]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/lib/insn-eval.c
Merge tag 'mmc-v4.15-2' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / lib / insn-eval.c
1 /*
2 * Utility functions for x86 operand and address decoding
3 *
4 * Copyright (C) Intel Corporation 2017
5 */
6 #include <linux/kernel.h>
7 #include <linux/string.h>
8 #include <linux/ratelimit.h>
9 #include <linux/mmu_context.h>
10 #include <asm/desc_defs.h>
11 #include <asm/desc.h>
12 #include <asm/inat.h>
13 #include <asm/insn.h>
14 #include <asm/insn-eval.h>
15 #include <asm/ldt.h>
16 #include <asm/vm86.h>
17
18 #undef pr_fmt
19 #define pr_fmt(fmt) "insn: " fmt
20
21 enum reg_type {
22 REG_TYPE_RM = 0,
23 REG_TYPE_INDEX,
24 REG_TYPE_BASE,
25 };
26
27 /**
28 * is_string_insn() - Determine if instruction is a string instruction
29 * @insn: Instruction containing the opcode to inspect
30 *
31 * Returns:
32 *
33 * true if the instruction, determined by the opcode, is any of the
34 * string instructions as defined in the Intel Software Development manual.
35 * False otherwise.
36 */
37 static bool is_string_insn(struct insn *insn)
38 {
39 insn_get_opcode(insn);
40
41 /* All string instructions have a 1-byte opcode. */
42 if (insn->opcode.nbytes != 1)
43 return false;
44
45 switch (insn->opcode.bytes[0]) {
46 case 0x6c ... 0x6f: /* INS, OUTS */
47 case 0xa4 ... 0xa7: /* MOVS, CMPS */
48 case 0xaa ... 0xaf: /* STOS, LODS, SCAS */
49 return true;
50 default:
51 return false;
52 }
53 }
54
55 /**
56 * get_seg_reg_override_idx() - obtain segment register override index
57 * @insn: Valid instruction with segment override prefixes
58 *
59 * Inspect the instruction prefixes in @insn and find segment overrides, if any.
60 *
61 * Returns:
62 *
63 * A constant identifying the segment register to use, among CS, SS, DS,
64 * ES, FS, or GS. INAT_SEG_REG_DEFAULT is returned if no segment override
65 * prefixes were found.
66 *
67 * -EINVAL in case of error.
68 */
69 static int get_seg_reg_override_idx(struct insn *insn)
70 {
71 int idx = INAT_SEG_REG_DEFAULT;
72 int num_overrides = 0, i;
73
74 insn_get_prefixes(insn);
75
76 /* Look for any segment override prefixes. */
77 for (i = 0; i < insn->prefixes.nbytes; i++) {
78 insn_attr_t attr;
79
80 attr = inat_get_opcode_attribute(insn->prefixes.bytes[i]);
81 switch (attr) {
82 case INAT_MAKE_PREFIX(INAT_PFX_CS):
83 idx = INAT_SEG_REG_CS;
84 num_overrides++;
85 break;
86 case INAT_MAKE_PREFIX(INAT_PFX_SS):
87 idx = INAT_SEG_REG_SS;
88 num_overrides++;
89 break;
90 case INAT_MAKE_PREFIX(INAT_PFX_DS):
91 idx = INAT_SEG_REG_DS;
92 num_overrides++;
93 break;
94 case INAT_MAKE_PREFIX(INAT_PFX_ES):
95 idx = INAT_SEG_REG_ES;
96 num_overrides++;
97 break;
98 case INAT_MAKE_PREFIX(INAT_PFX_FS):
99 idx = INAT_SEG_REG_FS;
100 num_overrides++;
101 break;
102 case INAT_MAKE_PREFIX(INAT_PFX_GS):
103 idx = INAT_SEG_REG_GS;
104 num_overrides++;
105 break;
106 /* No default action needed. */
107 }
108 }
109
110 /* More than one segment override prefix leads to undefined behavior. */
111 if (num_overrides > 1)
112 return -EINVAL;
113
114 return idx;
115 }
116
117 /**
118 * check_seg_overrides() - check if segment override prefixes are allowed
119 * @insn: Valid instruction with segment override prefixes
120 * @regoff: Operand offset, in pt_regs, for which the check is performed
121 *
122 * For a particular register used in register-indirect addressing, determine if
123 * segment override prefixes can be used. Specifically, no overrides are allowed
124 * for rDI if used with a string instruction.
125 *
126 * Returns:
127 *
128 * True if segment override prefixes can be used with the register indicated
129 * in @regoff. False if otherwise.
130 */
131 static bool check_seg_overrides(struct insn *insn, int regoff)
132 {
133 if (regoff == offsetof(struct pt_regs, di) && is_string_insn(insn))
134 return false;
135
136 return true;
137 }
138
139 /**
140 * resolve_default_seg() - resolve default segment register index for an operand
141 * @insn: Instruction with opcode and address size. Must be valid.
142 * @regs: Register values as seen when entering kernel mode
143 * @off: Operand offset, in pt_regs, for which resolution is needed
144 *
145 * Resolve the default segment register index associated with the instruction
146 * operand register indicated by @off. Such index is resolved based on defaults
147 * described in the Intel Software Development Manual.
148 *
149 * Returns:
150 *
151 * If in protected mode, a constant identifying the segment register to use,
152 * among CS, SS, ES or DS. If in long mode, INAT_SEG_REG_IGNORE.
153 *
154 * -EINVAL in case of error.
155 */
156 static int resolve_default_seg(struct insn *insn, struct pt_regs *regs, int off)
157 {
158 if (user_64bit_mode(regs))
159 return INAT_SEG_REG_IGNORE;
160 /*
161 * Resolve the default segment register as described in Section 3.7.4
162 * of the Intel Software Development Manual Vol. 1:
163 *
164 * + DS for all references involving r[ABCD]X, and rSI.
165 * + If used in a string instruction, ES for rDI. Otherwise, DS.
166 * + AX, CX and DX are not valid register operands in 16-bit address
167 * encodings but are valid for 32-bit and 64-bit encodings.
168 * + -EDOM is reserved to identify for cases in which no register
169 * is used (i.e., displacement-only addressing). Use DS.
170 * + SS for rSP or rBP.
171 * + CS for rIP.
172 */
173
174 switch (off) {
175 case offsetof(struct pt_regs, ax):
176 case offsetof(struct pt_regs, cx):
177 case offsetof(struct pt_regs, dx):
178 /* Need insn to verify address size. */
179 if (insn->addr_bytes == 2)
180 return -EINVAL;
181
182 case -EDOM:
183 case offsetof(struct pt_regs, bx):
184 case offsetof(struct pt_regs, si):
185 return INAT_SEG_REG_DS;
186
187 case offsetof(struct pt_regs, di):
188 if (is_string_insn(insn))
189 return INAT_SEG_REG_ES;
190 return INAT_SEG_REG_DS;
191
192 case offsetof(struct pt_regs, bp):
193 case offsetof(struct pt_regs, sp):
194 return INAT_SEG_REG_SS;
195
196 case offsetof(struct pt_regs, ip):
197 return INAT_SEG_REG_CS;
198
199 default:
200 return -EINVAL;
201 }
202 }
203
204 /**
205 * resolve_seg_reg() - obtain segment register index
206 * @insn: Instruction with operands
207 * @regs: Register values as seen when entering kernel mode
208 * @regoff: Operand offset, in pt_regs, used to deterimine segment register
209 *
210 * Determine the segment register associated with the operands and, if
211 * applicable, prefixes and the instruction pointed by @insn.
212 *
213 * The segment register associated to an operand used in register-indirect
214 * addressing depends on:
215 *
216 * a) Whether running in long mode (in such a case segments are ignored, except
217 * if FS or GS are used).
218 *
219 * b) Whether segment override prefixes can be used. Certain instructions and
220 * registers do not allow override prefixes.
221 *
222 * c) Whether segment overrides prefixes are found in the instruction prefixes.
223 *
224 * d) If there are not segment override prefixes or they cannot be used, the
225 * default segment register associated with the operand register is used.
226 *
227 * The function checks first if segment override prefixes can be used with the
228 * operand indicated by @regoff. If allowed, obtain such overridden segment
229 * register index. Lastly, if not prefixes were found or cannot be used, resolve
230 * the segment register index to use based on the defaults described in the
231 * Intel documentation. In long mode, all segment register indexes will be
232 * ignored, except if overrides were found for FS or GS. All these operations
233 * are done using helper functions.
234 *
235 * The operand register, @regoff, is represented as the offset from the base of
236 * pt_regs.
237 *
238 * As stated, the main use of this function is to determine the segment register
239 * index based on the instruction, its operands and prefixes. Hence, @insn
240 * must be valid. However, if @regoff indicates rIP, we don't need to inspect
241 * @insn at all as in this case CS is used in all cases. This case is checked
242 * before proceeding further.
243 *
244 * Please note that this function does not return the value in the segment
245 * register (i.e., the segment selector) but our defined index. The segment
246 * selector needs to be obtained using get_segment_selector() and passing the
247 * segment register index resolved by this function.
248 *
249 * Returns:
250 *
251 * An index identifying the segment register to use, among CS, SS, DS,
252 * ES, FS, or GS. INAT_SEG_REG_IGNORE is returned if running in long mode.
253 *
254 * -EINVAL in case of error.
255 */
256 static int resolve_seg_reg(struct insn *insn, struct pt_regs *regs, int regoff)
257 {
258 int idx;
259
260 /*
261 * In the unlikely event of having to resolve the segment register
262 * index for rIP, do it first. Segment override prefixes should not
263 * be used. Hence, it is not necessary to inspect the instruction,
264 * which may be invalid at this point.
265 */
266 if (regoff == offsetof(struct pt_regs, ip)) {
267 if (user_64bit_mode(regs))
268 return INAT_SEG_REG_IGNORE;
269 else
270 return INAT_SEG_REG_CS;
271 }
272
273 if (!insn)
274 return -EINVAL;
275
276 if (!check_seg_overrides(insn, regoff))
277 return resolve_default_seg(insn, regs, regoff);
278
279 idx = get_seg_reg_override_idx(insn);
280 if (idx < 0)
281 return idx;
282
283 if (idx == INAT_SEG_REG_DEFAULT)
284 return resolve_default_seg(insn, regs, regoff);
285
286 /*
287 * In long mode, segment override prefixes are ignored, except for
288 * overrides for FS and GS.
289 */
290 if (user_64bit_mode(regs)) {
291 if (idx != INAT_SEG_REG_FS &&
292 idx != INAT_SEG_REG_GS)
293 idx = INAT_SEG_REG_IGNORE;
294 }
295
296 return idx;
297 }
298
299 /**
300 * get_segment_selector() - obtain segment selector
301 * @regs: Register values as seen when entering kernel mode
302 * @seg_reg_idx: Segment register index to use
303 *
304 * Obtain the segment selector from any of the CS, SS, DS, ES, FS, GS segment
305 * registers. In CONFIG_X86_32, the segment is obtained from either pt_regs or
306 * kernel_vm86_regs as applicable. In CONFIG_X86_64, CS and SS are obtained
307 * from pt_regs. DS, ES, FS and GS are obtained by reading the actual CPU
308 * registers. This done for only for completeness as in CONFIG_X86_64 segment
309 * registers are ignored.
310 *
311 * Returns:
312 *
313 * Value of the segment selector, including null when running in
314 * long mode.
315 *
316 * -EINVAL on error.
317 */
318 static short get_segment_selector(struct pt_regs *regs, int seg_reg_idx)
319 {
320 #ifdef CONFIG_X86_64
321 unsigned short sel;
322
323 switch (seg_reg_idx) {
324 case INAT_SEG_REG_IGNORE:
325 return 0;
326 case INAT_SEG_REG_CS:
327 return (unsigned short)(regs->cs & 0xffff);
328 case INAT_SEG_REG_SS:
329 return (unsigned short)(regs->ss & 0xffff);
330 case INAT_SEG_REG_DS:
331 savesegment(ds, sel);
332 return sel;
333 case INAT_SEG_REG_ES:
334 savesegment(es, sel);
335 return sel;
336 case INAT_SEG_REG_FS:
337 savesegment(fs, sel);
338 return sel;
339 case INAT_SEG_REG_GS:
340 savesegment(gs, sel);
341 return sel;
342 default:
343 return -EINVAL;
344 }
345 #else /* CONFIG_X86_32 */
346 struct kernel_vm86_regs *vm86regs = (struct kernel_vm86_regs *)regs;
347
348 if (v8086_mode(regs)) {
349 switch (seg_reg_idx) {
350 case INAT_SEG_REG_CS:
351 return (unsigned short)(regs->cs & 0xffff);
352 case INAT_SEG_REG_SS:
353 return (unsigned short)(regs->ss & 0xffff);
354 case INAT_SEG_REG_DS:
355 return vm86regs->ds;
356 case INAT_SEG_REG_ES:
357 return vm86regs->es;
358 case INAT_SEG_REG_FS:
359 return vm86regs->fs;
360 case INAT_SEG_REG_GS:
361 return vm86regs->gs;
362 case INAT_SEG_REG_IGNORE:
363 /* fall through */
364 default:
365 return -EINVAL;
366 }
367 }
368
369 switch (seg_reg_idx) {
370 case INAT_SEG_REG_CS:
371 return (unsigned short)(regs->cs & 0xffff);
372 case INAT_SEG_REG_SS:
373 return (unsigned short)(regs->ss & 0xffff);
374 case INAT_SEG_REG_DS:
375 return (unsigned short)(regs->ds & 0xffff);
376 case INAT_SEG_REG_ES:
377 return (unsigned short)(regs->es & 0xffff);
378 case INAT_SEG_REG_FS:
379 return (unsigned short)(regs->fs & 0xffff);
380 case INAT_SEG_REG_GS:
381 /*
382 * GS may or may not be in regs as per CONFIG_X86_32_LAZY_GS.
383 * The macro below takes care of both cases.
384 */
385 return get_user_gs(regs);
386 case INAT_SEG_REG_IGNORE:
387 /* fall through */
388 default:
389 return -EINVAL;
390 }
391 #endif /* CONFIG_X86_64 */
392 }
393
394 static int get_reg_offset(struct insn *insn, struct pt_regs *regs,
395 enum reg_type type)
396 {
397 int regno = 0;
398
399 static const int regoff[] = {
400 offsetof(struct pt_regs, ax),
401 offsetof(struct pt_regs, cx),
402 offsetof(struct pt_regs, dx),
403 offsetof(struct pt_regs, bx),
404 offsetof(struct pt_regs, sp),
405 offsetof(struct pt_regs, bp),
406 offsetof(struct pt_regs, si),
407 offsetof(struct pt_regs, di),
408 #ifdef CONFIG_X86_64
409 offsetof(struct pt_regs, r8),
410 offsetof(struct pt_regs, r9),
411 offsetof(struct pt_regs, r10),
412 offsetof(struct pt_regs, r11),
413 offsetof(struct pt_regs, r12),
414 offsetof(struct pt_regs, r13),
415 offsetof(struct pt_regs, r14),
416 offsetof(struct pt_regs, r15),
417 #endif
418 };
419 int nr_registers = ARRAY_SIZE(regoff);
420 /*
421 * Don't possibly decode a 32-bit instructions as
422 * reading a 64-bit-only register.
423 */
424 if (IS_ENABLED(CONFIG_X86_64) && !insn->x86_64)
425 nr_registers -= 8;
426
427 switch (type) {
428 case REG_TYPE_RM:
429 regno = X86_MODRM_RM(insn->modrm.value);
430
431 /*
432 * ModRM.mod == 0 and ModRM.rm == 5 means a 32-bit displacement
433 * follows the ModRM byte.
434 */
435 if (!X86_MODRM_MOD(insn->modrm.value) && regno == 5)
436 return -EDOM;
437
438 if (X86_REX_B(insn->rex_prefix.value))
439 regno += 8;
440 break;
441
442 case REG_TYPE_INDEX:
443 regno = X86_SIB_INDEX(insn->sib.value);
444 if (X86_REX_X(insn->rex_prefix.value))
445 regno += 8;
446
447 /*
448 * If ModRM.mod != 3 and SIB.index = 4 the scale*index
449 * portion of the address computation is null. This is
450 * true only if REX.X is 0. In such a case, the SIB index
451 * is used in the address computation.
452 */
453 if (X86_MODRM_MOD(insn->modrm.value) != 3 && regno == 4)
454 return -EDOM;
455 break;
456
457 case REG_TYPE_BASE:
458 regno = X86_SIB_BASE(insn->sib.value);
459 /*
460 * If ModRM.mod is 0 and SIB.base == 5, the base of the
461 * register-indirect addressing is 0. In this case, a
462 * 32-bit displacement follows the SIB byte.
463 */
464 if (!X86_MODRM_MOD(insn->modrm.value) && regno == 5)
465 return -EDOM;
466
467 if (X86_REX_B(insn->rex_prefix.value))
468 regno += 8;
469 break;
470
471 default:
472 pr_err_ratelimited("invalid register type: %d\n", type);
473 return -EINVAL;
474 }
475
476 if (regno >= nr_registers) {
477 WARN_ONCE(1, "decoded an instruction with an invalid register");
478 return -EINVAL;
479 }
480 return regoff[regno];
481 }
482
483 /**
484 * get_reg_offset_16() - Obtain offset of register indicated by instruction
485 * @insn: Instruction containing ModRM byte
486 * @regs: Register values as seen when entering kernel mode
487 * @offs1: Offset of the first operand register
488 * @offs2: Offset of the second opeand register, if applicable
489 *
490 * Obtain the offset, in pt_regs, of the registers indicated by the ModRM byte
491 * in @insn. This function is to be used with 16-bit address encodings. The
492 * @offs1 and @offs2 will be written with the offset of the two registers
493 * indicated by the instruction. In cases where any of the registers is not
494 * referenced by the instruction, the value will be set to -EDOM.
495 *
496 * Returns:
497 *
498 * 0 on success, -EINVAL on error.
499 */
500 static int get_reg_offset_16(struct insn *insn, struct pt_regs *regs,
501 int *offs1, int *offs2)
502 {
503 /*
504 * 16-bit addressing can use one or two registers. Specifics of
505 * encodings are given in Table 2-1. "16-Bit Addressing Forms with the
506 * ModR/M Byte" of the Intel Software Development Manual.
507 */
508 static const int regoff1[] = {
509 offsetof(struct pt_regs, bx),
510 offsetof(struct pt_regs, bx),
511 offsetof(struct pt_regs, bp),
512 offsetof(struct pt_regs, bp),
513 offsetof(struct pt_regs, si),
514 offsetof(struct pt_regs, di),
515 offsetof(struct pt_regs, bp),
516 offsetof(struct pt_regs, bx),
517 };
518
519 static const int regoff2[] = {
520 offsetof(struct pt_regs, si),
521 offsetof(struct pt_regs, di),
522 offsetof(struct pt_regs, si),
523 offsetof(struct pt_regs, di),
524 -EDOM,
525 -EDOM,
526 -EDOM,
527 -EDOM,
528 };
529
530 if (!offs1 || !offs2)
531 return -EINVAL;
532
533 /* Operand is a register, use the generic function. */
534 if (X86_MODRM_MOD(insn->modrm.value) == 3) {
535 *offs1 = insn_get_modrm_rm_off(insn, regs);
536 *offs2 = -EDOM;
537 return 0;
538 }
539
540 *offs1 = regoff1[X86_MODRM_RM(insn->modrm.value)];
541 *offs2 = regoff2[X86_MODRM_RM(insn->modrm.value)];
542
543 /*
544 * If ModRM.mod is 0 and ModRM.rm is 110b, then we use displacement-
545 * only addressing. This means that no registers are involved in
546 * computing the effective address. Thus, ensure that the first
547 * register offset is invalild. The second register offset is already
548 * invalid under the aforementioned conditions.
549 */
550 if ((X86_MODRM_MOD(insn->modrm.value) == 0) &&
551 (X86_MODRM_RM(insn->modrm.value) == 6))
552 *offs1 = -EDOM;
553
554 return 0;
555 }
556
557 /**
558 * get_desc() - Obtain pointer to a segment descriptor
559 * @sel: Segment selector
560 *
561 * Given a segment selector, obtain a pointer to the segment descriptor.
562 * Both global and local descriptor tables are supported.
563 *
564 * Returns:
565 *
566 * Pointer to segment descriptor on success.
567 *
568 * NULL on error.
569 */
570 static struct desc_struct *get_desc(unsigned short sel)
571 {
572 struct desc_ptr gdt_desc = {0, 0};
573 unsigned long desc_base;
574
575 #ifdef CONFIG_MODIFY_LDT_SYSCALL
576 if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT) {
577 struct desc_struct *desc = NULL;
578 struct ldt_struct *ldt;
579
580 /* Bits [15:3] contain the index of the desired entry. */
581 sel >>= 3;
582
583 mutex_lock(&current->active_mm->context.lock);
584 ldt = current->active_mm->context.ldt;
585 if (ldt && sel < ldt->nr_entries)
586 desc = &ldt->entries[sel];
587
588 mutex_unlock(&current->active_mm->context.lock);
589
590 return desc;
591 }
592 #endif
593 native_store_gdt(&gdt_desc);
594
595 /*
596 * Segment descriptors have a size of 8 bytes. Thus, the index is
597 * multiplied by 8 to obtain the memory offset of the desired descriptor
598 * from the base of the GDT. As bits [15:3] of the segment selector
599 * contain the index, it can be regarded as multiplied by 8 already.
600 * All that remains is to clear bits [2:0].
601 */
602 desc_base = sel & ~(SEGMENT_RPL_MASK | SEGMENT_TI_MASK);
603
604 if (desc_base > gdt_desc.size)
605 return NULL;
606
607 return (struct desc_struct *)(gdt_desc.address + desc_base);
608 }
609
610 /**
611 * insn_get_seg_base() - Obtain base address of segment descriptor.
612 * @regs: Register values as seen when entering kernel mode
613 * @seg_reg_idx: Index of the segment register pointing to seg descriptor
614 *
615 * Obtain the base address of the segment as indicated by the segment descriptor
616 * pointed by the segment selector. The segment selector is obtained from the
617 * input segment register index @seg_reg_idx.
618 *
619 * Returns:
620 *
621 * In protected mode, base address of the segment. Zero in long mode,
622 * except when FS or GS are used. In virtual-8086 mode, the segment
623 * selector shifted 4 bits to the right.
624 *
625 * -1L in case of error.
626 */
627 unsigned long insn_get_seg_base(struct pt_regs *regs, int seg_reg_idx)
628 {
629 struct desc_struct *desc;
630 short sel;
631
632 sel = get_segment_selector(regs, seg_reg_idx);
633 if (sel < 0)
634 return -1L;
635
636 if (v8086_mode(regs))
637 /*
638 * Base is simply the segment selector shifted 4
639 * bits to the right.
640 */
641 return (unsigned long)(sel << 4);
642
643 if (user_64bit_mode(regs)) {
644 /*
645 * Only FS or GS will have a base address, the rest of
646 * the segments' bases are forced to 0.
647 */
648 unsigned long base;
649
650 if (seg_reg_idx == INAT_SEG_REG_FS)
651 rdmsrl(MSR_FS_BASE, base);
652 else if (seg_reg_idx == INAT_SEG_REG_GS)
653 /*
654 * swapgs was called at the kernel entry point. Thus,
655 * MSR_KERNEL_GS_BASE will have the user-space GS base.
656 */
657 rdmsrl(MSR_KERNEL_GS_BASE, base);
658 else
659 base = 0;
660 return base;
661 }
662
663 /* In protected mode the segment selector cannot be null. */
664 if (!sel)
665 return -1L;
666
667 desc = get_desc(sel);
668 if (!desc)
669 return -1L;
670
671 return get_desc_base(desc);
672 }
673
674 /**
675 * get_seg_limit() - Obtain the limit of a segment descriptor
676 * @regs: Register values as seen when entering kernel mode
677 * @seg_reg_idx: Index of the segment register pointing to seg descriptor
678 *
679 * Obtain the limit of the segment as indicated by the segment descriptor
680 * pointed by the segment selector. The segment selector is obtained from the
681 * input segment register index @seg_reg_idx.
682 *
683 * Returns:
684 *
685 * In protected mode, the limit of the segment descriptor in bytes.
686 * In long mode and virtual-8086 mode, segment limits are not enforced. Thus,
687 * limit is returned as -1L to imply a limit-less segment.
688 *
689 * Zero is returned on error.
690 */
691 static unsigned long get_seg_limit(struct pt_regs *regs, int seg_reg_idx)
692 {
693 struct desc_struct *desc;
694 unsigned long limit;
695 short sel;
696
697 sel = get_segment_selector(regs, seg_reg_idx);
698 if (sel < 0)
699 return 0;
700
701 if (user_64bit_mode(regs) || v8086_mode(regs))
702 return -1L;
703
704 if (!sel)
705 return 0;
706
707 desc = get_desc(sel);
708 if (!desc)
709 return 0;
710
711 /*
712 * If the granularity bit is set, the limit is given in multiples
713 * of 4096. This also means that the 12 least significant bits are
714 * not tested when checking the segment limits. In practice,
715 * this means that the segment ends in (limit << 12) + 0xfff.
716 */
717 limit = get_desc_limit(desc);
718 if (desc->g)
719 limit = (limit << 12) + 0xfff;
720
721 return limit;
722 }
723
724 /**
725 * insn_get_code_seg_params() - Obtain code segment parameters
726 * @regs: Structure with register values as seen when entering kernel mode
727 *
728 * Obtain address and operand sizes of the code segment. It is obtained from the
729 * selector contained in the CS register in regs. In protected mode, the default
730 * address is determined by inspecting the L and D bits of the segment
731 * descriptor. In virtual-8086 mode, the default is always two bytes for both
732 * address and operand sizes.
733 *
734 * Returns:
735 *
736 * An int containing ORed-in default parameters on success.
737 *
738 * -EINVAL on error.
739 */
740 int insn_get_code_seg_params(struct pt_regs *regs)
741 {
742 struct desc_struct *desc;
743 short sel;
744
745 if (v8086_mode(regs))
746 /* Address and operand size are both 16-bit. */
747 return INSN_CODE_SEG_PARAMS(2, 2);
748
749 sel = get_segment_selector(regs, INAT_SEG_REG_CS);
750 if (sel < 0)
751 return sel;
752
753 desc = get_desc(sel);
754 if (!desc)
755 return -EINVAL;
756
757 /*
758 * The most significant byte of the Type field of the segment descriptor
759 * determines whether a segment contains data or code. If this is a data
760 * segment, return error.
761 */
762 if (!(desc->type & BIT(3)))
763 return -EINVAL;
764
765 switch ((desc->l << 1) | desc->d) {
766 case 0: /*
767 * Legacy mode. CS.L=0, CS.D=0. Address and operand size are
768 * both 16-bit.
769 */
770 return INSN_CODE_SEG_PARAMS(2, 2);
771 case 1: /*
772 * Legacy mode. CS.L=0, CS.D=1. Address and operand size are
773 * both 32-bit.
774 */
775 return INSN_CODE_SEG_PARAMS(4, 4);
776 case 2: /*
777 * IA-32e 64-bit mode. CS.L=1, CS.D=0. Address size is 64-bit;
778 * operand size is 32-bit.
779 */
780 return INSN_CODE_SEG_PARAMS(4, 8);
781 case 3: /* Invalid setting. CS.L=1, CS.D=1 */
782 /* fall through */
783 default:
784 return -EINVAL;
785 }
786 }
787
788 /**
789 * insn_get_modrm_rm_off() - Obtain register in r/m part of the ModRM byte
790 * @insn: Instruction containing the ModRM byte
791 * @regs: Register values as seen when entering kernel mode
792 *
793 * Returns:
794 *
795 * The register indicated by the r/m part of the ModRM byte. The
796 * register is obtained as an offset from the base of pt_regs. In specific
797 * cases, the returned value can be -EDOM to indicate that the particular value
798 * of ModRM does not refer to a register and shall be ignored.
799 */
800 int insn_get_modrm_rm_off(struct insn *insn, struct pt_regs *regs)
801 {
802 return get_reg_offset(insn, regs, REG_TYPE_RM);
803 }
804
805 /**
806 * get_seg_base_limit() - obtain base address and limit of a segment
807 * @insn: Instruction. Must be valid.
808 * @regs: Register values as seen when entering kernel mode
809 * @regoff: Operand offset, in pt_regs, used to resolve segment descriptor
810 * @base: Obtained segment base
811 * @limit: Obtained segment limit
812 *
813 * Obtain the base address and limit of the segment associated with the operand
814 * @regoff and, if any or allowed, override prefixes in @insn. This function is
815 * different from insn_get_seg_base() as the latter does not resolve the segment
816 * associated with the instruction operand. If a limit is not needed (e.g.,
817 * when running in long mode), @limit can be NULL.
818 *
819 * Returns:
820 *
821 * 0 on success. @base and @limit will contain the base address and of the
822 * resolved segment, respectively.
823 *
824 * -EINVAL on error.
825 */
826 static int get_seg_base_limit(struct insn *insn, struct pt_regs *regs,
827 int regoff, unsigned long *base,
828 unsigned long *limit)
829 {
830 int seg_reg_idx;
831
832 if (!base)
833 return -EINVAL;
834
835 seg_reg_idx = resolve_seg_reg(insn, regs, regoff);
836 if (seg_reg_idx < 0)
837 return seg_reg_idx;
838
839 *base = insn_get_seg_base(regs, seg_reg_idx);
840 if (*base == -1L)
841 return -EINVAL;
842
843 if (!limit)
844 return 0;
845
846 *limit = get_seg_limit(regs, seg_reg_idx);
847 if (!(*limit))
848 return -EINVAL;
849
850 return 0;
851 }
852
853 /**
854 * get_eff_addr_reg() - Obtain effective address from register operand
855 * @insn: Instruction. Must be valid.
856 * @regs: Register values as seen when entering kernel mode
857 * @regoff: Obtained operand offset, in pt_regs, with the effective address
858 * @eff_addr: Obtained effective address
859 *
860 * Obtain the effective address stored in the register operand as indicated by
861 * the ModRM byte. This function is to be used only with register addressing
862 * (i.e., ModRM.mod is 3). The effective address is saved in @eff_addr. The
863 * register operand, as an offset from the base of pt_regs, is saved in @regoff;
864 * such offset can then be used to resolve the segment associated with the
865 * operand. This function can be used with any of the supported address sizes
866 * in x86.
867 *
868 * Returns:
869 *
870 * 0 on success. @eff_addr will have the effective address stored in the
871 * operand indicated by ModRM. @regoff will have such operand as an offset from
872 * the base of pt_regs.
873 *
874 * -EINVAL on error.
875 */
876 static int get_eff_addr_reg(struct insn *insn, struct pt_regs *regs,
877 int *regoff, long *eff_addr)
878 {
879 insn_get_modrm(insn);
880
881 if (!insn->modrm.nbytes)
882 return -EINVAL;
883
884 if (X86_MODRM_MOD(insn->modrm.value) != 3)
885 return -EINVAL;
886
887 *regoff = get_reg_offset(insn, regs, REG_TYPE_RM);
888 if (*regoff < 0)
889 return -EINVAL;
890
891 /* Ignore bytes that are outside the address size. */
892 if (insn->addr_bytes == 2)
893 *eff_addr = regs_get_register(regs, *regoff) & 0xffff;
894 else if (insn->addr_bytes == 4)
895 *eff_addr = regs_get_register(regs, *regoff) & 0xffffffff;
896 else /* 64-bit address */
897 *eff_addr = regs_get_register(regs, *regoff);
898
899 return 0;
900 }
901
902 /**
903 * get_eff_addr_modrm() - Obtain referenced effective address via ModRM
904 * @insn: Instruction. Must be valid.
905 * @regs: Register values as seen when entering kernel mode
906 * @regoff: Obtained operand offset, in pt_regs, associated with segment
907 * @eff_addr: Obtained effective address
908 *
909 * Obtain the effective address referenced by the ModRM byte of @insn. After
910 * identifying the registers involved in the register-indirect memory reference,
911 * its value is obtained from the operands in @regs. The computed address is
912 * stored @eff_addr. Also, the register operand that indicates the associated
913 * segment is stored in @regoff, this parameter can later be used to determine
914 * such segment.
915 *
916 * Returns:
917 *
918 * 0 on success. @eff_addr will have the referenced effective address. @regoff
919 * will have a register, as an offset from the base of pt_regs, that can be used
920 * to resolve the associated segment.
921 *
922 * -EINVAL on error.
923 */
924 static int get_eff_addr_modrm(struct insn *insn, struct pt_regs *regs,
925 int *regoff, long *eff_addr)
926 {
927 long tmp;
928
929 if (insn->addr_bytes != 8 && insn->addr_bytes != 4)
930 return -EINVAL;
931
932 insn_get_modrm(insn);
933
934 if (!insn->modrm.nbytes)
935 return -EINVAL;
936
937 if (X86_MODRM_MOD(insn->modrm.value) > 2)
938 return -EINVAL;
939
940 *regoff = get_reg_offset(insn, regs, REG_TYPE_RM);
941
942 /*
943 * -EDOM means that we must ignore the address_offset. In such a case,
944 * in 64-bit mode the effective address relative to the rIP of the
945 * following instruction.
946 */
947 if (*regoff == -EDOM) {
948 if (user_64bit_mode(regs))
949 tmp = regs->ip + insn->length;
950 else
951 tmp = 0;
952 } else if (*regoff < 0) {
953 return -EINVAL;
954 } else {
955 tmp = regs_get_register(regs, *regoff);
956 }
957
958 if (insn->addr_bytes == 4) {
959 int addr32 = (int)(tmp & 0xffffffff) + insn->displacement.value;
960
961 *eff_addr = addr32 & 0xffffffff;
962 } else {
963 *eff_addr = tmp + insn->displacement.value;
964 }
965
966 return 0;
967 }
968
969 /**
970 * get_eff_addr_modrm_16() - Obtain referenced effective address via ModRM
971 * @insn: Instruction. Must be valid.
972 * @regs: Register values as seen when entering kernel mode
973 * @regoff: Obtained operand offset, in pt_regs, associated with segment
974 * @eff_addr: Obtained effective address
975 *
976 * Obtain the 16-bit effective address referenced by the ModRM byte of @insn.
977 * After identifying the registers involved in the register-indirect memory
978 * reference, its value is obtained from the operands in @regs. The computed
979 * address is stored @eff_addr. Also, the register operand that indicates
980 * the associated segment is stored in @regoff, this parameter can later be used
981 * to determine such segment.
982 *
983 * Returns:
984 *
985 * 0 on success. @eff_addr will have the referenced effective address. @regoff
986 * will have a register, as an offset from the base of pt_regs, that can be used
987 * to resolve the associated segment.
988 *
989 * -EINVAL on error.
990 */
991 static int get_eff_addr_modrm_16(struct insn *insn, struct pt_regs *regs,
992 int *regoff, short *eff_addr)
993 {
994 int addr_offset1, addr_offset2, ret;
995 short addr1 = 0, addr2 = 0, displacement;
996
997 if (insn->addr_bytes != 2)
998 return -EINVAL;
999
1000 insn_get_modrm(insn);
1001
1002 if (!insn->modrm.nbytes)
1003 return -EINVAL;
1004
1005 if (X86_MODRM_MOD(insn->modrm.value) > 2)
1006 return -EINVAL;
1007
1008 ret = get_reg_offset_16(insn, regs, &addr_offset1, &addr_offset2);
1009 if (ret < 0)
1010 return -EINVAL;
1011
1012 /*
1013 * Don't fail on invalid offset values. They might be invalid because
1014 * they cannot be used for this particular value of ModRM. Instead, use
1015 * them in the computation only if they contain a valid value.
1016 */
1017 if (addr_offset1 != -EDOM)
1018 addr1 = regs_get_register(regs, addr_offset1) & 0xffff;
1019
1020 if (addr_offset2 != -EDOM)
1021 addr2 = regs_get_register(regs, addr_offset2) & 0xffff;
1022
1023 displacement = insn->displacement.value & 0xffff;
1024 *eff_addr = addr1 + addr2 + displacement;
1025
1026 /*
1027 * The first operand register could indicate to use of either SS or DS
1028 * registers to obtain the segment selector. The second operand
1029 * register can only indicate the use of DS. Thus, the first operand
1030 * will be used to obtain the segment selector.
1031 */
1032 *regoff = addr_offset1;
1033
1034 return 0;
1035 }
1036
1037 /**
1038 * get_eff_addr_sib() - Obtain referenced effective address via SIB
1039 * @insn: Instruction. Must be valid.
1040 * @regs: Register values as seen when entering kernel mode
1041 * @regoff: Obtained operand offset, in pt_regs, associated with segment
1042 * @eff_addr: Obtained effective address
1043 *
1044 * Obtain the effective address referenced by the SIB byte of @insn. After
1045 * identifying the registers involved in the indexed, register-indirect memory
1046 * reference, its value is obtained from the operands in @regs. The computed
1047 * address is stored @eff_addr. Also, the register operand that indicates the
1048 * associated segment is stored in @regoff, this parameter can later be used to
1049 * determine such segment.
1050 *
1051 * Returns:
1052 *
1053 * 0 on success. @eff_addr will have the referenced effective address.
1054 * @base_offset will have a register, as an offset from the base of pt_regs,
1055 * that can be used to resolve the associated segment.
1056 *
1057 * -EINVAL on error.
1058 */
1059 static int get_eff_addr_sib(struct insn *insn, struct pt_regs *regs,
1060 int *base_offset, long *eff_addr)
1061 {
1062 long base, indx;
1063 int indx_offset;
1064
1065 if (insn->addr_bytes != 8 && insn->addr_bytes != 4)
1066 return -EINVAL;
1067
1068 insn_get_modrm(insn);
1069
1070 if (!insn->modrm.nbytes)
1071 return -EINVAL;
1072
1073 if (X86_MODRM_MOD(insn->modrm.value) > 2)
1074 return -EINVAL;
1075
1076 insn_get_sib(insn);
1077
1078 if (!insn->sib.nbytes)
1079 return -EINVAL;
1080
1081 *base_offset = get_reg_offset(insn, regs, REG_TYPE_BASE);
1082 indx_offset = get_reg_offset(insn, regs, REG_TYPE_INDEX);
1083
1084 /*
1085 * Negative values in the base and index offset means an error when
1086 * decoding the SIB byte. Except -EDOM, which means that the registers
1087 * should not be used in the address computation.
1088 */
1089 if (*base_offset == -EDOM)
1090 base = 0;
1091 else if (*base_offset < 0)
1092 return -EINVAL;
1093 else
1094 base = regs_get_register(regs, *base_offset);
1095
1096 if (indx_offset == -EDOM)
1097 indx = 0;
1098 else if (indx_offset < 0)
1099 return -EINVAL;
1100 else
1101 indx = regs_get_register(regs, indx_offset);
1102
1103 if (insn->addr_bytes == 4) {
1104 int addr32, base32, idx32;
1105
1106 base32 = base & 0xffffffff;
1107 idx32 = indx & 0xffffffff;
1108
1109 addr32 = base32 + idx32 * (1 << X86_SIB_SCALE(insn->sib.value));
1110 addr32 += insn->displacement.value;
1111
1112 *eff_addr = addr32 & 0xffffffff;
1113 } else {
1114 *eff_addr = base + indx * (1 << X86_SIB_SCALE(insn->sib.value));
1115 *eff_addr += insn->displacement.value;
1116 }
1117
1118 return 0;
1119 }
1120
1121 /**
1122 * get_addr_ref_16() - Obtain the 16-bit address referred by instruction
1123 * @insn: Instruction containing ModRM byte and displacement
1124 * @regs: Register values as seen when entering kernel mode
1125 *
1126 * This function is to be used with 16-bit address encodings. Obtain the memory
1127 * address referred by the instruction's ModRM and displacement bytes. Also, the
1128 * segment used as base is determined by either any segment override prefixes in
1129 * @insn or the default segment of the registers involved in the address
1130 * computation. In protected mode, segment limits are enforced.
1131 *
1132 * Returns:
1133 *
1134 * Linear address referenced by the instruction operands on success.
1135 *
1136 * -1L on error.
1137 */
1138 static void __user *get_addr_ref_16(struct insn *insn, struct pt_regs *regs)
1139 {
1140 unsigned long linear_addr = -1L, seg_base, seg_limit;
1141 int ret, regoff;
1142 short eff_addr;
1143 long tmp;
1144
1145 insn_get_modrm(insn);
1146 insn_get_displacement(insn);
1147
1148 if (insn->addr_bytes != 2)
1149 goto out;
1150
1151 if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1152 ret = get_eff_addr_reg(insn, regs, &regoff, &tmp);
1153 if (ret)
1154 goto out;
1155
1156 eff_addr = tmp;
1157 } else {
1158 ret = get_eff_addr_modrm_16(insn, regs, &regoff, &eff_addr);
1159 if (ret)
1160 goto out;
1161 }
1162
1163 ret = get_seg_base_limit(insn, regs, regoff, &seg_base, &seg_limit);
1164 if (ret)
1165 goto out;
1166
1167 /*
1168 * Before computing the linear address, make sure the effective address
1169 * is within the limits of the segment. In virtual-8086 mode, segment
1170 * limits are not enforced. In such a case, the segment limit is -1L to
1171 * reflect this fact.
1172 */
1173 if ((unsigned long)(eff_addr & 0xffff) > seg_limit)
1174 goto out;
1175
1176 linear_addr = (unsigned long)(eff_addr & 0xffff) + seg_base;
1177
1178 /* Limit linear address to 20 bits */
1179 if (v8086_mode(regs))
1180 linear_addr &= 0xfffff;
1181
1182 out:
1183 return (void __user *)linear_addr;
1184 }
1185
1186 /**
1187 * get_addr_ref_32() - Obtain a 32-bit linear address
1188 * @insn: Instruction with ModRM, SIB bytes and displacement
1189 * @regs: Register values as seen when entering kernel mode
1190 *
1191 * This function is to be used with 32-bit address encodings to obtain the
1192 * linear memory address referred by the instruction's ModRM, SIB,
1193 * displacement bytes and segment base address, as applicable. If in protected
1194 * mode, segment limits are enforced.
1195 *
1196 * Returns:
1197 *
1198 * Linear address referenced by instruction and registers on success.
1199 *
1200 * -1L on error.
1201 */
1202 static void __user *get_addr_ref_32(struct insn *insn, struct pt_regs *regs)
1203 {
1204 unsigned long linear_addr = -1L, seg_base, seg_limit;
1205 int eff_addr, regoff;
1206 long tmp;
1207 int ret;
1208
1209 if (insn->addr_bytes != 4)
1210 goto out;
1211
1212 if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1213 ret = get_eff_addr_reg(insn, regs, &regoff, &tmp);
1214 if (ret)
1215 goto out;
1216
1217 eff_addr = tmp;
1218
1219 } else {
1220 if (insn->sib.nbytes) {
1221 ret = get_eff_addr_sib(insn, regs, &regoff, &tmp);
1222 if (ret)
1223 goto out;
1224
1225 eff_addr = tmp;
1226 } else {
1227 ret = get_eff_addr_modrm(insn, regs, &regoff, &tmp);
1228 if (ret)
1229 goto out;
1230
1231 eff_addr = tmp;
1232 }
1233 }
1234
1235 ret = get_seg_base_limit(insn, regs, regoff, &seg_base, &seg_limit);
1236 if (ret)
1237 goto out;
1238
1239 /*
1240 * In protected mode, before computing the linear address, make sure
1241 * the effective address is within the limits of the segment.
1242 * 32-bit addresses can be used in long and virtual-8086 modes if an
1243 * address override prefix is used. In such cases, segment limits are
1244 * not enforced. When in virtual-8086 mode, the segment limit is -1L
1245 * to reflect this situation.
1246 *
1247 * After computed, the effective address is treated as an unsigned
1248 * quantity.
1249 */
1250 if (!user_64bit_mode(regs) && ((unsigned int)eff_addr > seg_limit))
1251 goto out;
1252
1253 /*
1254 * Even though 32-bit address encodings are allowed in virtual-8086
1255 * mode, the address range is still limited to [0x-0xffff].
1256 */
1257 if (v8086_mode(regs) && (eff_addr & ~0xffff))
1258 goto out;
1259
1260 /*
1261 * Data type long could be 64 bits in size. Ensure that our 32-bit
1262 * effective address is not sign-extended when computing the linear
1263 * address.
1264 */
1265 linear_addr = (unsigned long)(eff_addr & 0xffffffff) + seg_base;
1266
1267 /* Limit linear address to 20 bits */
1268 if (v8086_mode(regs))
1269 linear_addr &= 0xfffff;
1270
1271 out:
1272 return (void __user *)linear_addr;
1273 }
1274
1275 /**
1276 * get_addr_ref_64() - Obtain a 64-bit linear address
1277 * @insn: Instruction struct with ModRM and SIB bytes and displacement
1278 * @regs: Structure with register values as seen when entering kernel mode
1279 *
1280 * This function is to be used with 64-bit address encodings to obtain the
1281 * linear memory address referred by the instruction's ModRM, SIB,
1282 * displacement bytes and segment base address, as applicable.
1283 *
1284 * Returns:
1285 *
1286 * Linear address referenced by instruction and registers on success.
1287 *
1288 * -1L on error.
1289 */
1290 #ifndef CONFIG_X86_64
1291 static void __user *get_addr_ref_64(struct insn *insn, struct pt_regs *regs)
1292 {
1293 return (void __user *)-1L;
1294 }
1295 #else
1296 static void __user *get_addr_ref_64(struct insn *insn, struct pt_regs *regs)
1297 {
1298 unsigned long linear_addr = -1L, seg_base;
1299 int regoff, ret;
1300 long eff_addr;
1301
1302 if (insn->addr_bytes != 8)
1303 goto out;
1304
1305 if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1306 ret = get_eff_addr_reg(insn, regs, &regoff, &eff_addr);
1307 if (ret)
1308 goto out;
1309
1310 } else {
1311 if (insn->sib.nbytes) {
1312 ret = get_eff_addr_sib(insn, regs, &regoff, &eff_addr);
1313 if (ret)
1314 goto out;
1315 } else {
1316 ret = get_eff_addr_modrm(insn, regs, &regoff, &eff_addr);
1317 if (ret)
1318 goto out;
1319 }
1320
1321 }
1322
1323 ret = get_seg_base_limit(insn, regs, regoff, &seg_base, NULL);
1324 if (ret)
1325 goto out;
1326
1327 linear_addr = (unsigned long)eff_addr + seg_base;
1328
1329 out:
1330 return (void __user *)linear_addr;
1331 }
1332 #endif /* CONFIG_X86_64 */
1333
1334 /**
1335 * insn_get_addr_ref() - Obtain the linear address referred by instruction
1336 * @insn: Instruction structure containing ModRM byte and displacement
1337 * @regs: Structure with register values as seen when entering kernel mode
1338 *
1339 * Obtain the linear address referred by the instruction's ModRM, SIB and
1340 * displacement bytes, and segment base, as applicable. In protected mode,
1341 * segment limits are enforced.
1342 *
1343 * Returns:
1344 *
1345 * Linear address referenced by instruction and registers on success.
1346 *
1347 * -1L on error.
1348 */
1349 void __user *insn_get_addr_ref(struct insn *insn, struct pt_regs *regs)
1350 {
1351 if (!insn || !regs)
1352 return (void __user *)-1L;
1353
1354 switch (insn->addr_bytes) {
1355 case 2:
1356 return get_addr_ref_16(insn, regs);
1357 case 4:
1358 return get_addr_ref_32(insn, regs);
1359 case 8:
1360 return get_addr_ref_64(insn, regs);
1361 default:
1362 return (void __user *)-1L;
1363 }
1364 }