]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kvm/x86.c
KVM: x86: Convert TSC writes to TSC offset writes
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affilates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/module.h>
36 #include <linux/mman.h>
37 #include <linux/highmem.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/cpufreq.h>
41 #include <linux/user-return-notifier.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/perf_event.h>
45 #include <linux/uaccess.h>
46 #include <trace/events/kvm.h>
47
48 #define CREATE_TRACE_POINTS
49 #include "trace.h"
50
51 #include <asm/debugreg.h>
52 #include <asm/msr.h>
53 #include <asm/desc.h>
54 #include <asm/mtrr.h>
55 #include <asm/mce.h>
56 #include <asm/i387.h>
57 #include <asm/xcr.h>
58
59 #define MAX_IO_MSRS 256
60 #define CR0_RESERVED_BITS \
61 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
62 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
63 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
64 #define CR4_RESERVED_BITS \
65 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
66 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
67 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
68 | X86_CR4_OSXSAVE \
69 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
70
71 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
72
73 #define KVM_MAX_MCE_BANKS 32
74 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
75
76 /* EFER defaults:
77 * - enable syscall per default because its emulated by KVM
78 * - enable LME and LMA per default on 64 bit KVM
79 */
80 #ifdef CONFIG_X86_64
81 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
82 #else
83 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
84 #endif
85
86 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
87 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
88
89 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
90 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
91 struct kvm_cpuid_entry2 __user *entries);
92
93 struct kvm_x86_ops *kvm_x86_ops;
94 EXPORT_SYMBOL_GPL(kvm_x86_ops);
95
96 int ignore_msrs = 0;
97 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
98
99 #define KVM_NR_SHARED_MSRS 16
100
101 struct kvm_shared_msrs_global {
102 int nr;
103 u32 msrs[KVM_NR_SHARED_MSRS];
104 };
105
106 struct kvm_shared_msrs {
107 struct user_return_notifier urn;
108 bool registered;
109 struct kvm_shared_msr_values {
110 u64 host;
111 u64 curr;
112 } values[KVM_NR_SHARED_MSRS];
113 };
114
115 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
116 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
117
118 struct kvm_stats_debugfs_item debugfs_entries[] = {
119 { "pf_fixed", VCPU_STAT(pf_fixed) },
120 { "pf_guest", VCPU_STAT(pf_guest) },
121 { "tlb_flush", VCPU_STAT(tlb_flush) },
122 { "invlpg", VCPU_STAT(invlpg) },
123 { "exits", VCPU_STAT(exits) },
124 { "io_exits", VCPU_STAT(io_exits) },
125 { "mmio_exits", VCPU_STAT(mmio_exits) },
126 { "signal_exits", VCPU_STAT(signal_exits) },
127 { "irq_window", VCPU_STAT(irq_window_exits) },
128 { "nmi_window", VCPU_STAT(nmi_window_exits) },
129 { "halt_exits", VCPU_STAT(halt_exits) },
130 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
131 { "hypercalls", VCPU_STAT(hypercalls) },
132 { "request_irq", VCPU_STAT(request_irq_exits) },
133 { "irq_exits", VCPU_STAT(irq_exits) },
134 { "host_state_reload", VCPU_STAT(host_state_reload) },
135 { "efer_reload", VCPU_STAT(efer_reload) },
136 { "fpu_reload", VCPU_STAT(fpu_reload) },
137 { "insn_emulation", VCPU_STAT(insn_emulation) },
138 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
139 { "irq_injections", VCPU_STAT(irq_injections) },
140 { "nmi_injections", VCPU_STAT(nmi_injections) },
141 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
142 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
143 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
144 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
145 { "mmu_flooded", VM_STAT(mmu_flooded) },
146 { "mmu_recycled", VM_STAT(mmu_recycled) },
147 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
148 { "mmu_unsync", VM_STAT(mmu_unsync) },
149 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
150 { "largepages", VM_STAT(lpages) },
151 { NULL }
152 };
153
154 u64 __read_mostly host_xcr0;
155
156 static inline u32 bit(int bitno)
157 {
158 return 1 << (bitno & 31);
159 }
160
161 static void kvm_on_user_return(struct user_return_notifier *urn)
162 {
163 unsigned slot;
164 struct kvm_shared_msrs *locals
165 = container_of(urn, struct kvm_shared_msrs, urn);
166 struct kvm_shared_msr_values *values;
167
168 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
169 values = &locals->values[slot];
170 if (values->host != values->curr) {
171 wrmsrl(shared_msrs_global.msrs[slot], values->host);
172 values->curr = values->host;
173 }
174 }
175 locals->registered = false;
176 user_return_notifier_unregister(urn);
177 }
178
179 static void shared_msr_update(unsigned slot, u32 msr)
180 {
181 struct kvm_shared_msrs *smsr;
182 u64 value;
183
184 smsr = &__get_cpu_var(shared_msrs);
185 /* only read, and nobody should modify it at this time,
186 * so don't need lock */
187 if (slot >= shared_msrs_global.nr) {
188 printk(KERN_ERR "kvm: invalid MSR slot!");
189 return;
190 }
191 rdmsrl_safe(msr, &value);
192 smsr->values[slot].host = value;
193 smsr->values[slot].curr = value;
194 }
195
196 void kvm_define_shared_msr(unsigned slot, u32 msr)
197 {
198 if (slot >= shared_msrs_global.nr)
199 shared_msrs_global.nr = slot + 1;
200 shared_msrs_global.msrs[slot] = msr;
201 /* we need ensured the shared_msr_global have been updated */
202 smp_wmb();
203 }
204 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
205
206 static void kvm_shared_msr_cpu_online(void)
207 {
208 unsigned i;
209
210 for (i = 0; i < shared_msrs_global.nr; ++i)
211 shared_msr_update(i, shared_msrs_global.msrs[i]);
212 }
213
214 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
215 {
216 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
217
218 if (((value ^ smsr->values[slot].curr) & mask) == 0)
219 return;
220 smsr->values[slot].curr = value;
221 wrmsrl(shared_msrs_global.msrs[slot], value);
222 if (!smsr->registered) {
223 smsr->urn.on_user_return = kvm_on_user_return;
224 user_return_notifier_register(&smsr->urn);
225 smsr->registered = true;
226 }
227 }
228 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
229
230 static void drop_user_return_notifiers(void *ignore)
231 {
232 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
233
234 if (smsr->registered)
235 kvm_on_user_return(&smsr->urn);
236 }
237
238 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
239 {
240 if (irqchip_in_kernel(vcpu->kvm))
241 return vcpu->arch.apic_base;
242 else
243 return vcpu->arch.apic_base;
244 }
245 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
246
247 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
248 {
249 /* TODO: reserve bits check */
250 if (irqchip_in_kernel(vcpu->kvm))
251 kvm_lapic_set_base(vcpu, data);
252 else
253 vcpu->arch.apic_base = data;
254 }
255 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
256
257 #define EXCPT_BENIGN 0
258 #define EXCPT_CONTRIBUTORY 1
259 #define EXCPT_PF 2
260
261 static int exception_class(int vector)
262 {
263 switch (vector) {
264 case PF_VECTOR:
265 return EXCPT_PF;
266 case DE_VECTOR:
267 case TS_VECTOR:
268 case NP_VECTOR:
269 case SS_VECTOR:
270 case GP_VECTOR:
271 return EXCPT_CONTRIBUTORY;
272 default:
273 break;
274 }
275 return EXCPT_BENIGN;
276 }
277
278 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
279 unsigned nr, bool has_error, u32 error_code,
280 bool reinject)
281 {
282 u32 prev_nr;
283 int class1, class2;
284
285 if (!vcpu->arch.exception.pending) {
286 queue:
287 vcpu->arch.exception.pending = true;
288 vcpu->arch.exception.has_error_code = has_error;
289 vcpu->arch.exception.nr = nr;
290 vcpu->arch.exception.error_code = error_code;
291 vcpu->arch.exception.reinject = reinject;
292 return;
293 }
294
295 /* to check exception */
296 prev_nr = vcpu->arch.exception.nr;
297 if (prev_nr == DF_VECTOR) {
298 /* triple fault -> shutdown */
299 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
300 return;
301 }
302 class1 = exception_class(prev_nr);
303 class2 = exception_class(nr);
304 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
305 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
306 /* generate double fault per SDM Table 5-5 */
307 vcpu->arch.exception.pending = true;
308 vcpu->arch.exception.has_error_code = true;
309 vcpu->arch.exception.nr = DF_VECTOR;
310 vcpu->arch.exception.error_code = 0;
311 } else
312 /* replace previous exception with a new one in a hope
313 that instruction re-execution will regenerate lost
314 exception */
315 goto queue;
316 }
317
318 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
319 {
320 kvm_multiple_exception(vcpu, nr, false, 0, false);
321 }
322 EXPORT_SYMBOL_GPL(kvm_queue_exception);
323
324 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
325 {
326 kvm_multiple_exception(vcpu, nr, false, 0, true);
327 }
328 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
329
330 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
331 u32 error_code)
332 {
333 ++vcpu->stat.pf_guest;
334 vcpu->arch.cr2 = addr;
335 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
336 }
337
338 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
339 {
340 vcpu->arch.nmi_pending = 1;
341 }
342 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
343
344 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
345 {
346 kvm_multiple_exception(vcpu, nr, true, error_code, false);
347 }
348 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
349
350 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
351 {
352 kvm_multiple_exception(vcpu, nr, true, error_code, true);
353 }
354 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
355
356 /*
357 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
358 * a #GP and return false.
359 */
360 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
361 {
362 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
363 return true;
364 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
365 return false;
366 }
367 EXPORT_SYMBOL_GPL(kvm_require_cpl);
368
369 /*
370 * Load the pae pdptrs. Return true is they are all valid.
371 */
372 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
373 {
374 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
375 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
376 int i;
377 int ret;
378 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
379
380 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
381 offset * sizeof(u64), sizeof(pdpte));
382 if (ret < 0) {
383 ret = 0;
384 goto out;
385 }
386 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
387 if (is_present_gpte(pdpte[i]) &&
388 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
389 ret = 0;
390 goto out;
391 }
392 }
393 ret = 1;
394
395 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
396 __set_bit(VCPU_EXREG_PDPTR,
397 (unsigned long *)&vcpu->arch.regs_avail);
398 __set_bit(VCPU_EXREG_PDPTR,
399 (unsigned long *)&vcpu->arch.regs_dirty);
400 out:
401
402 return ret;
403 }
404 EXPORT_SYMBOL_GPL(load_pdptrs);
405
406 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
407 {
408 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
409 bool changed = true;
410 int r;
411
412 if (is_long_mode(vcpu) || !is_pae(vcpu))
413 return false;
414
415 if (!test_bit(VCPU_EXREG_PDPTR,
416 (unsigned long *)&vcpu->arch.regs_avail))
417 return true;
418
419 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
420 if (r < 0)
421 goto out;
422 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
423 out:
424
425 return changed;
426 }
427
428 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
429 {
430 unsigned long old_cr0 = kvm_read_cr0(vcpu);
431 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
432 X86_CR0_CD | X86_CR0_NW;
433
434 cr0 |= X86_CR0_ET;
435
436 #ifdef CONFIG_X86_64
437 if (cr0 & 0xffffffff00000000UL)
438 return 1;
439 #endif
440
441 cr0 &= ~CR0_RESERVED_BITS;
442
443 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
444 return 1;
445
446 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
447 return 1;
448
449 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
450 #ifdef CONFIG_X86_64
451 if ((vcpu->arch.efer & EFER_LME)) {
452 int cs_db, cs_l;
453
454 if (!is_pae(vcpu))
455 return 1;
456 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
457 if (cs_l)
458 return 1;
459 } else
460 #endif
461 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3))
462 return 1;
463 }
464
465 kvm_x86_ops->set_cr0(vcpu, cr0);
466
467 if ((cr0 ^ old_cr0) & update_bits)
468 kvm_mmu_reset_context(vcpu);
469 return 0;
470 }
471 EXPORT_SYMBOL_GPL(kvm_set_cr0);
472
473 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
474 {
475 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
476 }
477 EXPORT_SYMBOL_GPL(kvm_lmsw);
478
479 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
480 {
481 u64 xcr0;
482
483 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
484 if (index != XCR_XFEATURE_ENABLED_MASK)
485 return 1;
486 xcr0 = xcr;
487 if (kvm_x86_ops->get_cpl(vcpu) != 0)
488 return 1;
489 if (!(xcr0 & XSTATE_FP))
490 return 1;
491 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
492 return 1;
493 if (xcr0 & ~host_xcr0)
494 return 1;
495 vcpu->arch.xcr0 = xcr0;
496 vcpu->guest_xcr0_loaded = 0;
497 return 0;
498 }
499
500 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
501 {
502 if (__kvm_set_xcr(vcpu, index, xcr)) {
503 kvm_inject_gp(vcpu, 0);
504 return 1;
505 }
506 return 0;
507 }
508 EXPORT_SYMBOL_GPL(kvm_set_xcr);
509
510 static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
511 {
512 struct kvm_cpuid_entry2 *best;
513
514 best = kvm_find_cpuid_entry(vcpu, 1, 0);
515 return best && (best->ecx & bit(X86_FEATURE_XSAVE));
516 }
517
518 static void update_cpuid(struct kvm_vcpu *vcpu)
519 {
520 struct kvm_cpuid_entry2 *best;
521
522 best = kvm_find_cpuid_entry(vcpu, 1, 0);
523 if (!best)
524 return;
525
526 /* Update OSXSAVE bit */
527 if (cpu_has_xsave && best->function == 0x1) {
528 best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
529 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
530 best->ecx |= bit(X86_FEATURE_OSXSAVE);
531 }
532 }
533
534 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
535 {
536 unsigned long old_cr4 = kvm_read_cr4(vcpu);
537 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
538
539 if (cr4 & CR4_RESERVED_BITS)
540 return 1;
541
542 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
543 return 1;
544
545 if (is_long_mode(vcpu)) {
546 if (!(cr4 & X86_CR4_PAE))
547 return 1;
548 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
549 && ((cr4 ^ old_cr4) & pdptr_bits)
550 && !load_pdptrs(vcpu, vcpu->arch.cr3))
551 return 1;
552
553 if (cr4 & X86_CR4_VMXE)
554 return 1;
555
556 kvm_x86_ops->set_cr4(vcpu, cr4);
557
558 if ((cr4 ^ old_cr4) & pdptr_bits)
559 kvm_mmu_reset_context(vcpu);
560
561 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
562 update_cpuid(vcpu);
563
564 return 0;
565 }
566 EXPORT_SYMBOL_GPL(kvm_set_cr4);
567
568 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
569 {
570 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
571 kvm_mmu_sync_roots(vcpu);
572 kvm_mmu_flush_tlb(vcpu);
573 return 0;
574 }
575
576 if (is_long_mode(vcpu)) {
577 if (cr3 & CR3_L_MODE_RESERVED_BITS)
578 return 1;
579 } else {
580 if (is_pae(vcpu)) {
581 if (cr3 & CR3_PAE_RESERVED_BITS)
582 return 1;
583 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3))
584 return 1;
585 }
586 /*
587 * We don't check reserved bits in nonpae mode, because
588 * this isn't enforced, and VMware depends on this.
589 */
590 }
591
592 /*
593 * Does the new cr3 value map to physical memory? (Note, we
594 * catch an invalid cr3 even in real-mode, because it would
595 * cause trouble later on when we turn on paging anyway.)
596 *
597 * A real CPU would silently accept an invalid cr3 and would
598 * attempt to use it - with largely undefined (and often hard
599 * to debug) behavior on the guest side.
600 */
601 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
602 return 1;
603 vcpu->arch.cr3 = cr3;
604 vcpu->arch.mmu.new_cr3(vcpu);
605 return 0;
606 }
607 EXPORT_SYMBOL_GPL(kvm_set_cr3);
608
609 int __kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
610 {
611 if (cr8 & CR8_RESERVED_BITS)
612 return 1;
613 if (irqchip_in_kernel(vcpu->kvm))
614 kvm_lapic_set_tpr(vcpu, cr8);
615 else
616 vcpu->arch.cr8 = cr8;
617 return 0;
618 }
619
620 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
621 {
622 if (__kvm_set_cr8(vcpu, cr8))
623 kvm_inject_gp(vcpu, 0);
624 }
625 EXPORT_SYMBOL_GPL(kvm_set_cr8);
626
627 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
628 {
629 if (irqchip_in_kernel(vcpu->kvm))
630 return kvm_lapic_get_cr8(vcpu);
631 else
632 return vcpu->arch.cr8;
633 }
634 EXPORT_SYMBOL_GPL(kvm_get_cr8);
635
636 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
637 {
638 switch (dr) {
639 case 0 ... 3:
640 vcpu->arch.db[dr] = val;
641 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
642 vcpu->arch.eff_db[dr] = val;
643 break;
644 case 4:
645 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
646 return 1; /* #UD */
647 /* fall through */
648 case 6:
649 if (val & 0xffffffff00000000ULL)
650 return -1; /* #GP */
651 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
652 break;
653 case 5:
654 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
655 return 1; /* #UD */
656 /* fall through */
657 default: /* 7 */
658 if (val & 0xffffffff00000000ULL)
659 return -1; /* #GP */
660 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
661 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
662 kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
663 vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
664 }
665 break;
666 }
667
668 return 0;
669 }
670
671 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
672 {
673 int res;
674
675 res = __kvm_set_dr(vcpu, dr, val);
676 if (res > 0)
677 kvm_queue_exception(vcpu, UD_VECTOR);
678 else if (res < 0)
679 kvm_inject_gp(vcpu, 0);
680
681 return res;
682 }
683 EXPORT_SYMBOL_GPL(kvm_set_dr);
684
685 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
686 {
687 switch (dr) {
688 case 0 ... 3:
689 *val = vcpu->arch.db[dr];
690 break;
691 case 4:
692 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
693 return 1;
694 /* fall through */
695 case 6:
696 *val = vcpu->arch.dr6;
697 break;
698 case 5:
699 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
700 return 1;
701 /* fall through */
702 default: /* 7 */
703 *val = vcpu->arch.dr7;
704 break;
705 }
706
707 return 0;
708 }
709
710 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
711 {
712 if (_kvm_get_dr(vcpu, dr, val)) {
713 kvm_queue_exception(vcpu, UD_VECTOR);
714 return 1;
715 }
716 return 0;
717 }
718 EXPORT_SYMBOL_GPL(kvm_get_dr);
719
720 /*
721 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
722 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
723 *
724 * This list is modified at module load time to reflect the
725 * capabilities of the host cpu. This capabilities test skips MSRs that are
726 * kvm-specific. Those are put in the beginning of the list.
727 */
728
729 #define KVM_SAVE_MSRS_BEGIN 7
730 static u32 msrs_to_save[] = {
731 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
732 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
733 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
734 HV_X64_MSR_APIC_ASSIST_PAGE,
735 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
736 MSR_STAR,
737 #ifdef CONFIG_X86_64
738 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
739 #endif
740 MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
741 };
742
743 static unsigned num_msrs_to_save;
744
745 static u32 emulated_msrs[] = {
746 MSR_IA32_MISC_ENABLE,
747 MSR_IA32_MCG_STATUS,
748 MSR_IA32_MCG_CTL,
749 };
750
751 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
752 {
753 u64 old_efer = vcpu->arch.efer;
754
755 if (efer & efer_reserved_bits)
756 return 1;
757
758 if (is_paging(vcpu)
759 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
760 return 1;
761
762 if (efer & EFER_FFXSR) {
763 struct kvm_cpuid_entry2 *feat;
764
765 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
766 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
767 return 1;
768 }
769
770 if (efer & EFER_SVME) {
771 struct kvm_cpuid_entry2 *feat;
772
773 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
774 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
775 return 1;
776 }
777
778 efer &= ~EFER_LMA;
779 efer |= vcpu->arch.efer & EFER_LMA;
780
781 kvm_x86_ops->set_efer(vcpu, efer);
782
783 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
784 kvm_mmu_reset_context(vcpu);
785
786 /* Update reserved bits */
787 if ((efer ^ old_efer) & EFER_NX)
788 kvm_mmu_reset_context(vcpu);
789
790 return 0;
791 }
792
793 void kvm_enable_efer_bits(u64 mask)
794 {
795 efer_reserved_bits &= ~mask;
796 }
797 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
798
799
800 /*
801 * Writes msr value into into the appropriate "register".
802 * Returns 0 on success, non-0 otherwise.
803 * Assumes vcpu_load() was already called.
804 */
805 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
806 {
807 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
808 }
809
810 /*
811 * Adapt set_msr() to msr_io()'s calling convention
812 */
813 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
814 {
815 return kvm_set_msr(vcpu, index, *data);
816 }
817
818 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
819 {
820 int version;
821 int r;
822 struct pvclock_wall_clock wc;
823 struct timespec boot;
824
825 if (!wall_clock)
826 return;
827
828 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
829 if (r)
830 return;
831
832 if (version & 1)
833 ++version; /* first time write, random junk */
834
835 ++version;
836
837 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
838
839 /*
840 * The guest calculates current wall clock time by adding
841 * system time (updated by kvm_write_guest_time below) to the
842 * wall clock specified here. guest system time equals host
843 * system time for us, thus we must fill in host boot time here.
844 */
845 getboottime(&boot);
846
847 wc.sec = boot.tv_sec;
848 wc.nsec = boot.tv_nsec;
849 wc.version = version;
850
851 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
852
853 version++;
854 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
855 }
856
857 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
858 {
859 uint32_t quotient, remainder;
860
861 /* Don't try to replace with do_div(), this one calculates
862 * "(dividend << 32) / divisor" */
863 __asm__ ( "divl %4"
864 : "=a" (quotient), "=d" (remainder)
865 : "0" (0), "1" (dividend), "r" (divisor) );
866 return quotient;
867 }
868
869 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
870 {
871 uint64_t nsecs = 1000000000LL;
872 int32_t shift = 0;
873 uint64_t tps64;
874 uint32_t tps32;
875
876 tps64 = tsc_khz * 1000LL;
877 while (tps64 > nsecs*2) {
878 tps64 >>= 1;
879 shift--;
880 }
881
882 tps32 = (uint32_t)tps64;
883 while (tps32 <= (uint32_t)nsecs) {
884 tps32 <<= 1;
885 shift++;
886 }
887
888 hv_clock->tsc_shift = shift;
889 hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
890
891 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
892 __func__, tsc_khz, hv_clock->tsc_shift,
893 hv_clock->tsc_to_system_mul);
894 }
895
896 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
897
898 static void kvm_write_guest_time(struct kvm_vcpu *v)
899 {
900 struct timespec ts;
901 unsigned long flags;
902 struct kvm_vcpu_arch *vcpu = &v->arch;
903 void *shared_kaddr;
904 unsigned long this_tsc_khz;
905
906 if ((!vcpu->time_page))
907 return;
908
909 this_tsc_khz = get_cpu_var(cpu_tsc_khz);
910 if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
911 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
912 vcpu->hv_clock_tsc_khz = this_tsc_khz;
913 }
914 put_cpu_var(cpu_tsc_khz);
915
916 /* Keep irq disabled to prevent changes to the clock */
917 local_irq_save(flags);
918 kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
919 ktime_get_ts(&ts);
920 monotonic_to_bootbased(&ts);
921 local_irq_restore(flags);
922
923 /* With all the info we got, fill in the values */
924
925 vcpu->hv_clock.system_time = ts.tv_nsec +
926 (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
927
928 vcpu->hv_clock.flags = 0;
929
930 /*
931 * The interface expects us to write an even number signaling that the
932 * update is finished. Since the guest won't see the intermediate
933 * state, we just increase by 2 at the end.
934 */
935 vcpu->hv_clock.version += 2;
936
937 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
938
939 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
940 sizeof(vcpu->hv_clock));
941
942 kunmap_atomic(shared_kaddr, KM_USER0);
943
944 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
945 }
946
947 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
948 {
949 struct kvm_vcpu_arch *vcpu = &v->arch;
950
951 if (!vcpu->time_page)
952 return 0;
953 kvm_make_request(KVM_REQ_KVMCLOCK_UPDATE, v);
954 return 1;
955 }
956
957 static bool msr_mtrr_valid(unsigned msr)
958 {
959 switch (msr) {
960 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
961 case MSR_MTRRfix64K_00000:
962 case MSR_MTRRfix16K_80000:
963 case MSR_MTRRfix16K_A0000:
964 case MSR_MTRRfix4K_C0000:
965 case MSR_MTRRfix4K_C8000:
966 case MSR_MTRRfix4K_D0000:
967 case MSR_MTRRfix4K_D8000:
968 case MSR_MTRRfix4K_E0000:
969 case MSR_MTRRfix4K_E8000:
970 case MSR_MTRRfix4K_F0000:
971 case MSR_MTRRfix4K_F8000:
972 case MSR_MTRRdefType:
973 case MSR_IA32_CR_PAT:
974 return true;
975 case 0x2f8:
976 return true;
977 }
978 return false;
979 }
980
981 static bool valid_pat_type(unsigned t)
982 {
983 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
984 }
985
986 static bool valid_mtrr_type(unsigned t)
987 {
988 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
989 }
990
991 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
992 {
993 int i;
994
995 if (!msr_mtrr_valid(msr))
996 return false;
997
998 if (msr == MSR_IA32_CR_PAT) {
999 for (i = 0; i < 8; i++)
1000 if (!valid_pat_type((data >> (i * 8)) & 0xff))
1001 return false;
1002 return true;
1003 } else if (msr == MSR_MTRRdefType) {
1004 if (data & ~0xcff)
1005 return false;
1006 return valid_mtrr_type(data & 0xff);
1007 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1008 for (i = 0; i < 8 ; i++)
1009 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1010 return false;
1011 return true;
1012 }
1013
1014 /* variable MTRRs */
1015 return valid_mtrr_type(data & 0xff);
1016 }
1017
1018 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1019 {
1020 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1021
1022 if (!mtrr_valid(vcpu, msr, data))
1023 return 1;
1024
1025 if (msr == MSR_MTRRdefType) {
1026 vcpu->arch.mtrr_state.def_type = data;
1027 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1028 } else if (msr == MSR_MTRRfix64K_00000)
1029 p[0] = data;
1030 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1031 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1032 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1033 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1034 else if (msr == MSR_IA32_CR_PAT)
1035 vcpu->arch.pat = data;
1036 else { /* Variable MTRRs */
1037 int idx, is_mtrr_mask;
1038 u64 *pt;
1039
1040 idx = (msr - 0x200) / 2;
1041 is_mtrr_mask = msr - 0x200 - 2 * idx;
1042 if (!is_mtrr_mask)
1043 pt =
1044 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1045 else
1046 pt =
1047 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1048 *pt = data;
1049 }
1050
1051 kvm_mmu_reset_context(vcpu);
1052 return 0;
1053 }
1054
1055 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1056 {
1057 u64 mcg_cap = vcpu->arch.mcg_cap;
1058 unsigned bank_num = mcg_cap & 0xff;
1059
1060 switch (msr) {
1061 case MSR_IA32_MCG_STATUS:
1062 vcpu->arch.mcg_status = data;
1063 break;
1064 case MSR_IA32_MCG_CTL:
1065 if (!(mcg_cap & MCG_CTL_P))
1066 return 1;
1067 if (data != 0 && data != ~(u64)0)
1068 return -1;
1069 vcpu->arch.mcg_ctl = data;
1070 break;
1071 default:
1072 if (msr >= MSR_IA32_MC0_CTL &&
1073 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1074 u32 offset = msr - MSR_IA32_MC0_CTL;
1075 /* only 0 or all 1s can be written to IA32_MCi_CTL
1076 * some Linux kernels though clear bit 10 in bank 4 to
1077 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1078 * this to avoid an uncatched #GP in the guest
1079 */
1080 if ((offset & 0x3) == 0 &&
1081 data != 0 && (data | (1 << 10)) != ~(u64)0)
1082 return -1;
1083 vcpu->arch.mce_banks[offset] = data;
1084 break;
1085 }
1086 return 1;
1087 }
1088 return 0;
1089 }
1090
1091 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1092 {
1093 struct kvm *kvm = vcpu->kvm;
1094 int lm = is_long_mode(vcpu);
1095 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1096 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1097 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1098 : kvm->arch.xen_hvm_config.blob_size_32;
1099 u32 page_num = data & ~PAGE_MASK;
1100 u64 page_addr = data & PAGE_MASK;
1101 u8 *page;
1102 int r;
1103
1104 r = -E2BIG;
1105 if (page_num >= blob_size)
1106 goto out;
1107 r = -ENOMEM;
1108 page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1109 if (!page)
1110 goto out;
1111 r = -EFAULT;
1112 if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1113 goto out_free;
1114 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1115 goto out_free;
1116 r = 0;
1117 out_free:
1118 kfree(page);
1119 out:
1120 return r;
1121 }
1122
1123 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1124 {
1125 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1126 }
1127
1128 static bool kvm_hv_msr_partition_wide(u32 msr)
1129 {
1130 bool r = false;
1131 switch (msr) {
1132 case HV_X64_MSR_GUEST_OS_ID:
1133 case HV_X64_MSR_HYPERCALL:
1134 r = true;
1135 break;
1136 }
1137
1138 return r;
1139 }
1140
1141 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1142 {
1143 struct kvm *kvm = vcpu->kvm;
1144
1145 switch (msr) {
1146 case HV_X64_MSR_GUEST_OS_ID:
1147 kvm->arch.hv_guest_os_id = data;
1148 /* setting guest os id to zero disables hypercall page */
1149 if (!kvm->arch.hv_guest_os_id)
1150 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1151 break;
1152 case HV_X64_MSR_HYPERCALL: {
1153 u64 gfn;
1154 unsigned long addr;
1155 u8 instructions[4];
1156
1157 /* if guest os id is not set hypercall should remain disabled */
1158 if (!kvm->arch.hv_guest_os_id)
1159 break;
1160 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1161 kvm->arch.hv_hypercall = data;
1162 break;
1163 }
1164 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1165 addr = gfn_to_hva(kvm, gfn);
1166 if (kvm_is_error_hva(addr))
1167 return 1;
1168 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1169 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1170 if (copy_to_user((void __user *)addr, instructions, 4))
1171 return 1;
1172 kvm->arch.hv_hypercall = data;
1173 break;
1174 }
1175 default:
1176 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1177 "data 0x%llx\n", msr, data);
1178 return 1;
1179 }
1180 return 0;
1181 }
1182
1183 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1184 {
1185 switch (msr) {
1186 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1187 unsigned long addr;
1188
1189 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1190 vcpu->arch.hv_vapic = data;
1191 break;
1192 }
1193 addr = gfn_to_hva(vcpu->kvm, data >>
1194 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1195 if (kvm_is_error_hva(addr))
1196 return 1;
1197 if (clear_user((void __user *)addr, PAGE_SIZE))
1198 return 1;
1199 vcpu->arch.hv_vapic = data;
1200 break;
1201 }
1202 case HV_X64_MSR_EOI:
1203 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1204 case HV_X64_MSR_ICR:
1205 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1206 case HV_X64_MSR_TPR:
1207 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1208 default:
1209 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1210 "data 0x%llx\n", msr, data);
1211 return 1;
1212 }
1213
1214 return 0;
1215 }
1216
1217 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1218 {
1219 switch (msr) {
1220 case MSR_EFER:
1221 return set_efer(vcpu, data);
1222 case MSR_K7_HWCR:
1223 data &= ~(u64)0x40; /* ignore flush filter disable */
1224 data &= ~(u64)0x100; /* ignore ignne emulation enable */
1225 if (data != 0) {
1226 pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1227 data);
1228 return 1;
1229 }
1230 break;
1231 case MSR_FAM10H_MMIO_CONF_BASE:
1232 if (data != 0) {
1233 pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1234 "0x%llx\n", data);
1235 return 1;
1236 }
1237 break;
1238 case MSR_AMD64_NB_CFG:
1239 break;
1240 case MSR_IA32_DEBUGCTLMSR:
1241 if (!data) {
1242 /* We support the non-activated case already */
1243 break;
1244 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1245 /* Values other than LBR and BTF are vendor-specific,
1246 thus reserved and should throw a #GP */
1247 return 1;
1248 }
1249 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1250 __func__, data);
1251 break;
1252 case MSR_IA32_UCODE_REV:
1253 case MSR_IA32_UCODE_WRITE:
1254 case MSR_VM_HSAVE_PA:
1255 case MSR_AMD64_PATCH_LOADER:
1256 break;
1257 case 0x200 ... 0x2ff:
1258 return set_msr_mtrr(vcpu, msr, data);
1259 case MSR_IA32_APICBASE:
1260 kvm_set_apic_base(vcpu, data);
1261 break;
1262 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1263 return kvm_x2apic_msr_write(vcpu, msr, data);
1264 case MSR_IA32_MISC_ENABLE:
1265 vcpu->arch.ia32_misc_enable_msr = data;
1266 break;
1267 case MSR_KVM_WALL_CLOCK_NEW:
1268 case MSR_KVM_WALL_CLOCK:
1269 vcpu->kvm->arch.wall_clock = data;
1270 kvm_write_wall_clock(vcpu->kvm, data);
1271 break;
1272 case MSR_KVM_SYSTEM_TIME_NEW:
1273 case MSR_KVM_SYSTEM_TIME: {
1274 if (vcpu->arch.time_page) {
1275 kvm_release_page_dirty(vcpu->arch.time_page);
1276 vcpu->arch.time_page = NULL;
1277 }
1278
1279 vcpu->arch.time = data;
1280
1281 /* we verify if the enable bit is set... */
1282 if (!(data & 1))
1283 break;
1284
1285 /* ...but clean it before doing the actual write */
1286 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1287
1288 vcpu->arch.time_page =
1289 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1290
1291 if (is_error_page(vcpu->arch.time_page)) {
1292 kvm_release_page_clean(vcpu->arch.time_page);
1293 vcpu->arch.time_page = NULL;
1294 }
1295
1296 kvm_request_guest_time_update(vcpu);
1297 break;
1298 }
1299 case MSR_IA32_MCG_CTL:
1300 case MSR_IA32_MCG_STATUS:
1301 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1302 return set_msr_mce(vcpu, msr, data);
1303
1304 /* Performance counters are not protected by a CPUID bit,
1305 * so we should check all of them in the generic path for the sake of
1306 * cross vendor migration.
1307 * Writing a zero into the event select MSRs disables them,
1308 * which we perfectly emulate ;-). Any other value should be at least
1309 * reported, some guests depend on them.
1310 */
1311 case MSR_P6_EVNTSEL0:
1312 case MSR_P6_EVNTSEL1:
1313 case MSR_K7_EVNTSEL0:
1314 case MSR_K7_EVNTSEL1:
1315 case MSR_K7_EVNTSEL2:
1316 case MSR_K7_EVNTSEL3:
1317 if (data != 0)
1318 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1319 "0x%x data 0x%llx\n", msr, data);
1320 break;
1321 /* at least RHEL 4 unconditionally writes to the perfctr registers,
1322 * so we ignore writes to make it happy.
1323 */
1324 case MSR_P6_PERFCTR0:
1325 case MSR_P6_PERFCTR1:
1326 case MSR_K7_PERFCTR0:
1327 case MSR_K7_PERFCTR1:
1328 case MSR_K7_PERFCTR2:
1329 case MSR_K7_PERFCTR3:
1330 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1331 "0x%x data 0x%llx\n", msr, data);
1332 break;
1333 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1334 if (kvm_hv_msr_partition_wide(msr)) {
1335 int r;
1336 mutex_lock(&vcpu->kvm->lock);
1337 r = set_msr_hyperv_pw(vcpu, msr, data);
1338 mutex_unlock(&vcpu->kvm->lock);
1339 return r;
1340 } else
1341 return set_msr_hyperv(vcpu, msr, data);
1342 break;
1343 default:
1344 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1345 return xen_hvm_config(vcpu, data);
1346 if (!ignore_msrs) {
1347 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1348 msr, data);
1349 return 1;
1350 } else {
1351 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1352 msr, data);
1353 break;
1354 }
1355 }
1356 return 0;
1357 }
1358 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1359
1360
1361 /*
1362 * Reads an msr value (of 'msr_index') into 'pdata'.
1363 * Returns 0 on success, non-0 otherwise.
1364 * Assumes vcpu_load() was already called.
1365 */
1366 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1367 {
1368 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1369 }
1370
1371 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1372 {
1373 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1374
1375 if (!msr_mtrr_valid(msr))
1376 return 1;
1377
1378 if (msr == MSR_MTRRdefType)
1379 *pdata = vcpu->arch.mtrr_state.def_type +
1380 (vcpu->arch.mtrr_state.enabled << 10);
1381 else if (msr == MSR_MTRRfix64K_00000)
1382 *pdata = p[0];
1383 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1384 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1385 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1386 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1387 else if (msr == MSR_IA32_CR_PAT)
1388 *pdata = vcpu->arch.pat;
1389 else { /* Variable MTRRs */
1390 int idx, is_mtrr_mask;
1391 u64 *pt;
1392
1393 idx = (msr - 0x200) / 2;
1394 is_mtrr_mask = msr - 0x200 - 2 * idx;
1395 if (!is_mtrr_mask)
1396 pt =
1397 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1398 else
1399 pt =
1400 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1401 *pdata = *pt;
1402 }
1403
1404 return 0;
1405 }
1406
1407 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1408 {
1409 u64 data;
1410 u64 mcg_cap = vcpu->arch.mcg_cap;
1411 unsigned bank_num = mcg_cap & 0xff;
1412
1413 switch (msr) {
1414 case MSR_IA32_P5_MC_ADDR:
1415 case MSR_IA32_P5_MC_TYPE:
1416 data = 0;
1417 break;
1418 case MSR_IA32_MCG_CAP:
1419 data = vcpu->arch.mcg_cap;
1420 break;
1421 case MSR_IA32_MCG_CTL:
1422 if (!(mcg_cap & MCG_CTL_P))
1423 return 1;
1424 data = vcpu->arch.mcg_ctl;
1425 break;
1426 case MSR_IA32_MCG_STATUS:
1427 data = vcpu->arch.mcg_status;
1428 break;
1429 default:
1430 if (msr >= MSR_IA32_MC0_CTL &&
1431 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1432 u32 offset = msr - MSR_IA32_MC0_CTL;
1433 data = vcpu->arch.mce_banks[offset];
1434 break;
1435 }
1436 return 1;
1437 }
1438 *pdata = data;
1439 return 0;
1440 }
1441
1442 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1443 {
1444 u64 data = 0;
1445 struct kvm *kvm = vcpu->kvm;
1446
1447 switch (msr) {
1448 case HV_X64_MSR_GUEST_OS_ID:
1449 data = kvm->arch.hv_guest_os_id;
1450 break;
1451 case HV_X64_MSR_HYPERCALL:
1452 data = kvm->arch.hv_hypercall;
1453 break;
1454 default:
1455 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1456 return 1;
1457 }
1458
1459 *pdata = data;
1460 return 0;
1461 }
1462
1463 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1464 {
1465 u64 data = 0;
1466
1467 switch (msr) {
1468 case HV_X64_MSR_VP_INDEX: {
1469 int r;
1470 struct kvm_vcpu *v;
1471 kvm_for_each_vcpu(r, v, vcpu->kvm)
1472 if (v == vcpu)
1473 data = r;
1474 break;
1475 }
1476 case HV_X64_MSR_EOI:
1477 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1478 case HV_X64_MSR_ICR:
1479 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1480 case HV_X64_MSR_TPR:
1481 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1482 default:
1483 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1484 return 1;
1485 }
1486 *pdata = data;
1487 return 0;
1488 }
1489
1490 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1491 {
1492 u64 data;
1493
1494 switch (msr) {
1495 case MSR_IA32_PLATFORM_ID:
1496 case MSR_IA32_UCODE_REV:
1497 case MSR_IA32_EBL_CR_POWERON:
1498 case MSR_IA32_DEBUGCTLMSR:
1499 case MSR_IA32_LASTBRANCHFROMIP:
1500 case MSR_IA32_LASTBRANCHTOIP:
1501 case MSR_IA32_LASTINTFROMIP:
1502 case MSR_IA32_LASTINTTOIP:
1503 case MSR_K8_SYSCFG:
1504 case MSR_K7_HWCR:
1505 case MSR_VM_HSAVE_PA:
1506 case MSR_P6_PERFCTR0:
1507 case MSR_P6_PERFCTR1:
1508 case MSR_P6_EVNTSEL0:
1509 case MSR_P6_EVNTSEL1:
1510 case MSR_K7_EVNTSEL0:
1511 case MSR_K7_PERFCTR0:
1512 case MSR_K8_INT_PENDING_MSG:
1513 case MSR_AMD64_NB_CFG:
1514 case MSR_FAM10H_MMIO_CONF_BASE:
1515 data = 0;
1516 break;
1517 case MSR_MTRRcap:
1518 data = 0x500 | KVM_NR_VAR_MTRR;
1519 break;
1520 case 0x200 ... 0x2ff:
1521 return get_msr_mtrr(vcpu, msr, pdata);
1522 case 0xcd: /* fsb frequency */
1523 data = 3;
1524 break;
1525 case MSR_IA32_APICBASE:
1526 data = kvm_get_apic_base(vcpu);
1527 break;
1528 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1529 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1530 break;
1531 case MSR_IA32_MISC_ENABLE:
1532 data = vcpu->arch.ia32_misc_enable_msr;
1533 break;
1534 case MSR_IA32_PERF_STATUS:
1535 /* TSC increment by tick */
1536 data = 1000ULL;
1537 /* CPU multiplier */
1538 data |= (((uint64_t)4ULL) << 40);
1539 break;
1540 case MSR_EFER:
1541 data = vcpu->arch.efer;
1542 break;
1543 case MSR_KVM_WALL_CLOCK:
1544 case MSR_KVM_WALL_CLOCK_NEW:
1545 data = vcpu->kvm->arch.wall_clock;
1546 break;
1547 case MSR_KVM_SYSTEM_TIME:
1548 case MSR_KVM_SYSTEM_TIME_NEW:
1549 data = vcpu->arch.time;
1550 break;
1551 case MSR_IA32_P5_MC_ADDR:
1552 case MSR_IA32_P5_MC_TYPE:
1553 case MSR_IA32_MCG_CAP:
1554 case MSR_IA32_MCG_CTL:
1555 case MSR_IA32_MCG_STATUS:
1556 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1557 return get_msr_mce(vcpu, msr, pdata);
1558 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1559 if (kvm_hv_msr_partition_wide(msr)) {
1560 int r;
1561 mutex_lock(&vcpu->kvm->lock);
1562 r = get_msr_hyperv_pw(vcpu, msr, pdata);
1563 mutex_unlock(&vcpu->kvm->lock);
1564 return r;
1565 } else
1566 return get_msr_hyperv(vcpu, msr, pdata);
1567 break;
1568 default:
1569 if (!ignore_msrs) {
1570 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1571 return 1;
1572 } else {
1573 pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1574 data = 0;
1575 }
1576 break;
1577 }
1578 *pdata = data;
1579 return 0;
1580 }
1581 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1582
1583 /*
1584 * Read or write a bunch of msrs. All parameters are kernel addresses.
1585 *
1586 * @return number of msrs set successfully.
1587 */
1588 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1589 struct kvm_msr_entry *entries,
1590 int (*do_msr)(struct kvm_vcpu *vcpu,
1591 unsigned index, u64 *data))
1592 {
1593 int i, idx;
1594
1595 idx = srcu_read_lock(&vcpu->kvm->srcu);
1596 for (i = 0; i < msrs->nmsrs; ++i)
1597 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1598 break;
1599 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1600
1601 return i;
1602 }
1603
1604 /*
1605 * Read or write a bunch of msrs. Parameters are user addresses.
1606 *
1607 * @return number of msrs set successfully.
1608 */
1609 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1610 int (*do_msr)(struct kvm_vcpu *vcpu,
1611 unsigned index, u64 *data),
1612 int writeback)
1613 {
1614 struct kvm_msrs msrs;
1615 struct kvm_msr_entry *entries;
1616 int r, n;
1617 unsigned size;
1618
1619 r = -EFAULT;
1620 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1621 goto out;
1622
1623 r = -E2BIG;
1624 if (msrs.nmsrs >= MAX_IO_MSRS)
1625 goto out;
1626
1627 r = -ENOMEM;
1628 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1629 entries = kmalloc(size, GFP_KERNEL);
1630 if (!entries)
1631 goto out;
1632
1633 r = -EFAULT;
1634 if (copy_from_user(entries, user_msrs->entries, size))
1635 goto out_free;
1636
1637 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1638 if (r < 0)
1639 goto out_free;
1640
1641 r = -EFAULT;
1642 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1643 goto out_free;
1644
1645 r = n;
1646
1647 out_free:
1648 kfree(entries);
1649 out:
1650 return r;
1651 }
1652
1653 int kvm_dev_ioctl_check_extension(long ext)
1654 {
1655 int r;
1656
1657 switch (ext) {
1658 case KVM_CAP_IRQCHIP:
1659 case KVM_CAP_HLT:
1660 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1661 case KVM_CAP_SET_TSS_ADDR:
1662 case KVM_CAP_EXT_CPUID:
1663 case KVM_CAP_CLOCKSOURCE:
1664 case KVM_CAP_PIT:
1665 case KVM_CAP_NOP_IO_DELAY:
1666 case KVM_CAP_MP_STATE:
1667 case KVM_CAP_SYNC_MMU:
1668 case KVM_CAP_REINJECT_CONTROL:
1669 case KVM_CAP_IRQ_INJECT_STATUS:
1670 case KVM_CAP_ASSIGN_DEV_IRQ:
1671 case KVM_CAP_IRQFD:
1672 case KVM_CAP_IOEVENTFD:
1673 case KVM_CAP_PIT2:
1674 case KVM_CAP_PIT_STATE2:
1675 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1676 case KVM_CAP_XEN_HVM:
1677 case KVM_CAP_ADJUST_CLOCK:
1678 case KVM_CAP_VCPU_EVENTS:
1679 case KVM_CAP_HYPERV:
1680 case KVM_CAP_HYPERV_VAPIC:
1681 case KVM_CAP_HYPERV_SPIN:
1682 case KVM_CAP_PCI_SEGMENT:
1683 case KVM_CAP_DEBUGREGS:
1684 case KVM_CAP_X86_ROBUST_SINGLESTEP:
1685 case KVM_CAP_XSAVE:
1686 r = 1;
1687 break;
1688 case KVM_CAP_COALESCED_MMIO:
1689 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1690 break;
1691 case KVM_CAP_VAPIC:
1692 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1693 break;
1694 case KVM_CAP_NR_VCPUS:
1695 r = KVM_MAX_VCPUS;
1696 break;
1697 case KVM_CAP_NR_MEMSLOTS:
1698 r = KVM_MEMORY_SLOTS;
1699 break;
1700 case KVM_CAP_PV_MMU: /* obsolete */
1701 r = 0;
1702 break;
1703 case KVM_CAP_IOMMU:
1704 r = iommu_found();
1705 break;
1706 case KVM_CAP_MCE:
1707 r = KVM_MAX_MCE_BANKS;
1708 break;
1709 case KVM_CAP_XCRS:
1710 r = cpu_has_xsave;
1711 break;
1712 default:
1713 r = 0;
1714 break;
1715 }
1716 return r;
1717
1718 }
1719
1720 long kvm_arch_dev_ioctl(struct file *filp,
1721 unsigned int ioctl, unsigned long arg)
1722 {
1723 void __user *argp = (void __user *)arg;
1724 long r;
1725
1726 switch (ioctl) {
1727 case KVM_GET_MSR_INDEX_LIST: {
1728 struct kvm_msr_list __user *user_msr_list = argp;
1729 struct kvm_msr_list msr_list;
1730 unsigned n;
1731
1732 r = -EFAULT;
1733 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1734 goto out;
1735 n = msr_list.nmsrs;
1736 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1737 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1738 goto out;
1739 r = -E2BIG;
1740 if (n < msr_list.nmsrs)
1741 goto out;
1742 r = -EFAULT;
1743 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1744 num_msrs_to_save * sizeof(u32)))
1745 goto out;
1746 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1747 &emulated_msrs,
1748 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1749 goto out;
1750 r = 0;
1751 break;
1752 }
1753 case KVM_GET_SUPPORTED_CPUID: {
1754 struct kvm_cpuid2 __user *cpuid_arg = argp;
1755 struct kvm_cpuid2 cpuid;
1756
1757 r = -EFAULT;
1758 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1759 goto out;
1760 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1761 cpuid_arg->entries);
1762 if (r)
1763 goto out;
1764
1765 r = -EFAULT;
1766 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1767 goto out;
1768 r = 0;
1769 break;
1770 }
1771 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1772 u64 mce_cap;
1773
1774 mce_cap = KVM_MCE_CAP_SUPPORTED;
1775 r = -EFAULT;
1776 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1777 goto out;
1778 r = 0;
1779 break;
1780 }
1781 default:
1782 r = -EINVAL;
1783 }
1784 out:
1785 return r;
1786 }
1787
1788 static void wbinvd_ipi(void *garbage)
1789 {
1790 wbinvd();
1791 }
1792
1793 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
1794 {
1795 return vcpu->kvm->arch.iommu_domain &&
1796 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
1797 }
1798
1799 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1800 {
1801 /* Address WBINVD may be executed by guest */
1802 if (need_emulate_wbinvd(vcpu)) {
1803 if (kvm_x86_ops->has_wbinvd_exit())
1804 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
1805 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
1806 smp_call_function_single(vcpu->cpu,
1807 wbinvd_ipi, NULL, 1);
1808 }
1809
1810 kvm_x86_ops->vcpu_load(vcpu, cpu);
1811 if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) {
1812 unsigned long khz = cpufreq_quick_get(cpu);
1813 if (!khz)
1814 khz = tsc_khz;
1815 per_cpu(cpu_tsc_khz, cpu) = khz;
1816 }
1817 kvm_request_guest_time_update(vcpu);
1818 }
1819
1820 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1821 {
1822 kvm_x86_ops->vcpu_put(vcpu);
1823 kvm_put_guest_fpu(vcpu);
1824 }
1825
1826 static int is_efer_nx(void)
1827 {
1828 unsigned long long efer = 0;
1829
1830 rdmsrl_safe(MSR_EFER, &efer);
1831 return efer & EFER_NX;
1832 }
1833
1834 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1835 {
1836 int i;
1837 struct kvm_cpuid_entry2 *e, *entry;
1838
1839 entry = NULL;
1840 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1841 e = &vcpu->arch.cpuid_entries[i];
1842 if (e->function == 0x80000001) {
1843 entry = e;
1844 break;
1845 }
1846 }
1847 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1848 entry->edx &= ~(1 << 20);
1849 printk(KERN_INFO "kvm: guest NX capability removed\n");
1850 }
1851 }
1852
1853 /* when an old userspace process fills a new kernel module */
1854 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1855 struct kvm_cpuid *cpuid,
1856 struct kvm_cpuid_entry __user *entries)
1857 {
1858 int r, i;
1859 struct kvm_cpuid_entry *cpuid_entries;
1860
1861 r = -E2BIG;
1862 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1863 goto out;
1864 r = -ENOMEM;
1865 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1866 if (!cpuid_entries)
1867 goto out;
1868 r = -EFAULT;
1869 if (copy_from_user(cpuid_entries, entries,
1870 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1871 goto out_free;
1872 for (i = 0; i < cpuid->nent; i++) {
1873 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1874 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1875 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1876 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1877 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1878 vcpu->arch.cpuid_entries[i].index = 0;
1879 vcpu->arch.cpuid_entries[i].flags = 0;
1880 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1881 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1882 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1883 }
1884 vcpu->arch.cpuid_nent = cpuid->nent;
1885 cpuid_fix_nx_cap(vcpu);
1886 r = 0;
1887 kvm_apic_set_version(vcpu);
1888 kvm_x86_ops->cpuid_update(vcpu);
1889 update_cpuid(vcpu);
1890
1891 out_free:
1892 vfree(cpuid_entries);
1893 out:
1894 return r;
1895 }
1896
1897 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1898 struct kvm_cpuid2 *cpuid,
1899 struct kvm_cpuid_entry2 __user *entries)
1900 {
1901 int r;
1902
1903 r = -E2BIG;
1904 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1905 goto out;
1906 r = -EFAULT;
1907 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1908 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1909 goto out;
1910 vcpu->arch.cpuid_nent = cpuid->nent;
1911 kvm_apic_set_version(vcpu);
1912 kvm_x86_ops->cpuid_update(vcpu);
1913 update_cpuid(vcpu);
1914 return 0;
1915
1916 out:
1917 return r;
1918 }
1919
1920 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1921 struct kvm_cpuid2 *cpuid,
1922 struct kvm_cpuid_entry2 __user *entries)
1923 {
1924 int r;
1925
1926 r = -E2BIG;
1927 if (cpuid->nent < vcpu->arch.cpuid_nent)
1928 goto out;
1929 r = -EFAULT;
1930 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1931 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1932 goto out;
1933 return 0;
1934
1935 out:
1936 cpuid->nent = vcpu->arch.cpuid_nent;
1937 return r;
1938 }
1939
1940 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1941 u32 index)
1942 {
1943 entry->function = function;
1944 entry->index = index;
1945 cpuid_count(entry->function, entry->index,
1946 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1947 entry->flags = 0;
1948 }
1949
1950 #define F(x) bit(X86_FEATURE_##x)
1951
1952 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1953 u32 index, int *nent, int maxnent)
1954 {
1955 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1956 #ifdef CONFIG_X86_64
1957 unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
1958 ? F(GBPAGES) : 0;
1959 unsigned f_lm = F(LM);
1960 #else
1961 unsigned f_gbpages = 0;
1962 unsigned f_lm = 0;
1963 #endif
1964 unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
1965
1966 /* cpuid 1.edx */
1967 const u32 kvm_supported_word0_x86_features =
1968 F(FPU) | F(VME) | F(DE) | F(PSE) |
1969 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1970 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1971 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1972 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1973 0 /* Reserved, DS, ACPI */ | F(MMX) |
1974 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1975 0 /* HTT, TM, Reserved, PBE */;
1976 /* cpuid 0x80000001.edx */
1977 const u32 kvm_supported_word1_x86_features =
1978 F(FPU) | F(VME) | F(DE) | F(PSE) |
1979 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1980 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1981 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1982 F(PAT) | F(PSE36) | 0 /* Reserved */ |
1983 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1984 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
1985 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1986 /* cpuid 1.ecx */
1987 const u32 kvm_supported_word4_x86_features =
1988 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
1989 0 /* DS-CPL, VMX, SMX, EST */ |
1990 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1991 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
1992 0 /* Reserved, DCA */ | F(XMM4_1) |
1993 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
1994 0 /* Reserved, AES */ | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX);
1995 /* cpuid 0x80000001.ecx */
1996 const u32 kvm_supported_word6_x86_features =
1997 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1998 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
1999 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
2000 0 /* SKINIT */ | 0 /* WDT */;
2001
2002 /* all calls to cpuid_count() should be made on the same cpu */
2003 get_cpu();
2004 do_cpuid_1_ent(entry, function, index);
2005 ++*nent;
2006
2007 switch (function) {
2008 case 0:
2009 entry->eax = min(entry->eax, (u32)0xd);
2010 break;
2011 case 1:
2012 entry->edx &= kvm_supported_word0_x86_features;
2013 entry->ecx &= kvm_supported_word4_x86_features;
2014 /* we support x2apic emulation even if host does not support
2015 * it since we emulate x2apic in software */
2016 entry->ecx |= F(X2APIC);
2017 break;
2018 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
2019 * may return different values. This forces us to get_cpu() before
2020 * issuing the first command, and also to emulate this annoying behavior
2021 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
2022 case 2: {
2023 int t, times = entry->eax & 0xff;
2024
2025 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2026 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2027 for (t = 1; t < times && *nent < maxnent; ++t) {
2028 do_cpuid_1_ent(&entry[t], function, 0);
2029 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2030 ++*nent;
2031 }
2032 break;
2033 }
2034 /* function 4 and 0xb have additional index. */
2035 case 4: {
2036 int i, cache_type;
2037
2038 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2039 /* read more entries until cache_type is zero */
2040 for (i = 1; *nent < maxnent; ++i) {
2041 cache_type = entry[i - 1].eax & 0x1f;
2042 if (!cache_type)
2043 break;
2044 do_cpuid_1_ent(&entry[i], function, i);
2045 entry[i].flags |=
2046 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2047 ++*nent;
2048 }
2049 break;
2050 }
2051 case 0xb: {
2052 int i, level_type;
2053
2054 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2055 /* read more entries until level_type is zero */
2056 for (i = 1; *nent < maxnent; ++i) {
2057 level_type = entry[i - 1].ecx & 0xff00;
2058 if (!level_type)
2059 break;
2060 do_cpuid_1_ent(&entry[i], function, i);
2061 entry[i].flags |=
2062 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2063 ++*nent;
2064 }
2065 break;
2066 }
2067 case 0xd: {
2068 int i;
2069
2070 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2071 for (i = 1; *nent < maxnent; ++i) {
2072 if (entry[i - 1].eax == 0 && i != 2)
2073 break;
2074 do_cpuid_1_ent(&entry[i], function, i);
2075 entry[i].flags |=
2076 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2077 ++*nent;
2078 }
2079 break;
2080 }
2081 case KVM_CPUID_SIGNATURE: {
2082 char signature[12] = "KVMKVMKVM\0\0";
2083 u32 *sigptr = (u32 *)signature;
2084 entry->eax = 0;
2085 entry->ebx = sigptr[0];
2086 entry->ecx = sigptr[1];
2087 entry->edx = sigptr[2];
2088 break;
2089 }
2090 case KVM_CPUID_FEATURES:
2091 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
2092 (1 << KVM_FEATURE_NOP_IO_DELAY) |
2093 (1 << KVM_FEATURE_CLOCKSOURCE2) |
2094 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
2095 entry->ebx = 0;
2096 entry->ecx = 0;
2097 entry->edx = 0;
2098 break;
2099 case 0x80000000:
2100 entry->eax = min(entry->eax, 0x8000001a);
2101 break;
2102 case 0x80000001:
2103 entry->edx &= kvm_supported_word1_x86_features;
2104 entry->ecx &= kvm_supported_word6_x86_features;
2105 break;
2106 }
2107
2108 kvm_x86_ops->set_supported_cpuid(function, entry);
2109
2110 put_cpu();
2111 }
2112
2113 #undef F
2114
2115 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
2116 struct kvm_cpuid_entry2 __user *entries)
2117 {
2118 struct kvm_cpuid_entry2 *cpuid_entries;
2119 int limit, nent = 0, r = -E2BIG;
2120 u32 func;
2121
2122 if (cpuid->nent < 1)
2123 goto out;
2124 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2125 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
2126 r = -ENOMEM;
2127 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
2128 if (!cpuid_entries)
2129 goto out;
2130
2131 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
2132 limit = cpuid_entries[0].eax;
2133 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
2134 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2135 &nent, cpuid->nent);
2136 r = -E2BIG;
2137 if (nent >= cpuid->nent)
2138 goto out_free;
2139
2140 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
2141 limit = cpuid_entries[nent - 1].eax;
2142 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
2143 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2144 &nent, cpuid->nent);
2145
2146
2147
2148 r = -E2BIG;
2149 if (nent >= cpuid->nent)
2150 goto out_free;
2151
2152 do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
2153 cpuid->nent);
2154
2155 r = -E2BIG;
2156 if (nent >= cpuid->nent)
2157 goto out_free;
2158
2159 do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
2160 cpuid->nent);
2161
2162 r = -E2BIG;
2163 if (nent >= cpuid->nent)
2164 goto out_free;
2165
2166 r = -EFAULT;
2167 if (copy_to_user(entries, cpuid_entries,
2168 nent * sizeof(struct kvm_cpuid_entry2)))
2169 goto out_free;
2170 cpuid->nent = nent;
2171 r = 0;
2172
2173 out_free:
2174 vfree(cpuid_entries);
2175 out:
2176 return r;
2177 }
2178
2179 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2180 struct kvm_lapic_state *s)
2181 {
2182 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2183
2184 return 0;
2185 }
2186
2187 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2188 struct kvm_lapic_state *s)
2189 {
2190 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2191 kvm_apic_post_state_restore(vcpu);
2192 update_cr8_intercept(vcpu);
2193
2194 return 0;
2195 }
2196
2197 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2198 struct kvm_interrupt *irq)
2199 {
2200 if (irq->irq < 0 || irq->irq >= 256)
2201 return -EINVAL;
2202 if (irqchip_in_kernel(vcpu->kvm))
2203 return -ENXIO;
2204
2205 kvm_queue_interrupt(vcpu, irq->irq, false);
2206
2207 return 0;
2208 }
2209
2210 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2211 {
2212 kvm_inject_nmi(vcpu);
2213
2214 return 0;
2215 }
2216
2217 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2218 struct kvm_tpr_access_ctl *tac)
2219 {
2220 if (tac->flags)
2221 return -EINVAL;
2222 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2223 return 0;
2224 }
2225
2226 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2227 u64 mcg_cap)
2228 {
2229 int r;
2230 unsigned bank_num = mcg_cap & 0xff, bank;
2231
2232 r = -EINVAL;
2233 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2234 goto out;
2235 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2236 goto out;
2237 r = 0;
2238 vcpu->arch.mcg_cap = mcg_cap;
2239 /* Init IA32_MCG_CTL to all 1s */
2240 if (mcg_cap & MCG_CTL_P)
2241 vcpu->arch.mcg_ctl = ~(u64)0;
2242 /* Init IA32_MCi_CTL to all 1s */
2243 for (bank = 0; bank < bank_num; bank++)
2244 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2245 out:
2246 return r;
2247 }
2248
2249 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2250 struct kvm_x86_mce *mce)
2251 {
2252 u64 mcg_cap = vcpu->arch.mcg_cap;
2253 unsigned bank_num = mcg_cap & 0xff;
2254 u64 *banks = vcpu->arch.mce_banks;
2255
2256 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2257 return -EINVAL;
2258 /*
2259 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2260 * reporting is disabled
2261 */
2262 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2263 vcpu->arch.mcg_ctl != ~(u64)0)
2264 return 0;
2265 banks += 4 * mce->bank;
2266 /*
2267 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2268 * reporting is disabled for the bank
2269 */
2270 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2271 return 0;
2272 if (mce->status & MCI_STATUS_UC) {
2273 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2274 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2275 printk(KERN_DEBUG "kvm: set_mce: "
2276 "injects mce exception while "
2277 "previous one is in progress!\n");
2278 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2279 return 0;
2280 }
2281 if (banks[1] & MCI_STATUS_VAL)
2282 mce->status |= MCI_STATUS_OVER;
2283 banks[2] = mce->addr;
2284 banks[3] = mce->misc;
2285 vcpu->arch.mcg_status = mce->mcg_status;
2286 banks[1] = mce->status;
2287 kvm_queue_exception(vcpu, MC_VECTOR);
2288 } else if (!(banks[1] & MCI_STATUS_VAL)
2289 || !(banks[1] & MCI_STATUS_UC)) {
2290 if (banks[1] & MCI_STATUS_VAL)
2291 mce->status |= MCI_STATUS_OVER;
2292 banks[2] = mce->addr;
2293 banks[3] = mce->misc;
2294 banks[1] = mce->status;
2295 } else
2296 banks[1] |= MCI_STATUS_OVER;
2297 return 0;
2298 }
2299
2300 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2301 struct kvm_vcpu_events *events)
2302 {
2303 events->exception.injected =
2304 vcpu->arch.exception.pending &&
2305 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2306 events->exception.nr = vcpu->arch.exception.nr;
2307 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2308 events->exception.error_code = vcpu->arch.exception.error_code;
2309
2310 events->interrupt.injected =
2311 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2312 events->interrupt.nr = vcpu->arch.interrupt.nr;
2313 events->interrupt.soft = 0;
2314 events->interrupt.shadow =
2315 kvm_x86_ops->get_interrupt_shadow(vcpu,
2316 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2317
2318 events->nmi.injected = vcpu->arch.nmi_injected;
2319 events->nmi.pending = vcpu->arch.nmi_pending;
2320 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2321
2322 events->sipi_vector = vcpu->arch.sipi_vector;
2323
2324 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2325 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2326 | KVM_VCPUEVENT_VALID_SHADOW);
2327 }
2328
2329 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2330 struct kvm_vcpu_events *events)
2331 {
2332 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2333 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2334 | KVM_VCPUEVENT_VALID_SHADOW))
2335 return -EINVAL;
2336
2337 vcpu->arch.exception.pending = events->exception.injected;
2338 vcpu->arch.exception.nr = events->exception.nr;
2339 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2340 vcpu->arch.exception.error_code = events->exception.error_code;
2341
2342 vcpu->arch.interrupt.pending = events->interrupt.injected;
2343 vcpu->arch.interrupt.nr = events->interrupt.nr;
2344 vcpu->arch.interrupt.soft = events->interrupt.soft;
2345 if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
2346 kvm_pic_clear_isr_ack(vcpu->kvm);
2347 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2348 kvm_x86_ops->set_interrupt_shadow(vcpu,
2349 events->interrupt.shadow);
2350
2351 vcpu->arch.nmi_injected = events->nmi.injected;
2352 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2353 vcpu->arch.nmi_pending = events->nmi.pending;
2354 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2355
2356 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2357 vcpu->arch.sipi_vector = events->sipi_vector;
2358
2359 return 0;
2360 }
2361
2362 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2363 struct kvm_debugregs *dbgregs)
2364 {
2365 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2366 dbgregs->dr6 = vcpu->arch.dr6;
2367 dbgregs->dr7 = vcpu->arch.dr7;
2368 dbgregs->flags = 0;
2369 }
2370
2371 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2372 struct kvm_debugregs *dbgregs)
2373 {
2374 if (dbgregs->flags)
2375 return -EINVAL;
2376
2377 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2378 vcpu->arch.dr6 = dbgregs->dr6;
2379 vcpu->arch.dr7 = dbgregs->dr7;
2380
2381 return 0;
2382 }
2383
2384 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2385 struct kvm_xsave *guest_xsave)
2386 {
2387 if (cpu_has_xsave)
2388 memcpy(guest_xsave->region,
2389 &vcpu->arch.guest_fpu.state->xsave,
2390 xstate_size);
2391 else {
2392 memcpy(guest_xsave->region,
2393 &vcpu->arch.guest_fpu.state->fxsave,
2394 sizeof(struct i387_fxsave_struct));
2395 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2396 XSTATE_FPSSE;
2397 }
2398 }
2399
2400 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2401 struct kvm_xsave *guest_xsave)
2402 {
2403 u64 xstate_bv =
2404 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2405
2406 if (cpu_has_xsave)
2407 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2408 guest_xsave->region, xstate_size);
2409 else {
2410 if (xstate_bv & ~XSTATE_FPSSE)
2411 return -EINVAL;
2412 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2413 guest_xsave->region, sizeof(struct i387_fxsave_struct));
2414 }
2415 return 0;
2416 }
2417
2418 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2419 struct kvm_xcrs *guest_xcrs)
2420 {
2421 if (!cpu_has_xsave) {
2422 guest_xcrs->nr_xcrs = 0;
2423 return;
2424 }
2425
2426 guest_xcrs->nr_xcrs = 1;
2427 guest_xcrs->flags = 0;
2428 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2429 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2430 }
2431
2432 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2433 struct kvm_xcrs *guest_xcrs)
2434 {
2435 int i, r = 0;
2436
2437 if (!cpu_has_xsave)
2438 return -EINVAL;
2439
2440 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2441 return -EINVAL;
2442
2443 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2444 /* Only support XCR0 currently */
2445 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2446 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2447 guest_xcrs->xcrs[0].value);
2448 break;
2449 }
2450 if (r)
2451 r = -EINVAL;
2452 return r;
2453 }
2454
2455 long kvm_arch_vcpu_ioctl(struct file *filp,
2456 unsigned int ioctl, unsigned long arg)
2457 {
2458 struct kvm_vcpu *vcpu = filp->private_data;
2459 void __user *argp = (void __user *)arg;
2460 int r;
2461 union {
2462 struct kvm_lapic_state *lapic;
2463 struct kvm_xsave *xsave;
2464 struct kvm_xcrs *xcrs;
2465 void *buffer;
2466 } u;
2467
2468 u.buffer = NULL;
2469 switch (ioctl) {
2470 case KVM_GET_LAPIC: {
2471 r = -EINVAL;
2472 if (!vcpu->arch.apic)
2473 goto out;
2474 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2475
2476 r = -ENOMEM;
2477 if (!u.lapic)
2478 goto out;
2479 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2480 if (r)
2481 goto out;
2482 r = -EFAULT;
2483 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2484 goto out;
2485 r = 0;
2486 break;
2487 }
2488 case KVM_SET_LAPIC: {
2489 r = -EINVAL;
2490 if (!vcpu->arch.apic)
2491 goto out;
2492 u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2493 r = -ENOMEM;
2494 if (!u.lapic)
2495 goto out;
2496 r = -EFAULT;
2497 if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
2498 goto out;
2499 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2500 if (r)
2501 goto out;
2502 r = 0;
2503 break;
2504 }
2505 case KVM_INTERRUPT: {
2506 struct kvm_interrupt irq;
2507
2508 r = -EFAULT;
2509 if (copy_from_user(&irq, argp, sizeof irq))
2510 goto out;
2511 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2512 if (r)
2513 goto out;
2514 r = 0;
2515 break;
2516 }
2517 case KVM_NMI: {
2518 r = kvm_vcpu_ioctl_nmi(vcpu);
2519 if (r)
2520 goto out;
2521 r = 0;
2522 break;
2523 }
2524 case KVM_SET_CPUID: {
2525 struct kvm_cpuid __user *cpuid_arg = argp;
2526 struct kvm_cpuid cpuid;
2527
2528 r = -EFAULT;
2529 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2530 goto out;
2531 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2532 if (r)
2533 goto out;
2534 break;
2535 }
2536 case KVM_SET_CPUID2: {
2537 struct kvm_cpuid2 __user *cpuid_arg = argp;
2538 struct kvm_cpuid2 cpuid;
2539
2540 r = -EFAULT;
2541 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2542 goto out;
2543 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2544 cpuid_arg->entries);
2545 if (r)
2546 goto out;
2547 break;
2548 }
2549 case KVM_GET_CPUID2: {
2550 struct kvm_cpuid2 __user *cpuid_arg = argp;
2551 struct kvm_cpuid2 cpuid;
2552
2553 r = -EFAULT;
2554 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2555 goto out;
2556 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2557 cpuid_arg->entries);
2558 if (r)
2559 goto out;
2560 r = -EFAULT;
2561 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2562 goto out;
2563 r = 0;
2564 break;
2565 }
2566 case KVM_GET_MSRS:
2567 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2568 break;
2569 case KVM_SET_MSRS:
2570 r = msr_io(vcpu, argp, do_set_msr, 0);
2571 break;
2572 case KVM_TPR_ACCESS_REPORTING: {
2573 struct kvm_tpr_access_ctl tac;
2574
2575 r = -EFAULT;
2576 if (copy_from_user(&tac, argp, sizeof tac))
2577 goto out;
2578 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2579 if (r)
2580 goto out;
2581 r = -EFAULT;
2582 if (copy_to_user(argp, &tac, sizeof tac))
2583 goto out;
2584 r = 0;
2585 break;
2586 };
2587 case KVM_SET_VAPIC_ADDR: {
2588 struct kvm_vapic_addr va;
2589
2590 r = -EINVAL;
2591 if (!irqchip_in_kernel(vcpu->kvm))
2592 goto out;
2593 r = -EFAULT;
2594 if (copy_from_user(&va, argp, sizeof va))
2595 goto out;
2596 r = 0;
2597 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2598 break;
2599 }
2600 case KVM_X86_SETUP_MCE: {
2601 u64 mcg_cap;
2602
2603 r = -EFAULT;
2604 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2605 goto out;
2606 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2607 break;
2608 }
2609 case KVM_X86_SET_MCE: {
2610 struct kvm_x86_mce mce;
2611
2612 r = -EFAULT;
2613 if (copy_from_user(&mce, argp, sizeof mce))
2614 goto out;
2615 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2616 break;
2617 }
2618 case KVM_GET_VCPU_EVENTS: {
2619 struct kvm_vcpu_events events;
2620
2621 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2622
2623 r = -EFAULT;
2624 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2625 break;
2626 r = 0;
2627 break;
2628 }
2629 case KVM_SET_VCPU_EVENTS: {
2630 struct kvm_vcpu_events events;
2631
2632 r = -EFAULT;
2633 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2634 break;
2635
2636 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2637 break;
2638 }
2639 case KVM_GET_DEBUGREGS: {
2640 struct kvm_debugregs dbgregs;
2641
2642 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2643
2644 r = -EFAULT;
2645 if (copy_to_user(argp, &dbgregs,
2646 sizeof(struct kvm_debugregs)))
2647 break;
2648 r = 0;
2649 break;
2650 }
2651 case KVM_SET_DEBUGREGS: {
2652 struct kvm_debugregs dbgregs;
2653
2654 r = -EFAULT;
2655 if (copy_from_user(&dbgregs, argp,
2656 sizeof(struct kvm_debugregs)))
2657 break;
2658
2659 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2660 break;
2661 }
2662 case KVM_GET_XSAVE: {
2663 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2664 r = -ENOMEM;
2665 if (!u.xsave)
2666 break;
2667
2668 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2669
2670 r = -EFAULT;
2671 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2672 break;
2673 r = 0;
2674 break;
2675 }
2676 case KVM_SET_XSAVE: {
2677 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2678 r = -ENOMEM;
2679 if (!u.xsave)
2680 break;
2681
2682 r = -EFAULT;
2683 if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
2684 break;
2685
2686 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2687 break;
2688 }
2689 case KVM_GET_XCRS: {
2690 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2691 r = -ENOMEM;
2692 if (!u.xcrs)
2693 break;
2694
2695 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
2696
2697 r = -EFAULT;
2698 if (copy_to_user(argp, u.xcrs,
2699 sizeof(struct kvm_xcrs)))
2700 break;
2701 r = 0;
2702 break;
2703 }
2704 case KVM_SET_XCRS: {
2705 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2706 r = -ENOMEM;
2707 if (!u.xcrs)
2708 break;
2709
2710 r = -EFAULT;
2711 if (copy_from_user(u.xcrs, argp,
2712 sizeof(struct kvm_xcrs)))
2713 break;
2714
2715 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
2716 break;
2717 }
2718 default:
2719 r = -EINVAL;
2720 }
2721 out:
2722 kfree(u.buffer);
2723 return r;
2724 }
2725
2726 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2727 {
2728 int ret;
2729
2730 if (addr > (unsigned int)(-3 * PAGE_SIZE))
2731 return -1;
2732 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2733 return ret;
2734 }
2735
2736 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2737 u64 ident_addr)
2738 {
2739 kvm->arch.ept_identity_map_addr = ident_addr;
2740 return 0;
2741 }
2742
2743 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2744 u32 kvm_nr_mmu_pages)
2745 {
2746 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2747 return -EINVAL;
2748
2749 mutex_lock(&kvm->slots_lock);
2750 spin_lock(&kvm->mmu_lock);
2751
2752 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2753 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2754
2755 spin_unlock(&kvm->mmu_lock);
2756 mutex_unlock(&kvm->slots_lock);
2757 return 0;
2758 }
2759
2760 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2761 {
2762 return kvm->arch.n_max_mmu_pages;
2763 }
2764
2765 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2766 {
2767 int r;
2768
2769 r = 0;
2770 switch (chip->chip_id) {
2771 case KVM_IRQCHIP_PIC_MASTER:
2772 memcpy(&chip->chip.pic,
2773 &pic_irqchip(kvm)->pics[0],
2774 sizeof(struct kvm_pic_state));
2775 break;
2776 case KVM_IRQCHIP_PIC_SLAVE:
2777 memcpy(&chip->chip.pic,
2778 &pic_irqchip(kvm)->pics[1],
2779 sizeof(struct kvm_pic_state));
2780 break;
2781 case KVM_IRQCHIP_IOAPIC:
2782 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2783 break;
2784 default:
2785 r = -EINVAL;
2786 break;
2787 }
2788 return r;
2789 }
2790
2791 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2792 {
2793 int r;
2794
2795 r = 0;
2796 switch (chip->chip_id) {
2797 case KVM_IRQCHIP_PIC_MASTER:
2798 raw_spin_lock(&pic_irqchip(kvm)->lock);
2799 memcpy(&pic_irqchip(kvm)->pics[0],
2800 &chip->chip.pic,
2801 sizeof(struct kvm_pic_state));
2802 raw_spin_unlock(&pic_irqchip(kvm)->lock);
2803 break;
2804 case KVM_IRQCHIP_PIC_SLAVE:
2805 raw_spin_lock(&pic_irqchip(kvm)->lock);
2806 memcpy(&pic_irqchip(kvm)->pics[1],
2807 &chip->chip.pic,
2808 sizeof(struct kvm_pic_state));
2809 raw_spin_unlock(&pic_irqchip(kvm)->lock);
2810 break;
2811 case KVM_IRQCHIP_IOAPIC:
2812 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
2813 break;
2814 default:
2815 r = -EINVAL;
2816 break;
2817 }
2818 kvm_pic_update_irq(pic_irqchip(kvm));
2819 return r;
2820 }
2821
2822 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2823 {
2824 int r = 0;
2825
2826 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2827 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2828 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2829 return r;
2830 }
2831
2832 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2833 {
2834 int r = 0;
2835
2836 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2837 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2838 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2839 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2840 return r;
2841 }
2842
2843 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2844 {
2845 int r = 0;
2846
2847 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2848 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2849 sizeof(ps->channels));
2850 ps->flags = kvm->arch.vpit->pit_state.flags;
2851 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2852 return r;
2853 }
2854
2855 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2856 {
2857 int r = 0, start = 0;
2858 u32 prev_legacy, cur_legacy;
2859 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2860 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2861 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2862 if (!prev_legacy && cur_legacy)
2863 start = 1;
2864 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2865 sizeof(kvm->arch.vpit->pit_state.channels));
2866 kvm->arch.vpit->pit_state.flags = ps->flags;
2867 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2868 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2869 return r;
2870 }
2871
2872 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2873 struct kvm_reinject_control *control)
2874 {
2875 if (!kvm->arch.vpit)
2876 return -ENXIO;
2877 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2878 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2879 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2880 return 0;
2881 }
2882
2883 /*
2884 * Get (and clear) the dirty memory log for a memory slot.
2885 */
2886 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2887 struct kvm_dirty_log *log)
2888 {
2889 int r, i;
2890 struct kvm_memory_slot *memslot;
2891 unsigned long n;
2892 unsigned long is_dirty = 0;
2893
2894 mutex_lock(&kvm->slots_lock);
2895
2896 r = -EINVAL;
2897 if (log->slot >= KVM_MEMORY_SLOTS)
2898 goto out;
2899
2900 memslot = &kvm->memslots->memslots[log->slot];
2901 r = -ENOENT;
2902 if (!memslot->dirty_bitmap)
2903 goto out;
2904
2905 n = kvm_dirty_bitmap_bytes(memslot);
2906
2907 for (i = 0; !is_dirty && i < n/sizeof(long); i++)
2908 is_dirty = memslot->dirty_bitmap[i];
2909
2910 /* If nothing is dirty, don't bother messing with page tables. */
2911 if (is_dirty) {
2912 struct kvm_memslots *slots, *old_slots;
2913 unsigned long *dirty_bitmap;
2914
2915 spin_lock(&kvm->mmu_lock);
2916 kvm_mmu_slot_remove_write_access(kvm, log->slot);
2917 spin_unlock(&kvm->mmu_lock);
2918
2919 r = -ENOMEM;
2920 dirty_bitmap = vmalloc(n);
2921 if (!dirty_bitmap)
2922 goto out;
2923 memset(dirty_bitmap, 0, n);
2924
2925 r = -ENOMEM;
2926 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
2927 if (!slots) {
2928 vfree(dirty_bitmap);
2929 goto out;
2930 }
2931 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
2932 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
2933
2934 old_slots = kvm->memslots;
2935 rcu_assign_pointer(kvm->memslots, slots);
2936 synchronize_srcu_expedited(&kvm->srcu);
2937 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
2938 kfree(old_slots);
2939
2940 r = -EFAULT;
2941 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n)) {
2942 vfree(dirty_bitmap);
2943 goto out;
2944 }
2945 vfree(dirty_bitmap);
2946 } else {
2947 r = -EFAULT;
2948 if (clear_user(log->dirty_bitmap, n))
2949 goto out;
2950 }
2951
2952 r = 0;
2953 out:
2954 mutex_unlock(&kvm->slots_lock);
2955 return r;
2956 }
2957
2958 long kvm_arch_vm_ioctl(struct file *filp,
2959 unsigned int ioctl, unsigned long arg)
2960 {
2961 struct kvm *kvm = filp->private_data;
2962 void __user *argp = (void __user *)arg;
2963 int r = -ENOTTY;
2964 /*
2965 * This union makes it completely explicit to gcc-3.x
2966 * that these two variables' stack usage should be
2967 * combined, not added together.
2968 */
2969 union {
2970 struct kvm_pit_state ps;
2971 struct kvm_pit_state2 ps2;
2972 struct kvm_pit_config pit_config;
2973 } u;
2974
2975 switch (ioctl) {
2976 case KVM_SET_TSS_ADDR:
2977 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
2978 if (r < 0)
2979 goto out;
2980 break;
2981 case KVM_SET_IDENTITY_MAP_ADDR: {
2982 u64 ident_addr;
2983
2984 r = -EFAULT;
2985 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
2986 goto out;
2987 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
2988 if (r < 0)
2989 goto out;
2990 break;
2991 }
2992 case KVM_SET_NR_MMU_PAGES:
2993 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
2994 if (r)
2995 goto out;
2996 break;
2997 case KVM_GET_NR_MMU_PAGES:
2998 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
2999 break;
3000 case KVM_CREATE_IRQCHIP: {
3001 struct kvm_pic *vpic;
3002
3003 mutex_lock(&kvm->lock);
3004 r = -EEXIST;
3005 if (kvm->arch.vpic)
3006 goto create_irqchip_unlock;
3007 r = -ENOMEM;
3008 vpic = kvm_create_pic(kvm);
3009 if (vpic) {
3010 r = kvm_ioapic_init(kvm);
3011 if (r) {
3012 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3013 &vpic->dev);
3014 kfree(vpic);
3015 goto create_irqchip_unlock;
3016 }
3017 } else
3018 goto create_irqchip_unlock;
3019 smp_wmb();
3020 kvm->arch.vpic = vpic;
3021 smp_wmb();
3022 r = kvm_setup_default_irq_routing(kvm);
3023 if (r) {
3024 mutex_lock(&kvm->irq_lock);
3025 kvm_ioapic_destroy(kvm);
3026 kvm_destroy_pic(kvm);
3027 mutex_unlock(&kvm->irq_lock);
3028 }
3029 create_irqchip_unlock:
3030 mutex_unlock(&kvm->lock);
3031 break;
3032 }
3033 case KVM_CREATE_PIT:
3034 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3035 goto create_pit;
3036 case KVM_CREATE_PIT2:
3037 r = -EFAULT;
3038 if (copy_from_user(&u.pit_config, argp,
3039 sizeof(struct kvm_pit_config)))
3040 goto out;
3041 create_pit:
3042 mutex_lock(&kvm->slots_lock);
3043 r = -EEXIST;
3044 if (kvm->arch.vpit)
3045 goto create_pit_unlock;
3046 r = -ENOMEM;
3047 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3048 if (kvm->arch.vpit)
3049 r = 0;
3050 create_pit_unlock:
3051 mutex_unlock(&kvm->slots_lock);
3052 break;
3053 case KVM_IRQ_LINE_STATUS:
3054 case KVM_IRQ_LINE: {
3055 struct kvm_irq_level irq_event;
3056
3057 r = -EFAULT;
3058 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3059 goto out;
3060 r = -ENXIO;
3061 if (irqchip_in_kernel(kvm)) {
3062 __s32 status;
3063 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3064 irq_event.irq, irq_event.level);
3065 if (ioctl == KVM_IRQ_LINE_STATUS) {
3066 r = -EFAULT;
3067 irq_event.status = status;
3068 if (copy_to_user(argp, &irq_event,
3069 sizeof irq_event))
3070 goto out;
3071 }
3072 r = 0;
3073 }
3074 break;
3075 }
3076 case KVM_GET_IRQCHIP: {
3077 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3078 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3079
3080 r = -ENOMEM;
3081 if (!chip)
3082 goto out;
3083 r = -EFAULT;
3084 if (copy_from_user(chip, argp, sizeof *chip))
3085 goto get_irqchip_out;
3086 r = -ENXIO;
3087 if (!irqchip_in_kernel(kvm))
3088 goto get_irqchip_out;
3089 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3090 if (r)
3091 goto get_irqchip_out;
3092 r = -EFAULT;
3093 if (copy_to_user(argp, chip, sizeof *chip))
3094 goto get_irqchip_out;
3095 r = 0;
3096 get_irqchip_out:
3097 kfree(chip);
3098 if (r)
3099 goto out;
3100 break;
3101 }
3102 case KVM_SET_IRQCHIP: {
3103 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3104 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3105
3106 r = -ENOMEM;
3107 if (!chip)
3108 goto out;
3109 r = -EFAULT;
3110 if (copy_from_user(chip, argp, sizeof *chip))
3111 goto set_irqchip_out;
3112 r = -ENXIO;
3113 if (!irqchip_in_kernel(kvm))
3114 goto set_irqchip_out;
3115 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3116 if (r)
3117 goto set_irqchip_out;
3118 r = 0;
3119 set_irqchip_out:
3120 kfree(chip);
3121 if (r)
3122 goto out;
3123 break;
3124 }
3125 case KVM_GET_PIT: {
3126 r = -EFAULT;
3127 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3128 goto out;
3129 r = -ENXIO;
3130 if (!kvm->arch.vpit)
3131 goto out;
3132 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3133 if (r)
3134 goto out;
3135 r = -EFAULT;
3136 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3137 goto out;
3138 r = 0;
3139 break;
3140 }
3141 case KVM_SET_PIT: {
3142 r = -EFAULT;
3143 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3144 goto out;
3145 r = -ENXIO;
3146 if (!kvm->arch.vpit)
3147 goto out;
3148 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3149 if (r)
3150 goto out;
3151 r = 0;
3152 break;
3153 }
3154 case KVM_GET_PIT2: {
3155 r = -ENXIO;
3156 if (!kvm->arch.vpit)
3157 goto out;
3158 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3159 if (r)
3160 goto out;
3161 r = -EFAULT;
3162 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3163 goto out;
3164 r = 0;
3165 break;
3166 }
3167 case KVM_SET_PIT2: {
3168 r = -EFAULT;
3169 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3170 goto out;
3171 r = -ENXIO;
3172 if (!kvm->arch.vpit)
3173 goto out;
3174 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3175 if (r)
3176 goto out;
3177 r = 0;
3178 break;
3179 }
3180 case KVM_REINJECT_CONTROL: {
3181 struct kvm_reinject_control control;
3182 r = -EFAULT;
3183 if (copy_from_user(&control, argp, sizeof(control)))
3184 goto out;
3185 r = kvm_vm_ioctl_reinject(kvm, &control);
3186 if (r)
3187 goto out;
3188 r = 0;
3189 break;
3190 }
3191 case KVM_XEN_HVM_CONFIG: {
3192 r = -EFAULT;
3193 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3194 sizeof(struct kvm_xen_hvm_config)))
3195 goto out;
3196 r = -EINVAL;
3197 if (kvm->arch.xen_hvm_config.flags)
3198 goto out;
3199 r = 0;
3200 break;
3201 }
3202 case KVM_SET_CLOCK: {
3203 struct timespec now;
3204 struct kvm_clock_data user_ns;
3205 u64 now_ns;
3206 s64 delta;
3207
3208 r = -EFAULT;
3209 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3210 goto out;
3211
3212 r = -EINVAL;
3213 if (user_ns.flags)
3214 goto out;
3215
3216 r = 0;
3217 ktime_get_ts(&now);
3218 now_ns = timespec_to_ns(&now);
3219 delta = user_ns.clock - now_ns;
3220 kvm->arch.kvmclock_offset = delta;
3221 break;
3222 }
3223 case KVM_GET_CLOCK: {
3224 struct timespec now;
3225 struct kvm_clock_data user_ns;
3226 u64 now_ns;
3227
3228 ktime_get_ts(&now);
3229 now_ns = timespec_to_ns(&now);
3230 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3231 user_ns.flags = 0;
3232
3233 r = -EFAULT;
3234 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3235 goto out;
3236 r = 0;
3237 break;
3238 }
3239
3240 default:
3241 ;
3242 }
3243 out:
3244 return r;
3245 }
3246
3247 static void kvm_init_msr_list(void)
3248 {
3249 u32 dummy[2];
3250 unsigned i, j;
3251
3252 /* skip the first msrs in the list. KVM-specific */
3253 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3254 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3255 continue;
3256 if (j < i)
3257 msrs_to_save[j] = msrs_to_save[i];
3258 j++;
3259 }
3260 num_msrs_to_save = j;
3261 }
3262
3263 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3264 const void *v)
3265 {
3266 if (vcpu->arch.apic &&
3267 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
3268 return 0;
3269
3270 return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3271 }
3272
3273 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3274 {
3275 if (vcpu->arch.apic &&
3276 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
3277 return 0;
3278
3279 return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3280 }
3281
3282 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3283 struct kvm_segment *var, int seg)
3284 {
3285 kvm_x86_ops->set_segment(vcpu, var, seg);
3286 }
3287
3288 void kvm_get_segment(struct kvm_vcpu *vcpu,
3289 struct kvm_segment *var, int seg)
3290 {
3291 kvm_x86_ops->get_segment(vcpu, var, seg);
3292 }
3293
3294 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3295 {
3296 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3297 return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3298 }
3299
3300 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3301 {
3302 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3303 access |= PFERR_FETCH_MASK;
3304 return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3305 }
3306
3307 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3308 {
3309 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3310 access |= PFERR_WRITE_MASK;
3311 return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3312 }
3313
3314 /* uses this to access any guest's mapped memory without checking CPL */
3315 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3316 {
3317 return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, 0, error);
3318 }
3319
3320 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3321 struct kvm_vcpu *vcpu, u32 access,
3322 u32 *error)
3323 {
3324 void *data = val;
3325 int r = X86EMUL_CONTINUE;
3326
3327 while (bytes) {
3328 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr, access, error);
3329 unsigned offset = addr & (PAGE_SIZE-1);
3330 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3331 int ret;
3332
3333 if (gpa == UNMAPPED_GVA) {
3334 r = X86EMUL_PROPAGATE_FAULT;
3335 goto out;
3336 }
3337 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3338 if (ret < 0) {
3339 r = X86EMUL_IO_NEEDED;
3340 goto out;
3341 }
3342
3343 bytes -= toread;
3344 data += toread;
3345 addr += toread;
3346 }
3347 out:
3348 return r;
3349 }
3350
3351 /* used for instruction fetching */
3352 static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
3353 struct kvm_vcpu *vcpu, u32 *error)
3354 {
3355 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3356 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3357 access | PFERR_FETCH_MASK, error);
3358 }
3359
3360 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
3361 struct kvm_vcpu *vcpu, u32 *error)
3362 {
3363 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3364 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3365 error);
3366 }
3367
3368 static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
3369 struct kvm_vcpu *vcpu, u32 *error)
3370 {
3371 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
3372 }
3373
3374 static int kvm_write_guest_virt_system(gva_t addr, void *val,
3375 unsigned int bytes,
3376 struct kvm_vcpu *vcpu,
3377 u32 *error)
3378 {
3379 void *data = val;
3380 int r = X86EMUL_CONTINUE;
3381
3382 while (bytes) {
3383 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr,
3384 PFERR_WRITE_MASK, error);
3385 unsigned offset = addr & (PAGE_SIZE-1);
3386 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3387 int ret;
3388
3389 if (gpa == UNMAPPED_GVA) {
3390 r = X86EMUL_PROPAGATE_FAULT;
3391 goto out;
3392 }
3393 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3394 if (ret < 0) {
3395 r = X86EMUL_IO_NEEDED;
3396 goto out;
3397 }
3398
3399 bytes -= towrite;
3400 data += towrite;
3401 addr += towrite;
3402 }
3403 out:
3404 return r;
3405 }
3406
3407 static int emulator_read_emulated(unsigned long addr,
3408 void *val,
3409 unsigned int bytes,
3410 unsigned int *error_code,
3411 struct kvm_vcpu *vcpu)
3412 {
3413 gpa_t gpa;
3414
3415 if (vcpu->mmio_read_completed) {
3416 memcpy(val, vcpu->mmio_data, bytes);
3417 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3418 vcpu->mmio_phys_addr, *(u64 *)val);
3419 vcpu->mmio_read_completed = 0;
3420 return X86EMUL_CONTINUE;
3421 }
3422
3423 gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, error_code);
3424
3425 if (gpa == UNMAPPED_GVA)
3426 return X86EMUL_PROPAGATE_FAULT;
3427
3428 /* For APIC access vmexit */
3429 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3430 goto mmio;
3431
3432 if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
3433 == X86EMUL_CONTINUE)
3434 return X86EMUL_CONTINUE;
3435
3436 mmio:
3437 /*
3438 * Is this MMIO handled locally?
3439 */
3440 if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
3441 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
3442 return X86EMUL_CONTINUE;
3443 }
3444
3445 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3446
3447 vcpu->mmio_needed = 1;
3448 vcpu->run->exit_reason = KVM_EXIT_MMIO;
3449 vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3450 vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3451 vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
3452
3453 return X86EMUL_IO_NEEDED;
3454 }
3455
3456 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3457 const void *val, int bytes)
3458 {
3459 int ret;
3460
3461 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3462 if (ret < 0)
3463 return 0;
3464 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3465 return 1;
3466 }
3467
3468 static int emulator_write_emulated_onepage(unsigned long addr,
3469 const void *val,
3470 unsigned int bytes,
3471 unsigned int *error_code,
3472 struct kvm_vcpu *vcpu)
3473 {
3474 gpa_t gpa;
3475
3476 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, error_code);
3477
3478 if (gpa == UNMAPPED_GVA)
3479 return X86EMUL_PROPAGATE_FAULT;
3480
3481 /* For APIC access vmexit */
3482 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3483 goto mmio;
3484
3485 if (emulator_write_phys(vcpu, gpa, val, bytes))
3486 return X86EMUL_CONTINUE;
3487
3488 mmio:
3489 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3490 /*
3491 * Is this MMIO handled locally?
3492 */
3493 if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
3494 return X86EMUL_CONTINUE;
3495
3496 vcpu->mmio_needed = 1;
3497 vcpu->run->exit_reason = KVM_EXIT_MMIO;
3498 vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3499 vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3500 vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
3501 memcpy(vcpu->run->mmio.data, val, bytes);
3502
3503 return X86EMUL_CONTINUE;
3504 }
3505
3506 int emulator_write_emulated(unsigned long addr,
3507 const void *val,
3508 unsigned int bytes,
3509 unsigned int *error_code,
3510 struct kvm_vcpu *vcpu)
3511 {
3512 /* Crossing a page boundary? */
3513 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3514 int rc, now;
3515
3516 now = -addr & ~PAGE_MASK;
3517 rc = emulator_write_emulated_onepage(addr, val, now, error_code,
3518 vcpu);
3519 if (rc != X86EMUL_CONTINUE)
3520 return rc;
3521 addr += now;
3522 val += now;
3523 bytes -= now;
3524 }
3525 return emulator_write_emulated_onepage(addr, val, bytes, error_code,
3526 vcpu);
3527 }
3528
3529 #define CMPXCHG_TYPE(t, ptr, old, new) \
3530 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3531
3532 #ifdef CONFIG_X86_64
3533 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3534 #else
3535 # define CMPXCHG64(ptr, old, new) \
3536 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3537 #endif
3538
3539 static int emulator_cmpxchg_emulated(unsigned long addr,
3540 const void *old,
3541 const void *new,
3542 unsigned int bytes,
3543 unsigned int *error_code,
3544 struct kvm_vcpu *vcpu)
3545 {
3546 gpa_t gpa;
3547 struct page *page;
3548 char *kaddr;
3549 bool exchanged;
3550
3551 /* guests cmpxchg8b have to be emulated atomically */
3552 if (bytes > 8 || (bytes & (bytes - 1)))
3553 goto emul_write;
3554
3555 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3556
3557 if (gpa == UNMAPPED_GVA ||
3558 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3559 goto emul_write;
3560
3561 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3562 goto emul_write;
3563
3564 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3565 if (is_error_page(page)) {
3566 kvm_release_page_clean(page);
3567 goto emul_write;
3568 }
3569
3570 kaddr = kmap_atomic(page, KM_USER0);
3571 kaddr += offset_in_page(gpa);
3572 switch (bytes) {
3573 case 1:
3574 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3575 break;
3576 case 2:
3577 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3578 break;
3579 case 4:
3580 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3581 break;
3582 case 8:
3583 exchanged = CMPXCHG64(kaddr, old, new);
3584 break;
3585 default:
3586 BUG();
3587 }
3588 kunmap_atomic(kaddr, KM_USER0);
3589 kvm_release_page_dirty(page);
3590
3591 if (!exchanged)
3592 return X86EMUL_CMPXCHG_FAILED;
3593
3594 kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
3595
3596 return X86EMUL_CONTINUE;
3597
3598 emul_write:
3599 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3600
3601 return emulator_write_emulated(addr, new, bytes, error_code, vcpu);
3602 }
3603
3604 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3605 {
3606 /* TODO: String I/O for in kernel device */
3607 int r;
3608
3609 if (vcpu->arch.pio.in)
3610 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3611 vcpu->arch.pio.size, pd);
3612 else
3613 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3614 vcpu->arch.pio.port, vcpu->arch.pio.size,
3615 pd);
3616 return r;
3617 }
3618
3619
3620 static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
3621 unsigned int count, struct kvm_vcpu *vcpu)
3622 {
3623 if (vcpu->arch.pio.count)
3624 goto data_avail;
3625
3626 trace_kvm_pio(1, port, size, 1);
3627
3628 vcpu->arch.pio.port = port;
3629 vcpu->arch.pio.in = 1;
3630 vcpu->arch.pio.count = count;
3631 vcpu->arch.pio.size = size;
3632
3633 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3634 data_avail:
3635 memcpy(val, vcpu->arch.pio_data, size * count);
3636 vcpu->arch.pio.count = 0;
3637 return 1;
3638 }
3639
3640 vcpu->run->exit_reason = KVM_EXIT_IO;
3641 vcpu->run->io.direction = KVM_EXIT_IO_IN;
3642 vcpu->run->io.size = size;
3643 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3644 vcpu->run->io.count = count;
3645 vcpu->run->io.port = port;
3646
3647 return 0;
3648 }
3649
3650 static int emulator_pio_out_emulated(int size, unsigned short port,
3651 const void *val, unsigned int count,
3652 struct kvm_vcpu *vcpu)
3653 {
3654 trace_kvm_pio(0, port, size, 1);
3655
3656 vcpu->arch.pio.port = port;
3657 vcpu->arch.pio.in = 0;
3658 vcpu->arch.pio.count = count;
3659 vcpu->arch.pio.size = size;
3660
3661 memcpy(vcpu->arch.pio_data, val, size * count);
3662
3663 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3664 vcpu->arch.pio.count = 0;
3665 return 1;
3666 }
3667
3668 vcpu->run->exit_reason = KVM_EXIT_IO;
3669 vcpu->run->io.direction = KVM_EXIT_IO_OUT;
3670 vcpu->run->io.size = size;
3671 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3672 vcpu->run->io.count = count;
3673 vcpu->run->io.port = port;
3674
3675 return 0;
3676 }
3677
3678 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
3679 {
3680 return kvm_x86_ops->get_segment_base(vcpu, seg);
3681 }
3682
3683 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
3684 {
3685 kvm_mmu_invlpg(vcpu, address);
3686 return X86EMUL_CONTINUE;
3687 }
3688
3689 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
3690 {
3691 if (!need_emulate_wbinvd(vcpu))
3692 return X86EMUL_CONTINUE;
3693
3694 if (kvm_x86_ops->has_wbinvd_exit()) {
3695 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
3696 wbinvd_ipi, NULL, 1);
3697 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
3698 }
3699 wbinvd();
3700 return X86EMUL_CONTINUE;
3701 }
3702 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
3703
3704 int emulate_clts(struct kvm_vcpu *vcpu)
3705 {
3706 kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3707 kvm_x86_ops->fpu_activate(vcpu);
3708 return X86EMUL_CONTINUE;
3709 }
3710
3711 int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
3712 {
3713 return _kvm_get_dr(vcpu, dr, dest);
3714 }
3715
3716 int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
3717 {
3718
3719 return __kvm_set_dr(vcpu, dr, value);
3720 }
3721
3722 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3723 {
3724 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3725 }
3726
3727 static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
3728 {
3729 unsigned long value;
3730
3731 switch (cr) {
3732 case 0:
3733 value = kvm_read_cr0(vcpu);
3734 break;
3735 case 2:
3736 value = vcpu->arch.cr2;
3737 break;
3738 case 3:
3739 value = vcpu->arch.cr3;
3740 break;
3741 case 4:
3742 value = kvm_read_cr4(vcpu);
3743 break;
3744 case 8:
3745 value = kvm_get_cr8(vcpu);
3746 break;
3747 default:
3748 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3749 return 0;
3750 }
3751
3752 return value;
3753 }
3754
3755 static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
3756 {
3757 int res = 0;
3758
3759 switch (cr) {
3760 case 0:
3761 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
3762 break;
3763 case 2:
3764 vcpu->arch.cr2 = val;
3765 break;
3766 case 3:
3767 res = kvm_set_cr3(vcpu, val);
3768 break;
3769 case 4:
3770 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
3771 break;
3772 case 8:
3773 res = __kvm_set_cr8(vcpu, val & 0xfUL);
3774 break;
3775 default:
3776 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3777 res = -1;
3778 }
3779
3780 return res;
3781 }
3782
3783 static int emulator_get_cpl(struct kvm_vcpu *vcpu)
3784 {
3785 return kvm_x86_ops->get_cpl(vcpu);
3786 }
3787
3788 static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
3789 {
3790 kvm_x86_ops->get_gdt(vcpu, dt);
3791 }
3792
3793 static void emulator_get_idt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
3794 {
3795 kvm_x86_ops->get_idt(vcpu, dt);
3796 }
3797
3798 static unsigned long emulator_get_cached_segment_base(int seg,
3799 struct kvm_vcpu *vcpu)
3800 {
3801 return get_segment_base(vcpu, seg);
3802 }
3803
3804 static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
3805 struct kvm_vcpu *vcpu)
3806 {
3807 struct kvm_segment var;
3808
3809 kvm_get_segment(vcpu, &var, seg);
3810
3811 if (var.unusable)
3812 return false;
3813
3814 if (var.g)
3815 var.limit >>= 12;
3816 set_desc_limit(desc, var.limit);
3817 set_desc_base(desc, (unsigned long)var.base);
3818 desc->type = var.type;
3819 desc->s = var.s;
3820 desc->dpl = var.dpl;
3821 desc->p = var.present;
3822 desc->avl = var.avl;
3823 desc->l = var.l;
3824 desc->d = var.db;
3825 desc->g = var.g;
3826
3827 return true;
3828 }
3829
3830 static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
3831 struct kvm_vcpu *vcpu)
3832 {
3833 struct kvm_segment var;
3834
3835 /* needed to preserve selector */
3836 kvm_get_segment(vcpu, &var, seg);
3837
3838 var.base = get_desc_base(desc);
3839 var.limit = get_desc_limit(desc);
3840 if (desc->g)
3841 var.limit = (var.limit << 12) | 0xfff;
3842 var.type = desc->type;
3843 var.present = desc->p;
3844 var.dpl = desc->dpl;
3845 var.db = desc->d;
3846 var.s = desc->s;
3847 var.l = desc->l;
3848 var.g = desc->g;
3849 var.avl = desc->avl;
3850 var.present = desc->p;
3851 var.unusable = !var.present;
3852 var.padding = 0;
3853
3854 kvm_set_segment(vcpu, &var, seg);
3855 return;
3856 }
3857
3858 static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
3859 {
3860 struct kvm_segment kvm_seg;
3861
3862 kvm_get_segment(vcpu, &kvm_seg, seg);
3863 return kvm_seg.selector;
3864 }
3865
3866 static void emulator_set_segment_selector(u16 sel, int seg,
3867 struct kvm_vcpu *vcpu)
3868 {
3869 struct kvm_segment kvm_seg;
3870
3871 kvm_get_segment(vcpu, &kvm_seg, seg);
3872 kvm_seg.selector = sel;
3873 kvm_set_segment(vcpu, &kvm_seg, seg);
3874 }
3875
3876 static struct x86_emulate_ops emulate_ops = {
3877 .read_std = kvm_read_guest_virt_system,
3878 .write_std = kvm_write_guest_virt_system,
3879 .fetch = kvm_fetch_guest_virt,
3880 .read_emulated = emulator_read_emulated,
3881 .write_emulated = emulator_write_emulated,
3882 .cmpxchg_emulated = emulator_cmpxchg_emulated,
3883 .pio_in_emulated = emulator_pio_in_emulated,
3884 .pio_out_emulated = emulator_pio_out_emulated,
3885 .get_cached_descriptor = emulator_get_cached_descriptor,
3886 .set_cached_descriptor = emulator_set_cached_descriptor,
3887 .get_segment_selector = emulator_get_segment_selector,
3888 .set_segment_selector = emulator_set_segment_selector,
3889 .get_cached_segment_base = emulator_get_cached_segment_base,
3890 .get_gdt = emulator_get_gdt,
3891 .get_idt = emulator_get_idt,
3892 .get_cr = emulator_get_cr,
3893 .set_cr = emulator_set_cr,
3894 .cpl = emulator_get_cpl,
3895 .get_dr = emulator_get_dr,
3896 .set_dr = emulator_set_dr,
3897 .set_msr = kvm_set_msr,
3898 .get_msr = kvm_get_msr,
3899 };
3900
3901 static void cache_all_regs(struct kvm_vcpu *vcpu)
3902 {
3903 kvm_register_read(vcpu, VCPU_REGS_RAX);
3904 kvm_register_read(vcpu, VCPU_REGS_RSP);
3905 kvm_register_read(vcpu, VCPU_REGS_RIP);
3906 vcpu->arch.regs_dirty = ~0;
3907 }
3908
3909 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
3910 {
3911 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
3912 /*
3913 * an sti; sti; sequence only disable interrupts for the first
3914 * instruction. So, if the last instruction, be it emulated or
3915 * not, left the system with the INT_STI flag enabled, it
3916 * means that the last instruction is an sti. We should not
3917 * leave the flag on in this case. The same goes for mov ss
3918 */
3919 if (!(int_shadow & mask))
3920 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
3921 }
3922
3923 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
3924 {
3925 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
3926 if (ctxt->exception == PF_VECTOR)
3927 kvm_inject_page_fault(vcpu, ctxt->cr2, ctxt->error_code);
3928 else if (ctxt->error_code_valid)
3929 kvm_queue_exception_e(vcpu, ctxt->exception, ctxt->error_code);
3930 else
3931 kvm_queue_exception(vcpu, ctxt->exception);
3932 }
3933
3934 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
3935 {
3936 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
3937 int cs_db, cs_l;
3938
3939 cache_all_regs(vcpu);
3940
3941 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
3942
3943 vcpu->arch.emulate_ctxt.vcpu = vcpu;
3944 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
3945 vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
3946 vcpu->arch.emulate_ctxt.mode =
3947 (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
3948 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
3949 ? X86EMUL_MODE_VM86 : cs_l
3950 ? X86EMUL_MODE_PROT64 : cs_db
3951 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
3952 memset(c, 0, sizeof(struct decode_cache));
3953 memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
3954 }
3955
3956 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
3957 {
3958 ++vcpu->stat.insn_emulation_fail;
3959 trace_kvm_emulate_insn_failed(vcpu);
3960 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3961 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3962 vcpu->run->internal.ndata = 0;
3963 kvm_queue_exception(vcpu, UD_VECTOR);
3964 return EMULATE_FAIL;
3965 }
3966
3967 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
3968 {
3969 gpa_t gpa;
3970
3971 if (tdp_enabled)
3972 return false;
3973
3974 /*
3975 * if emulation was due to access to shadowed page table
3976 * and it failed try to unshadow page and re-entetr the
3977 * guest to let CPU execute the instruction.
3978 */
3979 if (kvm_mmu_unprotect_page_virt(vcpu, gva))
3980 return true;
3981
3982 gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
3983
3984 if (gpa == UNMAPPED_GVA)
3985 return true; /* let cpu generate fault */
3986
3987 if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
3988 return true;
3989
3990 return false;
3991 }
3992
3993 int emulate_instruction(struct kvm_vcpu *vcpu,
3994 unsigned long cr2,
3995 u16 error_code,
3996 int emulation_type)
3997 {
3998 int r;
3999 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4000
4001 kvm_clear_exception_queue(vcpu);
4002 vcpu->arch.mmio_fault_cr2 = cr2;
4003 /*
4004 * TODO: fix emulate.c to use guest_read/write_register
4005 * instead of direct ->regs accesses, can save hundred cycles
4006 * on Intel for instructions that don't read/change RSP, for
4007 * for example.
4008 */
4009 cache_all_regs(vcpu);
4010
4011 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4012 init_emulate_ctxt(vcpu);
4013 vcpu->arch.emulate_ctxt.interruptibility = 0;
4014 vcpu->arch.emulate_ctxt.exception = -1;
4015 vcpu->arch.emulate_ctxt.perm_ok = false;
4016
4017 r = x86_decode_insn(&vcpu->arch.emulate_ctxt);
4018 trace_kvm_emulate_insn_start(vcpu);
4019
4020 /* Only allow emulation of specific instructions on #UD
4021 * (namely VMMCALL, sysenter, sysexit, syscall)*/
4022 if (emulation_type & EMULTYPE_TRAP_UD) {
4023 if (!c->twobyte)
4024 return EMULATE_FAIL;
4025 switch (c->b) {
4026 case 0x01: /* VMMCALL */
4027 if (c->modrm_mod != 3 || c->modrm_rm != 1)
4028 return EMULATE_FAIL;
4029 break;
4030 case 0x34: /* sysenter */
4031 case 0x35: /* sysexit */
4032 if (c->modrm_mod != 0 || c->modrm_rm != 0)
4033 return EMULATE_FAIL;
4034 break;
4035 case 0x05: /* syscall */
4036 if (c->modrm_mod != 0 || c->modrm_rm != 0)
4037 return EMULATE_FAIL;
4038 break;
4039 default:
4040 return EMULATE_FAIL;
4041 }
4042
4043 if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
4044 return EMULATE_FAIL;
4045 }
4046
4047 ++vcpu->stat.insn_emulation;
4048 if (r) {
4049 if (reexecute_instruction(vcpu, cr2))
4050 return EMULATE_DONE;
4051 if (emulation_type & EMULTYPE_SKIP)
4052 return EMULATE_FAIL;
4053 return handle_emulation_failure(vcpu);
4054 }
4055 }
4056
4057 if (emulation_type & EMULTYPE_SKIP) {
4058 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
4059 return EMULATE_DONE;
4060 }
4061
4062 /* this is needed for vmware backdor interface to work since it
4063 changes registers values during IO operation */
4064 memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4065
4066 restart:
4067 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt);
4068
4069 if (r) { /* emulation failed */
4070 if (reexecute_instruction(vcpu, cr2))
4071 return EMULATE_DONE;
4072
4073 return handle_emulation_failure(vcpu);
4074 }
4075
4076 r = EMULATE_DONE;
4077
4078 if (vcpu->arch.emulate_ctxt.exception >= 0)
4079 inject_emulated_exception(vcpu);
4080 else if (vcpu->arch.pio.count) {
4081 if (!vcpu->arch.pio.in)
4082 vcpu->arch.pio.count = 0;
4083 r = EMULATE_DO_MMIO;
4084 } else if (vcpu->mmio_needed) {
4085 if (vcpu->mmio_is_write)
4086 vcpu->mmio_needed = 0;
4087 r = EMULATE_DO_MMIO;
4088 } else if (vcpu->arch.emulate_ctxt.restart)
4089 goto restart;
4090
4091 toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility);
4092 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4093 memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4094 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4095
4096 return r;
4097 }
4098 EXPORT_SYMBOL_GPL(emulate_instruction);
4099
4100 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4101 {
4102 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4103 int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
4104 /* do not return to emulator after return from userspace */
4105 vcpu->arch.pio.count = 0;
4106 return ret;
4107 }
4108 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4109
4110 static void bounce_off(void *info)
4111 {
4112 /* nothing */
4113 }
4114
4115 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4116 void *data)
4117 {
4118 struct cpufreq_freqs *freq = data;
4119 struct kvm *kvm;
4120 struct kvm_vcpu *vcpu;
4121 int i, send_ipi = 0;
4122
4123 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4124 return 0;
4125 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4126 return 0;
4127 per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
4128
4129 spin_lock(&kvm_lock);
4130 list_for_each_entry(kvm, &vm_list, vm_list) {
4131 kvm_for_each_vcpu(i, vcpu, kvm) {
4132 if (vcpu->cpu != freq->cpu)
4133 continue;
4134 if (!kvm_request_guest_time_update(vcpu))
4135 continue;
4136 if (vcpu->cpu != smp_processor_id())
4137 send_ipi++;
4138 }
4139 }
4140 spin_unlock(&kvm_lock);
4141
4142 if (freq->old < freq->new && send_ipi) {
4143 /*
4144 * We upscale the frequency. Must make the guest
4145 * doesn't see old kvmclock values while running with
4146 * the new frequency, otherwise we risk the guest sees
4147 * time go backwards.
4148 *
4149 * In case we update the frequency for another cpu
4150 * (which might be in guest context) send an interrupt
4151 * to kick the cpu out of guest context. Next time
4152 * guest context is entered kvmclock will be updated,
4153 * so the guest will not see stale values.
4154 */
4155 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
4156 }
4157 return 0;
4158 }
4159
4160 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4161 .notifier_call = kvmclock_cpufreq_notifier
4162 };
4163
4164 static void kvm_timer_init(void)
4165 {
4166 int cpu;
4167
4168 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4169 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4170 CPUFREQ_TRANSITION_NOTIFIER);
4171 for_each_online_cpu(cpu) {
4172 unsigned long khz = cpufreq_get(cpu);
4173 if (!khz)
4174 khz = tsc_khz;
4175 per_cpu(cpu_tsc_khz, cpu) = khz;
4176 }
4177 } else {
4178 for_each_possible_cpu(cpu)
4179 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
4180 }
4181 }
4182
4183 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4184
4185 static int kvm_is_in_guest(void)
4186 {
4187 return percpu_read(current_vcpu) != NULL;
4188 }
4189
4190 static int kvm_is_user_mode(void)
4191 {
4192 int user_mode = 3;
4193
4194 if (percpu_read(current_vcpu))
4195 user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
4196
4197 return user_mode != 0;
4198 }
4199
4200 static unsigned long kvm_get_guest_ip(void)
4201 {
4202 unsigned long ip = 0;
4203
4204 if (percpu_read(current_vcpu))
4205 ip = kvm_rip_read(percpu_read(current_vcpu));
4206
4207 return ip;
4208 }
4209
4210 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4211 .is_in_guest = kvm_is_in_guest,
4212 .is_user_mode = kvm_is_user_mode,
4213 .get_guest_ip = kvm_get_guest_ip,
4214 };
4215
4216 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4217 {
4218 percpu_write(current_vcpu, vcpu);
4219 }
4220 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4221
4222 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4223 {
4224 percpu_write(current_vcpu, NULL);
4225 }
4226 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4227
4228 int kvm_arch_init(void *opaque)
4229 {
4230 int r;
4231 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4232
4233 if (kvm_x86_ops) {
4234 printk(KERN_ERR "kvm: already loaded the other module\n");
4235 r = -EEXIST;
4236 goto out;
4237 }
4238
4239 if (!ops->cpu_has_kvm_support()) {
4240 printk(KERN_ERR "kvm: no hardware support\n");
4241 r = -EOPNOTSUPP;
4242 goto out;
4243 }
4244 if (ops->disabled_by_bios()) {
4245 printk(KERN_ERR "kvm: disabled by bios\n");
4246 r = -EOPNOTSUPP;
4247 goto out;
4248 }
4249
4250 r = kvm_mmu_module_init();
4251 if (r)
4252 goto out;
4253
4254 kvm_init_msr_list();
4255
4256 kvm_x86_ops = ops;
4257 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
4258 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
4259 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4260 PT_DIRTY_MASK, PT64_NX_MASK, 0);
4261
4262 kvm_timer_init();
4263
4264 perf_register_guest_info_callbacks(&kvm_guest_cbs);
4265
4266 if (cpu_has_xsave)
4267 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4268
4269 return 0;
4270
4271 out:
4272 return r;
4273 }
4274
4275 void kvm_arch_exit(void)
4276 {
4277 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4278
4279 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4280 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4281 CPUFREQ_TRANSITION_NOTIFIER);
4282 kvm_x86_ops = NULL;
4283 kvm_mmu_module_exit();
4284 }
4285
4286 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4287 {
4288 ++vcpu->stat.halt_exits;
4289 if (irqchip_in_kernel(vcpu->kvm)) {
4290 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4291 return 1;
4292 } else {
4293 vcpu->run->exit_reason = KVM_EXIT_HLT;
4294 return 0;
4295 }
4296 }
4297 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4298
4299 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
4300 unsigned long a1)
4301 {
4302 if (is_long_mode(vcpu))
4303 return a0;
4304 else
4305 return a0 | ((gpa_t)a1 << 32);
4306 }
4307
4308 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4309 {
4310 u64 param, ingpa, outgpa, ret;
4311 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4312 bool fast, longmode;
4313 int cs_db, cs_l;
4314
4315 /*
4316 * hypercall generates UD from non zero cpl and real mode
4317 * per HYPER-V spec
4318 */
4319 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4320 kvm_queue_exception(vcpu, UD_VECTOR);
4321 return 0;
4322 }
4323
4324 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4325 longmode = is_long_mode(vcpu) && cs_l == 1;
4326
4327 if (!longmode) {
4328 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4329 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4330 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4331 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4332 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4333 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4334 }
4335 #ifdef CONFIG_X86_64
4336 else {
4337 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4338 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4339 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4340 }
4341 #endif
4342
4343 code = param & 0xffff;
4344 fast = (param >> 16) & 0x1;
4345 rep_cnt = (param >> 32) & 0xfff;
4346 rep_idx = (param >> 48) & 0xfff;
4347
4348 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4349
4350 switch (code) {
4351 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4352 kvm_vcpu_on_spin(vcpu);
4353 break;
4354 default:
4355 res = HV_STATUS_INVALID_HYPERCALL_CODE;
4356 break;
4357 }
4358
4359 ret = res | (((u64)rep_done & 0xfff) << 32);
4360 if (longmode) {
4361 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4362 } else {
4363 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4364 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4365 }
4366
4367 return 1;
4368 }
4369
4370 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
4371 {
4372 unsigned long nr, a0, a1, a2, a3, ret;
4373 int r = 1;
4374
4375 if (kvm_hv_hypercall_enabled(vcpu->kvm))
4376 return kvm_hv_hypercall(vcpu);
4377
4378 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
4379 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
4380 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
4381 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
4382 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
4383
4384 trace_kvm_hypercall(nr, a0, a1, a2, a3);
4385
4386 if (!is_long_mode(vcpu)) {
4387 nr &= 0xFFFFFFFF;
4388 a0 &= 0xFFFFFFFF;
4389 a1 &= 0xFFFFFFFF;
4390 a2 &= 0xFFFFFFFF;
4391 a3 &= 0xFFFFFFFF;
4392 }
4393
4394 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
4395 ret = -KVM_EPERM;
4396 goto out;
4397 }
4398
4399 switch (nr) {
4400 case KVM_HC_VAPIC_POLL_IRQ:
4401 ret = 0;
4402 break;
4403 case KVM_HC_MMU_OP:
4404 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
4405 break;
4406 default:
4407 ret = -KVM_ENOSYS;
4408 break;
4409 }
4410 out:
4411 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4412 ++vcpu->stat.hypercalls;
4413 return r;
4414 }
4415 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
4416
4417 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
4418 {
4419 char instruction[3];
4420 unsigned long rip = kvm_rip_read(vcpu);
4421
4422 /*
4423 * Blow out the MMU to ensure that no other VCPU has an active mapping
4424 * to ensure that the updated hypercall appears atomically across all
4425 * VCPUs.
4426 */
4427 kvm_mmu_zap_all(vcpu->kvm);
4428
4429 kvm_x86_ops->patch_hypercall(vcpu, instruction);
4430
4431 return emulator_write_emulated(rip, instruction, 3, NULL, vcpu);
4432 }
4433
4434 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4435 {
4436 struct desc_ptr dt = { limit, base };
4437
4438 kvm_x86_ops->set_gdt(vcpu, &dt);
4439 }
4440
4441 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4442 {
4443 struct desc_ptr dt = { limit, base };
4444
4445 kvm_x86_ops->set_idt(vcpu, &dt);
4446 }
4447
4448 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
4449 {
4450 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
4451 int j, nent = vcpu->arch.cpuid_nent;
4452
4453 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
4454 /* when no next entry is found, the current entry[i] is reselected */
4455 for (j = i + 1; ; j = (j + 1) % nent) {
4456 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
4457 if (ej->function == e->function) {
4458 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
4459 return j;
4460 }
4461 }
4462 return 0; /* silence gcc, even though control never reaches here */
4463 }
4464
4465 /* find an entry with matching function, matching index (if needed), and that
4466 * should be read next (if it's stateful) */
4467 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
4468 u32 function, u32 index)
4469 {
4470 if (e->function != function)
4471 return 0;
4472 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
4473 return 0;
4474 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
4475 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
4476 return 0;
4477 return 1;
4478 }
4479
4480 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
4481 u32 function, u32 index)
4482 {
4483 int i;
4484 struct kvm_cpuid_entry2 *best = NULL;
4485
4486 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
4487 struct kvm_cpuid_entry2 *e;
4488
4489 e = &vcpu->arch.cpuid_entries[i];
4490 if (is_matching_cpuid_entry(e, function, index)) {
4491 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
4492 move_to_next_stateful_cpuid_entry(vcpu, i);
4493 best = e;
4494 break;
4495 }
4496 /*
4497 * Both basic or both extended?
4498 */
4499 if (((e->function ^ function) & 0x80000000) == 0)
4500 if (!best || e->function > best->function)
4501 best = e;
4502 }
4503 return best;
4504 }
4505 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
4506
4507 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
4508 {
4509 struct kvm_cpuid_entry2 *best;
4510
4511 best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
4512 if (!best || best->eax < 0x80000008)
4513 goto not_found;
4514 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
4515 if (best)
4516 return best->eax & 0xff;
4517 not_found:
4518 return 36;
4519 }
4520
4521 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
4522 {
4523 u32 function, index;
4524 struct kvm_cpuid_entry2 *best;
4525
4526 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
4527 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4528 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
4529 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
4530 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
4531 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
4532 best = kvm_find_cpuid_entry(vcpu, function, index);
4533 if (best) {
4534 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
4535 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
4536 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
4537 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
4538 }
4539 kvm_x86_ops->skip_emulated_instruction(vcpu);
4540 trace_kvm_cpuid(function,
4541 kvm_register_read(vcpu, VCPU_REGS_RAX),
4542 kvm_register_read(vcpu, VCPU_REGS_RBX),
4543 kvm_register_read(vcpu, VCPU_REGS_RCX),
4544 kvm_register_read(vcpu, VCPU_REGS_RDX));
4545 }
4546 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
4547
4548 /*
4549 * Check if userspace requested an interrupt window, and that the
4550 * interrupt window is open.
4551 *
4552 * No need to exit to userspace if we already have an interrupt queued.
4553 */
4554 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
4555 {
4556 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
4557 vcpu->run->request_interrupt_window &&
4558 kvm_arch_interrupt_allowed(vcpu));
4559 }
4560
4561 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
4562 {
4563 struct kvm_run *kvm_run = vcpu->run;
4564
4565 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
4566 kvm_run->cr8 = kvm_get_cr8(vcpu);
4567 kvm_run->apic_base = kvm_get_apic_base(vcpu);
4568 if (irqchip_in_kernel(vcpu->kvm))
4569 kvm_run->ready_for_interrupt_injection = 1;
4570 else
4571 kvm_run->ready_for_interrupt_injection =
4572 kvm_arch_interrupt_allowed(vcpu) &&
4573 !kvm_cpu_has_interrupt(vcpu) &&
4574 !kvm_event_needs_reinjection(vcpu);
4575 }
4576
4577 static void vapic_enter(struct kvm_vcpu *vcpu)
4578 {
4579 struct kvm_lapic *apic = vcpu->arch.apic;
4580 struct page *page;
4581
4582 if (!apic || !apic->vapic_addr)
4583 return;
4584
4585 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4586
4587 vcpu->arch.apic->vapic_page = page;
4588 }
4589
4590 static void vapic_exit(struct kvm_vcpu *vcpu)
4591 {
4592 struct kvm_lapic *apic = vcpu->arch.apic;
4593 int idx;
4594
4595 if (!apic || !apic->vapic_addr)
4596 return;
4597
4598 idx = srcu_read_lock(&vcpu->kvm->srcu);
4599 kvm_release_page_dirty(apic->vapic_page);
4600 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4601 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4602 }
4603
4604 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
4605 {
4606 int max_irr, tpr;
4607
4608 if (!kvm_x86_ops->update_cr8_intercept)
4609 return;
4610
4611 if (!vcpu->arch.apic)
4612 return;
4613
4614 if (!vcpu->arch.apic->vapic_addr)
4615 max_irr = kvm_lapic_find_highest_irr(vcpu);
4616 else
4617 max_irr = -1;
4618
4619 if (max_irr != -1)
4620 max_irr >>= 4;
4621
4622 tpr = kvm_lapic_get_cr8(vcpu);
4623
4624 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
4625 }
4626
4627 static void inject_pending_event(struct kvm_vcpu *vcpu)
4628 {
4629 /* try to reinject previous events if any */
4630 if (vcpu->arch.exception.pending) {
4631 trace_kvm_inj_exception(vcpu->arch.exception.nr,
4632 vcpu->arch.exception.has_error_code,
4633 vcpu->arch.exception.error_code);
4634 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
4635 vcpu->arch.exception.has_error_code,
4636 vcpu->arch.exception.error_code,
4637 vcpu->arch.exception.reinject);
4638 return;
4639 }
4640
4641 if (vcpu->arch.nmi_injected) {
4642 kvm_x86_ops->set_nmi(vcpu);
4643 return;
4644 }
4645
4646 if (vcpu->arch.interrupt.pending) {
4647 kvm_x86_ops->set_irq(vcpu);
4648 return;
4649 }
4650
4651 /* try to inject new event if pending */
4652 if (vcpu->arch.nmi_pending) {
4653 if (kvm_x86_ops->nmi_allowed(vcpu)) {
4654 vcpu->arch.nmi_pending = false;
4655 vcpu->arch.nmi_injected = true;
4656 kvm_x86_ops->set_nmi(vcpu);
4657 }
4658 } else if (kvm_cpu_has_interrupt(vcpu)) {
4659 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
4660 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
4661 false);
4662 kvm_x86_ops->set_irq(vcpu);
4663 }
4664 }
4665 }
4666
4667 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
4668 {
4669 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
4670 !vcpu->guest_xcr0_loaded) {
4671 /* kvm_set_xcr() also depends on this */
4672 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
4673 vcpu->guest_xcr0_loaded = 1;
4674 }
4675 }
4676
4677 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
4678 {
4679 if (vcpu->guest_xcr0_loaded) {
4680 if (vcpu->arch.xcr0 != host_xcr0)
4681 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
4682 vcpu->guest_xcr0_loaded = 0;
4683 }
4684 }
4685
4686 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
4687 {
4688 int r;
4689 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
4690 vcpu->run->request_interrupt_window;
4691
4692 if (vcpu->requests) {
4693 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
4694 kvm_mmu_unload(vcpu);
4695 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
4696 __kvm_migrate_timers(vcpu);
4697 if (kvm_check_request(KVM_REQ_KVMCLOCK_UPDATE, vcpu))
4698 kvm_write_guest_time(vcpu);
4699 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
4700 kvm_mmu_sync_roots(vcpu);
4701 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
4702 kvm_x86_ops->tlb_flush(vcpu);
4703 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
4704 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
4705 r = 0;
4706 goto out;
4707 }
4708 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
4709 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4710 r = 0;
4711 goto out;
4712 }
4713 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
4714 vcpu->fpu_active = 0;
4715 kvm_x86_ops->fpu_deactivate(vcpu);
4716 }
4717 }
4718
4719 r = kvm_mmu_reload(vcpu);
4720 if (unlikely(r))
4721 goto out;
4722
4723 preempt_disable();
4724
4725 kvm_x86_ops->prepare_guest_switch(vcpu);
4726 if (vcpu->fpu_active)
4727 kvm_load_guest_fpu(vcpu);
4728 kvm_load_guest_xcr0(vcpu);
4729
4730 atomic_set(&vcpu->guest_mode, 1);
4731 smp_wmb();
4732
4733 local_irq_disable();
4734
4735 if (!atomic_read(&vcpu->guest_mode) || vcpu->requests
4736 || need_resched() || signal_pending(current)) {
4737 atomic_set(&vcpu->guest_mode, 0);
4738 smp_wmb();
4739 local_irq_enable();
4740 preempt_enable();
4741 r = 1;
4742 goto out;
4743 }
4744
4745 inject_pending_event(vcpu);
4746
4747 /* enable NMI/IRQ window open exits if needed */
4748 if (vcpu->arch.nmi_pending)
4749 kvm_x86_ops->enable_nmi_window(vcpu);
4750 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
4751 kvm_x86_ops->enable_irq_window(vcpu);
4752
4753 if (kvm_lapic_enabled(vcpu)) {
4754 update_cr8_intercept(vcpu);
4755 kvm_lapic_sync_to_vapic(vcpu);
4756 }
4757
4758 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4759
4760 kvm_guest_enter();
4761
4762 if (unlikely(vcpu->arch.switch_db_regs)) {
4763 set_debugreg(0, 7);
4764 set_debugreg(vcpu->arch.eff_db[0], 0);
4765 set_debugreg(vcpu->arch.eff_db[1], 1);
4766 set_debugreg(vcpu->arch.eff_db[2], 2);
4767 set_debugreg(vcpu->arch.eff_db[3], 3);
4768 }
4769
4770 trace_kvm_entry(vcpu->vcpu_id);
4771 kvm_x86_ops->run(vcpu);
4772
4773 /*
4774 * If the guest has used debug registers, at least dr7
4775 * will be disabled while returning to the host.
4776 * If we don't have active breakpoints in the host, we don't
4777 * care about the messed up debug address registers. But if
4778 * we have some of them active, restore the old state.
4779 */
4780 if (hw_breakpoint_active())
4781 hw_breakpoint_restore();
4782
4783 atomic_set(&vcpu->guest_mode, 0);
4784 smp_wmb();
4785 local_irq_enable();
4786
4787 ++vcpu->stat.exits;
4788
4789 /*
4790 * We must have an instruction between local_irq_enable() and
4791 * kvm_guest_exit(), so the timer interrupt isn't delayed by
4792 * the interrupt shadow. The stat.exits increment will do nicely.
4793 * But we need to prevent reordering, hence this barrier():
4794 */
4795 barrier();
4796
4797 kvm_guest_exit();
4798
4799 preempt_enable();
4800
4801 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4802
4803 /*
4804 * Profile KVM exit RIPs:
4805 */
4806 if (unlikely(prof_on == KVM_PROFILING)) {
4807 unsigned long rip = kvm_rip_read(vcpu);
4808 profile_hit(KVM_PROFILING, (void *)rip);
4809 }
4810
4811
4812 kvm_lapic_sync_from_vapic(vcpu);
4813
4814 r = kvm_x86_ops->handle_exit(vcpu);
4815 out:
4816 return r;
4817 }
4818
4819
4820 static int __vcpu_run(struct kvm_vcpu *vcpu)
4821 {
4822 int r;
4823 struct kvm *kvm = vcpu->kvm;
4824
4825 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
4826 pr_debug("vcpu %d received sipi with vector # %x\n",
4827 vcpu->vcpu_id, vcpu->arch.sipi_vector);
4828 kvm_lapic_reset(vcpu);
4829 r = kvm_arch_vcpu_reset(vcpu);
4830 if (r)
4831 return r;
4832 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4833 }
4834
4835 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4836 vapic_enter(vcpu);
4837
4838 r = 1;
4839 while (r > 0) {
4840 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
4841 r = vcpu_enter_guest(vcpu);
4842 else {
4843 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4844 kvm_vcpu_block(vcpu);
4845 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4846 if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
4847 {
4848 switch(vcpu->arch.mp_state) {
4849 case KVM_MP_STATE_HALTED:
4850 vcpu->arch.mp_state =
4851 KVM_MP_STATE_RUNNABLE;
4852 case KVM_MP_STATE_RUNNABLE:
4853 break;
4854 case KVM_MP_STATE_SIPI_RECEIVED:
4855 default:
4856 r = -EINTR;
4857 break;
4858 }
4859 }
4860 }
4861
4862 if (r <= 0)
4863 break;
4864
4865 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
4866 if (kvm_cpu_has_pending_timer(vcpu))
4867 kvm_inject_pending_timer_irqs(vcpu);
4868
4869 if (dm_request_for_irq_injection(vcpu)) {
4870 r = -EINTR;
4871 vcpu->run->exit_reason = KVM_EXIT_INTR;
4872 ++vcpu->stat.request_irq_exits;
4873 }
4874 if (signal_pending(current)) {
4875 r = -EINTR;
4876 vcpu->run->exit_reason = KVM_EXIT_INTR;
4877 ++vcpu->stat.signal_exits;
4878 }
4879 if (need_resched()) {
4880 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4881 kvm_resched(vcpu);
4882 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4883 }
4884 }
4885
4886 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4887
4888 vapic_exit(vcpu);
4889
4890 return r;
4891 }
4892
4893 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
4894 {
4895 int r;
4896 sigset_t sigsaved;
4897
4898 if (vcpu->sigset_active)
4899 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
4900
4901 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
4902 kvm_vcpu_block(vcpu);
4903 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
4904 r = -EAGAIN;
4905 goto out;
4906 }
4907
4908 /* re-sync apic's tpr */
4909 if (!irqchip_in_kernel(vcpu->kvm))
4910 kvm_set_cr8(vcpu, kvm_run->cr8);
4911
4912 if (vcpu->arch.pio.count || vcpu->mmio_needed ||
4913 vcpu->arch.emulate_ctxt.restart) {
4914 if (vcpu->mmio_needed) {
4915 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
4916 vcpu->mmio_read_completed = 1;
4917 vcpu->mmio_needed = 0;
4918 }
4919 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4920 r = emulate_instruction(vcpu, 0, 0, EMULTYPE_NO_DECODE);
4921 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4922 if (r != EMULATE_DONE) {
4923 r = 0;
4924 goto out;
4925 }
4926 }
4927 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
4928 kvm_register_write(vcpu, VCPU_REGS_RAX,
4929 kvm_run->hypercall.ret);
4930
4931 r = __vcpu_run(vcpu);
4932
4933 out:
4934 post_kvm_run_save(vcpu);
4935 if (vcpu->sigset_active)
4936 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
4937
4938 return r;
4939 }
4940
4941 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4942 {
4943 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4944 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4945 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4946 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4947 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4948 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4949 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4950 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4951 #ifdef CONFIG_X86_64
4952 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
4953 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
4954 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
4955 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
4956 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
4957 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
4958 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
4959 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
4960 #endif
4961
4962 regs->rip = kvm_rip_read(vcpu);
4963 regs->rflags = kvm_get_rflags(vcpu);
4964
4965 return 0;
4966 }
4967
4968 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4969 {
4970 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
4971 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
4972 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
4973 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
4974 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
4975 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
4976 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
4977 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
4978 #ifdef CONFIG_X86_64
4979 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
4980 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
4981 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
4982 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
4983 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
4984 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
4985 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
4986 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
4987 #endif
4988
4989 kvm_rip_write(vcpu, regs->rip);
4990 kvm_set_rflags(vcpu, regs->rflags);
4991
4992 vcpu->arch.exception.pending = false;
4993
4994 return 0;
4995 }
4996
4997 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4998 {
4999 struct kvm_segment cs;
5000
5001 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5002 *db = cs.db;
5003 *l = cs.l;
5004 }
5005 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5006
5007 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5008 struct kvm_sregs *sregs)
5009 {
5010 struct desc_ptr dt;
5011
5012 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5013 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5014 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5015 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5016 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5017 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5018
5019 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5020 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5021
5022 kvm_x86_ops->get_idt(vcpu, &dt);
5023 sregs->idt.limit = dt.size;
5024 sregs->idt.base = dt.address;
5025 kvm_x86_ops->get_gdt(vcpu, &dt);
5026 sregs->gdt.limit = dt.size;
5027 sregs->gdt.base = dt.address;
5028
5029 sregs->cr0 = kvm_read_cr0(vcpu);
5030 sregs->cr2 = vcpu->arch.cr2;
5031 sregs->cr3 = vcpu->arch.cr3;
5032 sregs->cr4 = kvm_read_cr4(vcpu);
5033 sregs->cr8 = kvm_get_cr8(vcpu);
5034 sregs->efer = vcpu->arch.efer;
5035 sregs->apic_base = kvm_get_apic_base(vcpu);
5036
5037 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5038
5039 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5040 set_bit(vcpu->arch.interrupt.nr,
5041 (unsigned long *)sregs->interrupt_bitmap);
5042
5043 return 0;
5044 }
5045
5046 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5047 struct kvm_mp_state *mp_state)
5048 {
5049 mp_state->mp_state = vcpu->arch.mp_state;
5050 return 0;
5051 }
5052
5053 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5054 struct kvm_mp_state *mp_state)
5055 {
5056 vcpu->arch.mp_state = mp_state->mp_state;
5057 return 0;
5058 }
5059
5060 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
5061 bool has_error_code, u32 error_code)
5062 {
5063 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
5064 int ret;
5065
5066 init_emulate_ctxt(vcpu);
5067
5068 ret = emulator_task_switch(&vcpu->arch.emulate_ctxt,
5069 tss_selector, reason, has_error_code,
5070 error_code);
5071
5072 if (ret)
5073 return EMULATE_FAIL;
5074
5075 memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
5076 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
5077 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
5078 return EMULATE_DONE;
5079 }
5080 EXPORT_SYMBOL_GPL(kvm_task_switch);
5081
5082 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5083 struct kvm_sregs *sregs)
5084 {
5085 int mmu_reset_needed = 0;
5086 int pending_vec, max_bits;
5087 struct desc_ptr dt;
5088
5089 dt.size = sregs->idt.limit;
5090 dt.address = sregs->idt.base;
5091 kvm_x86_ops->set_idt(vcpu, &dt);
5092 dt.size = sregs->gdt.limit;
5093 dt.address = sregs->gdt.base;
5094 kvm_x86_ops->set_gdt(vcpu, &dt);
5095
5096 vcpu->arch.cr2 = sregs->cr2;
5097 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
5098 vcpu->arch.cr3 = sregs->cr3;
5099
5100 kvm_set_cr8(vcpu, sregs->cr8);
5101
5102 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5103 kvm_x86_ops->set_efer(vcpu, sregs->efer);
5104 kvm_set_apic_base(vcpu, sregs->apic_base);
5105
5106 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5107 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5108 vcpu->arch.cr0 = sregs->cr0;
5109
5110 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5111 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5112 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5113 load_pdptrs(vcpu, vcpu->arch.cr3);
5114 mmu_reset_needed = 1;
5115 }
5116
5117 if (mmu_reset_needed)
5118 kvm_mmu_reset_context(vcpu);
5119
5120 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5121 pending_vec = find_first_bit(
5122 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5123 if (pending_vec < max_bits) {
5124 kvm_queue_interrupt(vcpu, pending_vec, false);
5125 pr_debug("Set back pending irq %d\n", pending_vec);
5126 if (irqchip_in_kernel(vcpu->kvm))
5127 kvm_pic_clear_isr_ack(vcpu->kvm);
5128 }
5129
5130 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5131 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5132 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5133 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5134 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5135 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5136
5137 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5138 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5139
5140 update_cr8_intercept(vcpu);
5141
5142 /* Older userspace won't unhalt the vcpu on reset. */
5143 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5144 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5145 !is_protmode(vcpu))
5146 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5147
5148 return 0;
5149 }
5150
5151 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5152 struct kvm_guest_debug *dbg)
5153 {
5154 unsigned long rflags;
5155 int i, r;
5156
5157 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5158 r = -EBUSY;
5159 if (vcpu->arch.exception.pending)
5160 goto out;
5161 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5162 kvm_queue_exception(vcpu, DB_VECTOR);
5163 else
5164 kvm_queue_exception(vcpu, BP_VECTOR);
5165 }
5166
5167 /*
5168 * Read rflags as long as potentially injected trace flags are still
5169 * filtered out.
5170 */
5171 rflags = kvm_get_rflags(vcpu);
5172
5173 vcpu->guest_debug = dbg->control;
5174 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5175 vcpu->guest_debug = 0;
5176
5177 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5178 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5179 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5180 vcpu->arch.switch_db_regs =
5181 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5182 } else {
5183 for (i = 0; i < KVM_NR_DB_REGS; i++)
5184 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5185 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5186 }
5187
5188 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5189 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5190 get_segment_base(vcpu, VCPU_SREG_CS);
5191
5192 /*
5193 * Trigger an rflags update that will inject or remove the trace
5194 * flags.
5195 */
5196 kvm_set_rflags(vcpu, rflags);
5197
5198 kvm_x86_ops->set_guest_debug(vcpu, dbg);
5199
5200 r = 0;
5201
5202 out:
5203
5204 return r;
5205 }
5206
5207 /*
5208 * Translate a guest virtual address to a guest physical address.
5209 */
5210 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5211 struct kvm_translation *tr)
5212 {
5213 unsigned long vaddr = tr->linear_address;
5214 gpa_t gpa;
5215 int idx;
5216
5217 idx = srcu_read_lock(&vcpu->kvm->srcu);
5218 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5219 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5220 tr->physical_address = gpa;
5221 tr->valid = gpa != UNMAPPED_GVA;
5222 tr->writeable = 1;
5223 tr->usermode = 0;
5224
5225 return 0;
5226 }
5227
5228 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5229 {
5230 struct i387_fxsave_struct *fxsave =
5231 &vcpu->arch.guest_fpu.state->fxsave;
5232
5233 memcpy(fpu->fpr, fxsave->st_space, 128);
5234 fpu->fcw = fxsave->cwd;
5235 fpu->fsw = fxsave->swd;
5236 fpu->ftwx = fxsave->twd;
5237 fpu->last_opcode = fxsave->fop;
5238 fpu->last_ip = fxsave->rip;
5239 fpu->last_dp = fxsave->rdp;
5240 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5241
5242 return 0;
5243 }
5244
5245 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5246 {
5247 struct i387_fxsave_struct *fxsave =
5248 &vcpu->arch.guest_fpu.state->fxsave;
5249
5250 memcpy(fxsave->st_space, fpu->fpr, 128);
5251 fxsave->cwd = fpu->fcw;
5252 fxsave->swd = fpu->fsw;
5253 fxsave->twd = fpu->ftwx;
5254 fxsave->fop = fpu->last_opcode;
5255 fxsave->rip = fpu->last_ip;
5256 fxsave->rdp = fpu->last_dp;
5257 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5258
5259 return 0;
5260 }
5261
5262 int fx_init(struct kvm_vcpu *vcpu)
5263 {
5264 int err;
5265
5266 err = fpu_alloc(&vcpu->arch.guest_fpu);
5267 if (err)
5268 return err;
5269
5270 fpu_finit(&vcpu->arch.guest_fpu);
5271
5272 /*
5273 * Ensure guest xcr0 is valid for loading
5274 */
5275 vcpu->arch.xcr0 = XSTATE_FP;
5276
5277 vcpu->arch.cr0 |= X86_CR0_ET;
5278
5279 return 0;
5280 }
5281 EXPORT_SYMBOL_GPL(fx_init);
5282
5283 static void fx_free(struct kvm_vcpu *vcpu)
5284 {
5285 fpu_free(&vcpu->arch.guest_fpu);
5286 }
5287
5288 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5289 {
5290 if (vcpu->guest_fpu_loaded)
5291 return;
5292
5293 /*
5294 * Restore all possible states in the guest,
5295 * and assume host would use all available bits.
5296 * Guest xcr0 would be loaded later.
5297 */
5298 kvm_put_guest_xcr0(vcpu);
5299 vcpu->guest_fpu_loaded = 1;
5300 unlazy_fpu(current);
5301 fpu_restore_checking(&vcpu->arch.guest_fpu);
5302 trace_kvm_fpu(1);
5303 }
5304
5305 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5306 {
5307 kvm_put_guest_xcr0(vcpu);
5308
5309 if (!vcpu->guest_fpu_loaded)
5310 return;
5311
5312 vcpu->guest_fpu_loaded = 0;
5313 fpu_save_init(&vcpu->arch.guest_fpu);
5314 ++vcpu->stat.fpu_reload;
5315 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
5316 trace_kvm_fpu(0);
5317 }
5318
5319 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5320 {
5321 if (vcpu->arch.time_page) {
5322 kvm_release_page_dirty(vcpu->arch.time_page);
5323 vcpu->arch.time_page = NULL;
5324 }
5325
5326 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
5327 fx_free(vcpu);
5328 kvm_x86_ops->vcpu_free(vcpu);
5329 }
5330
5331 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5332 unsigned int id)
5333 {
5334 return kvm_x86_ops->vcpu_create(kvm, id);
5335 }
5336
5337 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5338 {
5339 int r;
5340
5341 vcpu->arch.mtrr_state.have_fixed = 1;
5342 vcpu_load(vcpu);
5343 r = kvm_arch_vcpu_reset(vcpu);
5344 if (r == 0)
5345 r = kvm_mmu_setup(vcpu);
5346 vcpu_put(vcpu);
5347 if (r < 0)
5348 goto free_vcpu;
5349
5350 return 0;
5351 free_vcpu:
5352 kvm_x86_ops->vcpu_free(vcpu);
5353 return r;
5354 }
5355
5356 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5357 {
5358 vcpu_load(vcpu);
5359 kvm_mmu_unload(vcpu);
5360 vcpu_put(vcpu);
5361
5362 fx_free(vcpu);
5363 kvm_x86_ops->vcpu_free(vcpu);
5364 }
5365
5366 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5367 {
5368 vcpu->arch.nmi_pending = false;
5369 vcpu->arch.nmi_injected = false;
5370
5371 vcpu->arch.switch_db_regs = 0;
5372 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5373 vcpu->arch.dr6 = DR6_FIXED_1;
5374 vcpu->arch.dr7 = DR7_FIXED_1;
5375
5376 return kvm_x86_ops->vcpu_reset(vcpu);
5377 }
5378
5379 int kvm_arch_hardware_enable(void *garbage)
5380 {
5381 /*
5382 * Since this may be called from a hotplug notifcation,
5383 * we can't get the CPU frequency directly.
5384 */
5385 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5386 int cpu = raw_smp_processor_id();
5387 per_cpu(cpu_tsc_khz, cpu) = 0;
5388 }
5389
5390 kvm_shared_msr_cpu_online();
5391
5392 return kvm_x86_ops->hardware_enable(garbage);
5393 }
5394
5395 void kvm_arch_hardware_disable(void *garbage)
5396 {
5397 kvm_x86_ops->hardware_disable(garbage);
5398 drop_user_return_notifiers(garbage);
5399 }
5400
5401 int kvm_arch_hardware_setup(void)
5402 {
5403 return kvm_x86_ops->hardware_setup();
5404 }
5405
5406 void kvm_arch_hardware_unsetup(void)
5407 {
5408 kvm_x86_ops->hardware_unsetup();
5409 }
5410
5411 void kvm_arch_check_processor_compat(void *rtn)
5412 {
5413 kvm_x86_ops->check_processor_compatibility(rtn);
5414 }
5415
5416 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5417 {
5418 struct page *page;
5419 struct kvm *kvm;
5420 int r;
5421
5422 BUG_ON(vcpu->kvm == NULL);
5423 kvm = vcpu->kvm;
5424
5425 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
5426 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5427 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5428 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5429 else
5430 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5431
5432 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5433 if (!page) {
5434 r = -ENOMEM;
5435 goto fail;
5436 }
5437 vcpu->arch.pio_data = page_address(page);
5438
5439 r = kvm_mmu_create(vcpu);
5440 if (r < 0)
5441 goto fail_free_pio_data;
5442
5443 if (irqchip_in_kernel(kvm)) {
5444 r = kvm_create_lapic(vcpu);
5445 if (r < 0)
5446 goto fail_mmu_destroy;
5447 }
5448
5449 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5450 GFP_KERNEL);
5451 if (!vcpu->arch.mce_banks) {
5452 r = -ENOMEM;
5453 goto fail_free_lapic;
5454 }
5455 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5456
5457 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
5458 goto fail_free_mce_banks;
5459
5460 return 0;
5461 fail_free_mce_banks:
5462 kfree(vcpu->arch.mce_banks);
5463 fail_free_lapic:
5464 kvm_free_lapic(vcpu);
5465 fail_mmu_destroy:
5466 kvm_mmu_destroy(vcpu);
5467 fail_free_pio_data:
5468 free_page((unsigned long)vcpu->arch.pio_data);
5469 fail:
5470 return r;
5471 }
5472
5473 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5474 {
5475 int idx;
5476
5477 kfree(vcpu->arch.mce_banks);
5478 kvm_free_lapic(vcpu);
5479 idx = srcu_read_lock(&vcpu->kvm->srcu);
5480 kvm_mmu_destroy(vcpu);
5481 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5482 free_page((unsigned long)vcpu->arch.pio_data);
5483 }
5484
5485 struct kvm *kvm_arch_create_vm(void)
5486 {
5487 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
5488
5489 if (!kvm)
5490 return ERR_PTR(-ENOMEM);
5491
5492 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5493 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
5494
5495 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5496 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
5497
5498 return kvm;
5499 }
5500
5501 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
5502 {
5503 vcpu_load(vcpu);
5504 kvm_mmu_unload(vcpu);
5505 vcpu_put(vcpu);
5506 }
5507
5508 static void kvm_free_vcpus(struct kvm *kvm)
5509 {
5510 unsigned int i;
5511 struct kvm_vcpu *vcpu;
5512
5513 /*
5514 * Unpin any mmu pages first.
5515 */
5516 kvm_for_each_vcpu(i, vcpu, kvm)
5517 kvm_unload_vcpu_mmu(vcpu);
5518 kvm_for_each_vcpu(i, vcpu, kvm)
5519 kvm_arch_vcpu_free(vcpu);
5520
5521 mutex_lock(&kvm->lock);
5522 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
5523 kvm->vcpus[i] = NULL;
5524
5525 atomic_set(&kvm->online_vcpus, 0);
5526 mutex_unlock(&kvm->lock);
5527 }
5528
5529 void kvm_arch_sync_events(struct kvm *kvm)
5530 {
5531 kvm_free_all_assigned_devices(kvm);
5532 kvm_free_pit(kvm);
5533 }
5534
5535 void kvm_arch_destroy_vm(struct kvm *kvm)
5536 {
5537 kvm_iommu_unmap_guest(kvm);
5538 kfree(kvm->arch.vpic);
5539 kfree(kvm->arch.vioapic);
5540 kvm_free_vcpus(kvm);
5541 kvm_free_physmem(kvm);
5542 if (kvm->arch.apic_access_page)
5543 put_page(kvm->arch.apic_access_page);
5544 if (kvm->arch.ept_identity_pagetable)
5545 put_page(kvm->arch.ept_identity_pagetable);
5546 cleanup_srcu_struct(&kvm->srcu);
5547 kfree(kvm);
5548 }
5549
5550 int kvm_arch_prepare_memory_region(struct kvm *kvm,
5551 struct kvm_memory_slot *memslot,
5552 struct kvm_memory_slot old,
5553 struct kvm_userspace_memory_region *mem,
5554 int user_alloc)
5555 {
5556 int npages = memslot->npages;
5557 int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
5558
5559 /* Prevent internal slot pages from being moved by fork()/COW. */
5560 if (memslot->id >= KVM_MEMORY_SLOTS)
5561 map_flags = MAP_SHARED | MAP_ANONYMOUS;
5562
5563 /*To keep backward compatibility with older userspace,
5564 *x86 needs to hanlde !user_alloc case.
5565 */
5566 if (!user_alloc) {
5567 if (npages && !old.rmap) {
5568 unsigned long userspace_addr;
5569
5570 down_write(&current->mm->mmap_sem);
5571 userspace_addr = do_mmap(NULL, 0,
5572 npages * PAGE_SIZE,
5573 PROT_READ | PROT_WRITE,
5574 map_flags,
5575 0);
5576 up_write(&current->mm->mmap_sem);
5577
5578 if (IS_ERR((void *)userspace_addr))
5579 return PTR_ERR((void *)userspace_addr);
5580
5581 memslot->userspace_addr = userspace_addr;
5582 }
5583 }
5584
5585
5586 return 0;
5587 }
5588
5589 void kvm_arch_commit_memory_region(struct kvm *kvm,
5590 struct kvm_userspace_memory_region *mem,
5591 struct kvm_memory_slot old,
5592 int user_alloc)
5593 {
5594
5595 int npages = mem->memory_size >> PAGE_SHIFT;
5596
5597 if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
5598 int ret;
5599
5600 down_write(&current->mm->mmap_sem);
5601 ret = do_munmap(current->mm, old.userspace_addr,
5602 old.npages * PAGE_SIZE);
5603 up_write(&current->mm->mmap_sem);
5604 if (ret < 0)
5605 printk(KERN_WARNING
5606 "kvm_vm_ioctl_set_memory_region: "
5607 "failed to munmap memory\n");
5608 }
5609
5610 spin_lock(&kvm->mmu_lock);
5611 if (!kvm->arch.n_requested_mmu_pages) {
5612 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
5613 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
5614 }
5615
5616 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
5617 spin_unlock(&kvm->mmu_lock);
5618 }
5619
5620 void kvm_arch_flush_shadow(struct kvm *kvm)
5621 {
5622 kvm_mmu_zap_all(kvm);
5623 kvm_reload_remote_mmus(kvm);
5624 }
5625
5626 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
5627 {
5628 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
5629 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
5630 || vcpu->arch.nmi_pending ||
5631 (kvm_arch_interrupt_allowed(vcpu) &&
5632 kvm_cpu_has_interrupt(vcpu));
5633 }
5634
5635 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
5636 {
5637 int me;
5638 int cpu = vcpu->cpu;
5639
5640 if (waitqueue_active(&vcpu->wq)) {
5641 wake_up_interruptible(&vcpu->wq);
5642 ++vcpu->stat.halt_wakeup;
5643 }
5644
5645 me = get_cpu();
5646 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
5647 if (atomic_xchg(&vcpu->guest_mode, 0))
5648 smp_send_reschedule(cpu);
5649 put_cpu();
5650 }
5651
5652 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
5653 {
5654 return kvm_x86_ops->interrupt_allowed(vcpu);
5655 }
5656
5657 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
5658 {
5659 unsigned long current_rip = kvm_rip_read(vcpu) +
5660 get_segment_base(vcpu, VCPU_SREG_CS);
5661
5662 return current_rip == linear_rip;
5663 }
5664 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
5665
5666 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
5667 {
5668 unsigned long rflags;
5669
5670 rflags = kvm_x86_ops->get_rflags(vcpu);
5671 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5672 rflags &= ~X86_EFLAGS_TF;
5673 return rflags;
5674 }
5675 EXPORT_SYMBOL_GPL(kvm_get_rflags);
5676
5677 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
5678 {
5679 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
5680 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
5681 rflags |= X86_EFLAGS_TF;
5682 kvm_x86_ops->set_rflags(vcpu, rflags);
5683 }
5684 EXPORT_SYMBOL_GPL(kvm_set_rflags);
5685
5686 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
5687 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
5688 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
5689 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
5690 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
5691 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
5692 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
5693 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
5694 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
5695 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
5696 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
5697 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);