]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/mach-voyager/voyager_smp.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / mach-voyager / voyager_smp.c
1 /* -*- mode: c; c-basic-offset: 8 -*- */
2
3 /* Copyright (C) 1999,2001
4 *
5 * Author: J.E.J.Bottomley@HansenPartnership.com
6 *
7 * This file provides all the same external entries as smp.c but uses
8 * the voyager hal to provide the functionality
9 */
10 #include <linux/cpu.h>
11 #include <linux/module.h>
12 #include <linux/mm.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/delay.h>
15 #include <linux/mc146818rtc.h>
16 #include <linux/cache.h>
17 #include <linux/interrupt.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/bootmem.h>
21 #include <linux/completion.h>
22 #include <asm/desc.h>
23 #include <asm/voyager.h>
24 #include <asm/vic.h>
25 #include <asm/mtrr.h>
26 #include <asm/pgalloc.h>
27 #include <asm/tlbflush.h>
28 #include <asm/arch_hooks.h>
29 #include <asm/trampoline.h>
30
31 /* TLB state -- visible externally, indexed physically */
32 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = { &init_mm, 0 };
33
34 /* CPU IRQ affinity -- set to all ones initially */
35 static unsigned long cpu_irq_affinity[NR_CPUS] __cacheline_aligned =
36 {[0 ... NR_CPUS-1] = ~0UL };
37
38 /* per CPU data structure (for /proc/cpuinfo et al), visible externally
39 * indexed physically */
40 DEFINE_PER_CPU_SHARED_ALIGNED(struct cpuinfo_x86, cpu_info);
41 EXPORT_PER_CPU_SYMBOL(cpu_info);
42
43 /* physical ID of the CPU used to boot the system */
44 unsigned char boot_cpu_id;
45
46 /* The memory line addresses for the Quad CPIs */
47 struct voyager_qic_cpi *voyager_quad_cpi_addr[NR_CPUS] __cacheline_aligned;
48
49 /* The masks for the Extended VIC processors, filled in by cat_init */
50 __u32 voyager_extended_vic_processors = 0;
51
52 /* Masks for the extended Quad processors which cannot be VIC booted */
53 __u32 voyager_allowed_boot_processors = 0;
54
55 /* The mask for the Quad Processors (both extended and non-extended) */
56 __u32 voyager_quad_processors = 0;
57
58 /* Total count of live CPUs, used in process.c to display
59 * the CPU information and in irq.c for the per CPU irq
60 * activity count. Finally exported by i386_ksyms.c */
61 static int voyager_extended_cpus = 1;
62
63 /* Used for the invalidate map that's also checked in the spinlock */
64 static volatile unsigned long smp_invalidate_needed;
65
66 /* Bitmask of CPUs present in the system - exported by i386_syms.c, used
67 * by scheduler but indexed physically */
68 cpumask_t phys_cpu_present_map = CPU_MASK_NONE;
69
70 /* The internal functions */
71 static void send_CPI(__u32 cpuset, __u8 cpi);
72 static void ack_CPI(__u8 cpi);
73 static int ack_QIC_CPI(__u8 cpi);
74 static void ack_special_QIC_CPI(__u8 cpi);
75 static void ack_VIC_CPI(__u8 cpi);
76 static void send_CPI_allbutself(__u8 cpi);
77 static void mask_vic_irq(unsigned int irq);
78 static void unmask_vic_irq(unsigned int irq);
79 static unsigned int startup_vic_irq(unsigned int irq);
80 static void enable_local_vic_irq(unsigned int irq);
81 static void disable_local_vic_irq(unsigned int irq);
82 static void before_handle_vic_irq(unsigned int irq);
83 static void after_handle_vic_irq(unsigned int irq);
84 static void set_vic_irq_affinity(unsigned int irq, cpumask_t mask);
85 static void ack_vic_irq(unsigned int irq);
86 static void vic_enable_cpi(void);
87 static void do_boot_cpu(__u8 cpuid);
88 static void do_quad_bootstrap(void);
89 static void initialize_secondary(void);
90
91 int hard_smp_processor_id(void);
92 int safe_smp_processor_id(void);
93
94 /* Inline functions */
95 static inline void send_one_QIC_CPI(__u8 cpu, __u8 cpi)
96 {
97 voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi =
98 (smp_processor_id() << 16) + cpi;
99 }
100
101 static inline void send_QIC_CPI(__u32 cpuset, __u8 cpi)
102 {
103 int cpu;
104
105 for_each_online_cpu(cpu) {
106 if (cpuset & (1 << cpu)) {
107 #ifdef VOYAGER_DEBUG
108 if (!cpu_online(cpu))
109 VDEBUG(("CPU%d sending cpi %d to CPU%d not in "
110 "cpu_online_map\n",
111 hard_smp_processor_id(), cpi, cpu));
112 #endif
113 send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET);
114 }
115 }
116 }
117
118 static inline void wrapper_smp_local_timer_interrupt(void)
119 {
120 irq_enter();
121 smp_local_timer_interrupt();
122 irq_exit();
123 }
124
125 static inline void send_one_CPI(__u8 cpu, __u8 cpi)
126 {
127 if (voyager_quad_processors & (1 << cpu))
128 send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET);
129 else
130 send_CPI(1 << cpu, cpi);
131 }
132
133 static inline void send_CPI_allbutself(__u8 cpi)
134 {
135 __u8 cpu = smp_processor_id();
136 __u32 mask = cpus_addr(cpu_online_map)[0] & ~(1 << cpu);
137 send_CPI(mask, cpi);
138 }
139
140 static inline int is_cpu_quad(void)
141 {
142 __u8 cpumask = inb(VIC_PROC_WHO_AM_I);
143 return ((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER);
144 }
145
146 static inline int is_cpu_extended(void)
147 {
148 __u8 cpu = hard_smp_processor_id();
149
150 return (voyager_extended_vic_processors & (1 << cpu));
151 }
152
153 static inline int is_cpu_vic_boot(void)
154 {
155 __u8 cpu = hard_smp_processor_id();
156
157 return (voyager_extended_vic_processors
158 & voyager_allowed_boot_processors & (1 << cpu));
159 }
160
161 static inline void ack_CPI(__u8 cpi)
162 {
163 switch (cpi) {
164 case VIC_CPU_BOOT_CPI:
165 if (is_cpu_quad() && !is_cpu_vic_boot())
166 ack_QIC_CPI(cpi);
167 else
168 ack_VIC_CPI(cpi);
169 break;
170 case VIC_SYS_INT:
171 case VIC_CMN_INT:
172 /* These are slightly strange. Even on the Quad card,
173 * They are vectored as VIC CPIs */
174 if (is_cpu_quad())
175 ack_special_QIC_CPI(cpi);
176 else
177 ack_VIC_CPI(cpi);
178 break;
179 default:
180 printk("VOYAGER ERROR: CPI%d is in common CPI code\n", cpi);
181 break;
182 }
183 }
184
185 /* local variables */
186
187 /* The VIC IRQ descriptors -- these look almost identical to the
188 * 8259 IRQs except that masks and things must be kept per processor
189 */
190 static struct irq_chip vic_chip = {
191 .name = "VIC",
192 .startup = startup_vic_irq,
193 .mask = mask_vic_irq,
194 .unmask = unmask_vic_irq,
195 .set_affinity = set_vic_irq_affinity,
196 };
197
198 /* used to count up as CPUs are brought on line (starts at 0) */
199 static int cpucount = 0;
200
201 /* The per cpu profile stuff - used in smp_local_timer_interrupt */
202 static DEFINE_PER_CPU(int, prof_multiplier) = 1;
203 static DEFINE_PER_CPU(int, prof_old_multiplier) = 1;
204 static DEFINE_PER_CPU(int, prof_counter) = 1;
205
206 /* the map used to check if a CPU has booted */
207 static __u32 cpu_booted_map;
208
209 /* the synchronize flag used to hold all secondary CPUs spinning in
210 * a tight loop until the boot sequence is ready for them */
211 static cpumask_t smp_commenced_mask = CPU_MASK_NONE;
212
213 /* This is for the new dynamic CPU boot code */
214 cpumask_t cpu_callin_map = CPU_MASK_NONE;
215 cpumask_t cpu_callout_map = CPU_MASK_NONE;
216
217 /* The per processor IRQ masks (these are usually kept in sync) */
218 static __u16 vic_irq_mask[NR_CPUS] __cacheline_aligned;
219
220 /* the list of IRQs to be enabled by the VIC_ENABLE_IRQ_CPI */
221 static __u16 vic_irq_enable_mask[NR_CPUS] __cacheline_aligned = { 0 };
222
223 /* Lock for enable/disable of VIC interrupts */
224 static __cacheline_aligned DEFINE_SPINLOCK(vic_irq_lock);
225
226 /* The boot processor is correctly set up in PC mode when it
227 * comes up, but the secondaries need their master/slave 8259
228 * pairs initializing correctly */
229
230 /* Interrupt counters (per cpu) and total - used to try to
231 * even up the interrupt handling routines */
232 static long vic_intr_total = 0;
233 static long vic_intr_count[NR_CPUS] __cacheline_aligned = { 0 };
234 static unsigned long vic_tick[NR_CPUS] __cacheline_aligned = { 0 };
235
236 /* Since we can only use CPI0, we fake all the other CPIs */
237 static unsigned long vic_cpi_mailbox[NR_CPUS] __cacheline_aligned;
238
239 /* debugging routine to read the isr of the cpu's pic */
240 static inline __u16 vic_read_isr(void)
241 {
242 __u16 isr;
243
244 outb(0x0b, 0xa0);
245 isr = inb(0xa0) << 8;
246 outb(0x0b, 0x20);
247 isr |= inb(0x20);
248
249 return isr;
250 }
251
252 static __init void qic_setup(void)
253 {
254 if (!is_cpu_quad()) {
255 /* not a quad, no setup */
256 return;
257 }
258 outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0);
259 outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1);
260
261 if (is_cpu_extended()) {
262 /* the QIC duplicate of the VIC base register */
263 outb(VIC_DEFAULT_CPI_BASE, QIC_VIC_CPI_BASE_REGISTER);
264 outb(QIC_DEFAULT_CPI_BASE, QIC_CPI_BASE_REGISTER);
265
266 /* FIXME: should set up the QIC timer and memory parity
267 * error vectors here */
268 }
269 }
270
271 static __init void vic_setup_pic(void)
272 {
273 outb(1, VIC_REDIRECT_REGISTER_1);
274 /* clear the claim registers for dynamic routing */
275 outb(0, VIC_CLAIM_REGISTER_0);
276 outb(0, VIC_CLAIM_REGISTER_1);
277
278 outb(0, VIC_PRIORITY_REGISTER);
279 /* Set the Primary and Secondary Microchannel vector
280 * bases to be the same as the ordinary interrupts
281 *
282 * FIXME: This would be more efficient using separate
283 * vectors. */
284 outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE);
285 outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE);
286 /* Now initiallise the master PIC belonging to this CPU by
287 * sending the four ICWs */
288
289 /* ICW1: level triggered, ICW4 needed */
290 outb(0x19, 0x20);
291
292 /* ICW2: vector base */
293 outb(FIRST_EXTERNAL_VECTOR, 0x21);
294
295 /* ICW3: slave at line 2 */
296 outb(0x04, 0x21);
297
298 /* ICW4: 8086 mode */
299 outb(0x01, 0x21);
300
301 /* now the same for the slave PIC */
302
303 /* ICW1: level trigger, ICW4 needed */
304 outb(0x19, 0xA0);
305
306 /* ICW2: slave vector base */
307 outb(FIRST_EXTERNAL_VECTOR + 8, 0xA1);
308
309 /* ICW3: slave ID */
310 outb(0x02, 0xA1);
311
312 /* ICW4: 8086 mode */
313 outb(0x01, 0xA1);
314 }
315
316 static void do_quad_bootstrap(void)
317 {
318 if (is_cpu_quad() && is_cpu_vic_boot()) {
319 int i;
320 unsigned long flags;
321 __u8 cpuid = hard_smp_processor_id();
322
323 local_irq_save(flags);
324
325 for (i = 0; i < 4; i++) {
326 /* FIXME: this would be >>3 &0x7 on the 32 way */
327 if (((cpuid >> 2) & 0x03) == i)
328 /* don't lower our own mask! */
329 continue;
330
331 /* masquerade as local Quad CPU */
332 outb(QIC_CPUID_ENABLE | i, QIC_PROCESSOR_ID);
333 /* enable the startup CPI */
334 outb(QIC_BOOT_CPI_MASK, QIC_MASK_REGISTER1);
335 /* restore cpu id */
336 outb(0, QIC_PROCESSOR_ID);
337 }
338 local_irq_restore(flags);
339 }
340 }
341
342 void prefill_possible_map(void)
343 {
344 /* This is empty on voyager because we need a much
345 * earlier detection which is done in find_smp_config */
346 }
347
348 /* Set up all the basic stuff: read the SMP config and make all the
349 * SMP information reflect only the boot cpu. All others will be
350 * brought on-line later. */
351 void __init find_smp_config(void)
352 {
353 int i;
354
355 boot_cpu_id = hard_smp_processor_id();
356
357 printk("VOYAGER SMP: Boot cpu is %d\n", boot_cpu_id);
358
359 /* initialize the CPU structures (moved from smp_boot_cpus) */
360 for (i = 0; i < nr_cpu_ids; i++)
361 cpu_irq_affinity[i] = ~0;
362 cpu_online_map = cpumask_of_cpu(boot_cpu_id);
363
364 /* The boot CPU must be extended */
365 voyager_extended_vic_processors = 1 << boot_cpu_id;
366 /* initially, all of the first 8 CPUs can boot */
367 voyager_allowed_boot_processors = 0xff;
368 /* set up everything for just this CPU, we can alter
369 * this as we start the other CPUs later */
370 /* now get the CPU disposition from the extended CMOS */
371 cpus_addr(phys_cpu_present_map)[0] =
372 voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK);
373 cpus_addr(phys_cpu_present_map)[0] |=
374 voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + 1) << 8;
375 cpus_addr(phys_cpu_present_map)[0] |=
376 voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK +
377 2) << 16;
378 cpus_addr(phys_cpu_present_map)[0] |=
379 voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK +
380 3) << 24;
381 cpu_possible_map = phys_cpu_present_map;
382 printk("VOYAGER SMP: phys_cpu_present_map = 0x%lx\n",
383 cpus_addr(phys_cpu_present_map)[0]);
384 /* Here we set up the VIC to enable SMP */
385 /* enable the CPIs by writing the base vector to their register */
386 outb(VIC_DEFAULT_CPI_BASE, VIC_CPI_BASE_REGISTER);
387 outb(1, VIC_REDIRECT_REGISTER_1);
388 /* set the claim registers for static routing --- Boot CPU gets
389 * all interrupts untill all other CPUs started */
390 outb(0xff, VIC_CLAIM_REGISTER_0);
391 outb(0xff, VIC_CLAIM_REGISTER_1);
392 /* Set the Primary and Secondary Microchannel vector
393 * bases to be the same as the ordinary interrupts
394 *
395 * FIXME: This would be more efficient using separate
396 * vectors. */
397 outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE);
398 outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE);
399
400 /* Finally tell the firmware that we're driving */
401 outb(inb(VOYAGER_SUS_IN_CONTROL_PORT) | VOYAGER_IN_CONTROL_FLAG,
402 VOYAGER_SUS_IN_CONTROL_PORT);
403
404 current_thread_info()->cpu = boot_cpu_id;
405 x86_write_percpu(cpu_number, boot_cpu_id);
406 }
407
408 /*
409 * The bootstrap kernel entry code has set these up. Save them
410 * for a given CPU, id is physical */
411 void __init smp_store_cpu_info(int id)
412 {
413 struct cpuinfo_x86 *c = &cpu_data(id);
414
415 *c = boot_cpu_data;
416 c->cpu_index = id;
417
418 identify_secondary_cpu(c);
419 }
420
421 /* Routine initially called when a non-boot CPU is brought online */
422 static void __init start_secondary(void *unused)
423 {
424 __u8 cpuid = hard_smp_processor_id();
425
426 cpu_init();
427
428 /* OK, we're in the routine */
429 ack_CPI(VIC_CPU_BOOT_CPI);
430
431 /* setup the 8259 master slave pair belonging to this CPU ---
432 * we won't actually receive any until the boot CPU
433 * relinquishes it's static routing mask */
434 vic_setup_pic();
435
436 qic_setup();
437
438 if (is_cpu_quad() && !is_cpu_vic_boot()) {
439 /* clear the boot CPI */
440 __u8 dummy;
441
442 dummy =
443 voyager_quad_cpi_addr[cpuid]->qic_cpi[VIC_CPU_BOOT_CPI].cpi;
444 printk("read dummy %d\n", dummy);
445 }
446
447 /* lower the mask to receive CPIs */
448 vic_enable_cpi();
449
450 VDEBUG(("VOYAGER SMP: CPU%d, stack at about %p\n", cpuid, &cpuid));
451
452 notify_cpu_starting(cpuid);
453
454 /* enable interrupts */
455 local_irq_enable();
456
457 /* get our bogomips */
458 calibrate_delay();
459
460 /* save our processor parameters */
461 smp_store_cpu_info(cpuid);
462
463 /* if we're a quad, we may need to bootstrap other CPUs */
464 do_quad_bootstrap();
465
466 /* FIXME: this is rather a poor hack to prevent the CPU
467 * activating softirqs while it's supposed to be waiting for
468 * permission to proceed. Without this, the new per CPU stuff
469 * in the softirqs will fail */
470 local_irq_disable();
471 cpu_set(cpuid, cpu_callin_map);
472
473 /* signal that we're done */
474 cpu_booted_map = 1;
475
476 while (!cpu_isset(cpuid, smp_commenced_mask))
477 rep_nop();
478 local_irq_enable();
479
480 local_flush_tlb();
481
482 cpu_set(cpuid, cpu_online_map);
483 wmb();
484 cpu_idle();
485 }
486
487 /* Routine to kick start the given CPU and wait for it to report ready
488 * (or timeout in startup). When this routine returns, the requested
489 * CPU is either fully running and configured or known to be dead.
490 *
491 * We call this routine sequentially 1 CPU at a time, so no need for
492 * locking */
493
494 static void __init do_boot_cpu(__u8 cpu)
495 {
496 struct task_struct *idle;
497 int timeout;
498 unsigned long flags;
499 int quad_boot = (1 << cpu) & voyager_quad_processors
500 & ~(voyager_extended_vic_processors
501 & voyager_allowed_boot_processors);
502
503 /* This is the format of the CPI IDT gate (in real mode) which
504 * we're hijacking to boot the CPU */
505 union IDTFormat {
506 struct seg {
507 __u16 Offset;
508 __u16 Segment;
509 } idt;
510 __u32 val;
511 } hijack_source;
512
513 __u32 *hijack_vector;
514 __u32 start_phys_address = setup_trampoline();
515
516 /* There's a clever trick to this: The linux trampoline is
517 * compiled to begin at absolute location zero, so make the
518 * address zero but have the data segment selector compensate
519 * for the actual address */
520 hijack_source.idt.Offset = start_phys_address & 0x000F;
521 hijack_source.idt.Segment = (start_phys_address >> 4) & 0xFFFF;
522
523 cpucount++;
524 alternatives_smp_switch(1);
525
526 idle = fork_idle(cpu);
527 if (IS_ERR(idle))
528 panic("failed fork for CPU%d", cpu);
529 idle->thread.ip = (unsigned long)start_secondary;
530 /* init_tasks (in sched.c) is indexed logically */
531 stack_start.sp = (void *)idle->thread.sp;
532
533 init_gdt(cpu);
534 per_cpu(current_task, cpu) = idle;
535 early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu);
536 irq_ctx_init(cpu);
537
538 /* Note: Don't modify initial ss override */
539 VDEBUG(("VOYAGER SMP: Booting CPU%d at 0x%lx[%x:%x], stack %p\n", cpu,
540 (unsigned long)hijack_source.val, hijack_source.idt.Segment,
541 hijack_source.idt.Offset, stack_start.sp));
542
543 /* init lowmem identity mapping */
544 clone_pgd_range(swapper_pg_dir, swapper_pg_dir + KERNEL_PGD_BOUNDARY,
545 min_t(unsigned long, KERNEL_PGD_PTRS, KERNEL_PGD_BOUNDARY));
546 flush_tlb_all();
547
548 if (quad_boot) {
549 printk("CPU %d: non extended Quad boot\n", cpu);
550 hijack_vector =
551 (__u32 *)
552 phys_to_virt((VIC_CPU_BOOT_CPI + QIC_DEFAULT_CPI_BASE) * 4);
553 *hijack_vector = hijack_source.val;
554 } else {
555 printk("CPU%d: extended VIC boot\n", cpu);
556 hijack_vector =
557 (__u32 *)
558 phys_to_virt((VIC_CPU_BOOT_CPI + VIC_DEFAULT_CPI_BASE) * 4);
559 *hijack_vector = hijack_source.val;
560 /* VIC errata, may also receive interrupt at this address */
561 hijack_vector =
562 (__u32 *)
563 phys_to_virt((VIC_CPU_BOOT_ERRATA_CPI +
564 VIC_DEFAULT_CPI_BASE) * 4);
565 *hijack_vector = hijack_source.val;
566 }
567 /* All non-boot CPUs start with interrupts fully masked. Need
568 * to lower the mask of the CPI we're about to send. We do
569 * this in the VIC by masquerading as the processor we're
570 * about to boot and lowering its interrupt mask */
571 local_irq_save(flags);
572 if (quad_boot) {
573 send_one_QIC_CPI(cpu, VIC_CPU_BOOT_CPI);
574 } else {
575 outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID);
576 /* here we're altering registers belonging to `cpu' */
577
578 outb(VIC_BOOT_INTERRUPT_MASK, 0x21);
579 /* now go back to our original identity */
580 outb(boot_cpu_id, VIC_PROCESSOR_ID);
581
582 /* and boot the CPU */
583
584 send_CPI((1 << cpu), VIC_CPU_BOOT_CPI);
585 }
586 cpu_booted_map = 0;
587 local_irq_restore(flags);
588
589 /* now wait for it to become ready (or timeout) */
590 for (timeout = 0; timeout < 50000; timeout++) {
591 if (cpu_booted_map)
592 break;
593 udelay(100);
594 }
595 /* reset the page table */
596 zap_low_mappings();
597
598 if (cpu_booted_map) {
599 VDEBUG(("CPU%d: Booted successfully, back in CPU %d\n",
600 cpu, smp_processor_id()));
601
602 printk("CPU%d: ", cpu);
603 print_cpu_info(&cpu_data(cpu));
604 wmb();
605 cpu_set(cpu, cpu_callout_map);
606 cpu_set(cpu, cpu_present_map);
607 } else {
608 printk("CPU%d FAILED TO BOOT: ", cpu);
609 if (*
610 ((volatile unsigned char *)phys_to_virt(start_phys_address))
611 == 0xA5)
612 printk("Stuck.\n");
613 else
614 printk("Not responding.\n");
615
616 cpucount--;
617 }
618 }
619
620 void __init smp_boot_cpus(void)
621 {
622 int i;
623
624 /* CAT BUS initialisation must be done after the memory */
625 /* FIXME: The L4 has a catbus too, it just needs to be
626 * accessed in a totally different way */
627 if (voyager_level == 5) {
628 voyager_cat_init();
629
630 /* now that the cat has probed the Voyager System Bus, sanity
631 * check the cpu map */
632 if (((voyager_quad_processors | voyager_extended_vic_processors)
633 & cpus_addr(phys_cpu_present_map)[0]) !=
634 cpus_addr(phys_cpu_present_map)[0]) {
635 /* should panic */
636 printk("\n\n***WARNING*** "
637 "Sanity check of CPU present map FAILED\n");
638 }
639 } else if (voyager_level == 4)
640 voyager_extended_vic_processors =
641 cpus_addr(phys_cpu_present_map)[0];
642
643 /* this sets up the idle task to run on the current cpu */
644 voyager_extended_cpus = 1;
645 /* Remove the global_irq_holder setting, it triggers a BUG() on
646 * schedule at the moment */
647 //global_irq_holder = boot_cpu_id;
648
649 /* FIXME: Need to do something about this but currently only works
650 * on CPUs with a tsc which none of mine have.
651 smp_tune_scheduling();
652 */
653 smp_store_cpu_info(boot_cpu_id);
654 /* setup the jump vector */
655 initial_code = (unsigned long)initialize_secondary;
656 printk("CPU%d: ", boot_cpu_id);
657 print_cpu_info(&cpu_data(boot_cpu_id));
658
659 if (is_cpu_quad()) {
660 /* booting on a Quad CPU */
661 printk("VOYAGER SMP: Boot CPU is Quad\n");
662 qic_setup();
663 do_quad_bootstrap();
664 }
665
666 /* enable our own CPIs */
667 vic_enable_cpi();
668
669 cpu_set(boot_cpu_id, cpu_online_map);
670 cpu_set(boot_cpu_id, cpu_callout_map);
671
672 /* loop over all the extended VIC CPUs and boot them. The
673 * Quad CPUs must be bootstrapped by their extended VIC cpu */
674 for (i = 0; i < nr_cpu_ids; i++) {
675 if (i == boot_cpu_id || !cpu_isset(i, phys_cpu_present_map))
676 continue;
677 do_boot_cpu(i);
678 /* This udelay seems to be needed for the Quad boots
679 * don't remove unless you know what you're doing */
680 udelay(1000);
681 }
682 /* we could compute the total bogomips here, but why bother?,
683 * Code added from smpboot.c */
684 {
685 unsigned long bogosum = 0;
686
687 for_each_online_cpu(i)
688 bogosum += cpu_data(i).loops_per_jiffy;
689 printk(KERN_INFO "Total of %d processors activated "
690 "(%lu.%02lu BogoMIPS).\n",
691 cpucount + 1, bogosum / (500000 / HZ),
692 (bogosum / (5000 / HZ)) % 100);
693 }
694 voyager_extended_cpus = hweight32(voyager_extended_vic_processors);
695 printk("VOYAGER: Extended (interrupt handling CPUs): "
696 "%d, non-extended: %d\n", voyager_extended_cpus,
697 num_booting_cpus() - voyager_extended_cpus);
698 /* that's it, switch to symmetric mode */
699 outb(0, VIC_PRIORITY_REGISTER);
700 outb(0, VIC_CLAIM_REGISTER_0);
701 outb(0, VIC_CLAIM_REGISTER_1);
702
703 VDEBUG(("VOYAGER SMP: Booted with %d CPUs\n", num_booting_cpus()));
704 }
705
706 /* Reload the secondary CPUs task structure (this function does not
707 * return ) */
708 static void __init initialize_secondary(void)
709 {
710 #if 0
711 // AC kernels only
712 set_current(hard_get_current());
713 #endif
714
715 /*
716 * We don't actually need to load the full TSS,
717 * basically just the stack pointer and the eip.
718 */
719
720 asm volatile ("movl %0,%%esp\n\t"
721 "jmp *%1"::"r" (current->thread.sp),
722 "r"(current->thread.ip));
723 }
724
725 /* handle a Voyager SYS_INT -- If we don't, the base board will
726 * panic the system.
727 *
728 * System interrupts occur because some problem was detected on the
729 * various busses. To find out what you have to probe all the
730 * hardware via the CAT bus. FIXME: At the moment we do nothing. */
731 void smp_vic_sys_interrupt(struct pt_regs *regs)
732 {
733 ack_CPI(VIC_SYS_INT);
734 printk("Voyager SYSTEM INTERRUPT\n");
735 }
736
737 /* Handle a voyager CMN_INT; These interrupts occur either because of
738 * a system status change or because a single bit memory error
739 * occurred. FIXME: At the moment, ignore all this. */
740 void smp_vic_cmn_interrupt(struct pt_regs *regs)
741 {
742 static __u8 in_cmn_int = 0;
743 static DEFINE_SPINLOCK(cmn_int_lock);
744
745 /* common ints are broadcast, so make sure we only do this once */
746 _raw_spin_lock(&cmn_int_lock);
747 if (in_cmn_int)
748 goto unlock_end;
749
750 in_cmn_int++;
751 _raw_spin_unlock(&cmn_int_lock);
752
753 VDEBUG(("Voyager COMMON INTERRUPT\n"));
754
755 if (voyager_level == 5)
756 voyager_cat_do_common_interrupt();
757
758 _raw_spin_lock(&cmn_int_lock);
759 in_cmn_int = 0;
760 unlock_end:
761 _raw_spin_unlock(&cmn_int_lock);
762 ack_CPI(VIC_CMN_INT);
763 }
764
765 /*
766 * Reschedule call back. Nothing to do, all the work is done
767 * automatically when we return from the interrupt. */
768 static void smp_reschedule_interrupt(void)
769 {
770 /* do nothing */
771 }
772
773 static struct mm_struct *flush_mm;
774 static unsigned long flush_va;
775 static DEFINE_SPINLOCK(tlbstate_lock);
776
777 /*
778 * We cannot call mmdrop() because we are in interrupt context,
779 * instead update mm->cpu_vm_mask.
780 *
781 * We need to reload %cr3 since the page tables may be going
782 * away from under us..
783 */
784 static inline void voyager_leave_mm(unsigned long cpu)
785 {
786 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK)
787 BUG();
788 cpu_clear(cpu, per_cpu(cpu_tlbstate, cpu).active_mm->cpu_vm_mask);
789 load_cr3(swapper_pg_dir);
790 }
791
792 /*
793 * Invalidate call-back
794 */
795 static void smp_invalidate_interrupt(void)
796 {
797 __u8 cpu = smp_processor_id();
798
799 if (!test_bit(cpu, &smp_invalidate_needed))
800 return;
801 /* This will flood messages. Don't uncomment unless you see
802 * Problems with cross cpu invalidation
803 VDEBUG(("VOYAGER SMP: CPU%d received INVALIDATE_CPI\n",
804 smp_processor_id()));
805 */
806
807 if (flush_mm == per_cpu(cpu_tlbstate, cpu).active_mm) {
808 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) {
809 if (flush_va == TLB_FLUSH_ALL)
810 local_flush_tlb();
811 else
812 __flush_tlb_one(flush_va);
813 } else
814 voyager_leave_mm(cpu);
815 }
816 smp_mb__before_clear_bit();
817 clear_bit(cpu, &smp_invalidate_needed);
818 smp_mb__after_clear_bit();
819 }
820
821 /* All the new flush operations for 2.4 */
822
823 /* This routine is called with a physical cpu mask */
824 static void
825 voyager_flush_tlb_others(unsigned long cpumask, struct mm_struct *mm,
826 unsigned long va)
827 {
828 int stuck = 50000;
829
830 if (!cpumask)
831 BUG();
832 if ((cpumask & cpus_addr(cpu_online_map)[0]) != cpumask)
833 BUG();
834 if (cpumask & (1 << smp_processor_id()))
835 BUG();
836 if (!mm)
837 BUG();
838
839 spin_lock(&tlbstate_lock);
840
841 flush_mm = mm;
842 flush_va = va;
843 atomic_set_mask(cpumask, &smp_invalidate_needed);
844 /*
845 * We have to send the CPI only to
846 * CPUs affected.
847 */
848 send_CPI(cpumask, VIC_INVALIDATE_CPI);
849
850 while (smp_invalidate_needed) {
851 mb();
852 if (--stuck == 0) {
853 printk("***WARNING*** Stuck doing invalidate CPI "
854 "(CPU%d)\n", smp_processor_id());
855 break;
856 }
857 }
858
859 /* Uncomment only to debug invalidation problems
860 VDEBUG(("VOYAGER SMP: Completed invalidate CPI (CPU%d)\n", cpu));
861 */
862
863 flush_mm = NULL;
864 flush_va = 0;
865 spin_unlock(&tlbstate_lock);
866 }
867
868 void flush_tlb_current_task(void)
869 {
870 struct mm_struct *mm = current->mm;
871 unsigned long cpu_mask;
872
873 preempt_disable();
874
875 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
876 local_flush_tlb();
877 if (cpu_mask)
878 voyager_flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
879
880 preempt_enable();
881 }
882
883 void flush_tlb_mm(struct mm_struct *mm)
884 {
885 unsigned long cpu_mask;
886
887 preempt_disable();
888
889 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
890
891 if (current->active_mm == mm) {
892 if (current->mm)
893 local_flush_tlb();
894 else
895 voyager_leave_mm(smp_processor_id());
896 }
897 if (cpu_mask)
898 voyager_flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
899
900 preempt_enable();
901 }
902
903 void flush_tlb_page(struct vm_area_struct *vma, unsigned long va)
904 {
905 struct mm_struct *mm = vma->vm_mm;
906 unsigned long cpu_mask;
907
908 preempt_disable();
909
910 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
911 if (current->active_mm == mm) {
912 if (current->mm)
913 __flush_tlb_one(va);
914 else
915 voyager_leave_mm(smp_processor_id());
916 }
917
918 if (cpu_mask)
919 voyager_flush_tlb_others(cpu_mask, mm, va);
920
921 preempt_enable();
922 }
923
924 EXPORT_SYMBOL(flush_tlb_page);
925
926 /* enable the requested IRQs */
927 static void smp_enable_irq_interrupt(void)
928 {
929 __u8 irq;
930 __u8 cpu = get_cpu();
931
932 VDEBUG(("VOYAGER SMP: CPU%d enabling irq mask 0x%x\n", cpu,
933 vic_irq_enable_mask[cpu]));
934
935 spin_lock(&vic_irq_lock);
936 for (irq = 0; irq < 16; irq++) {
937 if (vic_irq_enable_mask[cpu] & (1 << irq))
938 enable_local_vic_irq(irq);
939 }
940 vic_irq_enable_mask[cpu] = 0;
941 spin_unlock(&vic_irq_lock);
942
943 put_cpu_no_resched();
944 }
945
946 /*
947 * CPU halt call-back
948 */
949 static void smp_stop_cpu_function(void *dummy)
950 {
951 VDEBUG(("VOYAGER SMP: CPU%d is STOPPING\n", smp_processor_id()));
952 cpu_clear(smp_processor_id(), cpu_online_map);
953 local_irq_disable();
954 for (;;)
955 halt();
956 }
957
958 /* execute a thread on a new CPU. The function to be called must be
959 * previously set up. This is used to schedule a function for
960 * execution on all CPUs - set up the function then broadcast a
961 * function_interrupt CPI to come here on each CPU */
962 static void smp_call_function_interrupt(void)
963 {
964 irq_enter();
965 generic_smp_call_function_interrupt();
966 __get_cpu_var(irq_stat).irq_call_count++;
967 irq_exit();
968 }
969
970 static void smp_call_function_single_interrupt(void)
971 {
972 irq_enter();
973 generic_smp_call_function_single_interrupt();
974 __get_cpu_var(irq_stat).irq_call_count++;
975 irq_exit();
976 }
977
978 /* Sorry about the name. In an APIC based system, the APICs
979 * themselves are programmed to send a timer interrupt. This is used
980 * by linux to reschedule the processor. Voyager doesn't have this,
981 * so we use the system clock to interrupt one processor, which in
982 * turn, broadcasts a timer CPI to all the others --- we receive that
983 * CPI here. We don't use this actually for counting so losing
984 * ticks doesn't matter
985 *
986 * FIXME: For those CPUs which actually have a local APIC, we could
987 * try to use it to trigger this interrupt instead of having to
988 * broadcast the timer tick. Unfortunately, all my pentium DYADs have
989 * no local APIC, so I can't do this
990 *
991 * This function is currently a placeholder and is unused in the code */
992 void smp_apic_timer_interrupt(struct pt_regs *regs)
993 {
994 struct pt_regs *old_regs = set_irq_regs(regs);
995 wrapper_smp_local_timer_interrupt();
996 set_irq_regs(old_regs);
997 }
998
999 /* All of the QUAD interrupt GATES */
1000 void smp_qic_timer_interrupt(struct pt_regs *regs)
1001 {
1002 struct pt_regs *old_regs = set_irq_regs(regs);
1003 ack_QIC_CPI(QIC_TIMER_CPI);
1004 wrapper_smp_local_timer_interrupt();
1005 set_irq_regs(old_regs);
1006 }
1007
1008 void smp_qic_invalidate_interrupt(struct pt_regs *regs)
1009 {
1010 ack_QIC_CPI(QIC_INVALIDATE_CPI);
1011 smp_invalidate_interrupt();
1012 }
1013
1014 void smp_qic_reschedule_interrupt(struct pt_regs *regs)
1015 {
1016 ack_QIC_CPI(QIC_RESCHEDULE_CPI);
1017 smp_reschedule_interrupt();
1018 }
1019
1020 void smp_qic_enable_irq_interrupt(struct pt_regs *regs)
1021 {
1022 ack_QIC_CPI(QIC_ENABLE_IRQ_CPI);
1023 smp_enable_irq_interrupt();
1024 }
1025
1026 void smp_qic_call_function_interrupt(struct pt_regs *regs)
1027 {
1028 ack_QIC_CPI(QIC_CALL_FUNCTION_CPI);
1029 smp_call_function_interrupt();
1030 }
1031
1032 void smp_qic_call_function_single_interrupt(struct pt_regs *regs)
1033 {
1034 ack_QIC_CPI(QIC_CALL_FUNCTION_SINGLE_CPI);
1035 smp_call_function_single_interrupt();
1036 }
1037
1038 void smp_vic_cpi_interrupt(struct pt_regs *regs)
1039 {
1040 struct pt_regs *old_regs = set_irq_regs(regs);
1041 __u8 cpu = smp_processor_id();
1042
1043 if (is_cpu_quad())
1044 ack_QIC_CPI(VIC_CPI_LEVEL0);
1045 else
1046 ack_VIC_CPI(VIC_CPI_LEVEL0);
1047
1048 if (test_and_clear_bit(VIC_TIMER_CPI, &vic_cpi_mailbox[cpu]))
1049 wrapper_smp_local_timer_interrupt();
1050 if (test_and_clear_bit(VIC_INVALIDATE_CPI, &vic_cpi_mailbox[cpu]))
1051 smp_invalidate_interrupt();
1052 if (test_and_clear_bit(VIC_RESCHEDULE_CPI, &vic_cpi_mailbox[cpu]))
1053 smp_reschedule_interrupt();
1054 if (test_and_clear_bit(VIC_ENABLE_IRQ_CPI, &vic_cpi_mailbox[cpu]))
1055 smp_enable_irq_interrupt();
1056 if (test_and_clear_bit(VIC_CALL_FUNCTION_CPI, &vic_cpi_mailbox[cpu]))
1057 smp_call_function_interrupt();
1058 if (test_and_clear_bit(VIC_CALL_FUNCTION_SINGLE_CPI, &vic_cpi_mailbox[cpu]))
1059 smp_call_function_single_interrupt();
1060 set_irq_regs(old_regs);
1061 }
1062
1063 static void do_flush_tlb_all(void *info)
1064 {
1065 unsigned long cpu = smp_processor_id();
1066
1067 __flush_tlb_all();
1068 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_LAZY)
1069 voyager_leave_mm(cpu);
1070 }
1071
1072 /* flush the TLB of every active CPU in the system */
1073 void flush_tlb_all(void)
1074 {
1075 on_each_cpu(do_flush_tlb_all, 0, 1);
1076 }
1077
1078 /* send a reschedule CPI to one CPU by physical CPU number*/
1079 static void voyager_smp_send_reschedule(int cpu)
1080 {
1081 send_one_CPI(cpu, VIC_RESCHEDULE_CPI);
1082 }
1083
1084 int hard_smp_processor_id(void)
1085 {
1086 __u8 i;
1087 __u8 cpumask = inb(VIC_PROC_WHO_AM_I);
1088 if ((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER)
1089 return cpumask & 0x1F;
1090
1091 for (i = 0; i < 8; i++) {
1092 if (cpumask & (1 << i))
1093 return i;
1094 }
1095 printk("** WARNING ** Illegal cpuid returned by VIC: %d", cpumask);
1096 return 0;
1097 }
1098
1099 int safe_smp_processor_id(void)
1100 {
1101 return hard_smp_processor_id();
1102 }
1103
1104 /* broadcast a halt to all other CPUs */
1105 static void voyager_smp_send_stop(void)
1106 {
1107 smp_call_function(smp_stop_cpu_function, NULL, 1);
1108 }
1109
1110 /* this function is triggered in time.c when a clock tick fires
1111 * we need to re-broadcast the tick to all CPUs */
1112 void smp_vic_timer_interrupt(void)
1113 {
1114 send_CPI_allbutself(VIC_TIMER_CPI);
1115 smp_local_timer_interrupt();
1116 }
1117
1118 /* local (per CPU) timer interrupt. It does both profiling and
1119 * process statistics/rescheduling.
1120 *
1121 * We do profiling in every local tick, statistics/rescheduling
1122 * happen only every 'profiling multiplier' ticks. The default
1123 * multiplier is 1 and it can be changed by writing the new multiplier
1124 * value into /proc/profile.
1125 */
1126 void smp_local_timer_interrupt(void)
1127 {
1128 int cpu = smp_processor_id();
1129 long weight;
1130
1131 profile_tick(CPU_PROFILING);
1132 if (--per_cpu(prof_counter, cpu) <= 0) {
1133 /*
1134 * The multiplier may have changed since the last time we got
1135 * to this point as a result of the user writing to
1136 * /proc/profile. In this case we need to adjust the APIC
1137 * timer accordingly.
1138 *
1139 * Interrupts are already masked off at this point.
1140 */
1141 per_cpu(prof_counter, cpu) = per_cpu(prof_multiplier, cpu);
1142 if (per_cpu(prof_counter, cpu) !=
1143 per_cpu(prof_old_multiplier, cpu)) {
1144 /* FIXME: need to update the vic timer tick here */
1145 per_cpu(prof_old_multiplier, cpu) =
1146 per_cpu(prof_counter, cpu);
1147 }
1148
1149 update_process_times(user_mode_vm(get_irq_regs()));
1150 }
1151
1152 if (((1 << cpu) & voyager_extended_vic_processors) == 0)
1153 /* only extended VIC processors participate in
1154 * interrupt distribution */
1155 return;
1156
1157 /*
1158 * We take the 'long' return path, and there every subsystem
1159 * grabs the appropriate locks (kernel lock/ irq lock).
1160 *
1161 * we might want to decouple profiling from the 'long path',
1162 * and do the profiling totally in assembly.
1163 *
1164 * Currently this isn't too much of an issue (performance wise),
1165 * we can take more than 100K local irqs per second on a 100 MHz P5.
1166 */
1167
1168 if ((++vic_tick[cpu] & 0x7) != 0)
1169 return;
1170 /* get here every 16 ticks (about every 1/6 of a second) */
1171
1172 /* Change our priority to give someone else a chance at getting
1173 * the IRQ. The algorithm goes like this:
1174 *
1175 * In the VIC, the dynamically routed interrupt is always
1176 * handled by the lowest priority eligible (i.e. receiving
1177 * interrupts) CPU. If >1 eligible CPUs are equal lowest, the
1178 * lowest processor number gets it.
1179 *
1180 * The priority of a CPU is controlled by a special per-CPU
1181 * VIC priority register which is 3 bits wide 0 being lowest
1182 * and 7 highest priority..
1183 *
1184 * Therefore we subtract the average number of interrupts from
1185 * the number we've fielded. If this number is negative, we
1186 * lower the activity count and if it is positive, we raise
1187 * it.
1188 *
1189 * I'm afraid this still leads to odd looking interrupt counts:
1190 * the totals are all roughly equal, but the individual ones
1191 * look rather skewed.
1192 *
1193 * FIXME: This algorithm is total crap when mixed with SMP
1194 * affinity code since we now try to even up the interrupt
1195 * counts when an affinity binding is keeping them on a
1196 * particular CPU*/
1197 weight = (vic_intr_count[cpu] * voyager_extended_cpus
1198 - vic_intr_total) >> 4;
1199 weight += 4;
1200 if (weight > 7)
1201 weight = 7;
1202 if (weight < 0)
1203 weight = 0;
1204
1205 outb((__u8) weight, VIC_PRIORITY_REGISTER);
1206
1207 #ifdef VOYAGER_DEBUG
1208 if ((vic_tick[cpu] & 0xFFF) == 0) {
1209 /* print this message roughly every 25 secs */
1210 printk("VOYAGER SMP: vic_tick[%d] = %lu, weight = %ld\n",
1211 cpu, vic_tick[cpu], weight);
1212 }
1213 #endif
1214 }
1215
1216 /* setup the profiling timer */
1217 int setup_profiling_timer(unsigned int multiplier)
1218 {
1219 int i;
1220
1221 if ((!multiplier))
1222 return -EINVAL;
1223
1224 /*
1225 * Set the new multiplier for each CPU. CPUs don't start using the
1226 * new values until the next timer interrupt in which they do process
1227 * accounting.
1228 */
1229 for (i = 0; i < nr_cpu_ids; ++i)
1230 per_cpu(prof_multiplier, i) = multiplier;
1231
1232 return 0;
1233 }
1234
1235 /* This is a bit of a mess, but forced on us by the genirq changes
1236 * there's no genirq handler that really does what voyager wants
1237 * so hack it up with the simple IRQ handler */
1238 static void handle_vic_irq(unsigned int irq, struct irq_desc *desc)
1239 {
1240 before_handle_vic_irq(irq);
1241 handle_simple_irq(irq, desc);
1242 after_handle_vic_irq(irq);
1243 }
1244
1245 /* The CPIs are handled in the per cpu 8259s, so they must be
1246 * enabled to be received: FIX: enabling the CPIs in the early
1247 * boot sequence interferes with bug checking; enable them later
1248 * on in smp_init */
1249 #define VIC_SET_GATE(cpi, vector) \
1250 set_intr_gate((cpi) + VIC_DEFAULT_CPI_BASE, (vector))
1251 #define QIC_SET_GATE(cpi, vector) \
1252 set_intr_gate((cpi) + QIC_DEFAULT_CPI_BASE, (vector))
1253
1254 void __init voyager_smp_intr_init(void)
1255 {
1256 int i;
1257
1258 /* initialize the per cpu irq mask to all disabled */
1259 for (i = 0; i < nr_cpu_ids; i++)
1260 vic_irq_mask[i] = 0xFFFF;
1261
1262 VIC_SET_GATE(VIC_CPI_LEVEL0, vic_cpi_interrupt);
1263
1264 VIC_SET_GATE(VIC_SYS_INT, vic_sys_interrupt);
1265 VIC_SET_GATE(VIC_CMN_INT, vic_cmn_interrupt);
1266
1267 QIC_SET_GATE(QIC_TIMER_CPI, qic_timer_interrupt);
1268 QIC_SET_GATE(QIC_INVALIDATE_CPI, qic_invalidate_interrupt);
1269 QIC_SET_GATE(QIC_RESCHEDULE_CPI, qic_reschedule_interrupt);
1270 QIC_SET_GATE(QIC_ENABLE_IRQ_CPI, qic_enable_irq_interrupt);
1271 QIC_SET_GATE(QIC_CALL_FUNCTION_CPI, qic_call_function_interrupt);
1272
1273 /* now put the VIC descriptor into the first 48 IRQs
1274 *
1275 * This is for later: first 16 correspond to PC IRQs; next 16
1276 * are Primary MC IRQs and final 16 are Secondary MC IRQs */
1277 for (i = 0; i < 48; i++)
1278 set_irq_chip_and_handler(i, &vic_chip, handle_vic_irq);
1279 }
1280
1281 /* send a CPI at level cpi to a set of cpus in cpuset (set 1 bit per
1282 * processor to receive CPI */
1283 static void send_CPI(__u32 cpuset, __u8 cpi)
1284 {
1285 int cpu;
1286 __u32 quad_cpuset = (cpuset & voyager_quad_processors);
1287
1288 if (cpi < VIC_START_FAKE_CPI) {
1289 /* fake CPI are only used for booting, so send to the
1290 * extended quads as well---Quads must be VIC booted */
1291 outb((__u8) (cpuset), VIC_CPI_Registers[cpi]);
1292 return;
1293 }
1294 if (quad_cpuset)
1295 send_QIC_CPI(quad_cpuset, cpi);
1296 cpuset &= ~quad_cpuset;
1297 cpuset &= 0xff; /* only first 8 CPUs vaild for VIC CPI */
1298 if (cpuset == 0)
1299 return;
1300 for_each_online_cpu(cpu) {
1301 if (cpuset & (1 << cpu))
1302 set_bit(cpi, &vic_cpi_mailbox[cpu]);
1303 }
1304 if (cpuset)
1305 outb((__u8) cpuset, VIC_CPI_Registers[VIC_CPI_LEVEL0]);
1306 }
1307
1308 /* Acknowledge receipt of CPI in the QIC, clear in QIC hardware and
1309 * set the cache line to shared by reading it.
1310 *
1311 * DON'T make this inline otherwise the cache line read will be
1312 * optimised away
1313 * */
1314 static int ack_QIC_CPI(__u8 cpi)
1315 {
1316 __u8 cpu = hard_smp_processor_id();
1317
1318 cpi &= 7;
1319
1320 outb(1 << cpi, QIC_INTERRUPT_CLEAR1);
1321 return voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi;
1322 }
1323
1324 static void ack_special_QIC_CPI(__u8 cpi)
1325 {
1326 switch (cpi) {
1327 case VIC_CMN_INT:
1328 outb(QIC_CMN_INT, QIC_INTERRUPT_CLEAR0);
1329 break;
1330 case VIC_SYS_INT:
1331 outb(QIC_SYS_INT, QIC_INTERRUPT_CLEAR0);
1332 break;
1333 }
1334 /* also clear at the VIC, just in case (nop for non-extended proc) */
1335 ack_VIC_CPI(cpi);
1336 }
1337
1338 /* Acknowledge receipt of CPI in the VIC (essentially an EOI) */
1339 static void ack_VIC_CPI(__u8 cpi)
1340 {
1341 #ifdef VOYAGER_DEBUG
1342 unsigned long flags;
1343 __u16 isr;
1344 __u8 cpu = smp_processor_id();
1345
1346 local_irq_save(flags);
1347 isr = vic_read_isr();
1348 if ((isr & (1 << (cpi & 7))) == 0) {
1349 printk("VOYAGER SMP: CPU%d lost CPI%d\n", cpu, cpi);
1350 }
1351 #endif
1352 /* send specific EOI; the two system interrupts have
1353 * bit 4 set for a separate vector but behave as the
1354 * corresponding 3 bit intr */
1355 outb_p(0x60 | (cpi & 7), 0x20);
1356
1357 #ifdef VOYAGER_DEBUG
1358 if ((vic_read_isr() & (1 << (cpi & 7))) != 0) {
1359 printk("VOYAGER SMP: CPU%d still asserting CPI%d\n", cpu, cpi);
1360 }
1361 local_irq_restore(flags);
1362 #endif
1363 }
1364
1365 /* cribbed with thanks from irq.c */
1366 #define __byte(x,y) (((unsigned char *)&(y))[x])
1367 #define cached_21(cpu) (__byte(0,vic_irq_mask[cpu]))
1368 #define cached_A1(cpu) (__byte(1,vic_irq_mask[cpu]))
1369
1370 static unsigned int startup_vic_irq(unsigned int irq)
1371 {
1372 unmask_vic_irq(irq);
1373
1374 return 0;
1375 }
1376
1377 /* The enable and disable routines. This is where we run into
1378 * conflicting architectural philosophy. Fundamentally, the voyager
1379 * architecture does not expect to have to disable interrupts globally
1380 * (the IRQ controllers belong to each CPU). The processor masquerade
1381 * which is used to start the system shouldn't be used in a running OS
1382 * since it will cause great confusion if two separate CPUs drive to
1383 * the same IRQ controller (I know, I've tried it).
1384 *
1385 * The solution is a variant on the NCR lazy SPL design:
1386 *
1387 * 1) To disable an interrupt, do nothing (other than set the
1388 * IRQ_DISABLED flag). This dares the interrupt actually to arrive.
1389 *
1390 * 2) If the interrupt dares to come in, raise the local mask against
1391 * it (this will result in all the CPU masks being raised
1392 * eventually).
1393 *
1394 * 3) To enable the interrupt, lower the mask on the local CPU and
1395 * broadcast an Interrupt enable CPI which causes all other CPUs to
1396 * adjust their masks accordingly. */
1397
1398 static void unmask_vic_irq(unsigned int irq)
1399 {
1400 /* linux doesn't to processor-irq affinity, so enable on
1401 * all CPUs we know about */
1402 int cpu = smp_processor_id(), real_cpu;
1403 __u16 mask = (1 << irq);
1404 __u32 processorList = 0;
1405 unsigned long flags;
1406
1407 VDEBUG(("VOYAGER: unmask_vic_irq(%d) CPU%d affinity 0x%lx\n",
1408 irq, cpu, cpu_irq_affinity[cpu]));
1409 spin_lock_irqsave(&vic_irq_lock, flags);
1410 for_each_online_cpu(real_cpu) {
1411 if (!(voyager_extended_vic_processors & (1 << real_cpu)))
1412 continue;
1413 if (!(cpu_irq_affinity[real_cpu] & mask)) {
1414 /* irq has no affinity for this CPU, ignore */
1415 continue;
1416 }
1417 if (real_cpu == cpu) {
1418 enable_local_vic_irq(irq);
1419 } else if (vic_irq_mask[real_cpu] & mask) {
1420 vic_irq_enable_mask[real_cpu] |= mask;
1421 processorList |= (1 << real_cpu);
1422 }
1423 }
1424 spin_unlock_irqrestore(&vic_irq_lock, flags);
1425 if (processorList)
1426 send_CPI(processorList, VIC_ENABLE_IRQ_CPI);
1427 }
1428
1429 static void mask_vic_irq(unsigned int irq)
1430 {
1431 /* lazy disable, do nothing */
1432 }
1433
1434 static void enable_local_vic_irq(unsigned int irq)
1435 {
1436 __u8 cpu = smp_processor_id();
1437 __u16 mask = ~(1 << irq);
1438 __u16 old_mask = vic_irq_mask[cpu];
1439
1440 vic_irq_mask[cpu] &= mask;
1441 if (vic_irq_mask[cpu] == old_mask)
1442 return;
1443
1444 VDEBUG(("VOYAGER DEBUG: Enabling irq %d in hardware on CPU %d\n",
1445 irq, cpu));
1446
1447 if (irq & 8) {
1448 outb_p(cached_A1(cpu), 0xA1);
1449 (void)inb_p(0xA1);
1450 } else {
1451 outb_p(cached_21(cpu), 0x21);
1452 (void)inb_p(0x21);
1453 }
1454 }
1455
1456 static void disable_local_vic_irq(unsigned int irq)
1457 {
1458 __u8 cpu = smp_processor_id();
1459 __u16 mask = (1 << irq);
1460 __u16 old_mask = vic_irq_mask[cpu];
1461
1462 if (irq == 7)
1463 return;
1464
1465 vic_irq_mask[cpu] |= mask;
1466 if (old_mask == vic_irq_mask[cpu])
1467 return;
1468
1469 VDEBUG(("VOYAGER DEBUG: Disabling irq %d in hardware on CPU %d\n",
1470 irq, cpu));
1471
1472 if (irq & 8) {
1473 outb_p(cached_A1(cpu), 0xA1);
1474 (void)inb_p(0xA1);
1475 } else {
1476 outb_p(cached_21(cpu), 0x21);
1477 (void)inb_p(0x21);
1478 }
1479 }
1480
1481 /* The VIC is level triggered, so the ack can only be issued after the
1482 * interrupt completes. However, we do Voyager lazy interrupt
1483 * handling here: It is an extremely expensive operation to mask an
1484 * interrupt in the vic, so we merely set a flag (IRQ_DISABLED). If
1485 * this interrupt actually comes in, then we mask and ack here to push
1486 * the interrupt off to another CPU */
1487 static void before_handle_vic_irq(unsigned int irq)
1488 {
1489 irq_desc_t *desc = irq_to_desc(irq);
1490 __u8 cpu = smp_processor_id();
1491
1492 _raw_spin_lock(&vic_irq_lock);
1493 vic_intr_total++;
1494 vic_intr_count[cpu]++;
1495
1496 if (!(cpu_irq_affinity[cpu] & (1 << irq))) {
1497 /* The irq is not in our affinity mask, push it off
1498 * onto another CPU */
1499 VDEBUG(("VOYAGER DEBUG: affinity triggered disable of irq %d "
1500 "on cpu %d\n", irq, cpu));
1501 disable_local_vic_irq(irq);
1502 /* set IRQ_INPROGRESS to prevent the handler in irq.c from
1503 * actually calling the interrupt routine */
1504 desc->status |= IRQ_REPLAY | IRQ_INPROGRESS;
1505 } else if (desc->status & IRQ_DISABLED) {
1506 /* Damn, the interrupt actually arrived, do the lazy
1507 * disable thing. The interrupt routine in irq.c will
1508 * not handle a IRQ_DISABLED interrupt, so nothing more
1509 * need be done here */
1510 VDEBUG(("VOYAGER DEBUG: lazy disable of irq %d on CPU %d\n",
1511 irq, cpu));
1512 disable_local_vic_irq(irq);
1513 desc->status |= IRQ_REPLAY;
1514 } else {
1515 desc->status &= ~IRQ_REPLAY;
1516 }
1517
1518 _raw_spin_unlock(&vic_irq_lock);
1519 }
1520
1521 /* Finish the VIC interrupt: basically mask */
1522 static void after_handle_vic_irq(unsigned int irq)
1523 {
1524 irq_desc_t *desc = irq_to_desc(irq);
1525
1526 _raw_spin_lock(&vic_irq_lock);
1527 {
1528 unsigned int status = desc->status & ~IRQ_INPROGRESS;
1529 #ifdef VOYAGER_DEBUG
1530 __u16 isr;
1531 #endif
1532
1533 desc->status = status;
1534 if ((status & IRQ_DISABLED))
1535 disable_local_vic_irq(irq);
1536 #ifdef VOYAGER_DEBUG
1537 /* DEBUG: before we ack, check what's in progress */
1538 isr = vic_read_isr();
1539 if ((isr & (1 << irq) && !(status & IRQ_REPLAY)) == 0) {
1540 int i;
1541 __u8 cpu = smp_processor_id();
1542 __u8 real_cpu;
1543 int mask; /* Um... initialize me??? --RR */
1544
1545 printk("VOYAGER SMP: CPU%d lost interrupt %d\n",
1546 cpu, irq);
1547 for_each_possible_cpu(real_cpu, mask) {
1548
1549 outb(VIC_CPU_MASQUERADE_ENABLE | real_cpu,
1550 VIC_PROCESSOR_ID);
1551 isr = vic_read_isr();
1552 if (isr & (1 << irq)) {
1553 printk
1554 ("VOYAGER SMP: CPU%d ack irq %d\n",
1555 real_cpu, irq);
1556 ack_vic_irq(irq);
1557 }
1558 outb(cpu, VIC_PROCESSOR_ID);
1559 }
1560 }
1561 #endif /* VOYAGER_DEBUG */
1562 /* as soon as we ack, the interrupt is eligible for
1563 * receipt by another CPU so everything must be in
1564 * order here */
1565 ack_vic_irq(irq);
1566 if (status & IRQ_REPLAY) {
1567 /* replay is set if we disable the interrupt
1568 * in the before_handle_vic_irq() routine, so
1569 * clear the in progress bit here to allow the
1570 * next CPU to handle this correctly */
1571 desc->status &= ~(IRQ_REPLAY | IRQ_INPROGRESS);
1572 }
1573 #ifdef VOYAGER_DEBUG
1574 isr = vic_read_isr();
1575 if ((isr & (1 << irq)) != 0)
1576 printk("VOYAGER SMP: after_handle_vic_irq() after "
1577 "ack irq=%d, isr=0x%x\n", irq, isr);
1578 #endif /* VOYAGER_DEBUG */
1579 }
1580 _raw_spin_unlock(&vic_irq_lock);
1581
1582 /* All code after this point is out of the main path - the IRQ
1583 * may be intercepted by another CPU if reasserted */
1584 }
1585
1586 /* Linux processor - interrupt affinity manipulations.
1587 *
1588 * For each processor, we maintain a 32 bit irq affinity mask.
1589 * Initially it is set to all 1's so every processor accepts every
1590 * interrupt. In this call, we change the processor's affinity mask:
1591 *
1592 * Change from enable to disable:
1593 *
1594 * If the interrupt ever comes in to the processor, we will disable it
1595 * and ack it to push it off to another CPU, so just accept the mask here.
1596 *
1597 * Change from disable to enable:
1598 *
1599 * change the mask and then do an interrupt enable CPI to re-enable on
1600 * the selected processors */
1601
1602 void set_vic_irq_affinity(unsigned int irq, cpumask_t mask)
1603 {
1604 /* Only extended processors handle interrupts */
1605 unsigned long real_mask;
1606 unsigned long irq_mask = 1 << irq;
1607 int cpu;
1608
1609 real_mask = cpus_addr(mask)[0] & voyager_extended_vic_processors;
1610
1611 if (cpus_addr(mask)[0] == 0)
1612 /* can't have no CPUs to accept the interrupt -- extremely
1613 * bad things will happen */
1614 return;
1615
1616 if (irq == 0)
1617 /* can't change the affinity of the timer IRQ. This
1618 * is due to the constraint in the voyager
1619 * architecture that the CPI also comes in on and IRQ
1620 * line and we have chosen IRQ0 for this. If you
1621 * raise the mask on this interrupt, the processor
1622 * will no-longer be able to accept VIC CPIs */
1623 return;
1624
1625 if (irq >= 32)
1626 /* You can only have 32 interrupts in a voyager system
1627 * (and 32 only if you have a secondary microchannel
1628 * bus) */
1629 return;
1630
1631 for_each_online_cpu(cpu) {
1632 unsigned long cpu_mask = 1 << cpu;
1633
1634 if (cpu_mask & real_mask) {
1635 /* enable the interrupt for this cpu */
1636 cpu_irq_affinity[cpu] |= irq_mask;
1637 } else {
1638 /* disable the interrupt for this cpu */
1639 cpu_irq_affinity[cpu] &= ~irq_mask;
1640 }
1641 }
1642 /* this is magic, we now have the correct affinity maps, so
1643 * enable the interrupt. This will send an enable CPI to
1644 * those CPUs who need to enable it in their local masks,
1645 * causing them to correct for the new affinity . If the
1646 * interrupt is currently globally disabled, it will simply be
1647 * disabled again as it comes in (voyager lazy disable). If
1648 * the affinity map is tightened to disable the interrupt on a
1649 * cpu, it will be pushed off when it comes in */
1650 unmask_vic_irq(irq);
1651 }
1652
1653 static void ack_vic_irq(unsigned int irq)
1654 {
1655 if (irq & 8) {
1656 outb(0x62, 0x20); /* Specific EOI to cascade */
1657 outb(0x60 | (irq & 7), 0xA0);
1658 } else {
1659 outb(0x60 | (irq & 7), 0x20);
1660 }
1661 }
1662
1663 /* enable the CPIs. In the VIC, the CPIs are delivered by the 8259
1664 * but are not vectored by it. This means that the 8259 mask must be
1665 * lowered to receive them */
1666 static __init void vic_enable_cpi(void)
1667 {
1668 __u8 cpu = smp_processor_id();
1669
1670 /* just take a copy of the current mask (nop for boot cpu) */
1671 vic_irq_mask[cpu] = vic_irq_mask[boot_cpu_id];
1672
1673 enable_local_vic_irq(VIC_CPI_LEVEL0);
1674 enable_local_vic_irq(VIC_CPI_LEVEL1);
1675 /* for sys int and cmn int */
1676 enable_local_vic_irq(7);
1677
1678 if (is_cpu_quad()) {
1679 outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0);
1680 outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1);
1681 VDEBUG(("VOYAGER SMP: QIC ENABLE CPI: CPU%d: MASK 0x%x\n",
1682 cpu, QIC_CPI_ENABLE));
1683 }
1684
1685 VDEBUG(("VOYAGER SMP: ENABLE CPI: CPU%d: MASK 0x%x\n",
1686 cpu, vic_irq_mask[cpu]));
1687 }
1688
1689 void voyager_smp_dump()
1690 {
1691 int old_cpu = smp_processor_id(), cpu;
1692
1693 /* dump the interrupt masks of each processor */
1694 for_each_online_cpu(cpu) {
1695 __u16 imr, isr, irr;
1696 unsigned long flags;
1697
1698 local_irq_save(flags);
1699 outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID);
1700 imr = (inb(0xa1) << 8) | inb(0x21);
1701 outb(0x0a, 0xa0);
1702 irr = inb(0xa0) << 8;
1703 outb(0x0a, 0x20);
1704 irr |= inb(0x20);
1705 outb(0x0b, 0xa0);
1706 isr = inb(0xa0) << 8;
1707 outb(0x0b, 0x20);
1708 isr |= inb(0x20);
1709 outb(old_cpu, VIC_PROCESSOR_ID);
1710 local_irq_restore(flags);
1711 printk("\tCPU%d: mask=0x%x, IMR=0x%x, IRR=0x%x, ISR=0x%x\n",
1712 cpu, vic_irq_mask[cpu], imr, irr, isr);
1713 #if 0
1714 /* These lines are put in to try to unstick an un ack'd irq */
1715 if (isr != 0) {
1716 int irq;
1717 for (irq = 0; irq < 16; irq++) {
1718 if (isr & (1 << irq)) {
1719 printk("\tCPU%d: ack irq %d\n",
1720 cpu, irq);
1721 local_irq_save(flags);
1722 outb(VIC_CPU_MASQUERADE_ENABLE | cpu,
1723 VIC_PROCESSOR_ID);
1724 ack_vic_irq(irq);
1725 outb(old_cpu, VIC_PROCESSOR_ID);
1726 local_irq_restore(flags);
1727 }
1728 }
1729 }
1730 #endif
1731 }
1732 }
1733
1734 void smp_voyager_power_off(void *dummy)
1735 {
1736 if (smp_processor_id() == boot_cpu_id)
1737 voyager_power_off();
1738 else
1739 smp_stop_cpu_function(NULL);
1740 }
1741
1742 static void __init voyager_smp_prepare_cpus(unsigned int max_cpus)
1743 {
1744 /* FIXME: ignore max_cpus for now */
1745 smp_boot_cpus();
1746 }
1747
1748 static void __cpuinit voyager_smp_prepare_boot_cpu(void)
1749 {
1750 init_gdt(smp_processor_id());
1751 switch_to_new_gdt();
1752
1753 cpu_set(smp_processor_id(), cpu_online_map);
1754 cpu_set(smp_processor_id(), cpu_callout_map);
1755 cpu_set(smp_processor_id(), cpu_possible_map);
1756 cpu_set(smp_processor_id(), cpu_present_map);
1757 }
1758
1759 static int __cpuinit voyager_cpu_up(unsigned int cpu)
1760 {
1761 /* This only works at boot for x86. See "rewrite" above. */
1762 if (cpu_isset(cpu, smp_commenced_mask))
1763 return -ENOSYS;
1764
1765 /* In case one didn't come up */
1766 if (!cpu_isset(cpu, cpu_callin_map))
1767 return -EIO;
1768 /* Unleash the CPU! */
1769 cpu_set(cpu, smp_commenced_mask);
1770 while (!cpu_online(cpu))
1771 mb();
1772 return 0;
1773 }
1774
1775 static void __init voyager_smp_cpus_done(unsigned int max_cpus)
1776 {
1777 zap_low_mappings();
1778 }
1779
1780 void __init smp_setup_processor_id(void)
1781 {
1782 current_thread_info()->cpu = hard_smp_processor_id();
1783 x86_write_percpu(cpu_number, hard_smp_processor_id());
1784 }
1785
1786 static void voyager_send_call_func(cpumask_t callmask)
1787 {
1788 __u32 mask = cpus_addr(callmask)[0] & ~(1 << smp_processor_id());
1789 send_CPI(mask, VIC_CALL_FUNCTION_CPI);
1790 }
1791
1792 static void voyager_send_call_func_single(int cpu)
1793 {
1794 send_CPI(1 << cpu, VIC_CALL_FUNCTION_SINGLE_CPI);
1795 }
1796
1797 struct smp_ops smp_ops = {
1798 .smp_prepare_boot_cpu = voyager_smp_prepare_boot_cpu,
1799 .smp_prepare_cpus = voyager_smp_prepare_cpus,
1800 .cpu_up = voyager_cpu_up,
1801 .smp_cpus_done = voyager_smp_cpus_done,
1802
1803 .smp_send_stop = voyager_smp_send_stop,
1804 .smp_send_reschedule = voyager_smp_send_reschedule,
1805
1806 .send_call_func_ipi = voyager_send_call_func,
1807 .send_call_func_single_ipi = voyager_send_call_func_single,
1808 };