range->nmsrs,
5742 .bitmap = bitmap,
5743 };
5744
5745 msr_filter->count++;
5746 return 0;
5747 }
5748
5749 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
5750 {
5751 struct kvm_msr_filter __user *user_msr_filter = argp;
5752 struct kvm_x86_msr_filter *new_filter, *old_filter;
5753 struct kvm_msr_filter filter;
5754 bool default_allow;
5755 bool empty = true;
5756 int r = 0;
5757 u32 i;
5758
5759 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5760 return -EFAULT;
5761
5762 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
5763 empty &= !filter.ranges[i].nmsrs;
5764
5765 default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
5766 if (empty && !default_allow)
5767 return -EINVAL;
5768
5769 new_filter = kvm_alloc_msr_filter(default_allow);
5770 if (!new_filter)
5771 return -ENOMEM;
5772
5773 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5774 r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
5775 if (r) {
5776 kvm_free_msr_filter(new_filter);
5777 return r;
5778 }
5779 }
5780
5781 mutex_lock(&kvm->lock);
5782
5783 /* The per-VM filter is protected by kvm->lock... */
5784 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
5785
5786 rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
5787 synchronize_srcu(&kvm->srcu);
5788
5789 kvm_free_msr_filter(old_filter);
5790
5791 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5792 mutex_unlock(&kvm->lock);
5793
5794 return 0;
5795 }
5796
5797 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
5798 static int kvm_arch_suspend_notifier(struct kvm *kvm)
5799 {
5800 struct kvm_vcpu *vcpu;
5801 int i, ret = 0;
5802
5803 mutex_lock(&kvm->lock);
5804 kvm_for_each_vcpu(i, vcpu, kvm) {
5805 if (!vcpu->arch.pv_time_enabled)
5806 continue;
5807
5808 ret = kvm_set_guest_paused(vcpu);
5809 if (ret) {
5810 kvm_err("Failed to pause guest VCPU%d: %d\n",
5811 vcpu->vcpu_id, ret);
5812 break;
5813 }
5814 }
5815 mutex_unlock(&kvm->lock);
5816
5817 return ret ? NOTIFY_BAD : NOTIFY_DONE;
5818 }
5819
5820 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
5821 {
5822 switch (state) {
5823 case PM_HIBERNATION_PREPARE:
5824 case PM_SUSPEND_PREPARE:
5825 return kvm_arch_suspend_notifier(kvm);
5826 }
5827
5828 return NOTIFY_DONE;
5829 }
5830 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
5831
5832 long kvm_arch_vm_ioctl(struct file *filp,
5833 unsigned int ioctl, unsigned long arg)
5834 {
5835 struct kvm *kvm = filp->private_data;
5836 void __user *argp = (void __user *)arg;
5837 int r = -ENOTTY;
5838 /*
5839 * This union makes it completely explicit to gcc-3.x
5840 * that these two variables' stack usage should be
5841 * combined, not added together.
5842 */
5843 union {
5844 struct kvm_pit_state ps;
5845 struct kvm_pit_state2 ps2;
5846 struct kvm_pit_config pit_config;
5847 } u;
5848
5849 switch (ioctl) {
5850 case KVM_SET_TSS_ADDR:
5851 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5852 break;
5853 case KVM_SET_IDENTITY_MAP_ADDR: {
5854 u64 ident_addr;
5855
5856 mutex_lock(&kvm->lock);
5857 r = -EINVAL;
5858 if (kvm->created_vcpus)
5859 goto set_identity_unlock;
5860 r = -EFAULT;
5861 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5862 goto set_identity_unlock;
5863 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5864 set_identity_unlock:
5865 mutex_unlock(&kvm->lock);
5866 break;
5867 }
5868 case KVM_SET_NR_MMU_PAGES:
5869 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5870 break;
5871 case KVM_GET_NR_MMU_PAGES:
5872 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5873 break;
5874 case KVM_CREATE_IRQCHIP: {
5875 mutex_lock(&kvm->lock);
5876
5877 r = -EEXIST;
5878 if (irqchip_in_kernel(kvm))
5879 goto create_irqchip_unlock;
5880
5881 r = -EINVAL;
5882 if (kvm->created_vcpus)
5883 goto create_irqchip_unlock;
5884
5885 r = kvm_pic_init(kvm);
5886 if (r)
5887 goto create_irqchip_unlock;
5888
5889 r = kvm_ioapic_init(kvm);
5890 if (r) {
5891 kvm_pic_destroy(kvm);
5892 goto create_irqchip_unlock;
5893 }
5894
5895 r = kvm_setup_default_irq_routing(kvm);
5896 if (r) {
5897 kvm_ioapic_destroy(kvm);
5898 kvm_pic_destroy(kvm);
5899 goto create_irqchip_unlock;
5900 }
5901 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5902 smp_wmb();
5903 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5904 create_irqchip_unlock:
5905 mutex_unlock(&kvm->lock);
5906 break;
5907 }
5908 case KVM_CREATE_PIT:
5909 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5910 goto create_pit;
5911 case KVM_CREATE_PIT2:
5912 r = -EFAULT;
5913 if (copy_from_user(&u.pit_config, argp,
5914 sizeof(struct kvm_pit_config)))
5915 goto out;
5916 create_pit:
5917 mutex_lock(&kvm->lock);
5918 r = -EEXIST;
5919 if (kvm->arch.vpit)
5920 goto create_pit_unlock;
5921 r = -ENOMEM;
5922 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5923 if (kvm->arch.vpit)
5924 r = 0;
5925 create_pit_unlock:
5926 mutex_unlock(&kvm->lock);
5927 break;
5928 case KVM_GET_IRQCHIP: {
5929 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5930 struct kvm_irqchip *chip;
5931
5932 chip = memdup_user(argp, sizeof(*chip));
5933 if (IS_ERR(chip)) {
5934 r = PTR_ERR(chip);
5935 goto out;
5936 }
5937
5938 r = -ENXIO;
5939 if (!irqchip_kernel(kvm))
5940 goto get_irqchip_out;
5941 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5942 if (r)
5943 goto get_irqchip_out;
5944 r = -EFAULT;
5945 if (copy_to_user(argp, chip, sizeof(*chip)))
5946 goto get_irqchip_out;
5947 r = 0;
5948 get_irqchip_out:
5949 kfree(chip);
5950 break;
5951 }
5952 case KVM_SET_IRQCHIP: {
5953 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5954 struct kvm_irqchip *chip;
5955
5956 chip = memdup_user(argp, sizeof(*chip));
5957 if (IS_ERR(chip)) {
5958 r = PTR_ERR(chip);
5959 goto out;
5960 }
5961
5962 r = -ENXIO;
5963 if (!irqchip_kernel(kvm))
5964 goto set_irqchip_out;
5965 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5966 set_irqchip_out:
5967 kfree(chip);
5968 break;
5969 }
5970 case KVM_GET_PIT: {
5971 r = -EFAULT;
5972 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5973 goto out;
5974 r = -ENXIO;
5975 if (!kvm->arch.vpit)
5976 goto out;
5977 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5978 if (r)
5979 goto out;
5980 r = -EFAULT;
5981 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5982 goto out;
5983 r = 0;
5984 break;
5985 }
5986 case KVM_SET_PIT: {
5987 r = -EFAULT;
5988 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5989 goto out;
5990 mutex_lock(&kvm->lock);
5991 r = -ENXIO;
5992 if (!kvm->arch.vpit)
5993 goto set_pit_out;
5994 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5995 set_pit_out:
5996 mutex_unlock(&kvm->lock);
5997 break;
5998 }
5999 case KVM_GET_PIT2: {
6000 r = -ENXIO;
6001 if (!kvm->arch.vpit)
6002 goto out;
6003 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6004 if (r)
6005 goto out;
6006 r = -EFAULT;
6007 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6008 goto out;
6009 r = 0;
6010 break;
6011 }
6012 case KVM_SET_PIT2: {
6013 r = -EFAULT;
6014 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6015 goto out;
6016 mutex_lock(&kvm->lock);
6017 r = -ENXIO;
6018 if (!kvm->arch.vpit)
6019 goto set_pit2_out;
6020 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6021 set_pit2_out:
6022 mutex_unlock(&kvm->lock);
6023 break;
6024 }
6025 case KVM_REINJECT_CONTROL: {
6026 struct kvm_reinject_control control;
6027 r = -EFAULT;
6028 if (copy_from_user(&control, argp, sizeof(control)))
6029 goto out;
6030 r = -ENXIO;
6031 if (!kvm->arch.vpit)
6032 goto out;
6033 r = kvm_vm_ioctl_reinject(kvm, &control);
6034 break;
6035 }
6036 case KVM_SET_BOOT_CPU_ID:
6037 r = 0;
6038 mutex_lock(&kvm->lock);
6039 if (kvm->created_vcpus)
6040 r = -EBUSY;
6041 else
6042 kvm->arch.bsp_vcpu_id = arg;
6043 mutex_unlock(&kvm->lock);
6044 break;
6045 #ifdef CONFIG_KVM_XEN
6046 case KVM_XEN_HVM_CONFIG: {
6047 struct kvm_xen_hvm_config xhc;
6048 r = -EFAULT;
6049 if (copy_from_user(&xhc, argp, sizeof(xhc)))
6050 goto out;
6051 r = kvm_xen_hvm_config(kvm, &xhc);
6052 break;
6053 }
6054 case KVM_XEN_HVM_GET_ATTR: {
6055 struct kvm_xen_hvm_attr xha;
6056
6057 r = -EFAULT;
6058 if (copy_from_user(&xha, argp, sizeof(xha)))
6059 goto out;
6060 r = kvm_xen_hvm_get_attr(kvm, &xha);
6061 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6062 r = -EFAULT;
6063 break;
6064 }
6065 case KVM_XEN_HVM_SET_ATTR: {
6066 struct kvm_xen_hvm_attr xha;
6067
6068 r = -EFAULT;
6069 if (copy_from_user(&xha, argp, sizeof(xha)))
6070 goto out;
6071 r = kvm_xen_hvm_set_attr(kvm, &xha);
6072 break;
6073 }
6074 #endif
6075 case KVM_SET_CLOCK: {
6076 struct kvm_arch *ka = &kvm->arch;
6077 struct kvm_clock_data user_ns;
6078 u64 now_ns;
6079
6080 r = -EFAULT;
6081 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
6082 goto out;
6083
6084 r = -EINVAL;
6085 if (user_ns.flags)
6086 goto out;
6087
6088 r = 0;
6089 /*
6090 * TODO: userspace has to take care of races with VCPU_RUN, so
6091 * kvm_gen_update_masterclock() can be cut down to locked
6092 * pvclock_update_vm_gtod_copy().
6093 */
6094 kvm_gen_update_masterclock(kvm);
6095
6096 /*
6097 * This pairs with kvm_guest_time_update(): when masterclock is
6098 * in use, we use master_kernel_ns + kvmclock_offset to set
6099 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6100 * is slightly ahead) here we risk going negative on unsigned
6101 * 'system_time' when 'user_ns.clock' is very small.
6102 */
6103 raw_spin_lock_irq(&ka->pvclock_gtod_sync_lock);
6104 if (kvm->arch.use_master_clock)
6105 now_ns = ka->master_kernel_ns;
6106 else
6107 now_ns = get_kvmclock_base_ns();
6108 ka->kvmclock_offset = user_ns.clock - now_ns;
6109 raw_spin_unlock_irq(&ka->pvclock_gtod_sync_lock);
6110
6111 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
6112 break;
6113 }
6114 case KVM_GET_CLOCK: {
6115 struct kvm_clock_data user_ns;
6116 u64 now_ns;
6117
6118 now_ns = get_kvmclock_ns(kvm);
6119 user_ns.clock = now_ns;
6120 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
6121 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
6122
6123 r = -EFAULT;
6124 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
6125 goto out;
6126 r = 0;
6127 break;
6128 }
6129 case KVM_MEMORY_ENCRYPT_OP: {
6130 r = -ENOTTY;
6131 if (kvm_x86_ops.mem_enc_op)
6132 r = static_call(kvm_x86_mem_enc_op)(kvm, argp);
6133 break;
6134 }
6135 case KVM_MEMORY_ENCRYPT_REG_REGION: {
6136 struct kvm_enc_region region;
6137
6138 r = -EFAULT;
6139 if (copy_from_user(&region, argp, sizeof(region)))
6140 goto out;
6141
6142 r = -ENOTTY;
6143 if (kvm_x86_ops.mem_enc_reg_region)
6144 r = static_call(kvm_x86_mem_enc_reg_region)(kvm, &region);
6145 break;
6146 }
6147 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6148 struct kvm_enc_region region;
6149
6150 r = -EFAULT;
6151 if (copy_from_user(&region, argp, sizeof(region)))
6152 goto out;
6153
6154 r = -ENOTTY;
6155 if (kvm_x86_ops.mem_enc_unreg_region)
6156 r = static_call(kvm_x86_mem_enc_unreg_region)(kvm, &region);
6157 break;
6158 }
6159 case KVM_HYPERV_EVENTFD: {
6160 struct kvm_hyperv_eventfd hvevfd;
6161
6162 r = -EFAULT;
6163 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6164 goto out;
6165 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6166 break;
6167 }
6168 case KVM_SET_PMU_EVENT_FILTER:
6169 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6170 break;
6171 case KVM_X86_SET_MSR_FILTER:
6172 r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6173 break;
6174 default:
6175 r = -ENOTTY;
6176 }
6177 out:
6178 return r;
6179 }
6180
6181 static void kvm_init_msr_list(void)
6182 {
6183 struct x86_pmu_capability x86_pmu;
6184 u32 dummy[2];
6185 unsigned i;
6186
6187 BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
6188 "Please update the fixed PMCs in msrs_to_saved_all[]");
6189
6190 perf_get_x86_pmu_capability(&x86_pmu);
6191
6192 num_msrs_to_save = 0;
6193 num_emulated_msrs = 0;
6194 num_msr_based_features = 0;
6195
6196 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6197 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6198 continue;
6199
6200 /*
6201 * Even MSRs that are valid in the host may not be exposed
6202 * to the guests in some cases.
6203 */
6204 switch (msrs_to_save_all[i]) {
6205 case MSR_IA32_BNDCFGS:
6206 if (!kvm_mpx_supported())
6207 continue;
6208 break;
6209 case MSR_TSC_AUX:
6210 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6211 !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6212 continue;
6213 break;
6214 case MSR_IA32_UMWAIT_CONTROL:
6215 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6216 continue;
6217 break;
6218 case MSR_IA32_RTIT_CTL:
6219 case MSR_IA32_RTIT_STATUS:
6220 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6221 continue;
6222 break;
6223 case MSR_IA32_RTIT_CR3_MATCH:
6224 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6225 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6226 continue;
6227 break;
6228 case MSR_IA32_RTIT_OUTPUT_BASE:
6229 case MSR_IA32_RTIT_OUTPUT_MASK:
6230 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6231 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6232 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6233 continue;
6234 break;
6235 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6236 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6237 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6238 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6239 continue;
6240 break;
6241 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6242 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6243 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6244 continue;
6245 break;
6246 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6247 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6248 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6249 continue;
6250 break;
6251 default:
6252 break;
6253 }
6254
6255 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6256 }
6257
6258 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6259 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6260 continue;
6261
6262 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6263 }
6264
6265 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6266 struct kvm_msr_entry msr;
6267
6268 msr.index = msr_based_features_all[i];
6269 if (kvm_get_msr_feature(&msr))
6270 continue;
6271
6272 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6273 }
6274 }
6275
6276 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6277 const void *v)
6278 {
6279 int handled = 0;
6280 int n;
6281
6282 do {
6283 n = min(len, 8);
6284 if (!(lapic_in_kernel(vcpu) &&
6285 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6286 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6287 break;
6288 handled += n;
6289 addr += n;
6290 len -= n;
6291 v += n;
6292 } while (len);
6293
6294 return handled;
6295 }
6296
6297 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6298 {
6299 int handled = 0;
6300 int n;
6301
6302 do {
6303 n = min(len, 8);
6304 if (!(lapic_in_kernel(vcpu) &&
6305 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6306 addr, n, v))
6307 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6308 break;
6309 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6310 handled += n;
6311 addr += n;
6312 len -= n;
6313 v += n;
6314 } while (len);
6315
6316 return handled;
6317 }
6318
6319 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6320 struct kvm_segment *var, int seg)
6321 {
6322 static_call(kvm_x86_set_segment)(vcpu, var, seg);
6323 }
6324
6325 void kvm_get_segment(struct kvm_vcpu *vcpu,
6326 struct kvm_segment *var, int seg)
6327 {
6328 static_call(kvm_x86_get_segment)(vcpu, var, seg);
6329 }
6330
6331 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
6332 struct x86_exception *exception)
6333 {
6334 gpa_t t_gpa;
6335
6336 BUG_ON(!mmu_is_nested(vcpu));
6337
6338 /* NPT walks are always user-walks */
6339 access |= PFERR_USER_MASK;
6340 t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
6341
6342 return t_gpa;
6343 }
6344
6345 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6346 struct x86_exception *exception)
6347 {
6348 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6349 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6350 }
6351 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6352
6353 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6354 struct x86_exception *exception)
6355 {
6356 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6357 access |= PFERR_FETCH_MASK;
6358 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6359 }
6360
6361 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6362 struct x86_exception *exception)
6363 {
6364 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6365 access |= PFERR_WRITE_MASK;
6366 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6367 }
6368 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6369
6370 /* uses this to access any guest's mapped memory without checking CPL */
6371 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6372 struct x86_exception *exception)
6373 {
6374 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
6375 }
6376
6377 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6378 struct kvm_vcpu *vcpu, u32 access,
6379 struct x86_exception *exception)
6380 {
6381 void *data = val;
6382 int r = X86EMUL_CONTINUE;
6383
6384 while (bytes) {
6385 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
6386 exception);
6387 unsigned offset = addr & (PAGE_SIZE-1);
6388 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6389 int ret;
6390
6391 if (gpa == UNMAPPED_GVA)
6392 return X86EMUL_PROPAGATE_FAULT;
6393 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6394 offset, toread);
6395 if (ret < 0) {
6396 r = X86EMUL_IO_NEEDED;
6397 goto out;
6398 }
6399
6400 bytes -= toread;
6401 data += toread;
6402 addr += toread;
6403 }
6404 out:
6405 return r;
6406 }
6407
6408 /* used for instruction fetching */
6409 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6410 gva_t addr, void *val, unsigned int bytes,
6411 struct x86_exception *exception)
6412 {
6413 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6414 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6415 unsigned offset;
6416 int ret;
6417
6418 /* Inline kvm_read_guest_virt_helper for speed. */
6419 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
6420 exception);
6421 if (unlikely(gpa == UNMAPPED_GVA))
6422 return X86EMUL_PROPAGATE_FAULT;
6423
6424 offset = addr & (PAGE_SIZE-1);
6425 if (WARN_ON(offset + bytes > PAGE_SIZE))
6426 bytes = (unsigned)PAGE_SIZE - offset;
6427 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6428 offset, bytes);
6429 if (unlikely(ret < 0))
6430 return X86EMUL_IO_NEEDED;
6431
6432 return X86EMUL_CONTINUE;
6433 }
6434
6435 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6436 gva_t addr, void *val, unsigned int bytes,
6437 struct x86_exception *exception)
6438 {
6439 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6440
6441 /*
6442 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6443 * is returned, but our callers are not ready for that and they blindly
6444 * call kvm_inject_page_fault. Ensure that they at least do not leak
6445 * uninitialized kernel stack memory into cr2 and error code.
6446 */
6447 memset(exception, 0, sizeof(*exception));
6448 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6449 exception);
6450 }
6451 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6452
6453 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6454 gva_t addr, void *val, unsigned int bytes,
6455 struct x86_exception *exception, bool system)
6456 {
6457 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6458 u32 access = 0;
6459
6460 if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6461 access |= PFERR_USER_MASK;
6462
6463 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6464 }
6465
6466 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6467 unsigned long addr, void *val, unsigned int bytes)
6468 {
6469 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6470 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6471
6472 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6473 }
6474
6475 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6476 struct kvm_vcpu *vcpu, u32 access,
6477 struct x86_exception *exception)
6478 {
6479 void *data = val;
6480 int r = X86EMUL_CONTINUE;
6481
6482 while (bytes) {
6483 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6484 access,
6485 exception);
6486 unsigned offset = addr & (PAGE_SIZE-1);
6487 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6488 int ret;
6489
6490 if (gpa == UNMAPPED_GVA)
6491 return X86EMUL_PROPAGATE_FAULT;
6492 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6493 if (ret < 0) {
6494 r = X86EMUL_IO_NEEDED;
6495 goto out;
6496 }
6497
6498 bytes -= towrite;
6499 data += towrite;
6500 addr += towrite;
6501 }
6502 out:
6503 return r;
6504 }
6505
6506 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6507 unsigned int bytes, struct x86_exception *exception,
6508 bool system)
6509 {
6510 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6511 u32 access = PFERR_WRITE_MASK;
6512
6513 if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6514 access |= PFERR_USER_MASK;
6515
6516 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6517 access, exception);
6518 }
6519
6520 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6521 unsigned int bytes, struct x86_exception *exception)
6522 {
6523 /* kvm_write_guest_virt_system can pull in tons of pages. */
6524 vcpu->arch.l1tf_flush_l1d = true;
6525
6526 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6527 PFERR_WRITE_MASK, exception);
6528 }
6529 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6530
6531 int handle_ud(struct kvm_vcpu *vcpu)
6532 {
6533 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6534 int emul_type = EMULTYPE_TRAP_UD;
6535 char sig[5]; /* ud2; .ascii "kvm" */
6536 struct x86_exception e;
6537
6538 if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, NULL, 0)))
6539 return 1;
6540
6541 if (force_emulation_prefix &&
6542 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6543 sig, sizeof(sig), &e) == 0 &&
6544 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6545 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6546 emul_type = EMULTYPE_TRAP_UD_FORCED;
6547 }
6548
6549 return kvm_emulate_instruction(vcpu, emul_type);
6550 }
6551 EXPORT_SYMBOL_GPL(handle_ud);
6552
6553 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6554 gpa_t gpa, bool write)
6555 {
6556 /* For APIC access vmexit */
6557 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6558 return 1;
6559
6560 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6561 trace_vcpu_match_mmio(gva, gpa, write, true);
6562 return 1;
6563 }
6564
6565 return 0;
6566 }
6567
6568 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6569 gpa_t *gpa, struct x86_exception *exception,
6570 bool write)
6571 {
6572 u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
6573 | (write ? PFERR_WRITE_MASK : 0);
6574
6575 /*
6576 * currently PKRU is only applied to ept enabled guest so
6577 * there is no pkey in EPT page table for L1 guest or EPT
6578 * shadow page table for L2 guest.
6579 */
6580 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
6581 !permission_fault(vcpu, vcpu->arch.walk_mmu,
6582 vcpu->arch.mmio_access, 0, access))) {
6583 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6584 (gva & (PAGE_SIZE - 1));
6585 trace_vcpu_match_mmio(gva, *gpa, write, false);
6586 return 1;
6587 }
6588
6589 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6590
6591 if (*gpa == UNMAPPED_GVA)
6592 return -1;
6593
6594 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6595 }
6596
6597 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6598 const void *val, int bytes)
6599 {
6600 int ret;
6601
6602 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6603 if (ret < 0)
6604 return 0;
6605 kvm_page_track_write(vcpu, gpa, val, bytes);
6606 return 1;
6607 }
6608
6609 struct read_write_emulator_ops {
6610 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6611 int bytes);
6612 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6613 void *val, int bytes);
6614 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6615 int bytes, void *val);
6616 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6617 void *val, int bytes);
6618 bool write;
6619 };
6620
6621 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6622 {
6623 if (vcpu->mmio_read_completed) {
6624 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6625 vcpu->mmio_fragments[0].gpa, val);
6626 vcpu->mmio_read_completed = 0;
6627 return 1;
6628 }
6629
6630 return 0;
6631 }
6632
6633 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6634 void *val, int bytes)
6635 {
6636 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6637 }
6638
6639 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6640 void *val, int bytes)
6641 {
6642 return emulator_write_phys(vcpu, gpa, val, bytes);
6643 }
6644
6645 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6646 {
6647 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6648 return vcpu_mmio_write(vcpu, gpa, bytes, val);
6649 }
6650
6651 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6652 void *val, int bytes)
6653 {
6654 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6655 return X86EMUL_IO_NEEDED;
6656 }
6657
6658 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6659 void *val, int bytes)
6660 {
6661 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6662
6663 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6664 return X86EMUL_CONTINUE;
6665 }
6666
6667 static const struct read_write_emulator_ops read_emultor = {
6668 .read_write_prepare = read_prepare,
6669 .read_write_emulate = read_emulate,
6670 .read_write_mmio = vcpu_mmio_read,
6671 .read_write_exit_mmio = read_exit_mmio,
6672 };
6673
6674 static const struct read_write_emulator_ops write_emultor = {
6675 .read_write_emulate = write_emulate,
6676 .read_write_mmio = write_mmio,
6677 .read_write_exit_mmio = write_exit_mmio,
6678 .write = true,
6679 };
6680
6681 static int emulator_read_write_onepage(unsigned long addr, void *val,
6682 unsigned int bytes,
6683 struct x86_exception *exception,
6684 struct kvm_vcpu *vcpu,
6685 const struct read_write_emulator_ops *ops)
6686 {
6687 gpa_t gpa;
6688 int handled, ret;
6689 bool write = ops->write;
6690 struct kvm_mmio_fragment *frag;
6691 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6692
6693 /*
6694 * If the exit was due to a NPF we may already have a GPA.
6695 * If the GPA is present, use it to avoid the GVA to GPA table walk.
6696 * Note, this cannot be used on string operations since string
6697 * operation using rep will only have the initial GPA from the NPF
6698 * occurred.
6699 */
6700 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6701 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6702 gpa = ctxt->gpa_val;
6703 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6704 } else {
6705 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6706 if (ret < 0)
6707 return X86EMUL_PROPAGATE_FAULT;
6708 }
6709
6710 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6711 return X86EMUL_CONTINUE;
6712
6713 /*
6714 * Is this MMIO handled locally?
6715 */
6716 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6717 if (handled == bytes)
6718 return X86EMUL_CONTINUE;
6719
6720 gpa += handled;
6721 bytes -= handled;
6722 val += handled;
6723
6724 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6725 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6726 frag->gpa = gpa;
6727 frag->data = val;
6728 frag->len = bytes;
6729 return X86EMUL_CONTINUE;
6730 }
6731
6732 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6733 unsigned long addr,
6734 void *val, unsigned int bytes,
6735 struct x86_exception *exception,
6736 const struct read_write_emulator_ops *ops)
6737 {
6738 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6739 gpa_t gpa;
6740 int rc;
6741
6742 if (ops->read_write_prepare &&
6743 ops->read_write_prepare(vcpu, val, bytes))
6744 return X86EMUL_CONTINUE;
6745
6746 vcpu->mmio_nr_fragments = 0;
6747
6748 /* Crossing a page boundary? */
6749 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6750 int now;
6751
6752 now = -addr & ~PAGE_MASK;
6753 rc = emulator_read_write_onepage(addr, val, now, exception,
6754 vcpu, ops);
6755
6756 if (rc != X86EMUL_CONTINUE)
6757 return rc;
6758 addr += now;
6759 if (ctxt->mode != X86EMUL_MODE_PROT64)
6760 addr = (u32)addr;
6761 val += now;
6762 bytes -= now;
6763 }
6764
6765 rc = emulator_read_write_onepage(addr, val, bytes, exception,
6766 vcpu, ops);
6767 if (rc != X86EMUL_CONTINUE)
6768 return rc;
6769
6770 if (!vcpu->mmio_nr_fragments)
6771 return rc;
6772
6773 gpa = vcpu->mmio_fragments[0].gpa;
6774
6775 vcpu->mmio_needed = 1;
6776 vcpu->mmio_cur_fragment = 0;
6777
6778 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6779 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6780 vcpu->run->exit_reason = KVM_EXIT_MMIO;
6781 vcpu->run->mmio.phys_addr = gpa;
6782
6783 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6784 }
6785
6786 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6787 unsigned long addr,
6788 void *val,
6789 unsigned int bytes,
6790 struct x86_exception *exception)
6791 {
6792 return emulator_read_write(ctxt, addr, val, bytes,
6793 exception, &read_emultor);
6794 }
6795
6796 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6797 unsigned long addr,
6798 const void *val,
6799 unsigned int bytes,
6800 struct x86_exception *exception)
6801 {
6802 return emulator_read_write(ctxt, addr, (void *)val, bytes,
6803 exception, &write_emultor);
6804 }
6805
6806 #define CMPXCHG_TYPE(t, ptr, old, new) \
6807 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6808
6809 #ifdef CONFIG_X86_64
6810 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6811 #else
6812 # define CMPXCHG64(ptr, old, new) \
6813 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6814 #endif
6815
6816 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6817 unsigned long addr,
6818 const void *old,
6819 const void *new,
6820 unsigned int bytes,
6821 struct x86_exception *exception)
6822 {
6823 struct kvm_host_map map;
6824 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6825 u64 page_line_mask;
6826 gpa_t gpa;
6827 char *kaddr;
6828 bool exchanged;
6829
6830 /* guests cmpxchg8b have to be emulated atomically */
6831 if (bytes > 8 || (bytes & (bytes - 1)))
6832 goto emul_write;
6833
6834 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6835
6836 if (gpa == UNMAPPED_GVA ||
6837 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6838 goto emul_write;
6839
6840 /*
6841 * Emulate the atomic as a straight write to avoid #AC if SLD is
6842 * enabled in the host and the access splits a cache line.
6843 */
6844 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6845 page_line_mask = ~(cache_line_size() - 1);
6846 else
6847 page_line_mask = PAGE_MASK;
6848
6849 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6850 goto emul_write;
6851
6852 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6853 goto emul_write;
6854
6855 kaddr = map.hva + offset_in_page(gpa);
6856
6857 switch (bytes) {
6858 case 1:
6859 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6860 break;
6861 case 2:
6862 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6863 break;
6864 case 4:
6865 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6866 break;
6867 case 8:
6868 exchanged = CMPXCHG64(kaddr, old, new);
6869 break;
6870 default:
6871 BUG();
6872 }
6873
6874 kvm_vcpu_unmap(vcpu, &map, true);
6875
6876 if (!exchanged)
6877 return X86EMUL_CMPXCHG_FAILED;
6878
6879 kvm_page_track_write(vcpu, gpa, new, bytes);
6880
6881 return X86EMUL_CONTINUE;
6882
6883 emul_write:
6884 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6885
6886 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6887 }
6888
6889 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6890 {
6891 int r = 0, i;
6892
6893 for (i = 0; i < vcpu->arch.pio.count; i++) {
6894 if (vcpu->arch.pio.in)
6895 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6896 vcpu->arch.pio.size, pd);
6897 else
6898 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6899 vcpu->arch.pio.port, vcpu->arch.pio.size,
6900 pd);
6901 if (r)
6902 break;
6903 pd += vcpu->arch.pio.size;
6904 }
6905 return r;
6906 }
6907
6908 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6909 unsigned short port, void *val,
6910 unsigned int count, bool in)
6911 {
6912 vcpu->arch.pio.port = port;
6913 vcpu->arch.pio.in = in;
6914 vcpu->arch.pio.count = count;
6915 vcpu->arch.pio.size = size;
6916
6917 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
6918 vcpu->arch.pio.count = 0;
6919 return 1;
6920 }
6921
6922 vcpu->run->exit_reason = KVM_EXIT_IO;
6923 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6924 vcpu->run->io.size = size;
6925 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6926 vcpu->run->io.count = count;
6927 vcpu->run->io.port = port;
6928
6929 return 0;
6930 }
6931
6932 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6933 unsigned short port, void *val, unsigned int count)
6934 {
6935 int ret;
6936
6937 if (vcpu->arch.pio.count)
6938 goto data_avail;
6939
6940 memset(vcpu->arch.pio_data, 0, size * count);
6941
6942 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
6943 if (ret) {
6944 data_avail:
6945 memcpy(val, vcpu->arch.pio_data, size * count);
6946 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
6947 vcpu->arch.pio.count = 0;
6948 return 1;
6949 }
6950
6951 return 0;
6952 }
6953
6954 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6955 int size, unsigned short port, void *val,
6956 unsigned int count)
6957 {
6958 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6959
6960 }
6961
6962 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6963 unsigned short port, const void *val,
6964 unsigned int count)
6965 {
6966 memcpy(vcpu->arch.pio_data, val, size * count);
6967 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6968 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6969 }
6970
6971 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6972 int size, unsigned short port,
6973 const void *val, unsigned int count)
6974 {
6975 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6976 }
6977
6978 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6979 {
6980 return static_call(kvm_x86_get_segment_base)(vcpu, seg);
6981 }
6982
6983 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6984 {
6985 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6986 }
6987
6988 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6989 {
6990 if (!need_emulate_wbinvd(vcpu))
6991 return X86EMUL_CONTINUE;
6992
6993 if (static_call(kvm_x86_has_wbinvd_exit)()) {
6994 int cpu = get_cpu();
6995
6996 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6997 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
6998 wbinvd_ipi, NULL, 1);
6999 put_cpu();
7000 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7001 } else
7002 wbinvd();
7003 return X86EMUL_CONTINUE;
7004 }
7005
7006 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7007 {
7008 kvm_emulate_wbinvd_noskip(vcpu);
7009 return kvm_skip_emulated_instruction(vcpu);
7010 }
7011 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7012
7013
7014
7015 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7016 {
7017 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7018 }
7019
7020 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7021 unsigned long *dest)
7022 {
7023 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7024 }
7025
7026 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7027 unsigned long value)
7028 {
7029
7030 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7031 }
7032
7033 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7034 {
7035 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7036 }
7037
7038 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7039 {
7040 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7041 unsigned long value;
7042
7043 switch (cr) {
7044 case 0:
7045 value = kvm_read_cr0(vcpu);
7046 break;
7047 case 2:
7048 value = vcpu->arch.cr2;
7049 break;
7050 case 3:
7051 value = kvm_read_cr3(vcpu);
7052 break;
7053 case 4:
7054 value = kvm_read_cr4(vcpu);
7055 break;
7056 case 8:
7057 value = kvm_get_cr8(vcpu);
7058 break;
7059 default:
7060 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7061 return 0;
7062 }
7063
7064 return value;
7065 }
7066
7067 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7068 {
7069 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7070 int res = 0;
7071
7072 switch (cr) {
7073 case 0:
7074 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7075 break;
7076 case 2:
7077 vcpu->arch.cr2 = val;
7078 break;
7079 case 3:
7080 res = kvm_set_cr3(vcpu, val);
7081 break;
7082 case 4:
7083 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7084 break;
7085 case 8:
7086 res = kvm_set_cr8(vcpu, val);
7087 break;
7088 default:
7089 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7090 res = -1;
7091 }
7092
7093 return res;
7094 }
7095
7096 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7097 {
7098 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7099 }
7100
7101 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7102 {
7103 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7104 }
7105
7106 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7107 {
7108 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7109 }
7110
7111 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7112 {
7113 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7114 }
7115
7116 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7117 {
7118 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7119 }
7120
7121 static unsigned long emulator_get_cached_segment_base(
7122 struct x86_emulate_ctxt *ctxt, int seg)
7123 {
7124 return get_segment_base(emul_to_vcpu(ctxt), seg);
7125 }
7126
7127 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7128 struct desc_struct *desc, u32 *base3,
7129 int seg)
7130 {
7131 struct kvm_segment var;
7132
7133 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7134 *selector = var.selector;
7135
7136 if (var.unusable) {
7137 memset(desc, 0, sizeof(*desc));
7138 if (base3)
7139 *base3 = 0;
7140 return false;
7141 }
7142
7143 if (var.g)
7144 var.limit >>= 12;
7145 set_desc_limit(desc, var.limit);
7146 set_desc_base(desc, (unsigned long)var.base);
7147 #ifdef CONFIG_X86_64
7148 if (base3)
7149 *base3 = var.base >> 32;
7150 #endif
7151 desc->type = var.type;
7152 desc->s = var.s;
7153 desc->dpl = var.dpl;
7154 desc->p = var.present;
7155 desc->avl = var.avl;
7156 desc->l = var.l;
7157 desc->d = var.db;
7158 desc->g = var.g;
7159
7160 return true;
7161 }
7162
7163 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7164 struct desc_struct *desc, u32 base3,
7165 int seg)
7166 {
7167 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7168 struct kvm_segment var;
7169
7170 var.selector = selector;
7171 var.base = get_desc_base(desc);
7172 #ifdef CONFIG_X86_64
7173 var.base |= ((u64)base3) << 32;
7174 #endif
7175 var.limit = get_desc_limit(desc);
7176 if (desc->g)
7177 var.limit = (var.limit << 12) | 0xfff;
7178 var.type = desc->type;
7179 var.dpl = desc->dpl;
7180 var.db = desc->d;
7181 var.s = desc->s;
7182 var.l = desc->l;
7183 var.g = desc->g;
7184 var.avl = desc->avl;
7185 var.present = desc->p;
7186 var.unusable = !var.present;
7187 var.padding = 0;
7188
7189 kvm_set_segment(vcpu, &var, seg);
7190 return;
7191 }
7192
7193 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7194 u32 msr_index, u64 *pdata)
7195 {
7196 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7197 int r;
7198
7199 r = kvm_get_msr(vcpu, msr_index, pdata);
7200
7201 if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
7202 /* Bounce to user space */
7203 return X86EMUL_IO_NEEDED;
7204 }
7205
7206 return r;
7207 }
7208
7209 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7210 u32 msr_index, u64 data)
7211 {
7212 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7213 int r;
7214
7215 r = kvm_set_msr(vcpu, msr_index, data);
7216
7217 if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
7218 /* Bounce to user space */
7219 return X86EMUL_IO_NEEDED;
7220 }
7221
7222 return r;
7223 }
7224
7225 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7226 {
7227 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7228
7229 return vcpu->arch.smbase;
7230 }
7231
7232 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7233 {
7234 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7235
7236 vcpu->arch.smbase = smbase;
7237 }
7238
7239 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7240 u32 pmc)
7241 {
7242 return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
7243 }
7244
7245 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7246 u32 pmc, u64 *pdata)
7247 {
7248 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7249 }
7250
7251 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7252 {
7253 emul_to_vcpu(ctxt)->arch.halt_request = 1;
7254 }
7255
7256 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7257 struct x86_instruction_info *info,
7258 enum x86_intercept_stage stage)
7259 {
7260 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7261 &ctxt->exception);
7262 }
7263
7264 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7265 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7266 bool exact_only)
7267 {
7268 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7269 }
7270
7271 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7272 {
7273 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7274 }
7275
7276 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7277 {
7278 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7279 }
7280
7281 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7282 {
7283 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7284 }
7285
7286 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7287 {
7288 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7289 }
7290
7291 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7292 {
7293 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7294 }
7295
7296 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7297 {
7298 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7299 }
7300
7301 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7302 {
7303 return emul_to_vcpu(ctxt)->arch.hflags;
7304 }
7305
7306 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
7307 {
7308 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7309
7310 kvm_smm_changed(vcpu, false);
7311 }
7312
7313 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
7314 const char *smstate)
7315 {
7316 return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
7317 }
7318
7319 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
7320 {
7321 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
7322 }
7323
7324 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7325 {
7326 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7327 }
7328
7329 static const struct x86_emulate_ops emulate_ops = {
7330 .read_gpr = emulator_read_gpr,
7331 .write_gpr = emulator_write_gpr,
7332 .read_std = emulator_read_std,
7333 .write_std = emulator_write_std,
7334 .read_phys = kvm_read_guest_phys_system,
7335 .fetch = kvm_fetch_guest_virt,
7336 .read_emulated = emulator_read_emulated,
7337 .write_emulated = emulator_write_emulated,
7338 .cmpxchg_emulated = emulator_cmpxchg_emulated,
7339 .invlpg = emulator_invlpg,
7340 .pio_in_emulated = emulator_pio_in_emulated,
7341 .pio_out_emulated = emulator_pio_out_emulated,
7342 .get_segment = emulator_get_segment,
7343 .set_segment = emulator_set_segment,
7344 .get_cached_segment_base = emulator_get_cached_segment_base,
7345 .get_gdt = emulator_get_gdt,
7346 .get_idt = emulator_get_idt,
7347 .set_gdt = emulator_set_gdt,
7348 .set_idt = emulator_set_idt,
7349 .get_cr = emulator_get_cr,
7350 .set_cr = emulator_set_cr,
7351 .cpl = emulator_get_cpl,
7352 .get_dr = emulator_get_dr,
7353 .set_dr = emulator_set_dr,
7354 .get_smbase = emulator_get_smbase,
7355 .set_smbase = emulator_set_smbase,
7356 .set_msr = emulator_set_msr,
7357 .get_msr = emulator_get_msr,
7358 .check_pmc = emulator_check_pmc,
7359 .read_pmc = emulator_read_pmc,
7360 .halt = emulator_halt,
7361 .wbinvd = emulator_wbinvd,
7362 .fix_hypercall = emulator_fix_hypercall,
7363 .intercept = emulator_intercept,
7364 .get_cpuid = emulator_get_cpuid,
7365 .guest_has_long_mode = emulator_guest_has_long_mode,
7366 .guest_has_movbe = emulator_guest_has_movbe,
7367 .guest_has_fxsr = emulator_guest_has_fxsr,
7368 .set_nmi_mask = emulator_set_nmi_mask,
7369 .get_hflags = emulator_get_hflags,
7370 .exiting_smm = emulator_exiting_smm,
7371 .leave_smm = emulator_leave_smm,
7372 .triple_fault = emulator_triple_fault,
7373 .set_xcr = emulator_set_xcr,
7374 };
7375
7376 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7377 {
7378 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7379 /*
7380 * an sti; sti; sequence only disable interrupts for the first
7381 * instruction. So, if the last instruction, be it emulated or
7382 * not, left the system with the INT_STI flag enabled, it
7383 * means that the last instruction is an sti. We should not
7384 * leave the flag on in this case. The same goes for mov ss
7385 */
7386 if (int_shadow & mask)
7387 mask = 0;
7388 if (unlikely(int_shadow || mask)) {
7389 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7390 if (!mask)
7391 kvm_make_request(KVM_REQ_EVENT, vcpu);
7392 }
7393 }
7394
7395 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7396 {
7397 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7398 if (ctxt->exception.vector == PF_VECTOR)
7399 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7400
7401 if (ctxt->exception.error_code_valid)
7402 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7403 ctxt->exception.error_code);
7404 else
7405 kvm_queue_exception(vcpu, ctxt->exception.vector);
7406 return false;
7407 }
7408
7409 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7410 {
7411 struct x86_emulate_ctxt *ctxt;
7412
7413 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7414 if (!ctxt) {
7415 pr_err("kvm: failed to allocate vcpu's emulator\n");
7416 return NULL;
7417 }
7418
7419 ctxt->vcpu = vcpu;
7420 ctxt->ops = &emulate_ops;
7421 vcpu->arch.emulate_ctxt = ctxt;
7422
7423 return ctxt;
7424 }
7425
7426 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7427 {
7428 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7429 int cs_db, cs_l;
7430
7431 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7432
7433 ctxt->gpa_available = false;
7434 ctxt->eflags = kvm_get_rflags(vcpu);
7435 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7436
7437 ctxt->eip = kvm_rip_read(vcpu);
7438 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
7439 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
7440 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
7441 cs_db ? X86EMUL_MODE_PROT32 :
7442 X86EMUL_MODE_PROT16;
7443 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7444 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7445 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7446
7447 ctxt->interruptibility = 0;
7448 ctxt->have_exception = false;
7449 ctxt->exception.vector = -1;
7450 ctxt->perm_ok = false;
7451
7452 init_decode_cache(ctxt);
7453 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7454 }
7455
7456 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7457 {
7458 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7459 int ret;
7460
7461 init_emulate_ctxt(vcpu);
7462
7463 ctxt->op_bytes = 2;
7464 ctxt->ad_bytes = 2;
7465 ctxt->_eip = ctxt->eip + inc_eip;
7466 ret = emulate_int_real(ctxt, irq);
7467
7468 if (ret != X86EMUL_CONTINUE) {
7469 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7470 } else {
7471 ctxt->eip = ctxt->_eip;
7472 kvm_rip_write(vcpu, ctxt->eip);
7473 kvm_set_rflags(vcpu, ctxt->eflags);
7474 }
7475 }
7476 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7477
7478 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
7479 {
7480 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7481 u32 insn_size = ctxt->fetch.end - ctxt->fetch.data;
7482 struct kvm_run *run = vcpu->run;
7483
7484 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7485 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
7486 run->emulation_failure.ndata = 0;
7487 run->emulation_failure.flags = 0;
7488
7489 if (insn_size) {
7490 run->emulation_failure.ndata = 3;
7491 run->emulation_failure.flags |=
7492 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
7493 run->emulation_failure.insn_size = insn_size;
7494 memset(run->emulation_failure.insn_bytes, 0x90,
7495 sizeof(run->emulation_failure.insn_bytes));
7496 memcpy(run->emulation_failure.insn_bytes,
7497 ctxt->fetch.data, insn_size);
7498 }
7499 }
7500
7501 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7502 {
7503 struct kvm *kvm = vcpu->kvm;
7504
7505 ++vcpu->stat.insn_emulation_fail;
7506 trace_kvm_emulate_insn_failed(vcpu);
7507
7508 if (emulation_type & EMULTYPE_VMWARE_GP) {
7509 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7510 return 1;
7511 }
7512
7513 if (kvm->arch.exit_on_emulation_error ||
7514 (emulation_type & EMULTYPE_SKIP)) {
7515 prepare_emulation_failure_exit(vcpu);
7516 return 0;
7517 }
7518
7519 kvm_queue_exception(vcpu, UD_VECTOR);
7520
7521 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
7522 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7523 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7524 vcpu->run->internal.ndata = 0;
7525 return 0;
7526 }
7527
7528 return 1;
7529 }
7530
7531 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7532 bool write_fault_to_shadow_pgtable,
7533 int emulation_type)
7534 {
7535 gpa_t gpa = cr2_or_gpa;
7536 kvm_pfn_t pfn;
7537
7538 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7539 return false;
7540
7541 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7542 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7543 return false;
7544
7545 if (!vcpu->arch.mmu->direct_map) {
7546 /*
7547 * Write permission should be allowed since only
7548 * write access need to be emulated.
7549 */
7550 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7551
7552 /*
7553 * If the mapping is invalid in guest, let cpu retry
7554 * it to generate fault.
7555 */
7556 if (gpa == UNMAPPED_GVA)
7557 return true;
7558 }
7559
7560 /*
7561 * Do not retry the unhandleable instruction if it faults on the
7562 * readonly host memory, otherwise it will goto a infinite loop:
7563 * retry instruction -> write #PF -> emulation fail -> retry
7564 * instruction -> ...
7565 */
7566 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7567
7568 /*
7569 * If the instruction failed on the error pfn, it can not be fixed,
7570 * report the error to userspace.
7571 */
7572 if (is_error_noslot_pfn(pfn))
7573 return false;
7574
7575 kvm_release_pfn_clean(pfn);
7576
7577 /* The instructions are well-emulated on direct mmu. */
7578 if (vcpu->arch.mmu->direct_map) {
7579 unsigned int indirect_shadow_pages;
7580
7581 write_lock(&vcpu->kvm->mmu_lock);
7582 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7583 write_unlock(&vcpu->kvm->mmu_lock);
7584
7585 if (indirect_shadow_pages)
7586 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7587
7588 return true;
7589 }
7590
7591 /*
7592 * if emulation was due to access to shadowed page table
7593 * and it failed try to unshadow page and re-enter the
7594 * guest to let CPU execute the instruction.
7595 */
7596 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7597
7598 /*
7599 * If the access faults on its page table, it can not
7600 * be fixed by unprotecting shadow page and it should
7601 * be reported to userspace.
7602 */
7603 return !write_fault_to_shadow_pgtable;
7604 }
7605
7606 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7607 gpa_t cr2_or_gpa, int emulation_type)
7608 {
7609 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7610 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7611
7612 last_retry_eip = vcpu->arch.last_retry_eip;
7613 last_retry_addr = vcpu->arch.last_retry_addr;
7614
7615 /*
7616 * If the emulation is caused by #PF and it is non-page_table
7617 * writing instruction, it means the VM-EXIT is caused by shadow
7618 * page protected, we can zap the shadow page and retry this
7619 * instruction directly.
7620 *
7621 * Note: if the guest uses a non-page-table modifying instruction
7622 * on the PDE that points to the instruction, then we will unmap
7623 * the instruction and go to an infinite loop. So, we cache the
7624 * last retried eip and the last fault address, if we meet the eip
7625 * and the address again, we can break out of the potential infinite
7626 * loop.
7627 */
7628 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7629
7630 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7631 return false;
7632
7633 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7634 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7635 return false;
7636
7637 if (x86_page_table_writing_insn(ctxt))
7638 return false;
7639
7640 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7641 return false;
7642
7643 vcpu->arch.last_retry_eip = ctxt->eip;
7644 vcpu->arch.last_retry_addr = cr2_or_gpa;
7645
7646 if (!vcpu->arch.mmu->direct_map)
7647 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7648
7649 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7650
7651 return true;
7652 }
7653
7654 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7655 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7656
7657 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
7658 {
7659 trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
7660
7661 if (entering_smm) {
7662 vcpu->arch.hflags |= HF_SMM_MASK;
7663 } else {
7664 vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
7665
7666 /* Process a latched INIT or SMI, if any. */
7667 kvm_make_request(KVM_REQ_EVENT, vcpu);
7668
7669 /*
7670 * Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
7671 * on SMM exit we still need to reload them from
7672 * guest memory
7673 */
7674 vcpu->arch.pdptrs_from_userspace = false;
7675 }
7676
7677 kvm_mmu_reset_context(vcpu);
7678 }
7679
7680 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7681 unsigned long *db)
7682 {
7683 u32 dr6 = 0;
7684 int i;
7685 u32 enable, rwlen;
7686
7687 enable = dr7;
7688 rwlen = dr7 >> 16;
7689 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7690 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7691 dr6 |= (1 << i);
7692 return dr6;
7693 }
7694
7695 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7696 {
7697 struct kvm_run *kvm_run = vcpu->run;
7698
7699 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7700 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
7701 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7702 kvm_run->debug.arch.exception = DB_VECTOR;
7703 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7704 return 0;
7705 }
7706 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7707 return 1;
7708 }
7709
7710 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7711 {
7712 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7713 int r;
7714
7715 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
7716 if (unlikely(!r))
7717 return 0;
7718
7719 /*
7720 * rflags is the old, "raw" value of the flags. The new value has
7721 * not been saved yet.
7722 *
7723 * This is correct even for TF set by the guest, because "the
7724 * processor will not generate this exception after the instruction
7725 * that sets the TF flag".
7726 */
7727 if (unlikely(rflags & X86_EFLAGS_TF))
7728 r = kvm_vcpu_do_singlestep(vcpu);
7729 return r;
7730 }
7731 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7732
7733 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
7734 {
7735 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7736 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7737 struct kvm_run *kvm_run = vcpu->run;
7738 unsigned long eip = kvm_get_linear_rip(vcpu);
7739 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7740 vcpu->arch.guest_debug_dr7,
7741 vcpu->arch.eff_db);
7742
7743 if (dr6 != 0) {
7744 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
7745 kvm_run->debug.arch.pc = eip;
7746 kvm_run->debug.arch.exception = DB_VECTOR;
7747 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7748 *r = 0;
7749 return true;
7750 }
7751 }
7752
7753 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7754 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7755 unsigned long eip = kvm_get_linear_rip(vcpu);
7756 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7757 vcpu->arch.dr7,
7758 vcpu->arch.db);
7759
7760 if (dr6 != 0) {
7761 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
7762 *r = 1;
7763 return true;
7764 }
7765 }
7766
7767 return false;
7768 }
7769
7770 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7771 {
7772 switch (ctxt->opcode_len) {
7773 case 1:
7774 switch (ctxt->b) {
7775 case 0xe4: /* IN */
7776 case 0xe5:
7777 case 0xec:
7778 case 0xed:
7779 case 0xe6: /* OUT */
7780 case 0xe7:
7781 case 0xee:
7782 case 0xef:
7783 case 0x6c: /* INS */
7784 case 0x6d:
7785 case 0x6e: /* OUTS */
7786 case 0x6f:
7787 return true;
7788 }
7789 break;
7790 case 2:
7791 switch (ctxt->b) {
7792 case 0x33: /* RDPMC */
7793 return true;
7794 }
7795 break;
7796 }
7797
7798 return false;
7799 }
7800
7801 /*
7802 * Decode to be emulated instruction. Return EMULATION_OK if success.
7803 */
7804 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
7805 void *insn, int insn_len)
7806 {
7807 int r = EMULATION_OK;
7808 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7809
7810 init_emulate_ctxt(vcpu);
7811
7812 /*
7813 * We will reenter on the same instruction since we do not set
7814 * complete_userspace_io. This does not handle watchpoints yet,
7815 * those would be handled in the emulate_ops.
7816 */
7817 if (!(emulation_type & EMULTYPE_SKIP) &&
7818 kvm_vcpu_check_breakpoint(vcpu, &r))
7819 return r;
7820
7821 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
7822
7823 trace_kvm_emulate_insn_start(vcpu);
7824 ++vcpu->stat.insn_emulation;
7825
7826 return r;
7827 }
7828 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
7829
7830 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7831 int emulation_type, void *insn, int insn_len)
7832 {
7833 int r;
7834 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7835 bool writeback = true;
7836 bool write_fault_to_spt;
7837
7838 if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, insn, insn_len)))
7839 return 1;
7840
7841 vcpu->arch.l1tf_flush_l1d = true;
7842
7843 /*
7844 * Clear write_fault_to_shadow_pgtable here to ensure it is
7845 * never reused.
7846 */
7847 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
7848 vcpu->arch.write_fault_to_shadow_pgtable = false;
7849
7850 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
7851 kvm_clear_exception_queue(vcpu);
7852
7853 r = x86_decode_emulated_instruction(vcpu, emulation_type,
7854 insn, insn_len);
7855 if (r != EMULATION_OK) {
7856 if ((emulation_type & EMULTYPE_TRAP_UD) ||
7857 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
7858 kvm_queue_exception(vcpu, UD_VECTOR);
7859 return 1;
7860 }
7861 if (reexecute_instruction(vcpu, cr2_or_gpa,
7862 write_fault_to_spt,
7863 emulation_type))
7864 return 1;
7865 if (ctxt->have_exception) {
7866 /*
7867 * #UD should result in just EMULATION_FAILED, and trap-like
7868 * exception should not be encountered during decode.
7869 */
7870 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
7871 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
7872 inject_emulated_exception(vcpu);
7873 return 1;
7874 }
7875 return handle_emulation_failure(vcpu, emulation_type);
7876 }
7877 }
7878
7879 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
7880 !is_vmware_backdoor_opcode(ctxt)) {
7881 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7882 return 1;
7883 }
7884
7885 /*
7886 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
7887 * for kvm_skip_emulated_instruction(). The caller is responsible for
7888 * updating interruptibility state and injecting single-step #DBs.
7889 */
7890 if (emulation_type & EMULTYPE_SKIP) {
7891 kvm_rip_write(vcpu, ctxt->_eip);
7892 if (ctxt->eflags & X86_EFLAGS_RF)
7893 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
7894 return 1;
7895 }
7896
7897 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
7898 return 1;
7899
7900 /* this is needed for vmware backdoor interface to work since it
7901 changes registers values during IO operation */
7902 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7903 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7904 emulator_invalidate_register_cache(ctxt);
7905 }
7906
7907 restart:
7908 if (emulation_type & EMULTYPE_PF) {
7909 /* Save the faulting GPA (cr2) in the address field */
7910 ctxt->exception.address = cr2_or_gpa;
7911
7912 /* With shadow page tables, cr2 contains a GVA or nGPA. */
7913 if (vcpu->arch.mmu->direct_map) {
7914 ctxt->gpa_available = true;
7915 ctxt->gpa_val = cr2_or_gpa;
7916 }
7917 } else {
7918 /* Sanitize the address out of an abundance of paranoia. */
7919 ctxt->exception.address = 0;
7920 }
7921
7922 r = x86_emulate_insn(ctxt);
7923
7924 if (r == EMULATION_INTERCEPTED)
7925 return 1;
7926
7927 if (r == EMULATION_FAILED) {
7928 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
7929 emulation_type))
7930 return 1;
7931
7932 return handle_emulation_failure(vcpu, emulation_type);
7933 }
7934
7935 if (ctxt->have_exception) {
7936 r = 1;
7937 if (inject_emulated_exception(vcpu))
7938 return r;
7939 } else if (vcpu->arch.pio.count) {
7940 if (!vcpu->arch.pio.in) {
7941 /* FIXME: return into emulator if single-stepping. */
7942 vcpu->arch.pio.count = 0;
7943 } else {
7944 writeback = false;
7945 vcpu->arch.complete_userspace_io = complete_emulated_pio;
7946 }
7947 r = 0;
7948 } else if (vcpu->mmio_needed) {
7949 ++vcpu->stat.mmio_exits;
7950
7951 if (!vcpu->mmio_is_write)
7952 writeback = false;
7953 r = 0;
7954 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7955 } else if (r == EMULATION_RESTART)
7956 goto restart;
7957 else
7958 r = 1;
7959
7960 if (writeback) {
7961 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7962 toggle_interruptibility(vcpu, ctxt->interruptibility);
7963 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7964 if (!ctxt->have_exception ||
7965 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7966 kvm_rip_write(vcpu, ctxt->eip);
7967 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7968 r = kvm_vcpu_do_singlestep(vcpu);
7969 if (kvm_x86_ops.update_emulated_instruction)
7970 static_call(kvm_x86_update_emulated_instruction)(vcpu);
7971 __kvm_set_rflags(vcpu, ctxt->eflags);
7972 }
7973
7974 /*
7975 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7976 * do nothing, and it will be requested again as soon as
7977 * the shadow expires. But we still need to check here,
7978 * because POPF has no interrupt shadow.
7979 */
7980 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7981 kvm_make_request(KVM_REQ_EVENT, vcpu);
7982 } else
7983 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
7984
7985 return r;
7986 }
7987
7988 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7989 {
7990 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
7991 }
7992 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
7993
7994 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
7995 void *insn, int insn_len)
7996 {
7997 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
7998 }
7999 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8000
8001 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8002 {
8003 vcpu->arch.pio.count = 0;
8004 return 1;
8005 }
8006
8007 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8008 {
8009 vcpu->arch.pio.count = 0;
8010
8011 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8012 return 1;
8013
8014 return kvm_skip_emulated_instruction(vcpu);
8015 }
8016
8017 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8018 unsigned short port)
8019 {
8020 unsigned long val = kvm_rax_read(vcpu);
8021 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8022
8023 if (ret)
8024 return ret;
8025
8026 /*
8027 * Workaround userspace that relies on old KVM behavior of %rip being
8028 * incremented prior to exiting to userspace to handle "OUT 0x7e".
8029 */
8030 if (port == 0x7e &&
8031 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8032 vcpu->arch.complete_userspace_io =
8033 complete_fast_pio_out_port_0x7e;
8034 kvm_skip_emulated_instruction(vcpu);
8035 } else {
8036 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8037 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8038 }
8039 return 0;
8040 }
8041
8042 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8043 {
8044 unsigned long val;
8045
8046 /* We should only ever be called with arch.pio.count equal to 1 */
8047 BUG_ON(vcpu->arch.pio.count != 1);
8048
8049 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8050 vcpu->arch.pio.count = 0;
8051 return 1;
8052 }
8053
8054 /* For size less than 4 we merge, else we zero extend */
8055 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8056
8057 /*
8058 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
8059 * the copy and tracing
8060 */
8061 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
8062 kvm_rax_write(vcpu, val);
8063
8064 return kvm_skip_emulated_instruction(vcpu);
8065 }
8066
8067 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8068 unsigned short port)
8069 {
8070 unsigned long val;
8071 int ret;
8072
8073 /* For size less than 4 we merge, else we zero extend */
8074 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8075
8076 ret = emulator_pio_in(vcpu, size, port, &val, 1);
8077 if (ret) {
8078 kvm_rax_write(vcpu, val);
8079 return ret;
8080 }
8081
8082 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8083 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8084
8085 return 0;
8086 }
8087
8088 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8089 {
8090 int ret;
8091
8092 if (in)
8093 ret = kvm_fast_pio_in(vcpu, size, port);
8094 else
8095 ret = kvm_fast_pio_out(vcpu, size, port);
8096 return ret && kvm_skip_emulated_instruction(vcpu);
8097 }
8098 EXPORT_SYMBOL_GPL(kvm_fast_pio);
8099
8100 static int kvmclock_cpu_down_prep(unsigned int cpu)
8101 {
8102 __this_cpu_write(cpu_tsc_khz, 0);
8103 return 0;
8104 }
8105
8106 static void tsc_khz_changed(void *data)
8107 {
8108 struct cpufreq_freqs *freq = data;
8109 unsigned long khz = 0;
8110
8111 if (data)
8112 khz = freq->new;
8113 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8114 khz = cpufreq_quick_get(raw_smp_processor_id());
8115 if (!khz)
8116 khz = tsc_khz;
8117 __this_cpu_write(cpu_tsc_khz, khz);
8118 }
8119
8120 #ifdef CONFIG_X86_64
8121 static void kvm_hyperv_tsc_notifier(void)
8122 {
8123 struct kvm *kvm;
8124 struct kvm_vcpu *vcpu;
8125 int cpu;
8126 unsigned long flags;
8127
8128 mutex_lock(&kvm_lock);
8129 list_for_each_entry(kvm, &vm_list, vm_list)
8130 kvm_make_mclock_inprogress_request(kvm);
8131
8132 hyperv_stop_tsc_emulation();
8133
8134 /* TSC frequency always matches when on Hyper-V */
8135 for_each_present_cpu(cpu)
8136 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8137 kvm_max_guest_tsc_khz = tsc_khz;
8138
8139 list_for_each_entry(kvm, &vm_list, vm_list) {
8140 struct kvm_arch *ka = &kvm->arch;
8141
8142 raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
8143 pvclock_update_vm_gtod_copy(kvm);
8144 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
8145
8146 kvm_for_each_vcpu(cpu, vcpu, kvm)
8147 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8148
8149 kvm_for_each_vcpu(cpu, vcpu, kvm)
8150 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
8151 }
8152 mutex_unlock(&kvm_lock);
8153 }
8154 #endif
8155
8156 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8157 {
8158 struct kvm *kvm;
8159 struct kvm_vcpu *vcpu;
8160 int i, send_ipi = 0;
8161
8162 /*
8163 * We allow guests to temporarily run on slowing clocks,
8164 * provided we notify them after, or to run on accelerating
8165 * clocks, provided we notify them before. Thus time never
8166 * goes backwards.
8167 *
8168 * However, we have a problem. We can't atomically update
8169 * the frequency of a given CPU from this function; it is
8170 * merely a notifier, which can be called from any CPU.
8171 * Changing the TSC frequency at arbitrary points in time
8172 * requires a recomputation of local variables related to
8173 * the TSC for each VCPU. We must flag these local variables
8174 * to be updated and be sure the update takes place with the
8175 * new frequency before any guests proceed.
8176 *
8177 * Unfortunately, the combination of hotplug CPU and frequency
8178 * change creates an intractable locking scenario; the order
8179 * of when these callouts happen is undefined with respect to
8180 * CPU hotplug, and they can race with each other. As such,
8181 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
8182 * undefined; you can actually have a CPU frequency change take
8183 * place in between the computation of X and the setting of the
8184 * variable. To protect against this problem, all updates of
8185 * the per_cpu tsc_khz variable are done in an interrupt
8186 * protected IPI, and all callers wishing to update the value
8187 * must wait for a synchronous IPI to complete (which is trivial
8188 * if the caller is on the CPU already). This establishes the
8189 * necessary total order on variable updates.
8190 *
8191 * Note that because a guest time update may take place
8192 * anytime after the setting of the VCPU's request bit, the
8193 * correct TSC value must be set before the request. However,
8194 * to ensure the update actually makes it to any guest which
8195 * starts running in hardware virtualization between the set
8196 * and the acquisition of the spinlock, we must also ping the
8197 * CPU after setting the request bit.
8198 *
8199 */
8200
8201 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8202
8203 mutex_lock(&kvm_lock);
8204 list_for_each_entry(kvm, &vm_list, vm_list) {
8205 kvm_for_each_vcpu(i, vcpu, kvm) {
8206 if (vcpu->cpu != cpu)
8207 continue;
8208 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8209 if (vcpu->cpu != raw_smp_processor_id())
8210 send_ipi = 1;
8211 }
8212 }
8213 mutex_unlock(&kvm_lock);
8214
8215 if (freq->old < freq->new && send_ipi) {
8216 /*
8217 * We upscale the frequency. Must make the guest
8218 * doesn't see old kvmclock values while running with
8219 * the new frequency, otherwise we risk the guest sees
8220 * time go backwards.
8221 *
8222 * In case we update the frequency for another cpu
8223 * (which might be in guest context) send an interrupt
8224 * to kick the cpu out of guest context. Next time
8225 * guest context is entered kvmclock will be updated,
8226 * so the guest will not see stale values.
8227 */
8228 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8229 }
8230 }
8231
8232 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
8233 void *data)
8234 {
8235 struct cpufreq_freqs *freq = data;
8236 int cpu;
8237
8238 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
8239 return 0;
8240 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
8241 return 0;
8242
8243 for_each_cpu(cpu, freq->policy->cpus)
8244 __kvmclock_cpufreq_notifier(freq, cpu);
8245
8246 return 0;
8247 }
8248
8249 static struct notifier_block kvmclock_cpufreq_notifier_block = {
8250 .notifier_call = kvmclock_cpufreq_notifier
8251 };
8252
8253 static int kvmclock_cpu_online(unsigned int cpu)
8254 {
8255 tsc_khz_changed(NULL);
8256 return 0;
8257 }
8258
8259 static void kvm_timer_init(void)
8260 {
8261 max_tsc_khz = tsc_khz;
8262
8263 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8264 #ifdef CONFIG_CPU_FREQ
8265 struct cpufreq_policy *policy;
8266 int cpu;
8267
8268 cpu = get_cpu();
8269 policy = cpufreq_cpu_get(cpu);
8270 if (policy) {
8271 if (policy->cpuinfo.max_freq)
8272 max_tsc_khz = policy->cpuinfo.max_freq;
8273 cpufreq_cpu_put(policy);
8274 }
8275 put_cpu();
8276 #endif
8277 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8278 CPUFREQ_TRANSITION_NOTIFIER);
8279 }
8280
8281 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8282 kvmclock_cpu_online, kvmclock_cpu_down_prep);
8283 }
8284
8285 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
8286 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
8287
8288 int kvm_is_in_guest(void)
8289 {
8290 return __this_cpu_read(current_vcpu) != NULL;
8291 }
8292
8293 static int kvm_is_user_mode(void)
8294 {
8295 int user_mode = 3;
8296
8297 if (__this_cpu_read(current_vcpu))
8298 user_mode = static_call(kvm_x86_get_cpl)(__this_cpu_read(current_vcpu));
8299
8300 return user_mode != 0;
8301 }
8302
8303 static unsigned long kvm_get_guest_ip(void)
8304 {
8305 unsigned long ip = 0;
8306
8307 if (__this_cpu_read(current_vcpu))
8308 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
8309
8310 return ip;
8311 }
8312
8313 static void kvm_handle_intel_pt_intr(void)
8314 {
8315 struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
8316
8317 kvm_make_request(KVM_REQ_PMI, vcpu);
8318 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8319 (unsigned long *)&vcpu->arch.pmu.global_status);
8320 }
8321
8322 static struct perf_guest_info_callbacks kvm_guest_cbs = {
8323 .is_in_guest = kvm_is_in_guest,
8324 .is_user_mode = kvm_is_user_mode,
8325 .get_guest_ip = kvm_get_guest_ip,
8326 .handle_intel_pt_intr = kvm_handle_intel_pt_intr,
8327 };
8328
8329 #ifdef CONFIG_X86_64
8330 static void pvclock_gtod_update_fn(struct work_struct *work)
8331 {
8332 struct kvm *kvm;
8333
8334 struct kvm_vcpu *vcpu;
8335 int i;
8336
8337 mutex_lock(&kvm_lock);
8338 list_for_each_entry(kvm, &vm_list, vm_list)
8339 kvm_for_each_vcpu(i, vcpu, kvm)
8340 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8341 atomic_set(&kvm_guest_has_master_clock, 0);
8342 mutex_unlock(&kvm_lock);
8343 }
8344
8345 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8346
8347 /*
8348 * Indirection to move queue_work() out of the tk_core.seq write held
8349 * region to prevent possible deadlocks against time accessors which
8350 * are invoked with work related locks held.
8351 */
8352 static void pvclock_irq_work_fn(struct irq_work *w)
8353 {
8354 queue_work(system_long_wq, &pvclock_gtod_work);
8355 }
8356
8357 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8358
8359 /*
8360 * Notification about pvclock gtod data update.
8361 */
8362 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8363 void *priv)
8364 {
8365 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8366 struct timekeeper *tk = priv;
8367
8368 update_pvclock_gtod(tk);
8369
8370 /*
8371 * Disable master clock if host does not trust, or does not use,
8372 * TSC based clocksource. Delegate queue_work() to irq_work as
8373 * this is invoked with tk_core.seq write held.
8374 */
8375 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8376 atomic_read(&kvm_guest_has_master_clock) != 0)
8377 irq_work_queue(&pvclock_irq_work);
8378 return 0;
8379 }
8380
8381 static struct notifier_block pvclock_gtod_notifier = {
8382 .notifier_call = pvclock_gtod_notify,
8383 };
8384 #endif
8385
8386 int kvm_arch_init(void *opaque)
8387 {
8388 struct kvm_x86_init_ops *ops = opaque;
8389 int r;
8390
8391 if (kvm_x86_ops.hardware_enable) {
8392 printk(KERN_ERR "kvm: already loaded the other module\n");
8393 r = -EEXIST;
8394 goto out;
8395 }
8396
8397 if (!ops->cpu_has_kvm_support()) {
8398 pr_err_ratelimited("kvm: no hardware support\n");
8399 r = -EOPNOTSUPP;
8400 goto out;
8401 }
8402 if (ops->disabled_by_bios()) {
8403 pr_err_ratelimited("kvm: disabled by bios\n");
8404 r = -EOPNOTSUPP;
8405 goto out;
8406 }
8407
8408 /*
8409 * KVM explicitly assumes that the guest has an FPU and
8410 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8411 * vCPU's FPU state as a fxregs_state struct.
8412 */
8413 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8414 printk(KERN_ERR "kvm: inadequate fpu\n");
8415 r = -EOPNOTSUPP;
8416 goto out;
8417 }
8418
8419 r = -ENOMEM;
8420 x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
8421 __alignof__(struct fpu), SLAB_ACCOUNT,
8422 NULL);
8423 if (!x86_fpu_cache) {
8424 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
8425 goto out;
8426 }
8427
8428 x86_emulator_cache = kvm_alloc_emulator_cache();
8429 if (!x86_emulator_cache) {
8430 pr_err("kvm: failed to allocate cache for x86 emulator\n");
8431 goto out_free_x86_fpu_cache;
8432 }
8433
8434 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8435 if (!user_return_msrs) {
8436 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8437 goto out_free_x86_emulator_cache;
8438 }
8439 kvm_nr_uret_msrs = 0;
8440
8441 r = kvm_mmu_module_init();
8442 if (r)
8443 goto out_free_percpu;
8444
8445 kvm_timer_init();
8446
8447 perf_register_guest_info_callbacks(&kvm_guest_cbs);
8448
8449 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8450 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8451 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8452 }
8453
8454 if (pi_inject_timer == -1)
8455 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8456 #ifdef CONFIG_X86_64
8457 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8458
8459 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8460 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8461 #endif
8462
8463 return 0;
8464
8465 out_free_percpu:
8466 free_percpu(user_return_msrs);
8467 out_free_x86_emulator_cache:
8468 kmem_cache_destroy(x86_emulator_cache);
8469 out_free_x86_fpu_cache:
8470 kmem_cache_destroy(x86_fpu_cache);
8471 out:
8472 return r;
8473 }
8474
8475 void kvm_arch_exit(void)
8476 {
8477 #ifdef CONFIG_X86_64
8478 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8479 clear_hv_tscchange_cb();
8480 #endif
8481 kvm_lapic_exit();
8482 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
8483
8484 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8485 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8486 CPUFREQ_TRANSITION_NOTIFIER);
8487 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8488 #ifdef CONFIG_X86_64
8489 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8490 irq_work_sync(&pvclock_irq_work);
8491 cancel_work_sync(&pvclock_gtod_work);
8492 #endif
8493 kvm_x86_ops.hardware_enable = NULL;
8494 kvm_mmu_module_exit();
8495 free_percpu(user_return_msrs);
8496 kmem_cache_destroy(x86_emulator_cache);
8497 kmem_cache_destroy(x86_fpu_cache);
8498 #ifdef CONFIG_KVM_XEN
8499 static_key_deferred_flush(&kvm_xen_enabled);
8500 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8501 #endif
8502 }
8503
8504 static int __kvm_vcpu_halt(struct kvm_vcpu *vcpu, int state, int reason)
8505 {
8506 ++vcpu->stat.halt_exits;
8507 if (lapic_in_kernel(vcpu)) {
8508 vcpu->arch.mp_state = state;
8509 return 1;
8510 } else {
8511 vcpu->run->exit_reason = reason;
8512 return 0;
8513 }
8514 }
8515
8516 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
8517 {
8518 return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
8519 }
8520 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
8521
8522 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8523 {
8524 int ret = kvm_skip_emulated_instruction(vcpu);
8525 /*
8526 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8527 * KVM_EXIT_DEBUG here.
8528 */
8529 return kvm_vcpu_halt(vcpu) && ret;
8530 }
8531 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8532
8533 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8534 {
8535 int ret = kvm_skip_emulated_instruction(vcpu);
8536
8537 return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, KVM_EXIT_AP_RESET_HOLD) && ret;
8538 }
8539 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8540
8541 #ifdef CONFIG_X86_64
8542 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8543 unsigned long clock_type)
8544 {
8545 struct kvm_clock_pairing clock_pairing;
8546 struct timespec64 ts;
8547 u64 cycle;
8548 int ret;
8549
8550 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8551 return -KVM_EOPNOTSUPP;
8552
8553 if (!kvm_get_walltime_and_clockread(&ts, &cycle))
8554 return -KVM_EOPNOTSUPP;
8555
8556 clock_pairing.sec = ts.tv_sec;
8557 clock_pairing.nsec = ts.tv_nsec;
8558 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8559 clock_pairing.flags = 0;
8560 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8561
8562 ret = 0;
8563 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8564 sizeof(struct kvm_clock_pairing)))
8565 ret = -KVM_EFAULT;
8566
8567 return ret;
8568 }
8569 #endif
8570
8571 /*
8572 * kvm_pv_kick_cpu_op: Kick a vcpu.
8573 *
8574 * @apicid - apicid of vcpu to be kicked.
8575 */
8576 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8577 {
8578 struct kvm_lapic_irq lapic_irq;
8579
8580 lapic_irq.shorthand = APIC_DEST_NOSHORT;
8581 lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8582 lapic_irq.level = 0;
8583 lapic_irq.dest_id = apicid;
8584 lapic_irq.msi_redir_hint = false;
8585
8586 lapic_irq.delivery_mode = APIC_DM_REMRD;
8587 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8588 }
8589
8590 bool kvm_apicv_activated(struct kvm *kvm)
8591 {
8592 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8593 }
8594 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8595
8596 static void kvm_apicv_init(struct kvm *kvm)
8597 {
8598 mutex_init(&kvm->arch.apicv_update_lock);
8599
8600 if (enable_apicv)
8601 clear_bit(APICV_INHIBIT_REASON_DISABLE,
8602 &kvm->arch.apicv_inhibit_reasons);
8603 else
8604 set_bit(APICV_INHIBIT_REASON_DISABLE,
8605 &kvm->arch.apicv_inhibit_reasons);
8606 }
8607
8608 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
8609 {
8610 struct kvm_vcpu *target = NULL;
8611 struct kvm_apic_map *map;
8612
8613 vcpu->stat.directed_yield_attempted++;
8614
8615 if (single_task_running())
8616 goto no_yield;
8617
8618 rcu_read_lock();
8619 map = rcu_dereference(vcpu->kvm->arch.apic_map);
8620
8621 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8622 target = map->phys_map[dest_id]->vcpu;
8623
8624 rcu_read_unlock();
8625
8626 if (!target || !READ_ONCE(target->ready))
8627 goto no_yield;
8628
8629 /* Ignore requests to yield to self */
8630 if (vcpu == target)
8631 goto no_yield;
8632
8633 if (kvm_vcpu_yield_to(target) <= 0)
8634 goto no_yield;
8635
8636 vcpu->stat.directed_yield_successful++;
8637
8638 no_yield:
8639 return;
8640 }
8641
8642 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
8643 {
8644 u64 ret = vcpu->run->hypercall.ret;
8645
8646 if (!is_64_bit_mode(vcpu))
8647 ret = (u32)ret;
8648 kvm_rax_write(vcpu, ret);
8649 ++vcpu->stat.hypercalls;
8650 return kvm_skip_emulated_instruction(vcpu);
8651 }
8652
8653 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8654 {
8655 unsigned long nr, a0, a1, a2, a3, ret;
8656 int op_64_bit;
8657
8658 if (kvm_xen_hypercall_enabled(vcpu->kvm))
8659 return kvm_xen_hypercall(vcpu);
8660
8661 if (kvm_hv_hypercall_enabled(vcpu))
8662 return kvm_hv_hypercall(vcpu);
8663
8664 nr = kvm_rax_read(vcpu);
8665 a0 = kvm_rbx_read(vcpu);
8666 a1 = kvm_rcx_read(vcpu);
8667 a2 = kvm_rdx_read(vcpu);
8668 a3 = kvm_rsi_read(vcpu);
8669
8670 trace_kvm_hypercall(nr, a0, a1, a2, a3);
8671
8672 op_64_bit = is_64_bit_mode(vcpu);
8673 if (!op_64_bit) {
8674 nr &= 0xFFFFFFFF;
8675 a0 &= 0xFFFFFFFF;
8676 a1 &= 0xFFFFFFFF;
8677 a2 &= 0xFFFFFFFF;
8678 a3 &= 0xFFFFFFFF;
8679 }
8680
8681 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
8682 ret = -KVM_EPERM;
8683 goto out;
8684 }
8685
8686 ret = -KVM_ENOSYS;
8687
8688 switch (nr) {
8689 case KVM_HC_VAPIC_POLL_IRQ:
8690 ret = 0;
8691 break;
8692 case KVM_HC_KICK_CPU:
8693 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8694 break;
8695
8696 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8697 kvm_sched_yield(vcpu, a1);
8698 ret = 0;
8699 break;
8700 #ifdef CONFIG_X86_64
8701 case KVM_HC_CLOCK_PAIRING:
8702 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8703 break;
8704 #endif
8705 case KVM_HC_SEND_IPI:
8706 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8707 break;
8708
8709 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8710 break;
8711 case KVM_HC_SCHED_YIELD:
8712 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8713 break;
8714
8715 kvm_sched_yield(vcpu, a0);
8716 ret = 0;
8717 break;
8718 case KVM_HC_MAP_GPA_RANGE: {
8719 u64 gpa = a0, npages = a1, attrs = a2;
8720
8721 ret = -KVM_ENOSYS;
8722 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
8723 break;
8724
8725 if (!PAGE_ALIGNED(gpa) || !npages ||
8726 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
8727 ret = -KVM_EINVAL;
8728 break;
8729 }
8730
8731 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
8732 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
8733 vcpu->run->hypercall.args[0] = gpa;
8734 vcpu->run->hypercall.args[1] = npages;
8735 vcpu->run->hypercall.args[2] = attrs;
8736 vcpu->run->hypercall.longmode = op_64_bit;
8737 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
8738 return 0;
8739 }
8740 default:
8741 ret = -KVM_ENOSYS;
8742 break;
8743 }
8744 out:
8745 if (!op_64_bit)
8746 ret = (u32)ret;
8747 kvm_rax_write(vcpu, ret);
8748
8749 ++vcpu->stat.hypercalls;
8750 return kvm_skip_emulated_instruction(vcpu);
8751 }
8752 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8753
8754 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8755 {
8756 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8757 char instruction[3];
8758 unsigned long rip = kvm_rip_read(vcpu);
8759
8760 static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
8761
8762 return emulator_write_emulated(ctxt, rip, instruction, 3,
8763 &ctxt->exception);
8764 }
8765
8766 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8767 {
8768 return vcpu->run->request_interrupt_window &&
8769 likely(!pic_in_kernel(vcpu->kvm));
8770 }
8771
8772 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8773 {
8774 struct kvm_run *kvm_run = vcpu->run;
8775
8776 /*
8777 * if_flag is obsolete and useless, so do not bother
8778 * setting it for SEV-ES guests. Userspace can just
8779 * use kvm_run->ready_for_interrupt_injection.
8780 */
8781 kvm_run->if_flag = !vcpu->arch.guest_state_protected
8782 && (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
8783
8784 kvm_run->cr8 = kvm_get_cr8(vcpu);
8785 kvm_run->apic_base = kvm_get_apic_base(vcpu);
8786
8787 /*
8788 * The call to kvm_ready_for_interrupt_injection() may end up in
8789 * kvm_xen_has_interrupt() which may require the srcu lock to be
8790 * held, to protect against changes in the vcpu_info address.
8791 */
8792 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8793 kvm_run->ready_for_interrupt_injection =
8794 pic_in_kernel(vcpu->kvm) ||
8795 kvm_vcpu_ready_for_interrupt_injection(vcpu);
8796 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8797
8798 if (is_smm(vcpu))
8799 kvm_run->flags |= KVM_RUN_X86_SMM;
8800 }
8801
8802 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8803 {
8804 int max_irr, tpr;
8805
8806 if (!kvm_x86_ops.update_cr8_intercept)
8807 return;
8808
8809 if (!lapic_in_kernel(vcpu))
8810 return;
8811
8812 if (vcpu->arch.apicv_active)
8813 return;
8814
8815 if (!vcpu->arch.apic->vapic_addr)
8816 max_irr = kvm_lapic_find_highest_irr(vcpu);
8817 else
8818 max_irr = -1;
8819
8820 if (max_irr != -1)
8821 max_irr >>= 4;
8822
8823 tpr = kvm_lapic_get_cr8(vcpu);
8824
8825 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
8826 }
8827
8828
8829 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
8830 {
8831 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8832 kvm_x86_ops.nested_ops->triple_fault(vcpu);
8833 return 1;
8834 }
8835
8836 return kvm_x86_ops.nested_ops->check_events(vcpu);
8837 }
8838
8839 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
8840 {
8841 if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
8842 vcpu->arch.exception.error_code = false;
8843 static_call(kvm_x86_queue_exception)(vcpu);
8844 }
8845
8846 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
8847 {
8848 int r;
8849 bool can_inject = true;
8850
8851 /* try to reinject previous events if any */
8852
8853 if (vcpu->arch.exception.injected) {
8854 kvm_inject_exception(vcpu);
8855 can_inject = false;
8856 }
8857 /*
8858 * Do not inject an NMI or interrupt if there is a pending
8859 * exception. Exceptions and interrupts are recognized at
8860 * instruction boundaries, i.e. the start of an instruction.
8861 * Trap-like exceptions, e.g. #DB, have higher priority than
8862 * NMIs and interrupts, i.e. traps are recognized before an
8863 * NMI/interrupt that's pending on the same instruction.
8864 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
8865 * priority, but are only generated (pended) during instruction
8866 * execution, i.e. a pending fault-like exception means the
8867 * fault occurred on the *previous* instruction and must be
8868 * serviced prior to recognizing any new events in order to
8869 * fully complete the previous instruction.
8870 */
8871 else if (!vcpu->arch.exception.pending) {
8872 if (vcpu->arch.nmi_injected) {
8873 static_call(kvm_x86_set_nmi)(vcpu);
8874 can_inject = false;
8875 } else if (vcpu->arch.interrupt.injected) {
8876 static_call(kvm_x86_set_irq)(vcpu);
8877 can_inject = false;
8878 }
8879 }
8880
8881 WARN_ON_ONCE(vcpu->arch.exception.injected &&
8882 vcpu->arch.exception.pending);
8883
8884 /*
8885 * Call check_nested_events() even if we reinjected a previous event
8886 * in order for caller to determine if it should require immediate-exit
8887 * from L2 to L1 due to pending L1 events which require exit
8888 * from L2 to L1.
8889 */
8890 if (is_guest_mode(vcpu)) {
8891 r = kvm_check_nested_events(vcpu);
8892 if (r < 0)
8893 goto out;
8894 }
8895
8896 /* try to inject new event if pending */
8897 if (vcpu->arch.exception.pending) {
8898 trace_kvm_inj_exception(vcpu->arch.exception.nr,
8899 vcpu->arch.exception.has_error_code,
8900 vcpu->arch.exception.error_code);
8901
8902 vcpu->arch.exception.pending = false;
8903 vcpu->arch.exception.injected = true;
8904
8905 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
8906 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
8907 X86_EFLAGS_RF);
8908
8909 if (vcpu->arch.exception.nr == DB_VECTOR) {
8910 kvm_deliver_exception_payload(vcpu);
8911 if (vcpu->arch.dr7 & DR7_GD) {
8912 vcpu->arch.dr7 &= ~DR7_GD;
8913 kvm_update_dr7(vcpu);
8914 }
8915 }
8916
8917 kvm_inject_exception(vcpu);
8918 can_inject = false;
8919 }
8920
8921 /* Don't inject interrupts if the user asked to avoid doing so */
8922 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
8923 return 0;
8924
8925 /*
8926 * Finally, inject interrupt events. If an event cannot be injected
8927 * due to architectural conditions (e.g. IF=0) a window-open exit
8928 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
8929 * and can architecturally be injected, but we cannot do it right now:
8930 * an interrupt could have arrived just now and we have to inject it
8931 * as a vmexit, or there could already an event in the queue, which is
8932 * indicated by can_inject. In that case we request an immediate exit
8933 * in order to make progress and get back here for another iteration.
8934 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
8935 */
8936 if (vcpu->arch.smi_pending) {
8937 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
8938 if (r < 0)
8939 goto out;
8940 if (r) {
8941 vcpu->arch.smi_pending = false;
8942 ++vcpu->arch.smi_count;
8943 enter_smm(vcpu);
8944 can_inject = false;
8945 } else
8946 static_call(kvm_x86_enable_smi_window)(vcpu);
8947 }
8948
8949 if (vcpu->arch.nmi_pending) {
8950 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
8951 if (r < 0)
8952 goto out;
8953 if (r) {
8954 --vcpu->arch.nmi_pending;
8955 vcpu->arch.nmi_injected = true;
8956 static_call(kvm_x86_set_nmi)(vcpu);
8957 can_inject = false;
8958 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
8959 }
8960 if (vcpu->arch.nmi_pending)
8961 static_call(kvm_x86_enable_nmi_window)(vcpu);
8962 }
8963
8964 if (kvm_cpu_has_injectable_intr(vcpu)) {
8965 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
8966 if (r < 0)
8967 goto out;
8968 if (r) {
8969 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
8970 static_call(kvm_x86_set_irq)(vcpu);
8971 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
8972 }
8973 if (kvm_cpu_has_injectable_intr(vcpu))
8974 static_call(kvm_x86_enable_irq_window)(vcpu);
8975 }
8976
8977 if (is_guest_mode(vcpu) &&
8978 kvm_x86_ops.nested_ops->hv_timer_pending &&
8979 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
8980 *req_immediate_exit = true;
8981
8982 WARN_ON(vcpu->arch.exception.pending);
8983 return 0;
8984
8985 out:
8986 if (r == -EBUSY) {
8987 *req_immediate_exit = true;
8988 r = 0;
8989 }
8990 return r;
8991 }
8992
8993 static void process_nmi(struct kvm_vcpu *vcpu)
8994 {
8995 unsigned limit = 2;
8996
8997 /*
8998 * x86 is limited to one NMI running, and one NMI pending after it.
8999 * If an NMI is already in progress, limit further NMIs to just one.
9000 * Otherwise, allow two (and we'll inject the first one immediately).
9001 */
9002 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
9003 limit = 1;
9004
9005 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
9006 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
9007 kvm_make_request(KVM_REQ_EVENT, vcpu);
9008 }
9009
9010 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
9011 {
9012 u32 flags = 0;
9013 flags |= seg->g << 23;
9014 flags |= seg->db << 22;
9015 flags |= seg->l << 21;
9016 flags |= seg->avl << 20;
9017 flags |= seg->present << 15;
9018 flags |= seg->dpl << 13;
9019 flags |= seg->s << 12;
9020 flags |= seg->type << 8;
9021 return flags;
9022 }
9023
9024 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
9025 {
9026 struct kvm_segment seg;
9027 int offset;
9028
9029 kvm_get_segment(vcpu, &seg, n);
9030 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9031
9032 if (n < 3)
9033 offset = 0x7f84 + n * 12;
9034 else
9035 offset = 0x7f2c + (n - 3) * 12;
9036
9037 put_smstate(u32, buf, offset + 8, seg.base);
9038 put_smstate(u32, buf, offset + 4, seg.limit);
9039 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9040 }
9041
9042 #ifdef CONFIG_X86_64
9043 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9044 {
9045 struct kvm_segment seg;
9046 int offset;
9047 u16 flags;
9048
9049 kvm_get_segment(vcpu, &seg, n);
9050 offset = 0x7e00 + n * 16;
9051
9052 flags = enter_smm_get_segment_flags(&seg) >> 8;
9053 put_smstate(u16, buf, offset, seg.selector);
9054 put_smstate(u16, buf, offset + 2, flags);
9055 put_smstate(u32, buf, offset + 4, seg.limit);
9056 put_smstate(u64, buf, offset + 8, seg.base);
9057 }
9058 #endif
9059
9060 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9061 {
9062 struct desc_ptr dt;
9063 struct kvm_segment seg;
9064 unsigned long val;
9065 int i;
9066
9067 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9068 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9069 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9070 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9071
9072 for (i = 0; i < 8; i++)
9073 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9074
9075 kvm_get_dr(vcpu, 6, &val);
9076 put_smstate(u32, buf, 0x7fcc, (u32)val);
9077 kvm_get_dr(vcpu, 7, &val);
9078 put_smstate(u32, buf, 0x7fc8, (u32)val);
9079
9080 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9081 put_smstate(u32, buf, 0x7fc4, seg.selector);
9082 put_smstate(u32, buf, 0x7f64, seg.base);
9083 put_smstate(u32, buf, 0x7f60, seg.limit);
9084 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9085
9086 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9087 put_smstate(u32, buf, 0x7fc0, seg.selector);
9088 put_smstate(u32, buf, 0x7f80, seg.base);
9089 put_smstate(u32, buf, 0x7f7c, seg.limit);
9090 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9091
9092 static_call(kvm_x86_get_gdt)(vcpu, &dt);
9093 put_smstate(u32, buf, 0x7f74, dt.address);
9094 put_smstate(u32, buf, 0x7f70, dt.size);
9095
9096 static_call(kvm_x86_get_idt)(vcpu, &dt);
9097 put_smstate(u32, buf, 0x7f58, dt.address);
9098 put_smstate(u32, buf, 0x7f54, dt.size);
9099
9100 for (i = 0; i < 6; i++)
9101 enter_smm_save_seg_32(vcpu, buf, i);
9102
9103 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9104
9105 /* revision id */
9106 put_smstate(u32, buf, 0x7efc, 0x00020000);
9107 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9108 }
9109
9110 #ifdef CONFIG_X86_64
9111 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9112 {
9113 struct desc_ptr dt;
9114 struct kvm_segment seg;
9115 unsigned long val;
9116 int i;
9117
9118 for (i = 0; i < 16; i++)
9119 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9120
9121 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9122 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9123
9124 kvm_get_dr(vcpu, 6, &val);
9125 put_smstate(u64, buf, 0x7f68, val);
9126 kvm_get_dr(vcpu, 7, &val);
9127 put_smstate(u64, buf, 0x7f60, val);
9128
9129 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9130 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9131 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9132
9133 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9134
9135 /* revision id */
9136 put_smstate(u32, buf, 0x7efc, 0x00020064);
9137
9138 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9139
9140 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9141 put_smstate(u16, buf, 0x7e90, seg.selector);
9142 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9143 put_smstate(u32, buf, 0x7e94, seg.limit);
9144 put_smstate(u64, buf, 0x7e98, seg.base);
9145
9146 static_call(kvm_x86_get_idt)(vcpu, &dt);
9147 put_smstate(u32, buf, 0x7e84, dt.size);
9148 put_smstate(u64, buf, 0x7e88, dt.address);
9149
9150 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9151 put_smstate(u16, buf, 0x7e70, seg.selector);
9152 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9153 put_smstate(u32, buf, 0x7e74, seg.limit);
9154 put_smstate(u64, buf, 0x7e78, seg.base);
9155
9156 static_call(kvm_x86_get_gdt)(vcpu, &dt);
9157 put_smstate(u32, buf, 0x7e64, dt.size);
9158 put_smstate(u64, buf, 0x7e68, dt.address);
9159
9160 for (i = 0; i < 6; i++)
9161 enter_smm_save_seg_64(vcpu, buf, i);
9162 }
9163 #endif
9164
9165 static void enter_smm(struct kvm_vcpu *vcpu)
9166 {
9167 struct kvm_segment cs, ds;
9168 struct desc_ptr dt;
9169 unsigned long cr0;
9170 char buf[512];
9171
9172 memset(buf, 0, 512);
9173 #ifdef CONFIG_X86_64
9174 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9175 enter_smm_save_state_64(vcpu, buf);
9176 else
9177 #endif
9178 enter_smm_save_state_32(vcpu, buf);
9179
9180 /*
9181 * Give enter_smm() a chance to make ISA-specific changes to the vCPU
9182 * state (e.g. leave guest mode) after we've saved the state into the
9183 * SMM state-save area.
9184 */
9185 static_call(kvm_x86_enter_smm)(vcpu, buf);
9186
9187 kvm_smm_changed(vcpu, true);
9188 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
9189
9190 if (static_call(kvm_x86_get_nmi_mask)(vcpu))
9191 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
9192 else
9193 static_call(kvm_x86_set_nmi_mask)(vcpu, true);
9194
9195 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
9196 kvm_rip_write(vcpu, 0x8000);
9197
9198 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
9199 static_call(kvm_x86_set_cr0)(vcpu, cr0);
9200 vcpu->arch.cr0 = cr0;
9201
9202 static_call(kvm_x86_set_cr4)(vcpu, 0);
9203
9204 /* Undocumented: IDT limit is set to zero on entry to SMM. */
9205 dt.address = dt.size = 0;
9206 static_call(kvm_x86_set_idt)(vcpu, &dt);
9207
9208 kvm_set_dr(vcpu, 7, DR7_FIXED_1);
9209
9210 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
9211 cs.base = vcpu->arch.smbase;
9212
9213 ds.selector = 0;
9214 ds.base = 0;
9215
9216 cs.limit = ds.limit = 0xffffffff;
9217 cs.type = ds.type = 0x3;
9218 cs.dpl = ds.dpl = 0;
9219 cs.db = ds.db = 0;
9220 cs.s = ds.s = 1;
9221 cs.l = ds.l = 0;
9222 cs.g = ds.g = 1;
9223 cs.avl = ds.avl = 0;
9224 cs.present = ds.present = 1;
9225 cs.unusable = ds.unusable = 0;
9226 cs.padding = ds.padding = 0;
9227
9228 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9229 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
9230 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
9231 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
9232 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
9233 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
9234
9235 #ifdef CONFIG_X86_64
9236 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9237 static_call(kvm_x86_set_efer)(vcpu, 0);
9238 #endif
9239
9240 kvm_update_cpuid_runtime(vcpu);
9241 kvm_mmu_reset_context(vcpu);
9242 }
9243
9244 static void process_smi(struct kvm_vcpu *vcpu)
9245 {
9246 vcpu->arch.smi_pending = true;
9247 kvm_make_request(KVM_REQ_EVENT, vcpu);
9248 }
9249
9250 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
9251 unsigned long *vcpu_bitmap)
9252 {
9253 cpumask_var_t cpus;
9254
9255 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
9256
9257 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
9258 NULL, vcpu_bitmap, cpus);
9259
9260 free_cpumask_var(cpus);
9261 }
9262
9263 void kvm_make_scan_ioapic_request(struct kvm *kvm)
9264 {
9265 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
9266 }
9267
9268 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
9269 {
9270 bool activate;
9271
9272 if (!lapic_in_kernel(vcpu))
9273 return;
9274
9275 mutex_lock(&vcpu->kvm->arch.apicv_update_lock);
9276
9277 activate = kvm_apicv_activated(vcpu->kvm);
9278 if (vcpu->arch.apicv_active == activate)
9279 goto out;
9280
9281 vcpu->arch.apicv_active = activate;
9282 kvm_apic_update_apicv(vcpu);
9283 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
9284
9285 /*
9286 * When APICv gets disabled, we may still have injected interrupts
9287 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
9288 * still active when the interrupt got accepted. Make sure
9289 * inject_pending_event() is called to check for that.
9290 */
9291 if (!vcpu->arch.apicv_active)
9292 kvm_make_request(KVM_REQ_EVENT, vcpu);
9293
9294 out:
9295 mutex_unlock(&vcpu->kvm->arch.apicv_update_lock);
9296 }
9297 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
9298
9299 void __kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9300 {
9301 unsigned long old, new;
9302
9303 if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
9304 !static_call(kvm_x86_check_apicv_inhibit_reasons)(bit))
9305 return;
9306
9307 old = new = kvm->arch.apicv_inhibit_reasons;
9308
9309 if (activate)
9310 __clear_bit(bit, &new);
9311 else
9312 __set_bit(bit, &new);
9313
9314 if (!!old != !!new) {
9315 trace_kvm_apicv_update_request(activate, bit);
9316 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
9317 kvm->arch.apicv_inhibit_reasons = new;
9318 if (new) {
9319 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
9320 kvm_zap_gfn_range(kvm, gfn, gfn+1);
9321 }
9322 } else
9323 kvm->arch.apicv_inhibit_reasons = new;
9324 }
9325 EXPORT_SYMBOL_GPL(__kvm_request_apicv_update);
9326
9327 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9328 {
9329 mutex_lock(&kvm->arch.apicv_update_lock);
9330 __kvm_request_apicv_update(kvm, activate, bit);
9331 mutex_unlock(&kvm->arch.apicv_update_lock);
9332 }
9333 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
9334
9335 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
9336 {
9337 if (!kvm_apic_present(vcpu))
9338 return;
9339
9340 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9341
9342 if (irqchip_split(vcpu->kvm))
9343 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9344 else {
9345 if (vcpu->arch.apicv_active)
9346 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9347 if (ioapic_in_kernel(vcpu->kvm))
9348 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9349 }
9350
9351 if (is_guest_mode(vcpu))
9352 vcpu->arch.load_eoi_exitmap_pending = true;
9353 else
9354 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9355 }
9356
9357 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9358 {
9359 u64 eoi_exit_bitmap[4];
9360
9361 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9362 return;
9363
9364 if (to_hv_vcpu(vcpu))
9365 bitmap_or((ulong *)eoi_exit_bitmap,
9366 vcpu->arch.ioapic_handled_vectors,
9367 to_hv_synic(vcpu)->vec_bitmap, 256);
9368
9369 static_call(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
9370 }
9371
9372 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9373 unsigned long start, unsigned long end)
9374 {
9375 unsigned long apic_address;
9376
9377 /*
9378 * The physical address of apic access page is stored in the VMCS.
9379 * Update it when it becomes invalid.
9380 */
9381 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9382 if (start <= apic_address && apic_address < end)
9383 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9384 }
9385
9386 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9387 {
9388 if (!lapic_in_kernel(vcpu))
9389 return;
9390
9391 if (!kvm_x86_ops.set_apic_access_page_addr)
9392 return;
9393
9394 static_call(kvm_x86_set_apic_access_page_addr)(vcpu);
9395 }
9396
9397 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9398 {
9399 smp_send_reschedule(vcpu->cpu);
9400 }
9401 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9402
9403 /*
9404 * Returns 1 to let vcpu_run() continue the guest execution loop without
9405 * exiting to the userspace. Otherwise, the value will be returned to the
9406 * userspace.
9407 */
9408 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9409 {
9410 int r;
9411 bool req_int_win =
9412 dm_request_for_irq_injection(vcpu) &&
9413 kvm_cpu_accept_dm_intr(vcpu);
9414 fastpath_t exit_fastpath;
9415
9416 bool req_immediate_exit = false;
9417
9418 /* Forbid vmenter if vcpu dirty ring is soft-full */
9419 if (unlikely(vcpu->kvm->dirty_ring_size &&
9420 kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
9421 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
9422 trace_kvm_dirty_ring_exit(vcpu);
9423 r = 0;
9424 goto out;
9425 }
9426
9427 if (kvm_request_pending(vcpu)) {
9428 if (kvm_check_request(KVM_REQ_VM_BUGGED, vcpu)) {
9429 r = -EIO;
9430 goto out;
9431 }
9432 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9433 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
9434 r = 0;
9435 goto out;
9436 }
9437 }
9438 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
9439 kvm_mmu_unload(vcpu);
9440 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
9441 __kvm_migrate_timers(vcpu);
9442 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
9443 kvm_gen_update_masterclock(vcpu->kvm);
9444 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
9445 kvm_gen_kvmclock_update(vcpu);
9446 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
9447 r = kvm_guest_time_update(vcpu);
9448 if (unlikely(r))
9449 goto out;
9450 }
9451 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
9452 kvm_mmu_sync_roots(vcpu);
9453 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
9454 kvm_mmu_load_pgd(vcpu);
9455 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
9456 kvm_vcpu_flush_tlb_all(vcpu);
9457
9458 /* Flushing all ASIDs flushes the current ASID... */
9459 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
9460 }
9461 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
9462 kvm_vcpu_flush_tlb_current(vcpu);
9463 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
9464 kvm_vcpu_flush_tlb_guest(vcpu);
9465
9466 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
9467 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
9468 r = 0;
9469 goto out;
9470 }
9471 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9472 if (is_guest_mode(vcpu)) {
9473 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9474 } else {
9475 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
9476 vcpu->mmio_needed = 0;
9477 r = 0;
9478 goto out;
9479 }
9480 }
9481 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
9482 /* Page is swapped out. Do synthetic halt */
9483 vcpu->arch.apf.halted = true;
9484 r = 1;
9485 goto out;
9486 }
9487 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
9488 record_steal_time(vcpu);
9489 if (kvm_check_request(KVM_REQ_SMI, vcpu))
9490 process_smi(vcpu);
9491 if (kvm_check_request(KVM_REQ_NMI, vcpu))
9492 process_nmi(vcpu);
9493 if (kvm_check_request(KVM_REQ_PMU, vcpu))
9494 kvm_pmu_handle_event(vcpu);
9495 if (kvm_check_request(KVM_REQ_PMI, vcpu))
9496 kvm_pmu_deliver_pmi(vcpu);
9497 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
9498 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
9499 if (test_bit(vcpu->arch.pending_ioapic_eoi,
9500 vcpu->arch.ioapic_handled_vectors)) {
9501 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
9502 vcpu->run->eoi.vector =
9503 vcpu->arch.pending_ioapic_eoi;
9504 r = 0;
9505 goto out;
9506 }
9507 }
9508 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
9509 vcpu_scan_ioapic(vcpu);
9510 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
9511 vcpu_load_eoi_exitmap(vcpu);
9512 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
9513 kvm_vcpu_reload_apic_access_page(vcpu);
9514 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
9515 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9516 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
9517 r = 0;
9518 goto out;
9519 }
9520 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
9521 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9522 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
9523 r = 0;
9524 goto out;
9525 }
9526 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
9527 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
9528
9529 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
9530 vcpu->run->hyperv = hv_vcpu->exit;
9531 r = 0;
9532 goto out;
9533 }
9534
9535 /*
9536 * KVM_REQ_HV_STIMER has to be processed after
9537 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9538 * depend on the guest clock being up-to-date
9539 */
9540 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9541 kvm_hv_process_stimers(vcpu);
9542 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
9543 kvm_vcpu_update_apicv(vcpu);
9544 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
9545 kvm_check_async_pf_completion(vcpu);
9546 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
9547 static_call(kvm_x86_msr_filter_changed)(vcpu);
9548
9549 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
9550 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
9551 }
9552
9553 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
9554 kvm_xen_has_interrupt(vcpu)) {
9555 ++vcpu->stat.req_event;
9556 r = kvm_apic_accept_events(vcpu);
9557 if (r < 0) {
9558 r = 0;
9559 goto out;
9560 }
9561 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9562 r = 1;
9563 goto out;
9564 }
9565
9566 r = inject_pending_event(vcpu, &req_immediate_exit);
9567 if (r < 0) {
9568 r = 0;
9569 goto out;
9570 }
9571 if (req_int_win)
9572 static_call(kvm_x86_enable_irq_window)(vcpu);
9573
9574 if (kvm_lapic_enabled(vcpu)) {
9575 update_cr8_intercept(vcpu);
9576 kvm_lapic_sync_to_vapic(vcpu);
9577 }
9578 }
9579
9580 r = kvm_mmu_reload(vcpu);
9581 if (unlikely(r)) {
9582 goto cancel_injection;
9583 }
9584
9585 preempt_disable();
9586
9587 static_call(kvm_x86_prepare_guest_switch)(vcpu);
9588
9589 /*
9590 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
9591 * IPI are then delayed after guest entry, which ensures that they
9592 * result in virtual interrupt delivery.
9593 */
9594 local_irq_disable();
9595 vcpu->mode = IN_GUEST_MODE;
9596
9597 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9598
9599 /*
9600 * 1) We should set ->mode before checking ->requests. Please see
9601 * the comment in kvm_vcpu_exiting_guest_mode().
9602 *
9603 * 2) For APICv, we should set ->mode before checking PID.ON. This
9604 * pairs with the memory barrier implicit in pi_test_and_set_on
9605 * (see vmx_deliver_posted_interrupt).
9606 *
9607 * 3) This also orders the write to mode from any reads to the page
9608 * tables done while the VCPU is running. Please see the comment
9609 * in kvm_flush_remote_tlbs.
9610 */
9611 smp_mb__after_srcu_read_unlock();
9612
9613 /*
9614 * This handles the case where a posted interrupt was
9615 * notified with kvm_vcpu_kick.
9616 */
9617 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
9618 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9619
9620 if (kvm_vcpu_exit_request(vcpu)) {
9621 vcpu->mode = OUTSIDE_GUEST_MODE;
9622 smp_wmb();
9623 local_irq_enable();
9624 preempt_enable();
9625 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9626 r = 1;
9627 goto cancel_injection;
9628 }
9629
9630 if (req_immediate_exit) {
9631 kvm_make_request(KVM_REQ_EVENT, vcpu);
9632 static_call(kvm_x86_request_immediate_exit)(vcpu);
9633 }
9634
9635 fpregs_assert_state_consistent();
9636 if (test_thread_flag(TIF_NEED_FPU_LOAD))
9637 switch_fpu_return();
9638
9639 if (unlikely(vcpu->arch.switch_db_regs)) {
9640 set_debugreg(0, 7);
9641 set_debugreg(vcpu->arch.eff_db[0], 0);
9642 set_debugreg(vcpu->arch.eff_db[1], 1);
9643 set_debugreg(vcpu->arch.eff_db[2], 2);
9644 set_debugreg(vcpu->arch.eff_db[3], 3);
9645 } else if (unlikely(hw_breakpoint_active())) {
9646 set_debugreg(0, 7);
9647 }
9648
9649 for (;;) {
9650 exit_fastpath = static_call(kvm_x86_run)(vcpu);
9651 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
9652 break;
9653
9654 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
9655 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
9656 break;
9657 }
9658
9659 if (vcpu->arch.apicv_active)
9660 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9661 }
9662
9663 /*
9664 * Do this here before restoring debug registers on the host. And
9665 * since we do this before handling the vmexit, a DR access vmexit
9666 * can (a) read the correct value of the debug registers, (b) set
9667 * KVM_DEBUGREG_WONT_EXIT again.
9668 */
9669 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
9670 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
9671 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
9672 kvm_update_dr0123(vcpu);
9673 kvm_update_dr7(vcpu);
9674 }
9675
9676 /*
9677 * If the guest has used debug registers, at least dr7
9678 * will be disabled while returning to the host.
9679 * If we don't have active breakpoints in the host, we don't
9680 * care about the messed up debug address registers. But if
9681 * we have some of them active, restore the old state.
9682 */
9683 if (hw_breakpoint_active())
9684 hw_breakpoint_restore();
9685
9686 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
9687 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
9688
9689 vcpu->mode = OUTSIDE_GUEST_MODE;
9690 smp_wmb();
9691
9692 static_call(kvm_x86_handle_exit_irqoff)(vcpu);
9693
9694 /*
9695 * Consume any pending interrupts, including the possible source of
9696 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
9697 * An instruction is required after local_irq_enable() to fully unblock
9698 * interrupts on processors that implement an interrupt shadow, the
9699 * stat.exits increment will do nicely.
9700 */
9701 kvm_before_interrupt(vcpu);
9702 local_irq_enable();
9703 ++vcpu->stat.exits;
9704 local_irq_disable();
9705 kvm_after_interrupt(vcpu);
9706
9707 /*
9708 * Wait until after servicing IRQs to account guest time so that any
9709 * ticks that occurred while running the guest are properly accounted
9710 * to the guest. Waiting until IRQs are enabled degrades the accuracy
9711 * of accounting via context tracking, but the loss of accuracy is
9712 * acceptable for all known use cases.
9713 */
9714 vtime_account_guest_exit();
9715
9716 if (lapic_in_kernel(vcpu)) {
9717 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9718 if (delta != S64_MIN) {
9719 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9720 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9721 }
9722 }
9723
9724 local_irq_enable();
9725 preempt_enable();
9726
9727 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9728
9729 /*
9730 * Profile KVM exit RIPs:
9731 */
9732 if (unlikely(prof_on == KVM_PROFILING)) {
9733 unsigned long rip = kvm_rip_read(vcpu);
9734 profile_hit(KVM_PROFILING, (void *)rip);
9735 }
9736
9737 if (unlikely(vcpu->arch.tsc_always_catchup))
9738 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9739
9740 if (vcpu->arch.apic_attention)
9741 kvm_lapic_sync_from_vapic(vcpu);
9742
9743 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
9744 return r;
9745
9746 cancel_injection:
9747 if (req_immediate_exit)
9748 kvm_make_request(KVM_REQ_EVENT, vcpu);
9749 static_call(kvm_x86_cancel_injection)(vcpu);
9750 if (unlikely(vcpu->arch.apic_attention))
9751 kvm_lapic_sync_from_vapic(vcpu);
9752 out:
9753 return r;
9754 }
9755
9756 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9757 {
9758 if (!kvm_arch_vcpu_runnable(vcpu) &&
9759 (!kvm_x86_ops.pre_block || static_call(kvm_x86_pre_block)(vcpu) == 0)) {
9760 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9761 kvm_vcpu_block(vcpu);
9762 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9763
9764 if (kvm_x86_ops.post_block)
9765 static_call(kvm_x86_post_block)(vcpu);
9766
9767 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9768 return 1;
9769 }
9770
9771 if (kvm_apic_accept_events(vcpu) < 0)
9772 return 0;
9773 switch(vcpu->arch.mp_state) {
9774 case KVM_MP_STATE_HALTED:
9775 case KVM_MP_STATE_AP_RESET_HOLD:
9776 vcpu->arch.pv.pv_unhalted = false;
9777 vcpu->arch.mp_state =
9778 KVM_MP_STATE_RUNNABLE;
9779 fallthrough;
9780 case KVM_MP_STATE_RUNNABLE:
9781 vcpu->arch.apf.halted = false;
9782 break;
9783 case KVM_MP_STATE_INIT_RECEIVED:
9784 break;
9785 default:
9786 return -EINTR;
9787 }
9788 return 1;
9789 }
9790
9791 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9792 {
9793 if (is_guest_mode(vcpu))
9794 kvm_check_nested_events(vcpu);
9795
9796 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9797 !vcpu->arch.apf.halted);
9798 }
9799
9800 static int vcpu_run(struct kvm_vcpu *vcpu)
9801 {
9802 int r;
9803 struct kvm *kvm = vcpu->kvm;
9804
9805 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9806 vcpu->arch.l1tf_flush_l1d = true;
9807
9808 for (;;) {
9809 if (kvm_vcpu_running(vcpu)) {
9810 r = vcpu_enter_guest(vcpu);
9811 } else {
9812 r = vcpu_block(kvm, vcpu);
9813 }
9814
9815 if (r <= 0)
9816 break;
9817
9818 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
9819 if (kvm_cpu_has_pending_timer(vcpu))
9820 kvm_inject_pending_timer_irqs(vcpu);
9821
9822 if (dm_request_for_irq_injection(vcpu) &&
9823 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
9824 r = 0;
9825 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
9826 ++vcpu->stat.request_irq_exits;
9827 break;
9828 }
9829
9830 if (__xfer_to_guest_mode_work_pending()) {
9831 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9832 r = xfer_to_guest_mode_handle_work(vcpu);
9833 if (r)
9834 return r;
9835 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9836 }
9837 }
9838
9839 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9840
9841 return r;
9842 }
9843
9844 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
9845 {
9846 int r;
9847
9848 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9849 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
9850 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9851 return r;
9852 }
9853
9854 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
9855 {
9856 BUG_ON(!vcpu->arch.pio.count);
9857
9858 return complete_emulated_io(vcpu);
9859 }
9860
9861 /*
9862 * Implements the following, as a state machine:
9863 *
9864 * read:
9865 * for each fragment
9866 * for each mmio piece in the fragment
9867 * write gpa, len
9868 * exit
9869 * copy data
9870 * execute insn
9871 *
9872 * write:
9873 * for each fragment
9874 * for each mmio piece in the fragment
9875 * write gpa, len
9876 * copy data
9877 * exit
9878 */
9879 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
9880 {
9881 struct kvm_run *run = vcpu->run;
9882 struct kvm_mmio_fragment *frag;
9883 unsigned len;
9884
9885 BUG_ON(!vcpu->mmio_needed);
9886
9887 /* Complete previous fragment */
9888 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
9889 len = min(8u, frag->len);
9890 if (!vcpu->mmio_is_write)
9891 memcpy(frag->data, run->mmio.data, len);
9892
9893 if (frag->len <= 8) {
9894 /* Switch to the next fragment. */
9895 frag++;
9896 vcpu->mmio_cur_fragment++;
9897 } else {
9898 /* Go forward to the next mmio piece. */
9899 frag->data += len;
9900 frag->gpa += len;
9901 frag->len -= len;
9902 }
9903
9904 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
9905 vcpu->mmio_needed = 0;
9906
9907 /* FIXME: return into emulator if single-stepping. */
9908 if (vcpu->mmio_is_write)
9909 return 1;
9910 vcpu->mmio_read_completed = 1;
9911 return complete_emulated_io(vcpu);
9912 }
9913
9914 run->exit_reason = KVM_EXIT_MMIO;
9915 run->mmio.phys_addr = frag->gpa;
9916 if (vcpu->mmio_is_write)
9917 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
9918 run->mmio.len = min(8u, frag->len);
9919 run->mmio.is_write = vcpu->mmio_is_write;
9920 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9921 return 0;
9922 }
9923
9924 static void kvm_save_current_fpu(struct fpu *fpu)
9925 {
9926 /*
9927 * If the target FPU state is not resident in the CPU registers, just
9928 * memcpy() from current, else save CPU state directly to the target.
9929 */
9930 if (test_thread_flag(TIF_NEED_FPU_LOAD))
9931 memcpy(&fpu->state, &current->thread.fpu.state,
9932 fpu_kernel_xstate_size);
9933 else
9934 save_fpregs_to_fpstate(fpu);
9935 }
9936
9937 /* Swap (qemu) user FPU context for the guest FPU context. */
9938 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
9939 {
9940 fpregs_lock();
9941
9942 kvm_save_current_fpu(vcpu->arch.user_fpu);
9943
9944 /*
9945 * Guests with protected state can't have it set by the hypervisor,
9946 * so skip trying to set it.
9947 */
9948 if (vcpu->arch.guest_fpu)
9949 /* PKRU is separately restored in kvm_x86_ops.run. */
9950 __restore_fpregs_from_fpstate(&vcpu->arch.guest_fpu->state,
9951 ~XFEATURE_MASK_PKRU);
9952
9953 fpregs_mark_activate();
9954 fpregs_unlock();
9955
9956 trace_kvm_fpu(1);
9957 }
9958
9959 /* When vcpu_run ends, restore user space FPU context. */
9960 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
9961 {
9962 fpregs_lock();
9963
9964 /*
9965 * Guests with protected state can't have it read by the hypervisor,
9966 * so skip trying to save it.
9967 */
9968 if (vcpu->arch.guest_fpu)
9969 kvm_save_current_fpu(vcpu->arch.guest_fpu);
9970
9971 restore_fpregs_from_fpstate(&vcpu->arch.user_fpu->state);
9972
9973 fpregs_mark_activate();
9974 fpregs_unlock();
9975
9976 ++vcpu->stat.fpu_reload;
9977 trace_kvm_fpu(0);
9978 }
9979
9980 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
9981 {
9982 struct kvm_run *kvm_run = vcpu->run;
9983 int r;
9984
9985 vcpu_load(vcpu);
9986 kvm_sigset_activate(vcpu);
9987 kvm_run->flags = 0;
9988 kvm_load_guest_fpu(vcpu);
9989
9990 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
9991 if (kvm_run->immediate_exit) {
9992 r = -EINTR;
9993 goto out;
9994 }
9995 kvm_vcpu_block(vcpu);
9996 if (kvm_apic_accept_events(vcpu) < 0) {
9997 r = 0;
9998 goto out;
9999 }
10000 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
10001 r = -EAGAIN;
10002 if (signal_pending(current)) {
10003 r = -EINTR;
10004 kvm_run->exit_reason = KVM_EXIT_INTR;
10005 ++vcpu->stat.signal_exits;
10006 }
10007 goto out;
10008 }
10009
10010 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
10011 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
10012 r = -EINVAL;
10013 goto out;
10014 }
10015
10016 if (kvm_run->kvm_dirty_regs) {
10017 r = sync_regs(vcpu);
10018 if (r != 0)
10019 goto out;
10020 }
10021
10022 /* re-sync apic's tpr */
10023 if (!lapic_in_kernel(vcpu)) {
10024 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10025 r = -EINVAL;
10026 goto out;
10027 }
10028 }
10029
10030 if (unlikely(vcpu->arch.complete_userspace_io)) {
10031 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
10032 vcpu->arch.complete_userspace_io = NULL;
10033 r = cui(vcpu);
10034 if (r <= 0)
10035 goto out;
10036 } else
10037 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
10038
10039 if (kvm_run->immediate_exit)
10040 r = -EINTR;
10041 else
10042 r = vcpu_run(vcpu);
10043
10044 out:
10045 kvm_put_guest_fpu(vcpu);
10046 if (kvm_run->kvm_valid_regs)
10047 store_regs(vcpu);
10048 post_kvm_run_save(vcpu);
10049 kvm_sigset_deactivate(vcpu);
10050
10051 vcpu_put(vcpu);
10052 return r;
10053 }
10054
10055 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10056 {
10057 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10058 /*
10059 * We are here if userspace calls get_regs() in the middle of
10060 * instruction emulation. Registers state needs to be copied
10061 * back from emulation context to vcpu. Userspace shouldn't do
10062 * that usually, but some bad designed PV devices (vmware
10063 * backdoor interface) need this to work
10064 */
10065 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10066 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10067 }
10068 regs->rax = kvm_rax_read(vcpu);
10069 regs->rbx = kvm_rbx_read(vcpu);
10070 regs->rcx = kvm_rcx_read(vcpu);
10071 regs->rdx = kvm_rdx_read(vcpu);
10072 regs->rsi = kvm_rsi_read(vcpu);
10073 regs->rdi = kvm_rdi_read(vcpu);
10074 regs->rsp = kvm_rsp_read(vcpu);
10075 regs->rbp = kvm_rbp_read(vcpu);
10076 #ifdef CONFIG_X86_64
10077 regs->r8 = kvm_r8_read(vcpu);
10078 regs->r9 = kvm_r9_read(vcpu);
10079 regs->r10 = kvm_r10_read(vcpu);
10080 regs->r11 = kvm_r11_read(vcpu);
10081 regs->r12 = kvm_r12_read(vcpu);
10082 regs->r13 = kvm_r13_read(vcpu);
10083 regs->r14 = kvm_r14_read(vcpu);
10084 regs->r15 = kvm_r15_read(vcpu);
10085 #endif
10086
10087 regs->rip = kvm_rip_read(vcpu);
10088 regs->rflags = kvm_get_rflags(vcpu);
10089 }
10090
10091 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10092 {
10093 vcpu_load(vcpu);
10094 __get_regs(vcpu, regs);
10095 vcpu_put(vcpu);
10096 return 0;
10097 }
10098
10099 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10100 {
10101 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10102 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10103
10104 kvm_rax_write(vcpu, regs->rax);
10105 kvm_rbx_write(vcpu, regs->rbx);
10106 kvm_rcx_write(vcpu, regs->rcx);
10107 kvm_rdx_write(vcpu, regs->rdx);
10108 kvm_rsi_write(vcpu, regs->rsi);
10109 kvm_rdi_write(vcpu, regs->rdi);
10110 kvm_rsp_write(vcpu, regs->rsp);
10111 kvm_rbp_write(vcpu, regs->rbp);
10112 #ifdef CONFIG_X86_64
10113 kvm_r8_write(vcpu, regs->r8);
10114 kvm_r9_write(vcpu, regs->r9);
10115 kvm_r10_write(vcpu, regs->r10);
10116 kvm_r11_write(vcpu, regs->r11);
10117 kvm_r12_write(vcpu, regs->r12);
10118 kvm_r13_write(vcpu, regs->r13);
10119 kvm_r14_write(vcpu, regs->r14);
10120 kvm_r15_write(vcpu, regs->r15);
10121 #endif
10122
10123 kvm_rip_write(vcpu, regs->rip);
10124 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10125
10126 vcpu->arch.exception.pending = false;
10127
10128 kvm_make_request(KVM_REQ_EVENT, vcpu);
10129 }
10130
10131 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10132 {
10133 vcpu_load(vcpu);
10134 __set_regs(vcpu, regs);
10135 vcpu_put(vcpu);
10136 return 0;
10137 }
10138
10139 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
10140 {
10141 struct kvm_segment cs;
10142
10143 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10144 *db = cs.db;
10145 *l = cs.l;
10146 }
10147 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
10148
10149 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10150 {
10151 struct desc_ptr dt;
10152
10153 if (vcpu->arch.guest_state_protected)
10154 goto skip_protected_regs;
10155
10156 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10157 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10158 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10159 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10160 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10161 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10162
10163 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10164 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10165
10166 static_call(kvm_x86_get_idt)(vcpu, &dt);
10167 sregs->idt.limit = dt.size;
10168 sregs->idt.base = dt.address;
10169 static_call(kvm_x86_get_gdt)(vcpu, &dt);
10170 sregs->gdt.limit = dt.size;
10171 sregs->gdt.base = dt.address;
10172
10173 sregs->cr2 = vcpu->arch.cr2;
10174 sregs->cr3 = kvm_read_cr3(vcpu);
10175
10176 skip_protected_regs:
10177 sregs->cr0 = kvm_read_cr0(vcpu);
10178 sregs->cr4 = kvm_read_cr4(vcpu);
10179 sregs->cr8 = kvm_get_cr8(vcpu);
10180 sregs->efer = vcpu->arch.efer;
10181 sregs->apic_base = kvm_get_apic_base(vcpu);
10182 }
10183
10184 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10185 {
10186 __get_sregs_common(vcpu, sregs);
10187
10188 if (vcpu->arch.guest_state_protected)
10189 return;
10190
10191 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
10192 set_bit(vcpu->arch.interrupt.nr,
10193 (unsigned long *)sregs->interrupt_bitmap);
10194 }
10195
10196 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10197 {
10198 int i;
10199
10200 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
10201
10202 if (vcpu->arch.guest_state_protected)
10203 return;
10204
10205 if (is_pae_paging(vcpu)) {
10206 for (i = 0 ; i < 4 ; i++)
10207 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
10208 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
10209 }
10210 }
10211
10212 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
10213 struct kvm_sregs *sregs)
10214 {
10215 vcpu_load(vcpu);
10216 __get_sregs(vcpu, sregs);
10217 vcpu_put(vcpu);
10218 return 0;
10219 }
10220
10221 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
10222 struct kvm_mp_state *mp_state)
10223 {
10224 int r;
10225
10226 vcpu_load(vcpu);
10227 if (kvm_mpx_supported())
10228 kvm_load_guest_fpu(vcpu);
10229
10230 r = kvm_apic_accept_events(vcpu);
10231 if (r < 0)
10232 goto out;
10233 r = 0;
10234
10235 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
10236 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
10237 vcpu->arch.pv.pv_unhalted)
10238 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
10239 else
10240 mp_state->mp_state = vcpu->arch.mp_state;
10241
10242 out:
10243 if (kvm_mpx_supported())
10244 kvm_put_guest_fpu(vcpu);
10245 vcpu_put(vcpu);
10246 return r;
10247 }
10248
10249 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
10250 struct kvm_mp_state *mp_state)
10251 {
10252 int ret = -EINVAL;
10253
10254 vcpu_load(vcpu);
10255
10256 if (!lapic_in_kernel(vcpu) &&
10257 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
10258 goto out;
10259
10260 /*
10261 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
10262 * INIT state; latched init should be reported using
10263 * KVM_SET_VCPU_EVENTS, so reject it here.
10264 */
10265 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
10266 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
10267 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
10268 goto out;
10269
10270 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
10271 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
10272 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
10273 } else
10274 vcpu->arch.mp_state = mp_state->mp_state;
10275 kvm_make_request(KVM_REQ_EVENT, vcpu);
10276
10277 ret = 0;
10278 out:
10279 vcpu_put(vcpu);
10280 return ret;
10281 }
10282
10283 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
10284 int reason, bool has_error_code, u32 error_code)
10285 {
10286 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
10287 int ret;
10288
10289 init_emulate_ctxt(vcpu);
10290
10291 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
10292 has_error_code, error_code);
10293 if (ret) {
10294 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
10295 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
10296 vcpu->run->internal.ndata = 0;
10297 return 0;
10298 }
10299
10300 kvm_rip_write(vcpu, ctxt->eip);
10301 kvm_set_rflags(vcpu, ctxt->eflags);
10302 return 1;
10303 }
10304 EXPORT_SYMBOL_GPL(kvm_task_switch);
10305
10306 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10307 {
10308 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
10309 /*
10310 * When EFER.LME and CR0.PG are set, the processor is in
10311 * 64-bit mode (though maybe in a 32-bit code segment).
10312 * CR4.PAE and EFER.LMA must be set.
10313 */
10314 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
10315 return false;
10316 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
10317 return false;
10318 } else {
10319 /*
10320 * Not in 64-bit mode: EFER.LMA is clear and the code
10321 * segment cannot be 64-bit.
10322 */
10323 if (sregs->efer & EFER_LMA || sregs->cs.l)
10324 return false;
10325 }
10326
10327 return kvm_is_valid_cr4(vcpu, sregs->cr4);
10328 }
10329
10330 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
10331 int *mmu_reset_needed, bool update_pdptrs)
10332 {
10333 struct msr_data apic_base_msr;
10334 int idx;
10335 struct desc_ptr dt;
10336
10337 if (!kvm_is_valid_sregs(vcpu, sregs))
10338 return -EINVAL;
10339
10340 apic_base_msr.data = sregs->apic_base;
10341 apic_base_msr.host_initiated = true;
10342 if (kvm_set_apic_base(vcpu, &apic_base_msr))
10343 return -EINVAL;
10344
10345 if (vcpu->arch.guest_state_protected)
10346 return 0;
10347
10348 dt.size = sregs->idt.limit;
10349 dt.address = sregs->idt.base;
10350 static_call(kvm_x86_set_idt)(vcpu, &dt);
10351 dt.size = sregs->gdt.limit;
10352 dt.address = sregs->gdt.base;
10353 static_call(kvm_x86_set_gdt)(vcpu, &dt);
10354
10355 vcpu->arch.cr2 = sregs->cr2;
10356 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
10357 vcpu->arch.cr3 = sregs->cr3;
10358 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
10359
10360 kvm_set_cr8(vcpu, sregs->cr8);
10361
10362 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
10363 static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
10364
10365 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
10366 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
10367 vcpu->arch.cr0 = sregs->cr0;
10368
10369 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
10370 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
10371
10372 if (update_pdptrs) {
10373 idx = srcu_read_lock(&vcpu->kvm->srcu);
10374 if (is_pae_paging(vcpu)) {
10375 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
10376 *mmu_reset_needed = 1;
10377 }
10378 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10379 }
10380
10381 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10382 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10383 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10384 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10385 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10386 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10387
10388 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10389 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10390
10391 update_cr8_intercept(vcpu);
10392
10393 /* Older userspace won't unhalt the vcpu on reset. */
10394 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
10395 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
10396 !is_protmode(vcpu))
10397 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10398
10399 return 0;
10400 }
10401
10402 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10403 {
10404 int pending_vec, max_bits;
10405 int mmu_reset_needed = 0;
10406 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
10407
10408 if (ret)
10409 return ret;
10410
10411 if (mmu_reset_needed)
10412 kvm_mmu_reset_context(vcpu);
10413
10414 max_bits = KVM_NR_INTERRUPTS;
10415 pending_vec = find_first_bit(
10416 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
10417
10418 if (pending_vec < max_bits) {
10419 kvm_queue_interrupt(vcpu, pending_vec, false);
10420 pr_debug("Set back pending irq %d\n", pending_vec);
10421 kvm_make_request(KVM_REQ_EVENT, vcpu);
10422 }
10423 return 0;
10424 }
10425
10426 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10427 {
10428 int mmu_reset_needed = 0;
10429 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
10430 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
10431 !(sregs2->efer & EFER_LMA);
10432 int i, ret;
10433
10434 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
10435 return -EINVAL;
10436
10437 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
10438 return -EINVAL;
10439
10440 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
10441 &mmu_reset_needed, !valid_pdptrs);
10442 if (ret)
10443 return ret;
10444
10445 if (valid_pdptrs) {
10446 for (i = 0; i < 4 ; i++)
10447 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
10448
10449 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
10450 mmu_reset_needed = 1;
10451 vcpu->arch.pdptrs_from_userspace = true;
10452 }
10453 if (mmu_reset_needed)
10454 kvm_mmu_reset_context(vcpu);
10455 return 0;
10456 }
10457
10458 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
10459 struct kvm_sregs *sregs)
10460 {
10461 int ret;
10462
10463 vcpu_load(vcpu);
10464 ret = __set_sregs(vcpu, sregs);
10465 vcpu_put(vcpu);
10466 return ret;
10467 }
10468
10469 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
10470 struct kvm_guest_debug *dbg)
10471 {
10472 unsigned long rflags;
10473 int i, r;
10474
10475 if (vcpu->arch.guest_state_protected)
10476 return -EINVAL;
10477
10478 vcpu_load(vcpu);
10479
10480 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
10481 r = -EBUSY;
10482 if (vcpu->arch.exception.pending)
10483 goto out;
10484 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
10485 kvm_queue_exception(vcpu, DB_VECTOR);
10486 else
10487 kvm_queue_exception(vcpu, BP_VECTOR);
10488 }
10489
10490 /*
10491 * Read rflags as long as potentially injected trace flags are still
10492 * filtered out.
10493 */
10494 rflags = kvm_get_rflags(vcpu);
10495
10496 vcpu->guest_debug = dbg->control;
10497 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
10498 vcpu->guest_debug = 0;
10499
10500 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
10501 for (i = 0; i < KVM_NR_DB_REGS; ++i)
10502 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
10503 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
10504 } else {
10505 for (i = 0; i < KVM_NR_DB_REGS; i++)
10506 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
10507 }
10508 kvm_update_dr7(vcpu);
10509
10510 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10511 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
10512
10513 /*
10514 * Trigger an rflags update that will inject or remove the trace
10515 * flags.
10516 */
10517 kvm_set_rflags(vcpu, rflags);
10518
10519 static_call(kvm_x86_update_exception_bitmap)(vcpu);
10520
10521 r = 0;
10522
10523 out:
10524 vcpu_put(vcpu);
10525 return r;
10526 }
10527
10528 /*
10529 * Translate a guest virtual address to a guest physical address.
10530 */
10531 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
10532 struct kvm_translation *tr)
10533 {
10534 unsigned long vaddr = tr->linear_address;
10535 gpa_t gpa;
10536 int idx;
10537
10538 vcpu_load(vcpu);
10539
10540 idx = srcu_read_lock(&vcpu->kvm->srcu);
10541 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
10542 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10543 tr->physical_address = gpa;
10544 tr->valid = gpa != UNMAPPED_GVA;
10545 tr->writeable = 1;
10546 tr->usermode = 0;
10547
10548 vcpu_put(vcpu);
10549 return 0;
10550 }
10551
10552 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10553 {
10554 struct fxregs_state *fxsave;
10555
10556 if (!vcpu->arch.guest_fpu)
10557 return 0;
10558
10559 vcpu_load(vcpu);
10560
10561 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10562 memcpy(fpu->fpr, fxsave->st_space, 128);
10563 fpu->fcw = fxsave->cwd;
10564 fpu->fsw = fxsave->swd;
10565 fpu->ftwx = fxsave->twd;
10566 fpu->last_opcode = fxsave->fop;
10567 fpu->last_ip = fxsave->rip;
10568 fpu->last_dp = fxsave->rdp;
10569 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
10570
10571 vcpu_put(vcpu);
10572 return 0;
10573 }
10574
10575 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10576 {
10577 struct fxregs_state *fxsave;
10578
10579 if (!vcpu->arch.guest_fpu)
10580 return 0;
10581
10582 vcpu_load(vcpu);
10583
10584 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10585
10586 memcpy(fxsave->st_space, fpu->fpr, 128);
10587 fxsave->cwd = fpu->fcw;
10588 fxsave->swd = fpu->fsw;
10589 fxsave->twd = fpu->ftwx;
10590 fxsave->fop = fpu->last_opcode;
10591 fxsave->rip = fpu->last_ip;
10592 fxsave->rdp = fpu->last_dp;
10593 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
10594
10595 vcpu_put(vcpu);
10596 return 0;
10597 }
10598
10599 static void store_regs(struct kvm_vcpu *vcpu)
10600 {
10601 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
10602
10603 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
10604 __get_regs(vcpu, &vcpu->run->s.regs.regs);
10605
10606 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
10607 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
10608
10609 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
10610 kvm_vcpu_ioctl_x86_get_vcpu_events(
10611 vcpu, &vcpu->run->s.regs.events);
10612 }
10613
10614 static int sync_regs(struct kvm_vcpu *vcpu)
10615 {
10616 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
10617 __set_regs(vcpu, &vcpu->run->s.regs.regs);
10618 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
10619 }
10620 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
10621 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
10622 return -EINVAL;
10623 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
10624 }
10625 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
10626 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
10627 vcpu, &vcpu->run->s.regs.events))
10628 return -EINVAL;
10629 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
10630 }
10631
10632 return 0;
10633 }
10634
10635 static void fx_init(struct kvm_vcpu *vcpu)
10636 {
10637 if (!vcpu->arch.guest_fpu)
10638 return;
10639
10640 fpstate_init(&vcpu->arch.guest_fpu->state);
10641 if (boot_cpu_has(X86_FEATURE_XSAVES))
10642 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
10643 host_xcr0 | XSTATE_COMPACTION_ENABLED;
10644
10645 /*
10646 * Ensure guest xcr0 is valid for loading
10647 */
10648 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10649
10650 vcpu->arch.cr0 |= X86_CR0_ET;
10651 }
10652
10653 void kvm_free_guest_fpu(struct kvm_vcpu *vcpu)
10654 {
10655 if (vcpu->arch.guest_fpu) {
10656 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
10657 vcpu->arch.guest_fpu = NULL;
10658 }
10659 }
10660 EXPORT_SYMBOL_GPL(kvm_free_guest_fpu);
10661
10662 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
10663 {
10664 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
10665 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
10666 "guest TSC will not be reliable\n");
10667
10668 return 0;
10669 }
10670
10671 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
10672 {
10673 struct page *page;
10674 int r;
10675
10676 vcpu->arch.last_vmentry_cpu = -1;
10677 vcpu->arch.regs_avail = ~0;
10678 vcpu->arch.regs_dirty = ~0;
10679
10680 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
10681 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10682 else
10683 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
10684
10685 r = kvm_mmu_create(vcpu);
10686 if (r < 0)
10687 return r;
10688
10689 if (irqchip_in_kernel(vcpu->kvm)) {
10690 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
10691 if (r < 0)
10692 goto fail_mmu_destroy;
10693 if (kvm_apicv_activated(vcpu->kvm))
10694 vcpu->arch.apicv_active = true;
10695 } else
10696 static_branch_inc(&kvm_has_noapic_vcpu);
10697
10698 r = -ENOMEM;
10699
10700 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
10701 if (!page)
10702 goto fail_free_lapic;
10703 vcpu->arch.pio_data = page_address(page);
10704
10705 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
10706 GFP_KERNEL_ACCOUNT);
10707 if (!vcpu->arch.mce_banks)
10708 goto fail_free_pio_data;
10709 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
10710
10711 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
10712 GFP_KERNEL_ACCOUNT))
10713 goto fail_free_mce_banks;
10714
10715 if (!alloc_emulate_ctxt(vcpu))
10716 goto free_wbinvd_dirty_mask;
10717
10718 vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
10719 GFP_KERNEL_ACCOUNT);
10720 if (!vcpu->arch.user_fpu) {
10721 pr_err("kvm: failed to allocate userspace's fpu\n");
10722 goto free_emulate_ctxt;
10723 }
10724
10725 vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
10726 GFP_KERNEL_ACCOUNT);
10727 if (!vcpu->arch.guest_fpu) {
10728 pr_err("kvm: failed to allocate vcpu's fpu\n");
10729 goto free_user_fpu;
10730 }
10731 fx_init(vcpu);
10732
10733 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
10734 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
10735
10736 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
10737
10738 kvm_async_pf_hash_reset(vcpu);
10739 kvm_pmu_init(vcpu);
10740
10741 vcpu->arch.pending_external_vector = -1;
10742 vcpu->arch.preempted_in_kernel = false;
10743
10744 #if IS_ENABLED(CONFIG_HYPERV)
10745 vcpu->arch.hv_root_tdp = INVALID_PAGE;
10746 #endif
10747
10748 r = static_call(kvm_x86_vcpu_create)(vcpu);
10749 if (r)
10750 goto free_guest_fpu;
10751
10752 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
10753 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
10754 kvm_vcpu_mtrr_init(vcpu);
10755 vcpu_load(vcpu);
10756 kvm_set_tsc_khz(vcpu, max_tsc_khz);
10757 kvm_vcpu_reset(vcpu, false);
10758 kvm_init_mmu(vcpu);
10759 vcpu_put(vcpu);
10760 return 0;
10761
10762 free_guest_fpu:
10763 kvm_free_guest_fpu(vcpu);
10764 free_user_fpu:
10765 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10766 free_emulate_ctxt:
10767 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10768 free_wbinvd_dirty_mask:
10769 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10770 fail_free_mce_banks:
10771 kfree(vcpu->arch.mce_banks);
10772 fail_free_pio_data:
10773 free_page((unsigned long)vcpu->arch.pio_data);
10774 fail_free_lapic:
10775 kvm_free_lapic(vcpu);
10776 fail_mmu_destroy:
10777 kvm_mmu_destroy(vcpu);
10778 return r;
10779 }
10780
10781 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
10782 {
10783 struct kvm *kvm = vcpu->kvm;
10784
10785 if (mutex_lock_killable(&vcpu->mutex))
10786 return;
10787 vcpu_load(vcpu);
10788 kvm_synchronize_tsc(vcpu, 0);
10789 vcpu_put(vcpu);
10790
10791 /* poll control enabled by default */
10792 vcpu->arch.msr_kvm_poll_control = 1;
10793
10794 mutex_unlock(&vcpu->mutex);
10795
10796 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
10797 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
10798 KVMCLOCK_SYNC_PERIOD);
10799 }
10800
10801 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
10802 {
10803 struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
10804 int idx;
10805
10806 kvm_release_pfn(cache->pfn, cache->dirty, cache);
10807
10808 kvmclock_reset(vcpu);
10809
10810 static_call(kvm_x86_vcpu_free)(vcpu);
10811
10812 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10813 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10814 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10815 kvm_free_guest_fpu(vcpu);
10816
10817 kvm_hv_vcpu_uninit(vcpu);
10818 kvm_pmu_destroy(vcpu);
10819 kfree(vcpu->arch.mce_banks);
10820 kvm_free_lapic(vcpu);
10821 idx = srcu_read_lock(&vcpu->kvm->srcu);
10822 kvm_mmu_destroy(vcpu);
10823 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10824 free_page((unsigned long)vcpu->arch.pio_data);
10825 kvfree(vcpu->arch.cpuid_entries);
10826 if (!lapic_in_kernel(vcpu))
10827 static_branch_dec(&kvm_has_noapic_vcpu);
10828 }
10829
10830 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
10831 {
10832 unsigned long old_cr0 = kvm_read_cr0(vcpu);
10833 unsigned long new_cr0;
10834 u32 eax, dummy;
10835
10836 kvm_lapic_reset(vcpu, init_event);
10837
10838 vcpu->arch.hflags = 0;
10839
10840 vcpu->arch.smi_pending = 0;
10841 vcpu->arch.smi_count = 0;
10842 atomic_set(&vcpu->arch.nmi_queued, 0);
10843 vcpu->arch.nmi_pending = 0;
10844 vcpu->arch.nmi_injected = false;
10845 kvm_clear_interrupt_queue(vcpu);
10846 kvm_clear_exception_queue(vcpu);
10847
10848 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
10849 kvm_update_dr0123(vcpu);
10850 vcpu->arch.dr6 = DR6_ACTIVE_LOW;
10851 vcpu->arch.dr7 = DR7_FIXED_1;
10852 kvm_update_dr7(vcpu);
10853
10854 vcpu->arch.cr2 = 0;
10855
10856 kvm_make_request(KVM_REQ_EVENT, vcpu);
10857 vcpu->arch.apf.msr_en_val = 0;
10858 vcpu->arch.apf.msr_int_val = 0;
10859 vcpu->arch.st.msr_val = 0;
10860
10861 kvmclock_reset(vcpu);
10862
10863 kvm_clear_async_pf_completion_queue(vcpu);
10864 kvm_async_pf_hash_reset(vcpu);
10865 vcpu->arch.apf.halted = false;
10866
10867 if (vcpu->arch.guest_fpu && kvm_mpx_supported()) {
10868 void *mpx_state_buffer;
10869
10870 /*
10871 * To avoid have the INIT path from kvm_apic_has_events() that be
10872 * called with loaded FPU and does not let userspace fix the state.
10873 */
10874 if (init_event)
10875 kvm_put_guest_fpu(vcpu);
10876 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10877 XFEATURE_BNDREGS);
10878 if (mpx_state_buffer)
10879 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
10880 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10881 XFEATURE_BNDCSR);
10882 if (mpx_state_buffer)
10883 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
10884 if (init_event)
10885 kvm_load_guest_fpu(vcpu);
10886 }
10887
10888 if (!init_event) {
10889 kvm_pmu_reset(vcpu);
10890 vcpu->arch.smbase = 0x30000;
10891
10892 vcpu->arch.msr_misc_features_enables = 0;
10893
10894 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10895 }
10896
10897 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
10898 vcpu->arch.regs_avail = ~0;
10899 vcpu->arch.regs_dirty = ~0;
10900
10901 /*
10902 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
10903 * if no CPUID match is found. Note, it's impossible to get a match at
10904 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
10905 * i.e. it'simpossible for kvm_cpuid() to find a valid entry on RESET.
10906 * But, go through the motions in case that's ever remedied.
10907 */
10908 eax = 1;
10909 if (!kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true))
10910 eax = 0x600;
10911 kvm_rdx_write(vcpu, eax);
10912
10913 vcpu->arch.ia32_xss = 0;
10914
10915 static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
10916
10917 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
10918 kvm_rip_write(vcpu, 0xfff0);
10919
10920 vcpu->arch.cr3 = 0;
10921 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
10922
10923 /*
10924 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions
10925 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
10926 * (or qualify) that with a footnote stating that CD/NW are preserved.
10927 */
10928 new_cr0 = X86_CR0_ET;
10929 if (init_event)
10930 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
10931 else
10932 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
10933
10934 static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
10935 static_call(kvm_x86_set_cr4)(vcpu, 0);
10936 static_call(kvm_x86_set_efer)(vcpu, 0);
10937 static_call(kvm_x86_update_exception_bitmap)(vcpu);
10938
10939 /*
10940 * Reset the MMU context if paging was enabled prior to INIT (which is
10941 * implied if CR0.PG=1 as CR0 will be '0' prior to RESET). Unlike the
10942 * standard CR0/CR4/EFER modification paths, only CR0.PG needs to be
10943 * checked because it is unconditionally cleared on INIT and all other
10944 * paging related bits are ignored if paging is disabled, i.e. CR0.WP,
10945 * CR4, and EFER changes are all irrelevant if CR0.PG was '0'.
10946 */
10947 if (old_cr0 & X86_CR0_PG)
10948 kvm_mmu_reset_context(vcpu);
10949
10950 /*
10951 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's
10952 * APM states the TLBs are untouched by INIT, but it also states that
10953 * the TLBs are flushed on "External initialization of the processor."
10954 * Flush the guest TLB regardless of vendor, there is no meaningful
10955 * benefit in relying on the guest to flush the TLB immediately after
10956 * INIT. A spurious TLB flush is benign and likely negligible from a
10957 * performance perspective.
10958 */
10959 if (init_event)
10960 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
10961 }
10962 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
10963
10964 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
10965 {
10966 struct kvm_segment cs;
10967
10968 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10969 cs.selector = vector << 8;
10970 cs.base = vector << 12;
10971 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10972 kvm_rip_write(vcpu, 0);
10973 }
10974 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
10975
10976 int kvm_arch_hardware_enable(void)
10977 {
10978 struct kvm *kvm;
10979 struct kvm_vcpu *vcpu;
10980 int i;
10981 int ret;
10982 u64 local_tsc;
10983 u64 max_tsc = 0;
10984 bool stable, backwards_tsc = false;
10985
10986 kvm_user_return_msr_cpu_online();
10987 ret = static_call(kvm_x86_hardware_enable)();
10988 if (ret != 0)
10989 return ret;
10990
10991 local_tsc = rdtsc();
10992 stable = !kvm_check_tsc_unstable();
10993 list_for_each_entry(kvm, &vm_list, vm_list) {
10994 kvm_for_each_vcpu(i, vcpu, kvm) {
10995 if (!stable && vcpu->cpu == smp_processor_id())
10996 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10997 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
10998 backwards_tsc = true;
10999 if (vcpu->arch.last_host_tsc > max_tsc)
11000 max_tsc = vcpu->arch.last_host_tsc;
11001 }
11002 }
11003 }
11004
11005 /*
11006 * Sometimes, even reliable TSCs go backwards. This happens on
11007 * platforms that reset TSC during suspend or hibernate actions, but
11008 * maintain synchronization. We must compensate. Fortunately, we can
11009 * detect that condition here, which happens early in CPU bringup,
11010 * before any KVM threads can be running. Unfortunately, we can't
11011 * bring the TSCs fully up to date with real time, as we aren't yet far
11012 * enough into CPU bringup that we know how much real time has actually
11013 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
11014 * variables that haven't been updated yet.
11015 *
11016 * So we simply find the maximum observed TSC above, then record the
11017 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
11018 * the adjustment will be applied. Note that we accumulate
11019 * adjustments, in case multiple suspend cycles happen before some VCPU
11020 * gets a chance to run again. In the event that no KVM threads get a
11021 * chance to run, we will miss the entire elapsed period, as we'll have
11022 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
11023 * loose cycle time. This isn't too big a deal, since the loss will be
11024 * uniform across all VCPUs (not to mention the scenario is extremely
11025 * unlikely). It is possible that a second hibernate recovery happens
11026 * much faster than a first, causing the observed TSC here to be
11027 * smaller; this would require additional padding adjustment, which is
11028 * why we set last_host_tsc to the local tsc observed here.
11029 *
11030 * N.B. - this code below runs only on platforms with reliable TSC,
11031 * as that is the only way backwards_tsc is set above. Also note
11032 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
11033 * have the same delta_cyc adjustment applied if backwards_tsc
11034 * is detected. Note further, this adjustment is only done once,
11035 * as we reset last_host_tsc on all VCPUs to stop this from being
11036 * called multiple times (one for each physical CPU bringup).
11037 *
11038 * Platforms with unreliable TSCs don't have to deal with this, they
11039 * will be compensated by the logic in vcpu_load, which sets the TSC to
11040 * catchup mode. This will catchup all VCPUs to real time, but cannot
11041 * guarantee that they stay in perfect synchronization.
11042 */
11043 if (backwards_tsc) {
11044 u64 delta_cyc = max_tsc - local_tsc;
11045 list_for_each_entry(kvm, &vm_list, vm_list) {
11046 kvm->arch.backwards_tsc_observed = true;
11047 kvm_for_each_vcpu(i, vcpu, kvm) {
11048 vcpu->arch.tsc_offset_adjustment += delta_cyc;
11049 vcpu->arch.last_host_tsc = local_tsc;
11050 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11051 }
11052
11053 /*
11054 * We have to disable TSC offset matching.. if you were
11055 * booting a VM while issuing an S4 host suspend....
11056 * you may have some problem. Solving this issue is
11057 * left as an exercise to the reader.
11058 */
11059 kvm->arch.last_tsc_nsec = 0;
11060 kvm->arch.last_tsc_write = 0;
11061 }
11062
11063 }
11064 return 0;
11065 }
11066
11067 void kvm_arch_hardware_disable(void)
11068 {
11069 static_call(kvm_x86_hardware_disable)();
11070 drop_user_return_notifiers();
11071 }
11072
11073 int kvm_arch_hardware_setup(void *opaque)
11074 {
11075 struct kvm_x86_init_ops *ops = opaque;
11076 int r;
11077
11078 rdmsrl_safe(MSR_EFER, &host_efer);
11079
11080 if (boot_cpu_has(X86_FEATURE_XSAVES))
11081 rdmsrl(MSR_IA32_XSS, host_xss);
11082
11083 r = ops->hardware_setup();
11084 if (r != 0)
11085 return r;
11086
11087 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11088 kvm_ops_static_call_update();
11089
11090 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11091 supported_xss = 0;
11092
11093 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11094 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11095 #undef __kvm_cpu_cap_has
11096
11097 if (kvm_has_tsc_control) {
11098 /*
11099 * Make sure the user can only configure tsc_khz values that
11100 * fit into a signed integer.
11101 * A min value is not calculated because it will always
11102 * be 1 on all machines.
11103 */
11104 u64 max = min(0x7fffffffULL,
11105 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
11106 kvm_max_guest_tsc_khz = max;
11107
11108 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
11109 }
11110
11111 kvm_init_msr_list();
11112 return 0;
11113 }
11114
11115 void kvm_arch_hardware_unsetup(void)
11116 {
11117 static_call(kvm_x86_hardware_unsetup)();
11118 }
11119
11120 int kvm_arch_check_processor_compat(void *opaque)
11121 {
11122 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
11123 struct kvm_x86_init_ops *ops = opaque;
11124
11125 WARN_ON(!irqs_disabled());
11126
11127 if (__cr4_reserved_bits(cpu_has, c) !=
11128 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
11129 return -EIO;
11130
11131 return ops->check_processor_compatibility();
11132 }
11133
11134 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
11135 {
11136 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
11137 }
11138 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
11139
11140 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
11141 {
11142 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
11143 }
11144
11145 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
11146 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
11147
11148 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
11149 {
11150 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
11151
11152 vcpu->arch.l1tf_flush_l1d = true;
11153 if (pmu->version && unlikely(pmu->event_count)) {
11154 pmu->need_cleanup = true;
11155 kvm_make_request(KVM_REQ_PMU, vcpu);
11156 }
11157 static_call(kvm_x86_sched_in)(vcpu, cpu);
11158 }
11159
11160 void kvm_arch_free_vm(struct kvm *kvm)
11161 {
11162 kfree(to_kvm_hv(kvm)->hv_pa_pg);
11163 vfree(kvm);
11164 }
11165
11166
11167 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
11168 {
11169 int ret;
11170
11171 if (type)
11172 return -EINVAL;
11173
11174 ret = kvm_page_track_init(kvm);
11175 if (ret)
11176 return ret;
11177
11178 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
11179 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
11180 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
11181 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
11182 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
11183 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
11184
11185 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
11186 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
11187 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
11188 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
11189 &kvm->arch.irq_sources_bitmap);
11190
11191 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
11192 mutex_init(&kvm->arch.apic_map_lock);
11193 raw_spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
11194
11195 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
11196 pvclock_update_vm_gtod_copy(kvm);
11197
11198 kvm->arch.guest_can_read_msr_platform_info = true;
11199
11200 #if IS_ENABLED(CONFIG_HYPERV)
11201 spin_lock_init(&kvm->arch.hv_root_tdp_lock);
11202 kvm->arch.hv_root_tdp = INVALID_PAGE;
11203 #endif
11204
11205 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
11206 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
11207
11208 kvm_apicv_init(kvm);
11209 kvm_hv_init_vm(kvm);
11210 kvm_mmu_init_vm(kvm);
11211 kvm_xen_init_vm(kvm);
11212
11213 return static_call(kvm_x86_vm_init)(kvm);
11214 }
11215
11216 int kvm_arch_post_init_vm(struct kvm *kvm)
11217 {
11218 return kvm_mmu_post_init_vm(kvm);
11219 }
11220
11221 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
11222 {
11223 vcpu_load(vcpu);
11224 kvm_mmu_unload(vcpu);
11225 vcpu_put(vcpu);
11226 }
11227
11228 static void kvm_free_vcpus(struct kvm *kvm)
11229 {
11230 unsigned int i;
11231 struct kvm_vcpu *vcpu;
11232
11233 /*
11234 * Unpin any mmu pages first.
11235 */
11236 kvm_for_each_vcpu(i, vcpu, kvm) {
11237 kvm_clear_async_pf_completion_queue(vcpu);
11238 kvm_unload_vcpu_mmu(vcpu);
11239 }
11240 kvm_for_each_vcpu(i, vcpu, kvm)
11241 kvm_vcpu_destroy(vcpu);
11242
11243 mutex_lock(&kvm->lock);
11244 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
11245 kvm->vcpus[i] = NULL;
11246
11247 atomic_set(&kvm->online_vcpus, 0);
11248 mutex_unlock(&kvm->lock);
11249 }
11250
11251 void kvm_arch_sync_events(struct kvm *kvm)
11252 {
11253 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
11254 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
11255 kvm_free_pit(kvm);
11256 }
11257
11258 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
11259
11260 /**
11261 * __x86_set_memory_region: Setup KVM internal memory slot
11262 *
11263 * @kvm: the kvm pointer to the VM.
11264 * @id: the slot ID to setup.
11265 * @gpa: the GPA to install the slot (unused when @size == 0).
11266 * @size: the size of the slot. Set to zero to uninstall a slot.
11267 *
11268 * This function helps to setup a KVM internal memory slot. Specify
11269 * @size > 0 to install a new slot, while @size == 0 to uninstall a
11270 * slot. The return code can be one of the following:
11271 *
11272 * HVA: on success (uninstall will return a bogus HVA)
11273 * -errno: on error
11274 *
11275 * The caller should always use IS_ERR() to check the return value
11276 * before use. Note, the KVM internal memory slots are guaranteed to
11277 * remain valid and unchanged until the VM is destroyed, i.e., the
11278 * GPA->HVA translation will not change. However, the HVA is a user
11279 * address, i.e. its accessibility is not guaranteed, and must be
11280 * accessed via __copy_{to,from}_user().
11281 */
11282 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
11283 u32 size)
11284 {
11285 int i, r;
11286 unsigned long hva, old_npages;
11287 struct kvm_memslots *slots = kvm_memslots(kvm);
11288 struct kvm_memory_slot *slot;
11289
11290 /* Called with kvm->slots_lock held. */
11291 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
11292 return ERR_PTR_USR(-EINVAL);
11293
11294 slot = id_to_memslot(slots, id);
11295 if (size) {
11296 if (slot && slot->npages)
11297 return ERR_PTR_USR(-EEXIST);
11298
11299 /*
11300 * MAP_SHARED to prevent internal slot pages from being moved
11301 * by fork()/COW.
11302 */
11303 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
11304 MAP_SHARED | MAP_ANONYMOUS, 0);
11305 if (IS_ERR((void *)hva))
11306 return (void __user *)hva;
11307 } else {
11308 if (!slot || !slot->npages)
11309 return NULL;
11310
11311 old_npages = slot->npages;
11312 hva = slot->userspace_addr;
11313 }
11314
11315 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11316 struct kvm_userspace_memory_region m;
11317
11318 m.slot = id | (i << 16);
11319 m.flags = 0;
11320 m.guest_phys_addr = gpa;
11321 m.userspace_addr = hva;
11322 m.memory_size = size;
11323 r = __kvm_set_memory_region(kvm, &m);
11324 if (r < 0)
11325 return ERR_PTR_USR(r);
11326 }
11327
11328 if (!size)
11329 vm_munmap(hva, old_npages * PAGE_SIZE);
11330
11331 return (void __user *)hva;
11332 }
11333 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
11334
11335 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
11336 {
11337 kvm_mmu_pre_destroy_vm(kvm);
11338 }
11339
11340 void kvm_arch_destroy_vm(struct kvm *kvm)
11341 {
11342 if (current->mm == kvm->mm) {
11343 /*
11344 * Free memory regions allocated on behalf of userspace,
11345 * unless the the memory map has changed due to process exit
11346 * or fd copying.
11347 */
11348 mutex_lock(&kvm->slots_lock);
11349 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
11350 0, 0);
11351 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
11352 0, 0);
11353 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
11354 mutex_unlock(&kvm->slots_lock);
11355 }
11356 static_call_cond(kvm_x86_vm_destroy)(kvm);
11357 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
11358 kvm_pic_destroy(kvm);
11359 kvm_ioapic_destroy(kvm);
11360 kvm_free_vcpus(kvm);
11361 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
11362 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
11363 kvm_mmu_uninit_vm(kvm);
11364 kvm_page_track_cleanup(kvm);
11365 kvm_xen_destroy_vm(kvm);
11366 kvm_hv_destroy_vm(kvm);
11367 }
11368
11369 static void memslot_rmap_free(struct kvm_memory_slot *slot)
11370 {
11371 int i;
11372
11373 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11374 kvfree(slot->arch.rmap[i]);
11375 slot->arch.rmap[i] = NULL;
11376 }
11377 }
11378
11379 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
11380 {
11381 int i;
11382
11383 memslot_rmap_free(slot);
11384
11385 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11386 kvfree(slot->arch.lpage_info[i - 1]);
11387 slot->arch.lpage_info[i - 1] = NULL;
11388 }
11389
11390 kvm_page_track_free_memslot(slot);
11391 }
11392
11393 static int memslot_rmap_alloc(struct kvm_memory_slot *slot,
11394 unsigned long npages)
11395 {
11396 const int sz = sizeof(*slot->arch.rmap[0]);
11397 int i;
11398
11399 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11400 int level = i + 1;
11401 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11402
11403 if (slot->arch.rmap[i])
11404 continue;
11405
11406 slot->arch.rmap[i] = kvcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
11407 if (!slot->arch.rmap[i]) {
11408 memslot_rmap_free(slot);
11409 return -ENOMEM;
11410 }
11411 }
11412
11413 return 0;
11414 }
11415
11416 int alloc_all_memslots_rmaps(struct kvm *kvm)
11417 {
11418 struct kvm_memslots *slots;
11419 struct kvm_memory_slot *slot;
11420 int r, i;
11421
11422 /*
11423 * Check if memslots alreday have rmaps early before acquiring
11424 * the slots_arch_lock below.
11425 */
11426 if (kvm_memslots_have_rmaps(kvm))
11427 return 0;
11428
11429 mutex_lock(&kvm->slots_arch_lock);
11430
11431 /*
11432 * Read memslots_have_rmaps again, under the slots arch lock,
11433 * before allocating the rmaps
11434 */
11435 if (kvm_memslots_have_rmaps(kvm)) {
11436 mutex_unlock(&kvm->slots_arch_lock);
11437 return 0;
11438 }
11439
11440 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11441 slots = __kvm_memslots(kvm, i);
11442 kvm_for_each_memslot(slot, slots) {
11443 r = memslot_rmap_alloc(slot, slot->npages);
11444 if (r) {
11445 mutex_unlock(&kvm->slots_arch_lock);
11446 return r;
11447 }
11448 }
11449 }
11450
11451 /*
11452 * Ensure that memslots_have_rmaps becomes true strictly after
11453 * all the rmap pointers are set.
11454 */
11455 smp_store_release(&kvm->arch.memslots_have_rmaps, true);
11456 mutex_unlock(&kvm->slots_arch_lock);
11457 return 0;
11458 }
11459
11460 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
11461 struct kvm_memory_slot *slot,
11462 unsigned long npages)
11463 {
11464 int i, r;
11465
11466 /*
11467 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
11468 * old arrays will be freed by __kvm_set_memory_region() if installing
11469 * the new memslot is successful.
11470 */
11471 memset(&slot->arch, 0, sizeof(slot->arch));
11472
11473 if (kvm_memslots_have_rmaps(kvm)) {
11474 r = memslot_rmap_alloc(slot, npages);
11475 if (r)
11476 return r;
11477 }
11478
11479 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11480 struct kvm_lpage_info *linfo;
11481 unsigned long ugfn;
11482 int lpages;
11483 int level = i + 1;
11484
11485 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11486
11487 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
11488 if (!linfo)
11489 goto out_free;
11490
11491 slot->arch.lpage_info[i - 1] = linfo;
11492
11493 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
11494 linfo[0].disallow_lpage = 1;
11495 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
11496 linfo[lpages - 1].disallow_lpage = 1;
11497 ugfn = slot->userspace_addr >> PAGE_SHIFT;
11498 /*
11499 * If the gfn and userspace address are not aligned wrt each
11500 * other, disable large page support for this slot.
11501 */
11502 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
11503 unsigned long j;
11504
11505 for (j = 0; j < lpages; ++j)
11506 linfo[j].disallow_lpage = 1;
11507 }
11508 }
11509
11510 if (kvm_page_track_create_memslot(slot, npages))
11511 goto out_free;
11512
11513 return 0;
11514
11515 out_free:
11516 memslot_rmap_free(slot);
11517
11518 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11519 kvfree(slot->arch.lpage_info[i - 1]);
11520 slot->arch.lpage_info[i - 1] = NULL;
11521 }
11522 return -ENOMEM;
11523 }
11524
11525 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
11526 {
11527 struct kvm_vcpu *vcpu;
11528 int i;
11529
11530 /*
11531 * memslots->generation has been incremented.
11532 * mmio generation may have reached its maximum value.
11533 */
11534 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
11535
11536 /* Force re-initialization of steal_time cache */
11537 kvm_for_each_vcpu(i, vcpu, kvm)
11538 kvm_vcpu_kick(vcpu);
11539 }
11540
11541 int kvm_arch_prepare_memory_region(struct kvm *kvm,
11542 struct kvm_memory_slot *memslot,
11543 const struct kvm_userspace_memory_region *mem,
11544 enum kvm_mr_change change)
11545 {
11546 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
11547 return kvm_alloc_memslot_metadata(kvm, memslot,
11548 mem->memory_size >> PAGE_SHIFT);
11549 return 0;
11550 }
11551
11552
11553 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
11554 {
11555 struct kvm_arch *ka = &kvm->arch;
11556
11557 if (!kvm_x86_ops.cpu_dirty_log_size)
11558 return;
11559
11560 if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
11561 (!enable && --ka->cpu_dirty_logging_count == 0))
11562 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
11563
11564 WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
11565 }
11566
11567 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
11568 struct kvm_memory_slot *old,
11569 const struct kvm_memory_slot *new,
11570 enum kvm_mr_change change)
11571 {
11572 bool log_dirty_pages = new->flags & KVM_MEM_LOG_DIRTY_PAGES;
11573
11574 /*
11575 * Update CPU dirty logging if dirty logging is being toggled. This
11576 * applies to all operations.
11577 */
11578 if ((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)
11579 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
11580
11581 /*
11582 * Nothing more to do for RO slots (which can't be dirtied and can't be
11583 * made writable) or CREATE/MOVE/DELETE of a slot.
11584 *
11585 * For a memslot with dirty logging disabled:
11586 * CREATE: No dirty mappings will already exist.
11587 * MOVE/DELETE: The old mappings will already have been cleaned up by
11588 * kvm_arch_flush_shadow_memslot()
11589 *
11590 * For a memslot with dirty logging enabled:
11591 * CREATE: No shadow pages exist, thus nothing to write-protect
11592 * and no dirty bits to clear.
11593 * MOVE/DELETE: The old mappings will already have been cleaned up by
11594 * kvm_arch_flush_shadow_memslot().
11595 */
11596 if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
11597 return;
11598
11599 /*
11600 * READONLY and non-flags changes were filtered out above, and the only
11601 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
11602 * logging isn't being toggled on or off.
11603 */
11604 if (WARN_ON_ONCE(!((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)))
11605 return;
11606
11607 if (!log_dirty_pages) {
11608 /*
11609 * Dirty logging tracks sptes in 4k granularity, meaning that
11610 * large sptes have to be split. If live migration succeeds,
11611 * the guest in the source machine will be destroyed and large
11612 * sptes will be created in the destination. However, if the
11613 * guest continues to run in the source machine (for example if
11614 * live migration fails), small sptes will remain around and
11615 * cause bad performance.
11616 *
11617 * Scan sptes if dirty logging has been stopped, dropping those
11618 * which can be collapsed into a single large-page spte. Later
11619 * page faults will create the large-page sptes.
11620 */
11621 kvm_mmu_zap_collapsible_sptes(kvm, new);
11622 } else {
11623 /*
11624 * Initially-all-set does not require write protecting any page,
11625 * because they're all assumed to be dirty.
11626 */
11627 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
11628 return;
11629
11630 if (kvm_x86_ops.cpu_dirty_log_size) {
11631 kvm_mmu_slot_leaf_clear_dirty(kvm, new);
11632 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
11633 } else {
11634 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
11635 }
11636 }
11637 }
11638
11639 void kvm_arch_commit_memory_region(struct kvm *kvm,
11640 const struct kvm_userspace_memory_region *mem,
11641 struct kvm_memory_slot *old,
11642 const struct kvm_memory_slot *new,
11643 enum kvm_mr_change change)
11644 {
11645 if (!kvm->arch.n_requested_mmu_pages)
11646 kvm_mmu_change_mmu_pages(kvm,
11647 kvm_mmu_calculate_default_mmu_pages(kvm));
11648
11649 kvm_mmu_slot_apply_flags(kvm, old, new, change);
11650
11651 /* Free the arrays associated with the old memslot. */
11652 if (change == KVM_MR_MOVE)
11653 kvm_arch_free_memslot(kvm, old);
11654 }
11655
11656 void kvm_arch_flush_shadow_all(struct kvm *kvm)
11657 {
11658 kvm_mmu_zap_all(kvm);
11659 }
11660
11661 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
11662 struct kvm_memory_slot *slot)
11663 {
11664 kvm_page_track_flush_slot(kvm, slot);
11665 }
11666
11667 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
11668 {
11669 return (is_guest_mode(vcpu) &&
11670 kvm_x86_ops.guest_apic_has_interrupt &&
11671 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
11672 }
11673
11674 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11675 {
11676 if (!list_empty_careful(&vcpu->async_pf.done))
11677 return true;
11678
11679 if (kvm_apic_has_events(vcpu))
11680 return true;
11681
11682 if (vcpu->arch.pv.pv_unhalted)
11683 return true;
11684
11685 if (vcpu->arch.exception.pending)
11686 return true;
11687
11688 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11689 (vcpu->arch.nmi_pending &&
11690 static_call(kvm_x86_nmi_allowed)(vcpu, false)))
11691 return true;
11692
11693 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11694 (vcpu->arch.smi_pending &&
11695 static_call(kvm_x86_smi_allowed)(vcpu, false)))
11696 return true;
11697
11698 if (kvm_arch_interrupt_allowed(vcpu) &&
11699 (kvm_cpu_has_interrupt(vcpu) ||
11700 kvm_guest_apic_has_interrupt(vcpu)))
11701 return true;
11702
11703 if (kvm_hv_has_stimer_pending(vcpu))
11704 return true;
11705
11706 if (is_guest_mode(vcpu) &&
11707 kvm_x86_ops.nested_ops->hv_timer_pending &&
11708 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
11709 return true;
11710
11711 return false;
11712 }
11713
11714 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11715 {
11716 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
11717 }
11718
11719 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
11720 {
11721 if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
11722 return true;
11723
11724 return false;
11725 }
11726
11727 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11728 {
11729 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11730 return true;
11731
11732 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11733 kvm_test_request(KVM_REQ_SMI, vcpu) ||
11734 kvm_test_request(KVM_REQ_EVENT, vcpu))
11735 return true;
11736
11737 return kvm_arch_dy_has_pending_interrupt(vcpu);
11738 }
11739
11740 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
11741 {
11742 if (vcpu->arch.guest_state_protected)
11743 return true;
11744
11745 return vcpu->arch.preempted_in_kernel;
11746 }
11747
11748 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
11749 {
11750 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
11751 }
11752
11753 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
11754 {
11755 return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
11756 }
11757
11758 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
11759 {
11760 /* Can't read the RIP when guest state is protected, just return 0 */
11761 if (vcpu->arch.guest_state_protected)
11762 return 0;
11763
11764 if (is_64_bit_mode(vcpu))
11765 return kvm_rip_read(vcpu);
11766 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
11767 kvm_rip_read(vcpu));
11768 }
11769 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
11770
11771 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
11772 {
11773 return kvm_get_linear_rip(vcpu) == linear_rip;
11774 }
11775 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
11776
11777 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
11778 {
11779 unsigned long rflags;
11780
11781 rflags = static_call(kvm_x86_get_rflags)(vcpu);
11782 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11783 rflags &= ~X86_EFLAGS_TF;
11784 return rflags;
11785 }
11786 EXPORT_SYMBOL_GPL(kvm_get_rflags);
11787
11788 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11789 {
11790 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
11791 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
11792 rflags |= X86_EFLAGS_TF;
11793 static_call(kvm_x86_set_rflags)(vcpu, rflags);
11794 }
11795
11796 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11797 {
11798 __kvm_set_rflags(vcpu, rflags);
11799 kvm_make_request(KVM_REQ_EVENT, vcpu);
11800 }
11801 EXPORT_SYMBOL_GPL(kvm_set_rflags);
11802
11803 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
11804 {
11805 int r;
11806
11807 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
11808 work->wakeup_all)
11809 return;
11810
11811 r = kvm_mmu_reload(vcpu);
11812 if (unlikely(r))
11813 return;
11814
11815 if (!vcpu->arch.mmu->direct_map &&
11816 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
11817 return;
11818
11819 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
11820 }
11821
11822 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
11823 {
11824 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
11825
11826 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
11827 }
11828
11829 static inline u32 kvm_async_pf_next_probe(u32 key)
11830 {
11831 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
11832 }
11833
11834 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11835 {
11836 u32 key = kvm_async_pf_hash_fn(gfn);
11837
11838 while (vcpu->arch.apf.gfns[key] != ~0)
11839 key = kvm_async_pf_next_probe(key);
11840
11841 vcpu->arch.apf.gfns[key] = gfn;
11842 }
11843
11844 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
11845 {
11846 int i;
11847 u32 key = kvm_async_pf_hash_fn(gfn);
11848
11849 for (i = 0; i < ASYNC_PF_PER_VCPU &&
11850 (vcpu->arch.apf.gfns[key] != gfn &&
11851 vcpu->arch.apf.gfns[key] != ~0); i++)
11852 key = kvm_async_pf_next_probe(key);
11853
11854 return key;
11855 }
11856
11857 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11858 {
11859 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
11860 }
11861
11862 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11863 {
11864 u32 i, j, k;
11865
11866 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
11867
11868 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
11869 return;
11870
11871 while (true) {
11872 vcpu->arch.apf.gfns[i] = ~0;
11873 do {
11874 j = kvm_async_pf_next_probe(j);
11875 if (vcpu->arch.apf.gfns[j] == ~0)
11876 return;
11877 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
11878 /*
11879 * k lies cyclically in ]i,j]
11880 * | i.k.j |
11881 * |....j i.k.| or |.k..j i...|
11882 */
11883 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
11884 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
11885 i = j;
11886 }
11887 }
11888
11889 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
11890 {
11891 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
11892
11893 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
11894 sizeof(reason));
11895 }
11896
11897 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
11898 {
11899 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11900
11901 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11902 &token, offset, sizeof(token));
11903 }
11904
11905 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
11906 {
11907 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11908 u32 val;
11909
11910 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11911 &val, offset, sizeof(val)))
11912 return false;
11913
11914 return !val;
11915 }
11916
11917 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
11918 {
11919 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
11920 return false;
11921
11922 if (!kvm_pv_async_pf_enabled(vcpu) ||
11923 (vcpu->arch.apf.send_user_only && static_call(kvm_x86_get_cpl)(vcpu) == 0))
11924 return false;
11925
11926 return true;
11927 }
11928
11929 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
11930 {
11931 if (unlikely(!lapic_in_kernel(vcpu) ||
11932 kvm_event_needs_reinjection(vcpu) ||
11933 vcpu->arch.exception.pending))
11934 return false;
11935
11936 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
11937 return false;
11938
11939 /*
11940 * If interrupts are off we cannot even use an artificial
11941 * halt state.
11942 */
11943 return kvm_arch_interrupt_allowed(vcpu);
11944 }
11945
11946 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
11947 struct kvm_async_pf *work)
11948 {
11949 struct x86_exception fault;
11950
11951 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
11952 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
11953
11954 if (kvm_can_deliver_async_pf(vcpu) &&
11955 !apf_put_user_notpresent(vcpu)) {
11956 fault.vector = PF_VECTOR;
11957 fault.error_code_valid = true;
11958 fault.error_code = 0;
11959 fault.nested_page_fault = false;
11960 fault.address = work->arch.token;
11961 fault.async_page_fault = true;
11962 kvm_inject_page_fault(vcpu, &fault);
11963 return true;
11964 } else {
11965 /*
11966 * It is not possible to deliver a paravirtualized asynchronous
11967 * page fault, but putting the guest in an artificial halt state
11968 * can be beneficial nevertheless: if an interrupt arrives, we
11969 * can deliver it timely and perhaps the guest will schedule
11970 * another process. When the instruction that triggered a page
11971 * fault is retried, hopefully the page will be ready in the host.
11972 */
11973 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
11974 return false;
11975 }
11976 }
11977
11978 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
11979 struct kvm_async_pf *work)
11980 {
11981 struct kvm_lapic_irq irq = {
11982 .delivery_mode = APIC_DM_FIXED,
11983 .vector = vcpu->arch.apf.vec
11984 };
11985
11986 if (work->wakeup_all)
11987 work->arch.token = ~0; /* broadcast wakeup */
11988 else
11989 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
11990 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
11991
11992 if ((work->wakeup_all || work->notpresent_injected) &&
11993 kvm_pv_async_pf_enabled(vcpu) &&
11994 !apf_put_user_ready(vcpu, work->arch.token)) {
11995 vcpu->arch.apf.pageready_pending = true;
11996 kvm_apic_set_irq(vcpu, &irq, NULL);
11997 }
11998
11999 vcpu->arch.apf.halted = false;
12000 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12001 }
12002
12003 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
12004 {
12005 kvm_make_request(KVM_REQ_APF_READY, vcpu);
12006 if (!vcpu->arch.apf.pageready_pending)
12007 kvm_vcpu_kick(vcpu);
12008 }
12009
12010 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
12011 {
12012 if (!kvm_pv_async_pf_enabled(vcpu))
12013 return true;
12014 else
12015 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
12016 }
12017
12018 void kvm_arch_start_assignment(struct kvm *kvm)
12019 {
12020 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
12021 static_call_cond(kvm_x86_start_assignment)(kvm);
12022 }
12023 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
12024
12025 void kvm_arch_end_assignment(struct kvm *kvm)
12026 {
12027 atomic_dec(&kvm->arch.assigned_device_count);
12028 }
12029 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
12030
12031 bool kvm_arch_has_assigned_device(struct kvm *kvm)
12032 {
12033 return atomic_read(&kvm->arch.assigned_device_count);
12034 }
12035 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
12036
12037 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
12038 {
12039 atomic_inc(&kvm->arch.noncoherent_dma_count);
12040 }
12041 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
12042
12043 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
12044 {
12045 atomic_dec(&kvm->arch.noncoherent_dma_count);
12046 }
12047 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
12048
12049 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
12050 {
12051 return atomic_read(&kvm->arch.noncoherent_dma_count);
12052 }
12053 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
12054
12055 bool kvm_arch_has_irq_bypass(void)
12056 {
12057 return true;
12058 }
12059
12060 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
12061 struct irq_bypass_producer *prod)
12062 {
12063 struct kvm_kernel_irqfd *irqfd =
12064 container_of(cons, struct kvm_kernel_irqfd, consumer);
12065 int ret;
12066
12067 irqfd->producer = prod;
12068 kvm_arch_start_assignment(irqfd->kvm);
12069 ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm,
12070 prod->irq, irqfd->gsi, 1);
12071
12072 if (ret)
12073 kvm_arch_end_assignment(irqfd->kvm);
12074
12075 return ret;
12076 }
12077
12078 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
12079 struct irq_bypass_producer *prod)
12080 {
12081 int ret;
12082 struct kvm_kernel_irqfd *irqfd =
12083 container_of(cons, struct kvm_kernel_irqfd, consumer);
12084
12085 WARN_ON(irqfd->producer != prod);
12086 irqfd->producer = NULL;
12087
12088 /*
12089 * When producer of consumer is unregistered, we change back to
12090 * remapped mode, so we can re-use the current implementation
12091 * when the irq is masked/disabled or the consumer side (KVM
12092 * int this case doesn't want to receive the interrupts.
12093 */
12094 ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
12095 if (ret)
12096 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
12097 " fails: %d\n", irqfd->consumer.token, ret);
12098
12099 kvm_arch_end_assignment(irqfd->kvm);
12100 }
12101
12102 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
12103 uint32_t guest_irq, bool set)
12104 {
12105 return static_call(kvm_x86_update_pi_irte)(kvm, host_irq, guest_irq, set);
12106 }
12107
12108 bool kvm_vector_hashing_enabled(void)
12109 {
12110 return vector_hashing;
12111 }
12112
12113 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
12114 {
12115 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
12116 }
12117 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
12118
12119
12120 int kvm_spec_ctrl_test_value(u64 value)
12121 {
12122 /*
12123 * test that setting IA32_SPEC_CTRL to given value
12124 * is allowed by the host processor
12125 */
12126
12127 u64 saved_value;
12128 unsigned long flags;
12129 int ret = 0;
12130
12131 local_irq_save(flags);
12132
12133 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
12134 ret = 1;
12135 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
12136 ret = 1;
12137 else
12138 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
12139
12140 local_irq_restore(flags);
12141
12142 return ret;
12143 }
12144 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
12145
12146 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
12147 {
12148 struct x86_exception fault;
12149 u32 access = error_code &
12150 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
12151
12152 if (!(error_code & PFERR_PRESENT_MASK) ||
12153 vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
12154 /*
12155 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
12156 * tables probably do not match the TLB. Just proceed
12157 * with the error code that the processor gave.
12158 */
12159 fault.vector = PF_VECTOR;
12160 fault.error_code_valid = true;
12161 fault.error_code = error_code;
12162 fault.nested_page_fault = false;
12163 fault.address = gva;
12164 }
12165 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
12166 }
12167 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
12168
12169 /*
12170 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
12171 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
12172 * indicates whether exit to userspace is needed.
12173 */
12174 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
12175 struct x86_exception *e)
12176 {
12177 if (r == X86EMUL_PROPAGATE_FAULT) {
12178 kvm_inject_emulated_page_fault(vcpu, e);
12179 return 1;
12180 }
12181
12182 /*
12183 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
12184 * while handling a VMX instruction KVM could've handled the request
12185 * correctly by exiting to userspace and performing I/O but there
12186 * doesn't seem to be a real use-case behind such requests, just return
12187 * KVM_EXIT_INTERNAL_ERROR for now.
12188 */
12189 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
12190 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
12191 vcpu->run->internal.ndata = 0;
12192
12193 return 0;
12194 }
12195 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
12196
12197 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
12198 {
12199 bool pcid_enabled;
12200 struct x86_exception e;
12201 struct {
12202 u64 pcid;
12203 u64 gla;
12204 } operand;
12205 int r;
12206
12207 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
12208 if (r != X86EMUL_CONTINUE)
12209 return kvm_handle_memory_failure(vcpu, r, &e);
12210
12211 if (operand.pcid >> 12 != 0) {
12212 kvm_inject_gp(vcpu, 0);
12213 return 1;
12214 }
12215
12216 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
12217
12218 switch (type) {
12219 case INVPCID_TYPE_INDIV_ADDR:
12220 if ((!pcid_enabled && (operand.pcid != 0)) ||
12221 is_noncanonical_address(operand.gla, vcpu)) {
12222 kvm_inject_gp(vcpu, 0);
12223 return 1;
12224 }
12225 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
12226 return kvm_skip_emulated_instruction(vcpu);
12227
12228 case INVPCID_TYPE_SINGLE_CTXT:
12229 if (!pcid_enabled && (operand.pcid != 0)) {
12230 kvm_inject_gp(vcpu, 0);
12231 return 1;
12232 }
12233
12234 kvm_invalidate_pcid(vcpu, operand.pcid);
12235 return kvm_skip_emulated_instruction(vcpu);
12236
12237 case INVPCID_TYPE_ALL_NON_GLOBAL:
12238 /*
12239 * Currently, KVM doesn't mark global entries in the shadow
12240 * page tables, so a non-global flush just degenerates to a
12241 * global flush. If needed, we could optimize this later by
12242 * keeping track of global entries in shadow page tables.
12243 */
12244
12245 fallthrough;
12246 case INVPCID_TYPE_ALL_INCL_GLOBAL:
12247 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12248 return kvm_skip_emulated_instruction(vcpu);
12249
12250 default:
12251 BUG(); /* We have already checked above that type <= 3 */
12252 }
12253 }
12254 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
12255
12256 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
12257 {
12258 struct kvm_run *run = vcpu->run;
12259 struct kvm_mmio_fragment *frag;
12260 unsigned int len;
12261
12262 BUG_ON(!vcpu->mmio_needed);
12263
12264 /* Complete previous fragment */
12265 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
12266 len = min(8u, frag->len);
12267 if (!vcpu->mmio_is_write)
12268 memcpy(frag->data, run->mmio.data, len);
12269
12270 if (frag->len <= 8) {
12271 /* Switch to the next fragment. */
12272 frag++;
12273 vcpu->mmio_cur_fragment++;
12274 } else {
12275 /* Go forward to the next mmio piece. */
12276 frag->data += len;
12277 frag->gpa += len;
12278 frag->len -= len;
12279 }
12280
12281 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
12282 vcpu->mmio_needed = 0;
12283
12284 // VMG change, at this point, we're always done
12285 // RIP has already been advanced
12286 return 1;
12287 }
12288
12289 // More MMIO is needed
12290 run->mmio.phys_addr = frag->gpa;
12291 run->mmio.len = min(8u, frag->len);
12292 run->mmio.is_write = vcpu->mmio_is_write;
12293 if (run->mmio.is_write)
12294 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
12295 run->exit_reason = KVM_EXIT_MMIO;
12296
12297 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12298
12299 return 0;
12300 }
12301
12302 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12303 void *data)
12304 {
12305 int handled;
12306 struct kvm_mmio_fragment *frag;
12307
12308 if (!data)
12309 return -EINVAL;
12310
12311 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12312 if (handled == bytes)
12313 return 1;
12314
12315 bytes -= handled;
12316 gpa += handled;
12317 data += handled;
12318
12319 /*TODO: Check if need to increment number of frags */
12320 frag = vcpu->mmio_fragments;
12321 vcpu->mmio_nr_fragments = 1;
12322 frag->len = bytes;
12323 frag->gpa = gpa;
12324 frag->data = data;
12325
12326 vcpu->mmio_needed = 1;
12327 vcpu->mmio_cur_fragment = 0;
12328
12329 vcpu->run->mmio.phys_addr = gpa;
12330 vcpu->run->mmio.len = min(8u, frag->len);
12331 vcpu->run->mmio.is_write = 1;
12332 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
12333 vcpu->run->exit_reason = KVM_EXIT_MMIO;
12334
12335 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12336
12337 return 0;
12338 }
12339 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
12340
12341 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12342 void *data)
12343 {
12344 int handled;
12345 struct kvm_mmio_fragment *frag;
12346
12347 if (!data)
12348 return -EINVAL;
12349
12350 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12351 if (handled == bytes)
12352 return 1;
12353
12354 bytes -= handled;
12355 gpa += handled;
12356 data += handled;
12357
12358 /*TODO: Check if need to increment number of frags */
12359 frag = vcpu->mmio_fragments;
12360 vcpu->mmio_nr_fragments = 1;
12361 frag->len = bytes;
12362 frag->gpa = gpa;
12363 frag->data = data;
12364
12365 vcpu->mmio_needed = 1;
12366 vcpu->mmio_cur_fragment = 0;
12367
12368 vcpu->run->mmio.phys_addr = gpa;
12369 vcpu->run->mmio.len = min(8u, frag->len);
12370 vcpu->run->mmio.is_write = 0;
12371 vcpu->run->exit_reason = KVM_EXIT_MMIO;
12372
12373 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12374
12375 return 0;
12376 }
12377 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
12378
12379 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12380 {
12381 memcpy(vcpu->arch.guest_ins_data, vcpu->arch.pio_data,
12382 vcpu->arch.pio.count * vcpu->arch.pio.size);
12383 vcpu->arch.pio.count = 0;
12384
12385 return 1;
12386 }
12387
12388 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12389 unsigned int port, void *data, unsigned int count)
12390 {
12391 int ret;
12392
12393 ret = emulator_pio_out_emulated(vcpu->arch.emulate_ctxt, size, port,
12394 data, count);
12395 if (ret)
12396 return ret;
12397
12398 vcpu->arch.pio.count = 0;
12399
12400 return 0;
12401 }
12402
12403 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12404 unsigned int port, void *data, unsigned int count)
12405 {
12406 int ret;
12407
12408 ret = emulator_pio_in_emulated(vcpu->arch.emulate_ctxt, size, port,
12409 data, count);
12410 if (ret) {
12411 vcpu->arch.pio.count = 0;
12412 } else {
12413 vcpu->arch.guest_ins_data = data;
12414 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
12415 }
12416
12417 return 0;
12418 }
12419
12420 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
12421 unsigned int port, void *data, unsigned int count,
12422 int in)
12423 {
12424 return in ? kvm_sev_es_ins(vcpu, size, port, data, count)
12425 : kvm_sev_es_outs(vcpu, size, port, data, count);
12426 }
12427 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
12428
12429 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
12430 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
12431 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
12432 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
12433 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
12434 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
12435 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
12436 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
12437 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
12438 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
12439 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
12440 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
12441 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
12442 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
12443 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
12444 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
12445 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
12446 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
12447 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
12448 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
12449 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
12450 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
12451 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
12452 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
12453 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
12454 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
12455 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);