]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/x86/mach-voyager/voyager_smp.c
Merge branch 'upstream-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jgarzi...
[mirror_ubuntu-zesty-kernel.git] / arch / x86 / mach-voyager / voyager_smp.c
1 /* -*- mode: c; c-basic-offset: 8 -*- */
2
3 /* Copyright (C) 1999,2001
4 *
5 * Author: J.E.J.Bottomley@HansenPartnership.com
6 *
7 * linux/arch/i386/kernel/voyager_smp.c
8 *
9 * This file provides all the same external entries as smp.c but uses
10 * the voyager hal to provide the functionality
11 */
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/mc146818rtc.h>
17 #include <linux/cache.h>
18 #include <linux/interrupt.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/bootmem.h>
22 #include <linux/completion.h>
23 #include <asm/desc.h>
24 #include <asm/voyager.h>
25 #include <asm/vic.h>
26 #include <asm/mtrr.h>
27 #include <asm/pgalloc.h>
28 #include <asm/tlbflush.h>
29 #include <asm/arch_hooks.h>
30 #include <asm/trampoline.h>
31
32 /* TLB state -- visible externally, indexed physically */
33 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = { &init_mm, 0 };
34
35 /* CPU IRQ affinity -- set to all ones initially */
36 static unsigned long cpu_irq_affinity[NR_CPUS] __cacheline_aligned =
37 {[0 ... NR_CPUS-1] = ~0UL };
38
39 /* per CPU data structure (for /proc/cpuinfo et al), visible externally
40 * indexed physically */
41 DEFINE_PER_CPU_SHARED_ALIGNED(struct cpuinfo_x86, cpu_info);
42 EXPORT_PER_CPU_SYMBOL(cpu_info);
43
44 /* physical ID of the CPU used to boot the system */
45 unsigned char boot_cpu_id;
46
47 /* The memory line addresses for the Quad CPIs */
48 struct voyager_qic_cpi *voyager_quad_cpi_addr[NR_CPUS] __cacheline_aligned;
49
50 /* The masks for the Extended VIC processors, filled in by cat_init */
51 __u32 voyager_extended_vic_processors = 0;
52
53 /* Masks for the extended Quad processors which cannot be VIC booted */
54 __u32 voyager_allowed_boot_processors = 0;
55
56 /* The mask for the Quad Processors (both extended and non-extended) */
57 __u32 voyager_quad_processors = 0;
58
59 /* Total count of live CPUs, used in process.c to display
60 * the CPU information and in irq.c for the per CPU irq
61 * activity count. Finally exported by i386_ksyms.c */
62 static int voyager_extended_cpus = 1;
63
64 /* Have we found an SMP box - used by time.c to do the profiling
65 interrupt for timeslicing; do not set to 1 until the per CPU timer
66 interrupt is active */
67 int smp_found_config = 0;
68
69 /* Used for the invalidate map that's also checked in the spinlock */
70 static volatile unsigned long smp_invalidate_needed;
71
72 /* Bitmask of currently online CPUs - used by setup.c for
73 /proc/cpuinfo, visible externally but still physical */
74 cpumask_t cpu_online_map = CPU_MASK_NONE;
75 EXPORT_SYMBOL(cpu_online_map);
76
77 /* Bitmask of CPUs present in the system - exported by i386_syms.c, used
78 * by scheduler but indexed physically */
79 cpumask_t phys_cpu_present_map = CPU_MASK_NONE;
80
81 /* The internal functions */
82 static void send_CPI(__u32 cpuset, __u8 cpi);
83 static void ack_CPI(__u8 cpi);
84 static int ack_QIC_CPI(__u8 cpi);
85 static void ack_special_QIC_CPI(__u8 cpi);
86 static void ack_VIC_CPI(__u8 cpi);
87 static void send_CPI_allbutself(__u8 cpi);
88 static void mask_vic_irq(unsigned int irq);
89 static void unmask_vic_irq(unsigned int irq);
90 static unsigned int startup_vic_irq(unsigned int irq);
91 static void enable_local_vic_irq(unsigned int irq);
92 static void disable_local_vic_irq(unsigned int irq);
93 static void before_handle_vic_irq(unsigned int irq);
94 static void after_handle_vic_irq(unsigned int irq);
95 static void set_vic_irq_affinity(unsigned int irq, cpumask_t mask);
96 static void ack_vic_irq(unsigned int irq);
97 static void vic_enable_cpi(void);
98 static void do_boot_cpu(__u8 cpuid);
99 static void do_quad_bootstrap(void);
100
101 int hard_smp_processor_id(void);
102 int safe_smp_processor_id(void);
103
104 /* Inline functions */
105 static inline void send_one_QIC_CPI(__u8 cpu, __u8 cpi)
106 {
107 voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi =
108 (smp_processor_id() << 16) + cpi;
109 }
110
111 static inline void send_QIC_CPI(__u32 cpuset, __u8 cpi)
112 {
113 int cpu;
114
115 for_each_online_cpu(cpu) {
116 if (cpuset & (1 << cpu)) {
117 #ifdef VOYAGER_DEBUG
118 if (!cpu_isset(cpu, cpu_online_map))
119 VDEBUG(("CPU%d sending cpi %d to CPU%d not in "
120 "cpu_online_map\n",
121 hard_smp_processor_id(), cpi, cpu));
122 #endif
123 send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET);
124 }
125 }
126 }
127
128 static inline void wrapper_smp_local_timer_interrupt(void)
129 {
130 irq_enter();
131 smp_local_timer_interrupt();
132 irq_exit();
133 }
134
135 static inline void send_one_CPI(__u8 cpu, __u8 cpi)
136 {
137 if (voyager_quad_processors & (1 << cpu))
138 send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET);
139 else
140 send_CPI(1 << cpu, cpi);
141 }
142
143 static inline void send_CPI_allbutself(__u8 cpi)
144 {
145 __u8 cpu = smp_processor_id();
146 __u32 mask = cpus_addr(cpu_online_map)[0] & ~(1 << cpu);
147 send_CPI(mask, cpi);
148 }
149
150 static inline int is_cpu_quad(void)
151 {
152 __u8 cpumask = inb(VIC_PROC_WHO_AM_I);
153 return ((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER);
154 }
155
156 static inline int is_cpu_extended(void)
157 {
158 __u8 cpu = hard_smp_processor_id();
159
160 return (voyager_extended_vic_processors & (1 << cpu));
161 }
162
163 static inline int is_cpu_vic_boot(void)
164 {
165 __u8 cpu = hard_smp_processor_id();
166
167 return (voyager_extended_vic_processors
168 & voyager_allowed_boot_processors & (1 << cpu));
169 }
170
171 static inline void ack_CPI(__u8 cpi)
172 {
173 switch (cpi) {
174 case VIC_CPU_BOOT_CPI:
175 if (is_cpu_quad() && !is_cpu_vic_boot())
176 ack_QIC_CPI(cpi);
177 else
178 ack_VIC_CPI(cpi);
179 break;
180 case VIC_SYS_INT:
181 case VIC_CMN_INT:
182 /* These are slightly strange. Even on the Quad card,
183 * They are vectored as VIC CPIs */
184 if (is_cpu_quad())
185 ack_special_QIC_CPI(cpi);
186 else
187 ack_VIC_CPI(cpi);
188 break;
189 default:
190 printk("VOYAGER ERROR: CPI%d is in common CPI code\n", cpi);
191 break;
192 }
193 }
194
195 /* local variables */
196
197 /* The VIC IRQ descriptors -- these look almost identical to the
198 * 8259 IRQs except that masks and things must be kept per processor
199 */
200 static struct irq_chip vic_chip = {
201 .name = "VIC",
202 .startup = startup_vic_irq,
203 .mask = mask_vic_irq,
204 .unmask = unmask_vic_irq,
205 .set_affinity = set_vic_irq_affinity,
206 };
207
208 /* used to count up as CPUs are brought on line (starts at 0) */
209 static int cpucount = 0;
210
211 /* steal a page from the bottom of memory for the trampoline and
212 * squirrel its address away here. This will be in kernel virtual
213 * space */
214 unsigned char *trampoline_base;
215
216 /* The per cpu profile stuff - used in smp_local_timer_interrupt */
217 static DEFINE_PER_CPU(int, prof_multiplier) = 1;
218 static DEFINE_PER_CPU(int, prof_old_multiplier) = 1;
219 static DEFINE_PER_CPU(int, prof_counter) = 1;
220
221 /* the map used to check if a CPU has booted */
222 static __u32 cpu_booted_map;
223
224 /* the synchronize flag used to hold all secondary CPUs spinning in
225 * a tight loop until the boot sequence is ready for them */
226 static cpumask_t smp_commenced_mask = CPU_MASK_NONE;
227
228 /* This is for the new dynamic CPU boot code */
229 cpumask_t cpu_callin_map = CPU_MASK_NONE;
230 cpumask_t cpu_callout_map = CPU_MASK_NONE;
231 cpumask_t cpu_possible_map = CPU_MASK_NONE;
232 EXPORT_SYMBOL(cpu_possible_map);
233
234 /* The per processor IRQ masks (these are usually kept in sync) */
235 static __u16 vic_irq_mask[NR_CPUS] __cacheline_aligned;
236
237 /* the list of IRQs to be enabled by the VIC_ENABLE_IRQ_CPI */
238 static __u16 vic_irq_enable_mask[NR_CPUS] __cacheline_aligned = { 0 };
239
240 /* Lock for enable/disable of VIC interrupts */
241 static __cacheline_aligned DEFINE_SPINLOCK(vic_irq_lock);
242
243 /* The boot processor is correctly set up in PC mode when it
244 * comes up, but the secondaries need their master/slave 8259
245 * pairs initializing correctly */
246
247 /* Interrupt counters (per cpu) and total - used to try to
248 * even up the interrupt handling routines */
249 static long vic_intr_total = 0;
250 static long vic_intr_count[NR_CPUS] __cacheline_aligned = { 0 };
251 static unsigned long vic_tick[NR_CPUS] __cacheline_aligned = { 0 };
252
253 /* Since we can only use CPI0, we fake all the other CPIs */
254 static unsigned long vic_cpi_mailbox[NR_CPUS] __cacheline_aligned;
255
256 /* debugging routine to read the isr of the cpu's pic */
257 static inline __u16 vic_read_isr(void)
258 {
259 __u16 isr;
260
261 outb(0x0b, 0xa0);
262 isr = inb(0xa0) << 8;
263 outb(0x0b, 0x20);
264 isr |= inb(0x20);
265
266 return isr;
267 }
268
269 static __init void qic_setup(void)
270 {
271 if (!is_cpu_quad()) {
272 /* not a quad, no setup */
273 return;
274 }
275 outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0);
276 outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1);
277
278 if (is_cpu_extended()) {
279 /* the QIC duplicate of the VIC base register */
280 outb(VIC_DEFAULT_CPI_BASE, QIC_VIC_CPI_BASE_REGISTER);
281 outb(QIC_DEFAULT_CPI_BASE, QIC_CPI_BASE_REGISTER);
282
283 /* FIXME: should set up the QIC timer and memory parity
284 * error vectors here */
285 }
286 }
287
288 static __init void vic_setup_pic(void)
289 {
290 outb(1, VIC_REDIRECT_REGISTER_1);
291 /* clear the claim registers for dynamic routing */
292 outb(0, VIC_CLAIM_REGISTER_0);
293 outb(0, VIC_CLAIM_REGISTER_1);
294
295 outb(0, VIC_PRIORITY_REGISTER);
296 /* Set the Primary and Secondary Microchannel vector
297 * bases to be the same as the ordinary interrupts
298 *
299 * FIXME: This would be more efficient using separate
300 * vectors. */
301 outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE);
302 outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE);
303 /* Now initiallise the master PIC belonging to this CPU by
304 * sending the four ICWs */
305
306 /* ICW1: level triggered, ICW4 needed */
307 outb(0x19, 0x20);
308
309 /* ICW2: vector base */
310 outb(FIRST_EXTERNAL_VECTOR, 0x21);
311
312 /* ICW3: slave at line 2 */
313 outb(0x04, 0x21);
314
315 /* ICW4: 8086 mode */
316 outb(0x01, 0x21);
317
318 /* now the same for the slave PIC */
319
320 /* ICW1: level trigger, ICW4 needed */
321 outb(0x19, 0xA0);
322
323 /* ICW2: slave vector base */
324 outb(FIRST_EXTERNAL_VECTOR + 8, 0xA1);
325
326 /* ICW3: slave ID */
327 outb(0x02, 0xA1);
328
329 /* ICW4: 8086 mode */
330 outb(0x01, 0xA1);
331 }
332
333 static void do_quad_bootstrap(void)
334 {
335 if (is_cpu_quad() && is_cpu_vic_boot()) {
336 int i;
337 unsigned long flags;
338 __u8 cpuid = hard_smp_processor_id();
339
340 local_irq_save(flags);
341
342 for (i = 0; i < 4; i++) {
343 /* FIXME: this would be >>3 &0x7 on the 32 way */
344 if (((cpuid >> 2) & 0x03) == i)
345 /* don't lower our own mask! */
346 continue;
347
348 /* masquerade as local Quad CPU */
349 outb(QIC_CPUID_ENABLE | i, QIC_PROCESSOR_ID);
350 /* enable the startup CPI */
351 outb(QIC_BOOT_CPI_MASK, QIC_MASK_REGISTER1);
352 /* restore cpu id */
353 outb(0, QIC_PROCESSOR_ID);
354 }
355 local_irq_restore(flags);
356 }
357 }
358
359 /* Set up all the basic stuff: read the SMP config and make all the
360 * SMP information reflect only the boot cpu. All others will be
361 * brought on-line later. */
362 void __init find_smp_config(void)
363 {
364 int i;
365
366 boot_cpu_id = hard_smp_processor_id();
367
368 printk("VOYAGER SMP: Boot cpu is %d\n", boot_cpu_id);
369
370 /* initialize the CPU structures (moved from smp_boot_cpus) */
371 for (i = 0; i < NR_CPUS; i++) {
372 cpu_irq_affinity[i] = ~0;
373 }
374 cpu_online_map = cpumask_of_cpu(boot_cpu_id);
375
376 /* The boot CPU must be extended */
377 voyager_extended_vic_processors = 1 << boot_cpu_id;
378 /* initially, all of the first 8 CPUs can boot */
379 voyager_allowed_boot_processors = 0xff;
380 /* set up everything for just this CPU, we can alter
381 * this as we start the other CPUs later */
382 /* now get the CPU disposition from the extended CMOS */
383 cpus_addr(phys_cpu_present_map)[0] =
384 voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK);
385 cpus_addr(phys_cpu_present_map)[0] |=
386 voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + 1) << 8;
387 cpus_addr(phys_cpu_present_map)[0] |=
388 voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK +
389 2) << 16;
390 cpus_addr(phys_cpu_present_map)[0] |=
391 voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK +
392 3) << 24;
393 cpu_possible_map = phys_cpu_present_map;
394 printk("VOYAGER SMP: phys_cpu_present_map = 0x%lx\n",
395 cpus_addr(phys_cpu_present_map)[0]);
396 /* Here we set up the VIC to enable SMP */
397 /* enable the CPIs by writing the base vector to their register */
398 outb(VIC_DEFAULT_CPI_BASE, VIC_CPI_BASE_REGISTER);
399 outb(1, VIC_REDIRECT_REGISTER_1);
400 /* set the claim registers for static routing --- Boot CPU gets
401 * all interrupts untill all other CPUs started */
402 outb(0xff, VIC_CLAIM_REGISTER_0);
403 outb(0xff, VIC_CLAIM_REGISTER_1);
404 /* Set the Primary and Secondary Microchannel vector
405 * bases to be the same as the ordinary interrupts
406 *
407 * FIXME: This would be more efficient using separate
408 * vectors. */
409 outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE);
410 outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE);
411
412 /* Finally tell the firmware that we're driving */
413 outb(inb(VOYAGER_SUS_IN_CONTROL_PORT) | VOYAGER_IN_CONTROL_FLAG,
414 VOYAGER_SUS_IN_CONTROL_PORT);
415
416 current_thread_info()->cpu = boot_cpu_id;
417 x86_write_percpu(cpu_number, boot_cpu_id);
418 }
419
420 /*
421 * The bootstrap kernel entry code has set these up. Save them
422 * for a given CPU, id is physical */
423 void __init smp_store_cpu_info(int id)
424 {
425 struct cpuinfo_x86 *c = &cpu_data(id);
426
427 *c = boot_cpu_data;
428
429 identify_secondary_cpu(c);
430 }
431
432 /* set up the trampoline and return the physical address of the code */
433 unsigned long __init setup_trampoline(void)
434 {
435 /* these two are global symbols in trampoline.S */
436 extern const __u8 trampoline_end[];
437 extern const __u8 trampoline_data[];
438
439 memcpy(trampoline_base, trampoline_data,
440 trampoline_end - trampoline_data);
441 return virt_to_phys(trampoline_base);
442 }
443
444 /* Routine initially called when a non-boot CPU is brought online */
445 static void __init start_secondary(void *unused)
446 {
447 __u8 cpuid = hard_smp_processor_id();
448
449 cpu_init();
450
451 /* OK, we're in the routine */
452 ack_CPI(VIC_CPU_BOOT_CPI);
453
454 /* setup the 8259 master slave pair belonging to this CPU ---
455 * we won't actually receive any until the boot CPU
456 * relinquishes it's static routing mask */
457 vic_setup_pic();
458
459 qic_setup();
460
461 if (is_cpu_quad() && !is_cpu_vic_boot()) {
462 /* clear the boot CPI */
463 __u8 dummy;
464
465 dummy =
466 voyager_quad_cpi_addr[cpuid]->qic_cpi[VIC_CPU_BOOT_CPI].cpi;
467 printk("read dummy %d\n", dummy);
468 }
469
470 /* lower the mask to receive CPIs */
471 vic_enable_cpi();
472
473 VDEBUG(("VOYAGER SMP: CPU%d, stack at about %p\n", cpuid, &cpuid));
474
475 /* enable interrupts */
476 local_irq_enable();
477
478 /* get our bogomips */
479 calibrate_delay();
480
481 /* save our processor parameters */
482 smp_store_cpu_info(cpuid);
483
484 /* if we're a quad, we may need to bootstrap other CPUs */
485 do_quad_bootstrap();
486
487 /* FIXME: this is rather a poor hack to prevent the CPU
488 * activating softirqs while it's supposed to be waiting for
489 * permission to proceed. Without this, the new per CPU stuff
490 * in the softirqs will fail */
491 local_irq_disable();
492 cpu_set(cpuid, cpu_callin_map);
493
494 /* signal that we're done */
495 cpu_booted_map = 1;
496
497 while (!cpu_isset(cpuid, smp_commenced_mask))
498 rep_nop();
499 local_irq_enable();
500
501 local_flush_tlb();
502
503 cpu_set(cpuid, cpu_online_map);
504 wmb();
505 cpu_idle();
506 }
507
508 /* Routine to kick start the given CPU and wait for it to report ready
509 * (or timeout in startup). When this routine returns, the requested
510 * CPU is either fully running and configured or known to be dead.
511 *
512 * We call this routine sequentially 1 CPU at a time, so no need for
513 * locking */
514
515 static void __init do_boot_cpu(__u8 cpu)
516 {
517 struct task_struct *idle;
518 int timeout;
519 unsigned long flags;
520 int quad_boot = (1 << cpu) & voyager_quad_processors
521 & ~(voyager_extended_vic_processors
522 & voyager_allowed_boot_processors);
523
524 /* This is the format of the CPI IDT gate (in real mode) which
525 * we're hijacking to boot the CPU */
526 union IDTFormat {
527 struct seg {
528 __u16 Offset;
529 __u16 Segment;
530 } idt;
531 __u32 val;
532 } hijack_source;
533
534 __u32 *hijack_vector;
535 __u32 start_phys_address = setup_trampoline();
536
537 /* There's a clever trick to this: The linux trampoline is
538 * compiled to begin at absolute location zero, so make the
539 * address zero but have the data segment selector compensate
540 * for the actual address */
541 hijack_source.idt.Offset = start_phys_address & 0x000F;
542 hijack_source.idt.Segment = (start_phys_address >> 4) & 0xFFFF;
543
544 cpucount++;
545 alternatives_smp_switch(1);
546
547 idle = fork_idle(cpu);
548 if (IS_ERR(idle))
549 panic("failed fork for CPU%d", cpu);
550 idle->thread.ip = (unsigned long)start_secondary;
551 /* init_tasks (in sched.c) is indexed logically */
552 stack_start.sp = (void *)idle->thread.sp;
553
554 init_gdt(cpu);
555 per_cpu(current_task, cpu) = idle;
556 early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu);
557 irq_ctx_init(cpu);
558
559 /* Note: Don't modify initial ss override */
560 VDEBUG(("VOYAGER SMP: Booting CPU%d at 0x%lx[%x:%x], stack %p\n", cpu,
561 (unsigned long)hijack_source.val, hijack_source.idt.Segment,
562 hijack_source.idt.Offset, stack_start.sp));
563
564 /* init lowmem identity mapping */
565 clone_pgd_range(swapper_pg_dir, swapper_pg_dir + USER_PGD_PTRS,
566 min_t(unsigned long, KERNEL_PGD_PTRS, USER_PGD_PTRS));
567 flush_tlb_all();
568
569 if (quad_boot) {
570 printk("CPU %d: non extended Quad boot\n", cpu);
571 hijack_vector =
572 (__u32 *)
573 phys_to_virt((VIC_CPU_BOOT_CPI + QIC_DEFAULT_CPI_BASE) * 4);
574 *hijack_vector = hijack_source.val;
575 } else {
576 printk("CPU%d: extended VIC boot\n", cpu);
577 hijack_vector =
578 (__u32 *)
579 phys_to_virt((VIC_CPU_BOOT_CPI + VIC_DEFAULT_CPI_BASE) * 4);
580 *hijack_vector = hijack_source.val;
581 /* VIC errata, may also receive interrupt at this address */
582 hijack_vector =
583 (__u32 *)
584 phys_to_virt((VIC_CPU_BOOT_ERRATA_CPI +
585 VIC_DEFAULT_CPI_BASE) * 4);
586 *hijack_vector = hijack_source.val;
587 }
588 /* All non-boot CPUs start with interrupts fully masked. Need
589 * to lower the mask of the CPI we're about to send. We do
590 * this in the VIC by masquerading as the processor we're
591 * about to boot and lowering its interrupt mask */
592 local_irq_save(flags);
593 if (quad_boot) {
594 send_one_QIC_CPI(cpu, VIC_CPU_BOOT_CPI);
595 } else {
596 outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID);
597 /* here we're altering registers belonging to `cpu' */
598
599 outb(VIC_BOOT_INTERRUPT_MASK, 0x21);
600 /* now go back to our original identity */
601 outb(boot_cpu_id, VIC_PROCESSOR_ID);
602
603 /* and boot the CPU */
604
605 send_CPI((1 << cpu), VIC_CPU_BOOT_CPI);
606 }
607 cpu_booted_map = 0;
608 local_irq_restore(flags);
609
610 /* now wait for it to become ready (or timeout) */
611 for (timeout = 0; timeout < 50000; timeout++) {
612 if (cpu_booted_map)
613 break;
614 udelay(100);
615 }
616 /* reset the page table */
617 zap_low_mappings();
618
619 if (cpu_booted_map) {
620 VDEBUG(("CPU%d: Booted successfully, back in CPU %d\n",
621 cpu, smp_processor_id()));
622
623 printk("CPU%d: ", cpu);
624 print_cpu_info(&cpu_data(cpu));
625 wmb();
626 cpu_set(cpu, cpu_callout_map);
627 cpu_set(cpu, cpu_present_map);
628 } else {
629 printk("CPU%d FAILED TO BOOT: ", cpu);
630 if (*
631 ((volatile unsigned char *)phys_to_virt(start_phys_address))
632 == 0xA5)
633 printk("Stuck.\n");
634 else
635 printk("Not responding.\n");
636
637 cpucount--;
638 }
639 }
640
641 void __init smp_boot_cpus(void)
642 {
643 int i;
644
645 /* CAT BUS initialisation must be done after the memory */
646 /* FIXME: The L4 has a catbus too, it just needs to be
647 * accessed in a totally different way */
648 if (voyager_level == 5) {
649 voyager_cat_init();
650
651 /* now that the cat has probed the Voyager System Bus, sanity
652 * check the cpu map */
653 if (((voyager_quad_processors | voyager_extended_vic_processors)
654 & cpus_addr(phys_cpu_present_map)[0]) !=
655 cpus_addr(phys_cpu_present_map)[0]) {
656 /* should panic */
657 printk("\n\n***WARNING*** "
658 "Sanity check of CPU present map FAILED\n");
659 }
660 } else if (voyager_level == 4)
661 voyager_extended_vic_processors =
662 cpus_addr(phys_cpu_present_map)[0];
663
664 /* this sets up the idle task to run on the current cpu */
665 voyager_extended_cpus = 1;
666 /* Remove the global_irq_holder setting, it triggers a BUG() on
667 * schedule at the moment */
668 //global_irq_holder = boot_cpu_id;
669
670 /* FIXME: Need to do something about this but currently only works
671 * on CPUs with a tsc which none of mine have.
672 smp_tune_scheduling();
673 */
674 smp_store_cpu_info(boot_cpu_id);
675 printk("CPU%d: ", boot_cpu_id);
676 print_cpu_info(&cpu_data(boot_cpu_id));
677
678 if (is_cpu_quad()) {
679 /* booting on a Quad CPU */
680 printk("VOYAGER SMP: Boot CPU is Quad\n");
681 qic_setup();
682 do_quad_bootstrap();
683 }
684
685 /* enable our own CPIs */
686 vic_enable_cpi();
687
688 cpu_set(boot_cpu_id, cpu_online_map);
689 cpu_set(boot_cpu_id, cpu_callout_map);
690
691 /* loop over all the extended VIC CPUs and boot them. The
692 * Quad CPUs must be bootstrapped by their extended VIC cpu */
693 for (i = 0; i < NR_CPUS; i++) {
694 if (i == boot_cpu_id || !cpu_isset(i, phys_cpu_present_map))
695 continue;
696 do_boot_cpu(i);
697 /* This udelay seems to be needed for the Quad boots
698 * don't remove unless you know what you're doing */
699 udelay(1000);
700 }
701 /* we could compute the total bogomips here, but why bother?,
702 * Code added from smpboot.c */
703 {
704 unsigned long bogosum = 0;
705 for (i = 0; i < NR_CPUS; i++)
706 if (cpu_isset(i, cpu_online_map))
707 bogosum += cpu_data(i).loops_per_jiffy;
708 printk(KERN_INFO "Total of %d processors activated "
709 "(%lu.%02lu BogoMIPS).\n",
710 cpucount + 1, bogosum / (500000 / HZ),
711 (bogosum / (5000 / HZ)) % 100);
712 }
713 voyager_extended_cpus = hweight32(voyager_extended_vic_processors);
714 printk("VOYAGER: Extended (interrupt handling CPUs): "
715 "%d, non-extended: %d\n", voyager_extended_cpus,
716 num_booting_cpus() - voyager_extended_cpus);
717 /* that's it, switch to symmetric mode */
718 outb(0, VIC_PRIORITY_REGISTER);
719 outb(0, VIC_CLAIM_REGISTER_0);
720 outb(0, VIC_CLAIM_REGISTER_1);
721
722 VDEBUG(("VOYAGER SMP: Booted with %d CPUs\n", num_booting_cpus()));
723 }
724
725 /* Reload the secondary CPUs task structure (this function does not
726 * return ) */
727 void __init initialize_secondary(void)
728 {
729 #if 0
730 // AC kernels only
731 set_current(hard_get_current());
732 #endif
733
734 /*
735 * We don't actually need to load the full TSS,
736 * basically just the stack pointer and the eip.
737 */
738
739 asm volatile ("movl %0,%%esp\n\t"
740 "jmp *%1"::"r" (current->thread.sp),
741 "r"(current->thread.ip));
742 }
743
744 /* handle a Voyager SYS_INT -- If we don't, the base board will
745 * panic the system.
746 *
747 * System interrupts occur because some problem was detected on the
748 * various busses. To find out what you have to probe all the
749 * hardware via the CAT bus. FIXME: At the moment we do nothing. */
750 void smp_vic_sys_interrupt(struct pt_regs *regs)
751 {
752 ack_CPI(VIC_SYS_INT);
753 printk("Voyager SYSTEM INTERRUPT\n");
754 }
755
756 /* Handle a voyager CMN_INT; These interrupts occur either because of
757 * a system status change or because a single bit memory error
758 * occurred. FIXME: At the moment, ignore all this. */
759 void smp_vic_cmn_interrupt(struct pt_regs *regs)
760 {
761 static __u8 in_cmn_int = 0;
762 static DEFINE_SPINLOCK(cmn_int_lock);
763
764 /* common ints are broadcast, so make sure we only do this once */
765 _raw_spin_lock(&cmn_int_lock);
766 if (in_cmn_int)
767 goto unlock_end;
768
769 in_cmn_int++;
770 _raw_spin_unlock(&cmn_int_lock);
771
772 VDEBUG(("Voyager COMMON INTERRUPT\n"));
773
774 if (voyager_level == 5)
775 voyager_cat_do_common_interrupt();
776
777 _raw_spin_lock(&cmn_int_lock);
778 in_cmn_int = 0;
779 unlock_end:
780 _raw_spin_unlock(&cmn_int_lock);
781 ack_CPI(VIC_CMN_INT);
782 }
783
784 /*
785 * Reschedule call back. Nothing to do, all the work is done
786 * automatically when we return from the interrupt. */
787 static void smp_reschedule_interrupt(void)
788 {
789 /* do nothing */
790 }
791
792 static struct mm_struct *flush_mm;
793 static unsigned long flush_va;
794 static DEFINE_SPINLOCK(tlbstate_lock);
795
796 /*
797 * We cannot call mmdrop() because we are in interrupt context,
798 * instead update mm->cpu_vm_mask.
799 *
800 * We need to reload %cr3 since the page tables may be going
801 * away from under us..
802 */
803 static inline void voyager_leave_mm(unsigned long cpu)
804 {
805 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK)
806 BUG();
807 cpu_clear(cpu, per_cpu(cpu_tlbstate, cpu).active_mm->cpu_vm_mask);
808 load_cr3(swapper_pg_dir);
809 }
810
811 /*
812 * Invalidate call-back
813 */
814 static void smp_invalidate_interrupt(void)
815 {
816 __u8 cpu = smp_processor_id();
817
818 if (!test_bit(cpu, &smp_invalidate_needed))
819 return;
820 /* This will flood messages. Don't uncomment unless you see
821 * Problems with cross cpu invalidation
822 VDEBUG(("VOYAGER SMP: CPU%d received INVALIDATE_CPI\n",
823 smp_processor_id()));
824 */
825
826 if (flush_mm == per_cpu(cpu_tlbstate, cpu).active_mm) {
827 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) {
828 if (flush_va == TLB_FLUSH_ALL)
829 local_flush_tlb();
830 else
831 __flush_tlb_one(flush_va);
832 } else
833 voyager_leave_mm(cpu);
834 }
835 smp_mb__before_clear_bit();
836 clear_bit(cpu, &smp_invalidate_needed);
837 smp_mb__after_clear_bit();
838 }
839
840 /* All the new flush operations for 2.4 */
841
842 /* This routine is called with a physical cpu mask */
843 static void
844 voyager_flush_tlb_others(unsigned long cpumask, struct mm_struct *mm,
845 unsigned long va)
846 {
847 int stuck = 50000;
848
849 if (!cpumask)
850 BUG();
851 if ((cpumask & cpus_addr(cpu_online_map)[0]) != cpumask)
852 BUG();
853 if (cpumask & (1 << smp_processor_id()))
854 BUG();
855 if (!mm)
856 BUG();
857
858 spin_lock(&tlbstate_lock);
859
860 flush_mm = mm;
861 flush_va = va;
862 atomic_set_mask(cpumask, &smp_invalidate_needed);
863 /*
864 * We have to send the CPI only to
865 * CPUs affected.
866 */
867 send_CPI(cpumask, VIC_INVALIDATE_CPI);
868
869 while (smp_invalidate_needed) {
870 mb();
871 if (--stuck == 0) {
872 printk("***WARNING*** Stuck doing invalidate CPI "
873 "(CPU%d)\n", smp_processor_id());
874 break;
875 }
876 }
877
878 /* Uncomment only to debug invalidation problems
879 VDEBUG(("VOYAGER SMP: Completed invalidate CPI (CPU%d)\n", cpu));
880 */
881
882 flush_mm = NULL;
883 flush_va = 0;
884 spin_unlock(&tlbstate_lock);
885 }
886
887 void flush_tlb_current_task(void)
888 {
889 struct mm_struct *mm = current->mm;
890 unsigned long cpu_mask;
891
892 preempt_disable();
893
894 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
895 local_flush_tlb();
896 if (cpu_mask)
897 voyager_flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
898
899 preempt_enable();
900 }
901
902 void flush_tlb_mm(struct mm_struct *mm)
903 {
904 unsigned long cpu_mask;
905
906 preempt_disable();
907
908 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
909
910 if (current->active_mm == mm) {
911 if (current->mm)
912 local_flush_tlb();
913 else
914 voyager_leave_mm(smp_processor_id());
915 }
916 if (cpu_mask)
917 voyager_flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
918
919 preempt_enable();
920 }
921
922 void flush_tlb_page(struct vm_area_struct *vma, unsigned long va)
923 {
924 struct mm_struct *mm = vma->vm_mm;
925 unsigned long cpu_mask;
926
927 preempt_disable();
928
929 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
930 if (current->active_mm == mm) {
931 if (current->mm)
932 __flush_tlb_one(va);
933 else
934 voyager_leave_mm(smp_processor_id());
935 }
936
937 if (cpu_mask)
938 voyager_flush_tlb_others(cpu_mask, mm, va);
939
940 preempt_enable();
941 }
942
943 EXPORT_SYMBOL(flush_tlb_page);
944
945 /* enable the requested IRQs */
946 static void smp_enable_irq_interrupt(void)
947 {
948 __u8 irq;
949 __u8 cpu = get_cpu();
950
951 VDEBUG(("VOYAGER SMP: CPU%d enabling irq mask 0x%x\n", cpu,
952 vic_irq_enable_mask[cpu]));
953
954 spin_lock(&vic_irq_lock);
955 for (irq = 0; irq < 16; irq++) {
956 if (vic_irq_enable_mask[cpu] & (1 << irq))
957 enable_local_vic_irq(irq);
958 }
959 vic_irq_enable_mask[cpu] = 0;
960 spin_unlock(&vic_irq_lock);
961
962 put_cpu_no_resched();
963 }
964
965 /*
966 * CPU halt call-back
967 */
968 static void smp_stop_cpu_function(void *dummy)
969 {
970 VDEBUG(("VOYAGER SMP: CPU%d is STOPPING\n", smp_processor_id()));
971 cpu_clear(smp_processor_id(), cpu_online_map);
972 local_irq_disable();
973 for (;;)
974 halt();
975 }
976
977 static DEFINE_SPINLOCK(call_lock);
978
979 struct call_data_struct {
980 void (*func) (void *info);
981 void *info;
982 volatile unsigned long started;
983 volatile unsigned long finished;
984 int wait;
985 };
986
987 static struct call_data_struct *call_data;
988
989 /* execute a thread on a new CPU. The function to be called must be
990 * previously set up. This is used to schedule a function for
991 * execution on all CPUs - set up the function then broadcast a
992 * function_interrupt CPI to come here on each CPU */
993 static void smp_call_function_interrupt(void)
994 {
995 void (*func) (void *info) = call_data->func;
996 void *info = call_data->info;
997 /* must take copy of wait because call_data may be replaced
998 * unless the function is waiting for us to finish */
999 int wait = call_data->wait;
1000 __u8 cpu = smp_processor_id();
1001
1002 /*
1003 * Notify initiating CPU that I've grabbed the data and am
1004 * about to execute the function
1005 */
1006 mb();
1007 if (!test_and_clear_bit(cpu, &call_data->started)) {
1008 /* If the bit wasn't set, this could be a replay */
1009 printk(KERN_WARNING "VOYAGER SMP: CPU %d received call funtion"
1010 " with no call pending\n", cpu);
1011 return;
1012 }
1013 /*
1014 * At this point the info structure may be out of scope unless wait==1
1015 */
1016 irq_enter();
1017 (*func) (info);
1018 __get_cpu_var(irq_stat).irq_call_count++;
1019 irq_exit();
1020 if (wait) {
1021 mb();
1022 clear_bit(cpu, &call_data->finished);
1023 }
1024 }
1025
1026 static int
1027 voyager_smp_call_function_mask(cpumask_t cpumask,
1028 void (*func) (void *info), void *info, int wait)
1029 {
1030 struct call_data_struct data;
1031 u32 mask = cpus_addr(cpumask)[0];
1032
1033 mask &= ~(1 << smp_processor_id());
1034
1035 if (!mask)
1036 return 0;
1037
1038 /* Can deadlock when called with interrupts disabled */
1039 WARN_ON(irqs_disabled());
1040
1041 data.func = func;
1042 data.info = info;
1043 data.started = mask;
1044 data.wait = wait;
1045 if (wait)
1046 data.finished = mask;
1047
1048 spin_lock(&call_lock);
1049 call_data = &data;
1050 wmb();
1051 /* Send a message to all other CPUs and wait for them to respond */
1052 send_CPI(mask, VIC_CALL_FUNCTION_CPI);
1053
1054 /* Wait for response */
1055 while (data.started)
1056 barrier();
1057
1058 if (wait)
1059 while (data.finished)
1060 barrier();
1061
1062 spin_unlock(&call_lock);
1063
1064 return 0;
1065 }
1066
1067 /* Sorry about the name. In an APIC based system, the APICs
1068 * themselves are programmed to send a timer interrupt. This is used
1069 * by linux to reschedule the processor. Voyager doesn't have this,
1070 * so we use the system clock to interrupt one processor, which in
1071 * turn, broadcasts a timer CPI to all the others --- we receive that
1072 * CPI here. We don't use this actually for counting so losing
1073 * ticks doesn't matter
1074 *
1075 * FIXME: For those CPUs which actually have a local APIC, we could
1076 * try to use it to trigger this interrupt instead of having to
1077 * broadcast the timer tick. Unfortunately, all my pentium DYADs have
1078 * no local APIC, so I can't do this
1079 *
1080 * This function is currently a placeholder and is unused in the code */
1081 void smp_apic_timer_interrupt(struct pt_regs *regs)
1082 {
1083 struct pt_regs *old_regs = set_irq_regs(regs);
1084 wrapper_smp_local_timer_interrupt();
1085 set_irq_regs(old_regs);
1086 }
1087
1088 /* All of the QUAD interrupt GATES */
1089 void smp_qic_timer_interrupt(struct pt_regs *regs)
1090 {
1091 struct pt_regs *old_regs = set_irq_regs(regs);
1092 ack_QIC_CPI(QIC_TIMER_CPI);
1093 wrapper_smp_local_timer_interrupt();
1094 set_irq_regs(old_regs);
1095 }
1096
1097 void smp_qic_invalidate_interrupt(struct pt_regs *regs)
1098 {
1099 ack_QIC_CPI(QIC_INVALIDATE_CPI);
1100 smp_invalidate_interrupt();
1101 }
1102
1103 void smp_qic_reschedule_interrupt(struct pt_regs *regs)
1104 {
1105 ack_QIC_CPI(QIC_RESCHEDULE_CPI);
1106 smp_reschedule_interrupt();
1107 }
1108
1109 void smp_qic_enable_irq_interrupt(struct pt_regs *regs)
1110 {
1111 ack_QIC_CPI(QIC_ENABLE_IRQ_CPI);
1112 smp_enable_irq_interrupt();
1113 }
1114
1115 void smp_qic_call_function_interrupt(struct pt_regs *regs)
1116 {
1117 ack_QIC_CPI(QIC_CALL_FUNCTION_CPI);
1118 smp_call_function_interrupt();
1119 }
1120
1121 void smp_vic_cpi_interrupt(struct pt_regs *regs)
1122 {
1123 struct pt_regs *old_regs = set_irq_regs(regs);
1124 __u8 cpu = smp_processor_id();
1125
1126 if (is_cpu_quad())
1127 ack_QIC_CPI(VIC_CPI_LEVEL0);
1128 else
1129 ack_VIC_CPI(VIC_CPI_LEVEL0);
1130
1131 if (test_and_clear_bit(VIC_TIMER_CPI, &vic_cpi_mailbox[cpu]))
1132 wrapper_smp_local_timer_interrupt();
1133 if (test_and_clear_bit(VIC_INVALIDATE_CPI, &vic_cpi_mailbox[cpu]))
1134 smp_invalidate_interrupt();
1135 if (test_and_clear_bit(VIC_RESCHEDULE_CPI, &vic_cpi_mailbox[cpu]))
1136 smp_reschedule_interrupt();
1137 if (test_and_clear_bit(VIC_ENABLE_IRQ_CPI, &vic_cpi_mailbox[cpu]))
1138 smp_enable_irq_interrupt();
1139 if (test_and_clear_bit(VIC_CALL_FUNCTION_CPI, &vic_cpi_mailbox[cpu]))
1140 smp_call_function_interrupt();
1141 set_irq_regs(old_regs);
1142 }
1143
1144 static void do_flush_tlb_all(void *info)
1145 {
1146 unsigned long cpu = smp_processor_id();
1147
1148 __flush_tlb_all();
1149 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_LAZY)
1150 voyager_leave_mm(cpu);
1151 }
1152
1153 /* flush the TLB of every active CPU in the system */
1154 void flush_tlb_all(void)
1155 {
1156 on_each_cpu(do_flush_tlb_all, 0, 1, 1);
1157 }
1158
1159 /* used to set up the trampoline for other CPUs when the memory manager
1160 * is sorted out */
1161 void __init smp_alloc_memory(void)
1162 {
1163 trampoline_base = alloc_bootmem_low_pages(PAGE_SIZE);
1164 if (__pa(trampoline_base) >= 0x93000)
1165 BUG();
1166 }
1167
1168 /* send a reschedule CPI to one CPU by physical CPU number*/
1169 static void voyager_smp_send_reschedule(int cpu)
1170 {
1171 send_one_CPI(cpu, VIC_RESCHEDULE_CPI);
1172 }
1173
1174 int hard_smp_processor_id(void)
1175 {
1176 __u8 i;
1177 __u8 cpumask = inb(VIC_PROC_WHO_AM_I);
1178 if ((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER)
1179 return cpumask & 0x1F;
1180
1181 for (i = 0; i < 8; i++) {
1182 if (cpumask & (1 << i))
1183 return i;
1184 }
1185 printk("** WARNING ** Illegal cpuid returned by VIC: %d", cpumask);
1186 return 0;
1187 }
1188
1189 int safe_smp_processor_id(void)
1190 {
1191 return hard_smp_processor_id();
1192 }
1193
1194 /* broadcast a halt to all other CPUs */
1195 static void voyager_smp_send_stop(void)
1196 {
1197 smp_call_function(smp_stop_cpu_function, NULL, 1, 1);
1198 }
1199
1200 /* this function is triggered in time.c when a clock tick fires
1201 * we need to re-broadcast the tick to all CPUs */
1202 void smp_vic_timer_interrupt(void)
1203 {
1204 send_CPI_allbutself(VIC_TIMER_CPI);
1205 smp_local_timer_interrupt();
1206 }
1207
1208 /* local (per CPU) timer interrupt. It does both profiling and
1209 * process statistics/rescheduling.
1210 *
1211 * We do profiling in every local tick, statistics/rescheduling
1212 * happen only every 'profiling multiplier' ticks. The default
1213 * multiplier is 1 and it can be changed by writing the new multiplier
1214 * value into /proc/profile.
1215 */
1216 void smp_local_timer_interrupt(void)
1217 {
1218 int cpu = smp_processor_id();
1219 long weight;
1220
1221 profile_tick(CPU_PROFILING);
1222 if (--per_cpu(prof_counter, cpu) <= 0) {
1223 /*
1224 * The multiplier may have changed since the last time we got
1225 * to this point as a result of the user writing to
1226 * /proc/profile. In this case we need to adjust the APIC
1227 * timer accordingly.
1228 *
1229 * Interrupts are already masked off at this point.
1230 */
1231 per_cpu(prof_counter, cpu) = per_cpu(prof_multiplier, cpu);
1232 if (per_cpu(prof_counter, cpu) !=
1233 per_cpu(prof_old_multiplier, cpu)) {
1234 /* FIXME: need to update the vic timer tick here */
1235 per_cpu(prof_old_multiplier, cpu) =
1236 per_cpu(prof_counter, cpu);
1237 }
1238
1239 update_process_times(user_mode_vm(get_irq_regs()));
1240 }
1241
1242 if (((1 << cpu) & voyager_extended_vic_processors) == 0)
1243 /* only extended VIC processors participate in
1244 * interrupt distribution */
1245 return;
1246
1247 /*
1248 * We take the 'long' return path, and there every subsystem
1249 * grabs the appropriate locks (kernel lock/ irq lock).
1250 *
1251 * we might want to decouple profiling from the 'long path',
1252 * and do the profiling totally in assembly.
1253 *
1254 * Currently this isn't too much of an issue (performance wise),
1255 * we can take more than 100K local irqs per second on a 100 MHz P5.
1256 */
1257
1258 if ((++vic_tick[cpu] & 0x7) != 0)
1259 return;
1260 /* get here every 16 ticks (about every 1/6 of a second) */
1261
1262 /* Change our priority to give someone else a chance at getting
1263 * the IRQ. The algorithm goes like this:
1264 *
1265 * In the VIC, the dynamically routed interrupt is always
1266 * handled by the lowest priority eligible (i.e. receiving
1267 * interrupts) CPU. If >1 eligible CPUs are equal lowest, the
1268 * lowest processor number gets it.
1269 *
1270 * The priority of a CPU is controlled by a special per-CPU
1271 * VIC priority register which is 3 bits wide 0 being lowest
1272 * and 7 highest priority..
1273 *
1274 * Therefore we subtract the average number of interrupts from
1275 * the number we've fielded. If this number is negative, we
1276 * lower the activity count and if it is positive, we raise
1277 * it.
1278 *
1279 * I'm afraid this still leads to odd looking interrupt counts:
1280 * the totals are all roughly equal, but the individual ones
1281 * look rather skewed.
1282 *
1283 * FIXME: This algorithm is total crap when mixed with SMP
1284 * affinity code since we now try to even up the interrupt
1285 * counts when an affinity binding is keeping them on a
1286 * particular CPU*/
1287 weight = (vic_intr_count[cpu] * voyager_extended_cpus
1288 - vic_intr_total) >> 4;
1289 weight += 4;
1290 if (weight > 7)
1291 weight = 7;
1292 if (weight < 0)
1293 weight = 0;
1294
1295 outb((__u8) weight, VIC_PRIORITY_REGISTER);
1296
1297 #ifdef VOYAGER_DEBUG
1298 if ((vic_tick[cpu] & 0xFFF) == 0) {
1299 /* print this message roughly every 25 secs */
1300 printk("VOYAGER SMP: vic_tick[%d] = %lu, weight = %ld\n",
1301 cpu, vic_tick[cpu], weight);
1302 }
1303 #endif
1304 }
1305
1306 /* setup the profiling timer */
1307 int setup_profiling_timer(unsigned int multiplier)
1308 {
1309 int i;
1310
1311 if ((!multiplier))
1312 return -EINVAL;
1313
1314 /*
1315 * Set the new multiplier for each CPU. CPUs don't start using the
1316 * new values until the next timer interrupt in which they do process
1317 * accounting.
1318 */
1319 for (i = 0; i < NR_CPUS; ++i)
1320 per_cpu(prof_multiplier, i) = multiplier;
1321
1322 return 0;
1323 }
1324
1325 /* This is a bit of a mess, but forced on us by the genirq changes
1326 * there's no genirq handler that really does what voyager wants
1327 * so hack it up with the simple IRQ handler */
1328 static void handle_vic_irq(unsigned int irq, struct irq_desc *desc)
1329 {
1330 before_handle_vic_irq(irq);
1331 handle_simple_irq(irq, desc);
1332 after_handle_vic_irq(irq);
1333 }
1334
1335 /* The CPIs are handled in the per cpu 8259s, so they must be
1336 * enabled to be received: FIX: enabling the CPIs in the early
1337 * boot sequence interferes with bug checking; enable them later
1338 * on in smp_init */
1339 #define VIC_SET_GATE(cpi, vector) \
1340 set_intr_gate((cpi) + VIC_DEFAULT_CPI_BASE, (vector))
1341 #define QIC_SET_GATE(cpi, vector) \
1342 set_intr_gate((cpi) + QIC_DEFAULT_CPI_BASE, (vector))
1343
1344 void __init smp_intr_init(void)
1345 {
1346 int i;
1347
1348 /* initialize the per cpu irq mask to all disabled */
1349 for (i = 0; i < NR_CPUS; i++)
1350 vic_irq_mask[i] = 0xFFFF;
1351
1352 VIC_SET_GATE(VIC_CPI_LEVEL0, vic_cpi_interrupt);
1353
1354 VIC_SET_GATE(VIC_SYS_INT, vic_sys_interrupt);
1355 VIC_SET_GATE(VIC_CMN_INT, vic_cmn_interrupt);
1356
1357 QIC_SET_GATE(QIC_TIMER_CPI, qic_timer_interrupt);
1358 QIC_SET_GATE(QIC_INVALIDATE_CPI, qic_invalidate_interrupt);
1359 QIC_SET_GATE(QIC_RESCHEDULE_CPI, qic_reschedule_interrupt);
1360 QIC_SET_GATE(QIC_ENABLE_IRQ_CPI, qic_enable_irq_interrupt);
1361 QIC_SET_GATE(QIC_CALL_FUNCTION_CPI, qic_call_function_interrupt);
1362
1363 /* now put the VIC descriptor into the first 48 IRQs
1364 *
1365 * This is for later: first 16 correspond to PC IRQs; next 16
1366 * are Primary MC IRQs and final 16 are Secondary MC IRQs */
1367 for (i = 0; i < 48; i++)
1368 set_irq_chip_and_handler(i, &vic_chip, handle_vic_irq);
1369 }
1370
1371 /* send a CPI at level cpi to a set of cpus in cpuset (set 1 bit per
1372 * processor to receive CPI */
1373 static void send_CPI(__u32 cpuset, __u8 cpi)
1374 {
1375 int cpu;
1376 __u32 quad_cpuset = (cpuset & voyager_quad_processors);
1377
1378 if (cpi < VIC_START_FAKE_CPI) {
1379 /* fake CPI are only used for booting, so send to the
1380 * extended quads as well---Quads must be VIC booted */
1381 outb((__u8) (cpuset), VIC_CPI_Registers[cpi]);
1382 return;
1383 }
1384 if (quad_cpuset)
1385 send_QIC_CPI(quad_cpuset, cpi);
1386 cpuset &= ~quad_cpuset;
1387 cpuset &= 0xff; /* only first 8 CPUs vaild for VIC CPI */
1388 if (cpuset == 0)
1389 return;
1390 for_each_online_cpu(cpu) {
1391 if (cpuset & (1 << cpu))
1392 set_bit(cpi, &vic_cpi_mailbox[cpu]);
1393 }
1394 if (cpuset)
1395 outb((__u8) cpuset, VIC_CPI_Registers[VIC_CPI_LEVEL0]);
1396 }
1397
1398 /* Acknowledge receipt of CPI in the QIC, clear in QIC hardware and
1399 * set the cache line to shared by reading it.
1400 *
1401 * DON'T make this inline otherwise the cache line read will be
1402 * optimised away
1403 * */
1404 static int ack_QIC_CPI(__u8 cpi)
1405 {
1406 __u8 cpu = hard_smp_processor_id();
1407
1408 cpi &= 7;
1409
1410 outb(1 << cpi, QIC_INTERRUPT_CLEAR1);
1411 return voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi;
1412 }
1413
1414 static void ack_special_QIC_CPI(__u8 cpi)
1415 {
1416 switch (cpi) {
1417 case VIC_CMN_INT:
1418 outb(QIC_CMN_INT, QIC_INTERRUPT_CLEAR0);
1419 break;
1420 case VIC_SYS_INT:
1421 outb(QIC_SYS_INT, QIC_INTERRUPT_CLEAR0);
1422 break;
1423 }
1424 /* also clear at the VIC, just in case (nop for non-extended proc) */
1425 ack_VIC_CPI(cpi);
1426 }
1427
1428 /* Acknowledge receipt of CPI in the VIC (essentially an EOI) */
1429 static void ack_VIC_CPI(__u8 cpi)
1430 {
1431 #ifdef VOYAGER_DEBUG
1432 unsigned long flags;
1433 __u16 isr;
1434 __u8 cpu = smp_processor_id();
1435
1436 local_irq_save(flags);
1437 isr = vic_read_isr();
1438 if ((isr & (1 << (cpi & 7))) == 0) {
1439 printk("VOYAGER SMP: CPU%d lost CPI%d\n", cpu, cpi);
1440 }
1441 #endif
1442 /* send specific EOI; the two system interrupts have
1443 * bit 4 set for a separate vector but behave as the
1444 * corresponding 3 bit intr */
1445 outb_p(0x60 | (cpi & 7), 0x20);
1446
1447 #ifdef VOYAGER_DEBUG
1448 if ((vic_read_isr() & (1 << (cpi & 7))) != 0) {
1449 printk("VOYAGER SMP: CPU%d still asserting CPI%d\n", cpu, cpi);
1450 }
1451 local_irq_restore(flags);
1452 #endif
1453 }
1454
1455 /* cribbed with thanks from irq.c */
1456 #define __byte(x,y) (((unsigned char *)&(y))[x])
1457 #define cached_21(cpu) (__byte(0,vic_irq_mask[cpu]))
1458 #define cached_A1(cpu) (__byte(1,vic_irq_mask[cpu]))
1459
1460 static unsigned int startup_vic_irq(unsigned int irq)
1461 {
1462 unmask_vic_irq(irq);
1463
1464 return 0;
1465 }
1466
1467 /* The enable and disable routines. This is where we run into
1468 * conflicting architectural philosophy. Fundamentally, the voyager
1469 * architecture does not expect to have to disable interrupts globally
1470 * (the IRQ controllers belong to each CPU). The processor masquerade
1471 * which is used to start the system shouldn't be used in a running OS
1472 * since it will cause great confusion if two separate CPUs drive to
1473 * the same IRQ controller (I know, I've tried it).
1474 *
1475 * The solution is a variant on the NCR lazy SPL design:
1476 *
1477 * 1) To disable an interrupt, do nothing (other than set the
1478 * IRQ_DISABLED flag). This dares the interrupt actually to arrive.
1479 *
1480 * 2) If the interrupt dares to come in, raise the local mask against
1481 * it (this will result in all the CPU masks being raised
1482 * eventually).
1483 *
1484 * 3) To enable the interrupt, lower the mask on the local CPU and
1485 * broadcast an Interrupt enable CPI which causes all other CPUs to
1486 * adjust their masks accordingly. */
1487
1488 static void unmask_vic_irq(unsigned int irq)
1489 {
1490 /* linux doesn't to processor-irq affinity, so enable on
1491 * all CPUs we know about */
1492 int cpu = smp_processor_id(), real_cpu;
1493 __u16 mask = (1 << irq);
1494 __u32 processorList = 0;
1495 unsigned long flags;
1496
1497 VDEBUG(("VOYAGER: unmask_vic_irq(%d) CPU%d affinity 0x%lx\n",
1498 irq, cpu, cpu_irq_affinity[cpu]));
1499 spin_lock_irqsave(&vic_irq_lock, flags);
1500 for_each_online_cpu(real_cpu) {
1501 if (!(voyager_extended_vic_processors & (1 << real_cpu)))
1502 continue;
1503 if (!(cpu_irq_affinity[real_cpu] & mask)) {
1504 /* irq has no affinity for this CPU, ignore */
1505 continue;
1506 }
1507 if (real_cpu == cpu) {
1508 enable_local_vic_irq(irq);
1509 } else if (vic_irq_mask[real_cpu] & mask) {
1510 vic_irq_enable_mask[real_cpu] |= mask;
1511 processorList |= (1 << real_cpu);
1512 }
1513 }
1514 spin_unlock_irqrestore(&vic_irq_lock, flags);
1515 if (processorList)
1516 send_CPI(processorList, VIC_ENABLE_IRQ_CPI);
1517 }
1518
1519 static void mask_vic_irq(unsigned int irq)
1520 {
1521 /* lazy disable, do nothing */
1522 }
1523
1524 static void enable_local_vic_irq(unsigned int irq)
1525 {
1526 __u8 cpu = smp_processor_id();
1527 __u16 mask = ~(1 << irq);
1528 __u16 old_mask = vic_irq_mask[cpu];
1529
1530 vic_irq_mask[cpu] &= mask;
1531 if (vic_irq_mask[cpu] == old_mask)
1532 return;
1533
1534 VDEBUG(("VOYAGER DEBUG: Enabling irq %d in hardware on CPU %d\n",
1535 irq, cpu));
1536
1537 if (irq & 8) {
1538 outb_p(cached_A1(cpu), 0xA1);
1539 (void)inb_p(0xA1);
1540 } else {
1541 outb_p(cached_21(cpu), 0x21);
1542 (void)inb_p(0x21);
1543 }
1544 }
1545
1546 static void disable_local_vic_irq(unsigned int irq)
1547 {
1548 __u8 cpu = smp_processor_id();
1549 __u16 mask = (1 << irq);
1550 __u16 old_mask = vic_irq_mask[cpu];
1551
1552 if (irq == 7)
1553 return;
1554
1555 vic_irq_mask[cpu] |= mask;
1556 if (old_mask == vic_irq_mask[cpu])
1557 return;
1558
1559 VDEBUG(("VOYAGER DEBUG: Disabling irq %d in hardware on CPU %d\n",
1560 irq, cpu));
1561
1562 if (irq & 8) {
1563 outb_p(cached_A1(cpu), 0xA1);
1564 (void)inb_p(0xA1);
1565 } else {
1566 outb_p(cached_21(cpu), 0x21);
1567 (void)inb_p(0x21);
1568 }
1569 }
1570
1571 /* The VIC is level triggered, so the ack can only be issued after the
1572 * interrupt completes. However, we do Voyager lazy interrupt
1573 * handling here: It is an extremely expensive operation to mask an
1574 * interrupt in the vic, so we merely set a flag (IRQ_DISABLED). If
1575 * this interrupt actually comes in, then we mask and ack here to push
1576 * the interrupt off to another CPU */
1577 static void before_handle_vic_irq(unsigned int irq)
1578 {
1579 irq_desc_t *desc = irq_desc + irq;
1580 __u8 cpu = smp_processor_id();
1581
1582 _raw_spin_lock(&vic_irq_lock);
1583 vic_intr_total++;
1584 vic_intr_count[cpu]++;
1585
1586 if (!(cpu_irq_affinity[cpu] & (1 << irq))) {
1587 /* The irq is not in our affinity mask, push it off
1588 * onto another CPU */
1589 VDEBUG(("VOYAGER DEBUG: affinity triggered disable of irq %d "
1590 "on cpu %d\n", irq, cpu));
1591 disable_local_vic_irq(irq);
1592 /* set IRQ_INPROGRESS to prevent the handler in irq.c from
1593 * actually calling the interrupt routine */
1594 desc->status |= IRQ_REPLAY | IRQ_INPROGRESS;
1595 } else if (desc->status & IRQ_DISABLED) {
1596 /* Damn, the interrupt actually arrived, do the lazy
1597 * disable thing. The interrupt routine in irq.c will
1598 * not handle a IRQ_DISABLED interrupt, so nothing more
1599 * need be done here */
1600 VDEBUG(("VOYAGER DEBUG: lazy disable of irq %d on CPU %d\n",
1601 irq, cpu));
1602 disable_local_vic_irq(irq);
1603 desc->status |= IRQ_REPLAY;
1604 } else {
1605 desc->status &= ~IRQ_REPLAY;
1606 }
1607
1608 _raw_spin_unlock(&vic_irq_lock);
1609 }
1610
1611 /* Finish the VIC interrupt: basically mask */
1612 static void after_handle_vic_irq(unsigned int irq)
1613 {
1614 irq_desc_t *desc = irq_desc + irq;
1615
1616 _raw_spin_lock(&vic_irq_lock);
1617 {
1618 unsigned int status = desc->status & ~IRQ_INPROGRESS;
1619 #ifdef VOYAGER_DEBUG
1620 __u16 isr;
1621 #endif
1622
1623 desc->status = status;
1624 if ((status & IRQ_DISABLED))
1625 disable_local_vic_irq(irq);
1626 #ifdef VOYAGER_DEBUG
1627 /* DEBUG: before we ack, check what's in progress */
1628 isr = vic_read_isr();
1629 if ((isr & (1 << irq) && !(status & IRQ_REPLAY)) == 0) {
1630 int i;
1631 __u8 cpu = smp_processor_id();
1632 __u8 real_cpu;
1633 int mask; /* Um... initialize me??? --RR */
1634
1635 printk("VOYAGER SMP: CPU%d lost interrupt %d\n",
1636 cpu, irq);
1637 for_each_possible_cpu(real_cpu, mask) {
1638
1639 outb(VIC_CPU_MASQUERADE_ENABLE | real_cpu,
1640 VIC_PROCESSOR_ID);
1641 isr = vic_read_isr();
1642 if (isr & (1 << irq)) {
1643 printk
1644 ("VOYAGER SMP: CPU%d ack irq %d\n",
1645 real_cpu, irq);
1646 ack_vic_irq(irq);
1647 }
1648 outb(cpu, VIC_PROCESSOR_ID);
1649 }
1650 }
1651 #endif /* VOYAGER_DEBUG */
1652 /* as soon as we ack, the interrupt is eligible for
1653 * receipt by another CPU so everything must be in
1654 * order here */
1655 ack_vic_irq(irq);
1656 if (status & IRQ_REPLAY) {
1657 /* replay is set if we disable the interrupt
1658 * in the before_handle_vic_irq() routine, so
1659 * clear the in progress bit here to allow the
1660 * next CPU to handle this correctly */
1661 desc->status &= ~(IRQ_REPLAY | IRQ_INPROGRESS);
1662 }
1663 #ifdef VOYAGER_DEBUG
1664 isr = vic_read_isr();
1665 if ((isr & (1 << irq)) != 0)
1666 printk("VOYAGER SMP: after_handle_vic_irq() after "
1667 "ack irq=%d, isr=0x%x\n", irq, isr);
1668 #endif /* VOYAGER_DEBUG */
1669 }
1670 _raw_spin_unlock(&vic_irq_lock);
1671
1672 /* All code after this point is out of the main path - the IRQ
1673 * may be intercepted by another CPU if reasserted */
1674 }
1675
1676 /* Linux processor - interrupt affinity manipulations.
1677 *
1678 * For each processor, we maintain a 32 bit irq affinity mask.
1679 * Initially it is set to all 1's so every processor accepts every
1680 * interrupt. In this call, we change the processor's affinity mask:
1681 *
1682 * Change from enable to disable:
1683 *
1684 * If the interrupt ever comes in to the processor, we will disable it
1685 * and ack it to push it off to another CPU, so just accept the mask here.
1686 *
1687 * Change from disable to enable:
1688 *
1689 * change the mask and then do an interrupt enable CPI to re-enable on
1690 * the selected processors */
1691
1692 void set_vic_irq_affinity(unsigned int irq, cpumask_t mask)
1693 {
1694 /* Only extended processors handle interrupts */
1695 unsigned long real_mask;
1696 unsigned long irq_mask = 1 << irq;
1697 int cpu;
1698
1699 real_mask = cpus_addr(mask)[0] & voyager_extended_vic_processors;
1700
1701 if (cpus_addr(mask)[0] == 0)
1702 /* can't have no CPUs to accept the interrupt -- extremely
1703 * bad things will happen */
1704 return;
1705
1706 if (irq == 0)
1707 /* can't change the affinity of the timer IRQ. This
1708 * is due to the constraint in the voyager
1709 * architecture that the CPI also comes in on and IRQ
1710 * line and we have chosen IRQ0 for this. If you
1711 * raise the mask on this interrupt, the processor
1712 * will no-longer be able to accept VIC CPIs */
1713 return;
1714
1715 if (irq >= 32)
1716 /* You can only have 32 interrupts in a voyager system
1717 * (and 32 only if you have a secondary microchannel
1718 * bus) */
1719 return;
1720
1721 for_each_online_cpu(cpu) {
1722 unsigned long cpu_mask = 1 << cpu;
1723
1724 if (cpu_mask & real_mask) {
1725 /* enable the interrupt for this cpu */
1726 cpu_irq_affinity[cpu] |= irq_mask;
1727 } else {
1728 /* disable the interrupt for this cpu */
1729 cpu_irq_affinity[cpu] &= ~irq_mask;
1730 }
1731 }
1732 /* this is magic, we now have the correct affinity maps, so
1733 * enable the interrupt. This will send an enable CPI to
1734 * those CPUs who need to enable it in their local masks,
1735 * causing them to correct for the new affinity . If the
1736 * interrupt is currently globally disabled, it will simply be
1737 * disabled again as it comes in (voyager lazy disable). If
1738 * the affinity map is tightened to disable the interrupt on a
1739 * cpu, it will be pushed off when it comes in */
1740 unmask_vic_irq(irq);
1741 }
1742
1743 static void ack_vic_irq(unsigned int irq)
1744 {
1745 if (irq & 8) {
1746 outb(0x62, 0x20); /* Specific EOI to cascade */
1747 outb(0x60 | (irq & 7), 0xA0);
1748 } else {
1749 outb(0x60 | (irq & 7), 0x20);
1750 }
1751 }
1752
1753 /* enable the CPIs. In the VIC, the CPIs are delivered by the 8259
1754 * but are not vectored by it. This means that the 8259 mask must be
1755 * lowered to receive them */
1756 static __init void vic_enable_cpi(void)
1757 {
1758 __u8 cpu = smp_processor_id();
1759
1760 /* just take a copy of the current mask (nop for boot cpu) */
1761 vic_irq_mask[cpu] = vic_irq_mask[boot_cpu_id];
1762
1763 enable_local_vic_irq(VIC_CPI_LEVEL0);
1764 enable_local_vic_irq(VIC_CPI_LEVEL1);
1765 /* for sys int and cmn int */
1766 enable_local_vic_irq(7);
1767
1768 if (is_cpu_quad()) {
1769 outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0);
1770 outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1);
1771 VDEBUG(("VOYAGER SMP: QIC ENABLE CPI: CPU%d: MASK 0x%x\n",
1772 cpu, QIC_CPI_ENABLE));
1773 }
1774
1775 VDEBUG(("VOYAGER SMP: ENABLE CPI: CPU%d: MASK 0x%x\n",
1776 cpu, vic_irq_mask[cpu]));
1777 }
1778
1779 void voyager_smp_dump()
1780 {
1781 int old_cpu = smp_processor_id(), cpu;
1782
1783 /* dump the interrupt masks of each processor */
1784 for_each_online_cpu(cpu) {
1785 __u16 imr, isr, irr;
1786 unsigned long flags;
1787
1788 local_irq_save(flags);
1789 outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID);
1790 imr = (inb(0xa1) << 8) | inb(0x21);
1791 outb(0x0a, 0xa0);
1792 irr = inb(0xa0) << 8;
1793 outb(0x0a, 0x20);
1794 irr |= inb(0x20);
1795 outb(0x0b, 0xa0);
1796 isr = inb(0xa0) << 8;
1797 outb(0x0b, 0x20);
1798 isr |= inb(0x20);
1799 outb(old_cpu, VIC_PROCESSOR_ID);
1800 local_irq_restore(flags);
1801 printk("\tCPU%d: mask=0x%x, IMR=0x%x, IRR=0x%x, ISR=0x%x\n",
1802 cpu, vic_irq_mask[cpu], imr, irr, isr);
1803 #if 0
1804 /* These lines are put in to try to unstick an un ack'd irq */
1805 if (isr != 0) {
1806 int irq;
1807 for (irq = 0; irq < 16; irq++) {
1808 if (isr & (1 << irq)) {
1809 printk("\tCPU%d: ack irq %d\n",
1810 cpu, irq);
1811 local_irq_save(flags);
1812 outb(VIC_CPU_MASQUERADE_ENABLE | cpu,
1813 VIC_PROCESSOR_ID);
1814 ack_vic_irq(irq);
1815 outb(old_cpu, VIC_PROCESSOR_ID);
1816 local_irq_restore(flags);
1817 }
1818 }
1819 }
1820 #endif
1821 }
1822 }
1823
1824 void smp_voyager_power_off(void *dummy)
1825 {
1826 if (smp_processor_id() == boot_cpu_id)
1827 voyager_power_off();
1828 else
1829 smp_stop_cpu_function(NULL);
1830 }
1831
1832 static void __init voyager_smp_prepare_cpus(unsigned int max_cpus)
1833 {
1834 /* FIXME: ignore max_cpus for now */
1835 smp_boot_cpus();
1836 }
1837
1838 static void __cpuinit voyager_smp_prepare_boot_cpu(void)
1839 {
1840 init_gdt(smp_processor_id());
1841 switch_to_new_gdt();
1842
1843 cpu_set(smp_processor_id(), cpu_online_map);
1844 cpu_set(smp_processor_id(), cpu_callout_map);
1845 cpu_set(smp_processor_id(), cpu_possible_map);
1846 cpu_set(smp_processor_id(), cpu_present_map);
1847 }
1848
1849 static int __cpuinit voyager_cpu_up(unsigned int cpu)
1850 {
1851 /* This only works at boot for x86. See "rewrite" above. */
1852 if (cpu_isset(cpu, smp_commenced_mask))
1853 return -ENOSYS;
1854
1855 /* In case one didn't come up */
1856 if (!cpu_isset(cpu, cpu_callin_map))
1857 return -EIO;
1858 /* Unleash the CPU! */
1859 cpu_set(cpu, smp_commenced_mask);
1860 while (!cpu_isset(cpu, cpu_online_map))
1861 mb();
1862 return 0;
1863 }
1864
1865 static void __init voyager_smp_cpus_done(unsigned int max_cpus)
1866 {
1867 zap_low_mappings();
1868 }
1869
1870 void __init smp_setup_processor_id(void)
1871 {
1872 current_thread_info()->cpu = hard_smp_processor_id();
1873 x86_write_percpu(cpu_number, hard_smp_processor_id());
1874 }
1875
1876 struct smp_ops smp_ops = {
1877 .smp_prepare_boot_cpu = voyager_smp_prepare_boot_cpu,
1878 .smp_prepare_cpus = voyager_smp_prepare_cpus,
1879 .cpu_up = voyager_cpu_up,
1880 .smp_cpus_done = voyager_smp_cpus_done,
1881
1882 .smp_send_stop = voyager_smp_send_stop,
1883 .smp_send_reschedule = voyager_smp_send_reschedule,
1884 .smp_call_function_mask = voyager_smp_call_function_mask,
1885 };