]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/mach-voyager/voyager_smp.c
Merge branch 'x86/crashdump' into cpus4096
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / mach-voyager / voyager_smp.c
1 /* -*- mode: c; c-basic-offset: 8 -*- */
2
3 /* Copyright (C) 1999,2001
4 *
5 * Author: J.E.J.Bottomley@HansenPartnership.com
6 *
7 * This file provides all the same external entries as smp.c but uses
8 * the voyager hal to provide the functionality
9 */
10 #include <linux/cpu.h>
11 #include <linux/module.h>
12 #include <linux/mm.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/delay.h>
15 #include <linux/mc146818rtc.h>
16 #include <linux/cache.h>
17 #include <linux/interrupt.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/bootmem.h>
21 #include <linux/completion.h>
22 #include <asm/desc.h>
23 #include <asm/voyager.h>
24 #include <asm/vic.h>
25 #include <asm/mtrr.h>
26 #include <asm/pgalloc.h>
27 #include <asm/tlbflush.h>
28 #include <asm/arch_hooks.h>
29 #include <asm/trampoline.h>
30
31 /* TLB state -- visible externally, indexed physically */
32 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = { &init_mm, 0 };
33
34 /* CPU IRQ affinity -- set to all ones initially */
35 static unsigned long cpu_irq_affinity[NR_CPUS] __cacheline_aligned =
36 {[0 ... NR_CPUS-1] = ~0UL };
37
38 /* per CPU data structure (for /proc/cpuinfo et al), visible externally
39 * indexed physically */
40 DEFINE_PER_CPU_SHARED_ALIGNED(struct cpuinfo_x86, cpu_info);
41 EXPORT_PER_CPU_SYMBOL(cpu_info);
42
43 /* physical ID of the CPU used to boot the system */
44 unsigned char boot_cpu_id;
45
46 /* The memory line addresses for the Quad CPIs */
47 struct voyager_qic_cpi *voyager_quad_cpi_addr[NR_CPUS] __cacheline_aligned;
48
49 /* The masks for the Extended VIC processors, filled in by cat_init */
50 __u32 voyager_extended_vic_processors = 0;
51
52 /* Masks for the extended Quad processors which cannot be VIC booted */
53 __u32 voyager_allowed_boot_processors = 0;
54
55 /* The mask for the Quad Processors (both extended and non-extended) */
56 __u32 voyager_quad_processors = 0;
57
58 /* Total count of live CPUs, used in process.c to display
59 * the CPU information and in irq.c for the per CPU irq
60 * activity count. Finally exported by i386_ksyms.c */
61 static int voyager_extended_cpus = 1;
62
63 /* Used for the invalidate map that's also checked in the spinlock */
64 static volatile unsigned long smp_invalidate_needed;
65
66 /* Bitmask of CPUs present in the system - exported by i386_syms.c, used
67 * by scheduler but indexed physically */
68 cpumask_t phys_cpu_present_map = CPU_MASK_NONE;
69
70 /* The internal functions */
71 static void send_CPI(__u32 cpuset, __u8 cpi);
72 static void ack_CPI(__u8 cpi);
73 static int ack_QIC_CPI(__u8 cpi);
74 static void ack_special_QIC_CPI(__u8 cpi);
75 static void ack_VIC_CPI(__u8 cpi);
76 static void send_CPI_allbutself(__u8 cpi);
77 static void mask_vic_irq(unsigned int irq);
78 static void unmask_vic_irq(unsigned int irq);
79 static unsigned int startup_vic_irq(unsigned int irq);
80 static void enable_local_vic_irq(unsigned int irq);
81 static void disable_local_vic_irq(unsigned int irq);
82 static void before_handle_vic_irq(unsigned int irq);
83 static void after_handle_vic_irq(unsigned int irq);
84 static void set_vic_irq_affinity(unsigned int irq, cpumask_t mask);
85 static void ack_vic_irq(unsigned int irq);
86 static void vic_enable_cpi(void);
87 static void do_boot_cpu(__u8 cpuid);
88 static void do_quad_bootstrap(void);
89 static void initialize_secondary(void);
90
91 int hard_smp_processor_id(void);
92 int safe_smp_processor_id(void);
93
94 /* Inline functions */
95 static inline void send_one_QIC_CPI(__u8 cpu, __u8 cpi)
96 {
97 voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi =
98 (smp_processor_id() << 16) + cpi;
99 }
100
101 static inline void send_QIC_CPI(__u32 cpuset, __u8 cpi)
102 {
103 int cpu;
104
105 for_each_online_cpu(cpu) {
106 if (cpuset & (1 << cpu)) {
107 #ifdef VOYAGER_DEBUG
108 if (!cpu_online(cpu))
109 VDEBUG(("CPU%d sending cpi %d to CPU%d not in "
110 "cpu_online_map\n",
111 hard_smp_processor_id(), cpi, cpu));
112 #endif
113 send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET);
114 }
115 }
116 }
117
118 static inline void wrapper_smp_local_timer_interrupt(void)
119 {
120 irq_enter();
121 smp_local_timer_interrupt();
122 irq_exit();
123 }
124
125 static inline void send_one_CPI(__u8 cpu, __u8 cpi)
126 {
127 if (voyager_quad_processors & (1 << cpu))
128 send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET);
129 else
130 send_CPI(1 << cpu, cpi);
131 }
132
133 static inline void send_CPI_allbutself(__u8 cpi)
134 {
135 __u8 cpu = smp_processor_id();
136 __u32 mask = cpus_addr(cpu_online_map)[0] & ~(1 << cpu);
137 send_CPI(mask, cpi);
138 }
139
140 static inline int is_cpu_quad(void)
141 {
142 __u8 cpumask = inb(VIC_PROC_WHO_AM_I);
143 return ((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER);
144 }
145
146 static inline int is_cpu_extended(void)
147 {
148 __u8 cpu = hard_smp_processor_id();
149
150 return (voyager_extended_vic_processors & (1 << cpu));
151 }
152
153 static inline int is_cpu_vic_boot(void)
154 {
155 __u8 cpu = hard_smp_processor_id();
156
157 return (voyager_extended_vic_processors
158 & voyager_allowed_boot_processors & (1 << cpu));
159 }
160
161 static inline void ack_CPI(__u8 cpi)
162 {
163 switch (cpi) {
164 case VIC_CPU_BOOT_CPI:
165 if (is_cpu_quad() && !is_cpu_vic_boot())
166 ack_QIC_CPI(cpi);
167 else
168 ack_VIC_CPI(cpi);
169 break;
170 case VIC_SYS_INT:
171 case VIC_CMN_INT:
172 /* These are slightly strange. Even on the Quad card,
173 * They are vectored as VIC CPIs */
174 if (is_cpu_quad())
175 ack_special_QIC_CPI(cpi);
176 else
177 ack_VIC_CPI(cpi);
178 break;
179 default:
180 printk("VOYAGER ERROR: CPI%d is in common CPI code\n", cpi);
181 break;
182 }
183 }
184
185 /* local variables */
186
187 /* The VIC IRQ descriptors -- these look almost identical to the
188 * 8259 IRQs except that masks and things must be kept per processor
189 */
190 static struct irq_chip vic_chip = {
191 .name = "VIC",
192 .startup = startup_vic_irq,
193 .mask = mask_vic_irq,
194 .unmask = unmask_vic_irq,
195 .set_affinity = set_vic_irq_affinity,
196 };
197
198 /* used to count up as CPUs are brought on line (starts at 0) */
199 static int cpucount = 0;
200
201 /* The per cpu profile stuff - used in smp_local_timer_interrupt */
202 static DEFINE_PER_CPU(int, prof_multiplier) = 1;
203 static DEFINE_PER_CPU(int, prof_old_multiplier) = 1;
204 static DEFINE_PER_CPU(int, prof_counter) = 1;
205
206 /* the map used to check if a CPU has booted */
207 static __u32 cpu_booted_map;
208
209 /* the synchronize flag used to hold all secondary CPUs spinning in
210 * a tight loop until the boot sequence is ready for them */
211 static cpumask_t smp_commenced_mask = CPU_MASK_NONE;
212
213 /* This is for the new dynamic CPU boot code */
214 cpumask_t cpu_callin_map = CPU_MASK_NONE;
215 cpumask_t cpu_callout_map = CPU_MASK_NONE;
216
217 /* The per processor IRQ masks (these are usually kept in sync) */
218 static __u16 vic_irq_mask[NR_CPUS] __cacheline_aligned;
219
220 /* the list of IRQs to be enabled by the VIC_ENABLE_IRQ_CPI */
221 static __u16 vic_irq_enable_mask[NR_CPUS] __cacheline_aligned = { 0 };
222
223 /* Lock for enable/disable of VIC interrupts */
224 static __cacheline_aligned DEFINE_SPINLOCK(vic_irq_lock);
225
226 /* The boot processor is correctly set up in PC mode when it
227 * comes up, but the secondaries need their master/slave 8259
228 * pairs initializing correctly */
229
230 /* Interrupt counters (per cpu) and total - used to try to
231 * even up the interrupt handling routines */
232 static long vic_intr_total = 0;
233 static long vic_intr_count[NR_CPUS] __cacheline_aligned = { 0 };
234 static unsigned long vic_tick[NR_CPUS] __cacheline_aligned = { 0 };
235
236 /* Since we can only use CPI0, we fake all the other CPIs */
237 static unsigned long vic_cpi_mailbox[NR_CPUS] __cacheline_aligned;
238
239 /* debugging routine to read the isr of the cpu's pic */
240 static inline __u16 vic_read_isr(void)
241 {
242 __u16 isr;
243
244 outb(0x0b, 0xa0);
245 isr = inb(0xa0) << 8;
246 outb(0x0b, 0x20);
247 isr |= inb(0x20);
248
249 return isr;
250 }
251
252 static __init void qic_setup(void)
253 {
254 if (!is_cpu_quad()) {
255 /* not a quad, no setup */
256 return;
257 }
258 outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0);
259 outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1);
260
261 if (is_cpu_extended()) {
262 /* the QIC duplicate of the VIC base register */
263 outb(VIC_DEFAULT_CPI_BASE, QIC_VIC_CPI_BASE_REGISTER);
264 outb(QIC_DEFAULT_CPI_BASE, QIC_CPI_BASE_REGISTER);
265
266 /* FIXME: should set up the QIC timer and memory parity
267 * error vectors here */
268 }
269 }
270
271 static __init void vic_setup_pic(void)
272 {
273 outb(1, VIC_REDIRECT_REGISTER_1);
274 /* clear the claim registers for dynamic routing */
275 outb(0, VIC_CLAIM_REGISTER_0);
276 outb(0, VIC_CLAIM_REGISTER_1);
277
278 outb(0, VIC_PRIORITY_REGISTER);
279 /* Set the Primary and Secondary Microchannel vector
280 * bases to be the same as the ordinary interrupts
281 *
282 * FIXME: This would be more efficient using separate
283 * vectors. */
284 outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE);
285 outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE);
286 /* Now initiallise the master PIC belonging to this CPU by
287 * sending the four ICWs */
288
289 /* ICW1: level triggered, ICW4 needed */
290 outb(0x19, 0x20);
291
292 /* ICW2: vector base */
293 outb(FIRST_EXTERNAL_VECTOR, 0x21);
294
295 /* ICW3: slave at line 2 */
296 outb(0x04, 0x21);
297
298 /* ICW4: 8086 mode */
299 outb(0x01, 0x21);
300
301 /* now the same for the slave PIC */
302
303 /* ICW1: level trigger, ICW4 needed */
304 outb(0x19, 0xA0);
305
306 /* ICW2: slave vector base */
307 outb(FIRST_EXTERNAL_VECTOR + 8, 0xA1);
308
309 /* ICW3: slave ID */
310 outb(0x02, 0xA1);
311
312 /* ICW4: 8086 mode */
313 outb(0x01, 0xA1);
314 }
315
316 static void do_quad_bootstrap(void)
317 {
318 if (is_cpu_quad() && is_cpu_vic_boot()) {
319 int i;
320 unsigned long flags;
321 __u8 cpuid = hard_smp_processor_id();
322
323 local_irq_save(flags);
324
325 for (i = 0; i < 4; i++) {
326 /* FIXME: this would be >>3 &0x7 on the 32 way */
327 if (((cpuid >> 2) & 0x03) == i)
328 /* don't lower our own mask! */
329 continue;
330
331 /* masquerade as local Quad CPU */
332 outb(QIC_CPUID_ENABLE | i, QIC_PROCESSOR_ID);
333 /* enable the startup CPI */
334 outb(QIC_BOOT_CPI_MASK, QIC_MASK_REGISTER1);
335 /* restore cpu id */
336 outb(0, QIC_PROCESSOR_ID);
337 }
338 local_irq_restore(flags);
339 }
340 }
341
342 void prefill_possible_map(void)
343 {
344 /* This is empty on voyager because we need a much
345 * earlier detection which is done in find_smp_config */
346 }
347
348 /* Set up all the basic stuff: read the SMP config and make all the
349 * SMP information reflect only the boot cpu. All others will be
350 * brought on-line later. */
351 void __init find_smp_config(void)
352 {
353 int i;
354
355 boot_cpu_id = hard_smp_processor_id();
356
357 printk("VOYAGER SMP: Boot cpu is %d\n", boot_cpu_id);
358
359 /* initialize the CPU structures (moved from smp_boot_cpus) */
360 for (i = 0; i < NR_CPUS; i++) {
361 cpu_irq_affinity[i] = ~0;
362 }
363 cpu_online_map = cpumask_of_cpu(boot_cpu_id);
364
365 /* The boot CPU must be extended */
366 voyager_extended_vic_processors = 1 << boot_cpu_id;
367 /* initially, all of the first 8 CPUs can boot */
368 voyager_allowed_boot_processors = 0xff;
369 /* set up everything for just this CPU, we can alter
370 * this as we start the other CPUs later */
371 /* now get the CPU disposition from the extended CMOS */
372 cpus_addr(phys_cpu_present_map)[0] =
373 voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK);
374 cpus_addr(phys_cpu_present_map)[0] |=
375 voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + 1) << 8;
376 cpus_addr(phys_cpu_present_map)[0] |=
377 voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK +
378 2) << 16;
379 cpus_addr(phys_cpu_present_map)[0] |=
380 voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK +
381 3) << 24;
382 cpu_possible_map = phys_cpu_present_map;
383 printk("VOYAGER SMP: phys_cpu_present_map = 0x%lx\n",
384 cpus_addr(phys_cpu_present_map)[0]);
385 /* Here we set up the VIC to enable SMP */
386 /* enable the CPIs by writing the base vector to their register */
387 outb(VIC_DEFAULT_CPI_BASE, VIC_CPI_BASE_REGISTER);
388 outb(1, VIC_REDIRECT_REGISTER_1);
389 /* set the claim registers for static routing --- Boot CPU gets
390 * all interrupts untill all other CPUs started */
391 outb(0xff, VIC_CLAIM_REGISTER_0);
392 outb(0xff, VIC_CLAIM_REGISTER_1);
393 /* Set the Primary and Secondary Microchannel vector
394 * bases to be the same as the ordinary interrupts
395 *
396 * FIXME: This would be more efficient using separate
397 * vectors. */
398 outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE);
399 outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE);
400
401 /* Finally tell the firmware that we're driving */
402 outb(inb(VOYAGER_SUS_IN_CONTROL_PORT) | VOYAGER_IN_CONTROL_FLAG,
403 VOYAGER_SUS_IN_CONTROL_PORT);
404
405 current_thread_info()->cpu = boot_cpu_id;
406 x86_write_percpu(cpu_number, boot_cpu_id);
407 }
408
409 /*
410 * The bootstrap kernel entry code has set these up. Save them
411 * for a given CPU, id is physical */
412 void __init smp_store_cpu_info(int id)
413 {
414 struct cpuinfo_x86 *c = &cpu_data(id);
415
416 *c = boot_cpu_data;
417 c->cpu_index = id;
418
419 identify_secondary_cpu(c);
420 }
421
422 /* Routine initially called when a non-boot CPU is brought online */
423 static void __init start_secondary(void *unused)
424 {
425 __u8 cpuid = hard_smp_processor_id();
426
427 cpu_init();
428
429 /* OK, we're in the routine */
430 ack_CPI(VIC_CPU_BOOT_CPI);
431
432 /* setup the 8259 master slave pair belonging to this CPU ---
433 * we won't actually receive any until the boot CPU
434 * relinquishes it's static routing mask */
435 vic_setup_pic();
436
437 qic_setup();
438
439 if (is_cpu_quad() && !is_cpu_vic_boot()) {
440 /* clear the boot CPI */
441 __u8 dummy;
442
443 dummy =
444 voyager_quad_cpi_addr[cpuid]->qic_cpi[VIC_CPU_BOOT_CPI].cpi;
445 printk("read dummy %d\n", dummy);
446 }
447
448 /* lower the mask to receive CPIs */
449 vic_enable_cpi();
450
451 VDEBUG(("VOYAGER SMP: CPU%d, stack at about %p\n", cpuid, &cpuid));
452
453 notify_cpu_starting(cpuid);
454
455 /* enable interrupts */
456 local_irq_enable();
457
458 /* get our bogomips */
459 calibrate_delay();
460
461 /* save our processor parameters */
462 smp_store_cpu_info(cpuid);
463
464 /* if we're a quad, we may need to bootstrap other CPUs */
465 do_quad_bootstrap();
466
467 /* FIXME: this is rather a poor hack to prevent the CPU
468 * activating softirqs while it's supposed to be waiting for
469 * permission to proceed. Without this, the new per CPU stuff
470 * in the softirqs will fail */
471 local_irq_disable();
472 cpu_set(cpuid, cpu_callin_map);
473
474 /* signal that we're done */
475 cpu_booted_map = 1;
476
477 while (!cpu_isset(cpuid, smp_commenced_mask))
478 rep_nop();
479 local_irq_enable();
480
481 local_flush_tlb();
482
483 cpu_set(cpuid, cpu_online_map);
484 wmb();
485 cpu_idle();
486 }
487
488 /* Routine to kick start the given CPU and wait for it to report ready
489 * (or timeout in startup). When this routine returns, the requested
490 * CPU is either fully running and configured or known to be dead.
491 *
492 * We call this routine sequentially 1 CPU at a time, so no need for
493 * locking */
494
495 static void __init do_boot_cpu(__u8 cpu)
496 {
497 struct task_struct *idle;
498 int timeout;
499 unsigned long flags;
500 int quad_boot = (1 << cpu) & voyager_quad_processors
501 & ~(voyager_extended_vic_processors
502 & voyager_allowed_boot_processors);
503
504 /* This is the format of the CPI IDT gate (in real mode) which
505 * we're hijacking to boot the CPU */
506 union IDTFormat {
507 struct seg {
508 __u16 Offset;
509 __u16 Segment;
510 } idt;
511 __u32 val;
512 } hijack_source;
513
514 __u32 *hijack_vector;
515 __u32 start_phys_address = setup_trampoline();
516
517 /* There's a clever trick to this: The linux trampoline is
518 * compiled to begin at absolute location zero, so make the
519 * address zero but have the data segment selector compensate
520 * for the actual address */
521 hijack_source.idt.Offset = start_phys_address & 0x000F;
522 hijack_source.idt.Segment = (start_phys_address >> 4) & 0xFFFF;
523
524 cpucount++;
525 alternatives_smp_switch(1);
526
527 idle = fork_idle(cpu);
528 if (IS_ERR(idle))
529 panic("failed fork for CPU%d", cpu);
530 idle->thread.ip = (unsigned long)start_secondary;
531 /* init_tasks (in sched.c) is indexed logically */
532 stack_start.sp = (void *)idle->thread.sp;
533
534 init_gdt(cpu);
535 per_cpu(current_task, cpu) = idle;
536 early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu);
537 irq_ctx_init(cpu);
538
539 /* Note: Don't modify initial ss override */
540 VDEBUG(("VOYAGER SMP: Booting CPU%d at 0x%lx[%x:%x], stack %p\n", cpu,
541 (unsigned long)hijack_source.val, hijack_source.idt.Segment,
542 hijack_source.idt.Offset, stack_start.sp));
543
544 /* init lowmem identity mapping */
545 clone_pgd_range(swapper_pg_dir, swapper_pg_dir + KERNEL_PGD_BOUNDARY,
546 min_t(unsigned long, KERNEL_PGD_PTRS, KERNEL_PGD_BOUNDARY));
547 flush_tlb_all();
548
549 if (quad_boot) {
550 printk("CPU %d: non extended Quad boot\n", cpu);
551 hijack_vector =
552 (__u32 *)
553 phys_to_virt((VIC_CPU_BOOT_CPI + QIC_DEFAULT_CPI_BASE) * 4);
554 *hijack_vector = hijack_source.val;
555 } else {
556 printk("CPU%d: extended VIC boot\n", cpu);
557 hijack_vector =
558 (__u32 *)
559 phys_to_virt((VIC_CPU_BOOT_CPI + VIC_DEFAULT_CPI_BASE) * 4);
560 *hijack_vector = hijack_source.val;
561 /* VIC errata, may also receive interrupt at this address */
562 hijack_vector =
563 (__u32 *)
564 phys_to_virt((VIC_CPU_BOOT_ERRATA_CPI +
565 VIC_DEFAULT_CPI_BASE) * 4);
566 *hijack_vector = hijack_source.val;
567 }
568 /* All non-boot CPUs start with interrupts fully masked. Need
569 * to lower the mask of the CPI we're about to send. We do
570 * this in the VIC by masquerading as the processor we're
571 * about to boot and lowering its interrupt mask */
572 local_irq_save(flags);
573 if (quad_boot) {
574 send_one_QIC_CPI(cpu, VIC_CPU_BOOT_CPI);
575 } else {
576 outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID);
577 /* here we're altering registers belonging to `cpu' */
578
579 outb(VIC_BOOT_INTERRUPT_MASK, 0x21);
580 /* now go back to our original identity */
581 outb(boot_cpu_id, VIC_PROCESSOR_ID);
582
583 /* and boot the CPU */
584
585 send_CPI((1 << cpu), VIC_CPU_BOOT_CPI);
586 }
587 cpu_booted_map = 0;
588 local_irq_restore(flags);
589
590 /* now wait for it to become ready (or timeout) */
591 for (timeout = 0; timeout < 50000; timeout++) {
592 if (cpu_booted_map)
593 break;
594 udelay(100);
595 }
596 /* reset the page table */
597 zap_low_mappings();
598
599 if (cpu_booted_map) {
600 VDEBUG(("CPU%d: Booted successfully, back in CPU %d\n",
601 cpu, smp_processor_id()));
602
603 printk("CPU%d: ", cpu);
604 print_cpu_info(&cpu_data(cpu));
605 wmb();
606 cpu_set(cpu, cpu_callout_map);
607 cpu_set(cpu, cpu_present_map);
608 } else {
609 printk("CPU%d FAILED TO BOOT: ", cpu);
610 if (*
611 ((volatile unsigned char *)phys_to_virt(start_phys_address))
612 == 0xA5)
613 printk("Stuck.\n");
614 else
615 printk("Not responding.\n");
616
617 cpucount--;
618 }
619 }
620
621 void __init smp_boot_cpus(void)
622 {
623 int i;
624
625 /* CAT BUS initialisation must be done after the memory */
626 /* FIXME: The L4 has a catbus too, it just needs to be
627 * accessed in a totally different way */
628 if (voyager_level == 5) {
629 voyager_cat_init();
630
631 /* now that the cat has probed the Voyager System Bus, sanity
632 * check the cpu map */
633 if (((voyager_quad_processors | voyager_extended_vic_processors)
634 & cpus_addr(phys_cpu_present_map)[0]) !=
635 cpus_addr(phys_cpu_present_map)[0]) {
636 /* should panic */
637 printk("\n\n***WARNING*** "
638 "Sanity check of CPU present map FAILED\n");
639 }
640 } else if (voyager_level == 4)
641 voyager_extended_vic_processors =
642 cpus_addr(phys_cpu_present_map)[0];
643
644 /* this sets up the idle task to run on the current cpu */
645 voyager_extended_cpus = 1;
646 /* Remove the global_irq_holder setting, it triggers a BUG() on
647 * schedule at the moment */
648 //global_irq_holder = boot_cpu_id;
649
650 /* FIXME: Need to do something about this but currently only works
651 * on CPUs with a tsc which none of mine have.
652 smp_tune_scheduling();
653 */
654 smp_store_cpu_info(boot_cpu_id);
655 /* setup the jump vector */
656 initial_code = (unsigned long)initialize_secondary;
657 printk("CPU%d: ", boot_cpu_id);
658 print_cpu_info(&cpu_data(boot_cpu_id));
659
660 if (is_cpu_quad()) {
661 /* booting on a Quad CPU */
662 printk("VOYAGER SMP: Boot CPU is Quad\n");
663 qic_setup();
664 do_quad_bootstrap();
665 }
666
667 /* enable our own CPIs */
668 vic_enable_cpi();
669
670 cpu_set(boot_cpu_id, cpu_online_map);
671 cpu_set(boot_cpu_id, cpu_callout_map);
672
673 /* loop over all the extended VIC CPUs and boot them. The
674 * Quad CPUs must be bootstrapped by their extended VIC cpu */
675 for (i = 0; i < nr_cpu_ids; i++) {
676 if (i == boot_cpu_id || !cpu_isset(i, phys_cpu_present_map))
677 continue;
678 do_boot_cpu(i);
679 /* This udelay seems to be needed for the Quad boots
680 * don't remove unless you know what you're doing */
681 udelay(1000);
682 }
683 /* we could compute the total bogomips here, but why bother?,
684 * Code added from smpboot.c */
685 {
686 unsigned long bogosum = 0;
687
688 for_each_online_cpu(i)
689 bogosum += cpu_data(i).loops_per_jiffy;
690 printk(KERN_INFO "Total of %d processors activated "
691 "(%lu.%02lu BogoMIPS).\n",
692 cpucount + 1, bogosum / (500000 / HZ),
693 (bogosum / (5000 / HZ)) % 100);
694 }
695 voyager_extended_cpus = hweight32(voyager_extended_vic_processors);
696 printk("VOYAGER: Extended (interrupt handling CPUs): "
697 "%d, non-extended: %d\n", voyager_extended_cpus,
698 num_booting_cpus() - voyager_extended_cpus);
699 /* that's it, switch to symmetric mode */
700 outb(0, VIC_PRIORITY_REGISTER);
701 outb(0, VIC_CLAIM_REGISTER_0);
702 outb(0, VIC_CLAIM_REGISTER_1);
703
704 VDEBUG(("VOYAGER SMP: Booted with %d CPUs\n", num_booting_cpus()));
705 }
706
707 /* Reload the secondary CPUs task structure (this function does not
708 * return ) */
709 static void __init initialize_secondary(void)
710 {
711 #if 0
712 // AC kernels only
713 set_current(hard_get_current());
714 #endif
715
716 /*
717 * We don't actually need to load the full TSS,
718 * basically just the stack pointer and the eip.
719 */
720
721 asm volatile ("movl %0,%%esp\n\t"
722 "jmp *%1"::"r" (current->thread.sp),
723 "r"(current->thread.ip));
724 }
725
726 /* handle a Voyager SYS_INT -- If we don't, the base board will
727 * panic the system.
728 *
729 * System interrupts occur because some problem was detected on the
730 * various busses. To find out what you have to probe all the
731 * hardware via the CAT bus. FIXME: At the moment we do nothing. */
732 void smp_vic_sys_interrupt(struct pt_regs *regs)
733 {
734 ack_CPI(VIC_SYS_INT);
735 printk("Voyager SYSTEM INTERRUPT\n");
736 }
737
738 /* Handle a voyager CMN_INT; These interrupts occur either because of
739 * a system status change or because a single bit memory error
740 * occurred. FIXME: At the moment, ignore all this. */
741 void smp_vic_cmn_interrupt(struct pt_regs *regs)
742 {
743 static __u8 in_cmn_int = 0;
744 static DEFINE_SPINLOCK(cmn_int_lock);
745
746 /* common ints are broadcast, so make sure we only do this once */
747 _raw_spin_lock(&cmn_int_lock);
748 if (in_cmn_int)
749 goto unlock_end;
750
751 in_cmn_int++;
752 _raw_spin_unlock(&cmn_int_lock);
753
754 VDEBUG(("Voyager COMMON INTERRUPT\n"));
755
756 if (voyager_level == 5)
757 voyager_cat_do_common_interrupt();
758
759 _raw_spin_lock(&cmn_int_lock);
760 in_cmn_int = 0;
761 unlock_end:
762 _raw_spin_unlock(&cmn_int_lock);
763 ack_CPI(VIC_CMN_INT);
764 }
765
766 /*
767 * Reschedule call back. Nothing to do, all the work is done
768 * automatically when we return from the interrupt. */
769 static void smp_reschedule_interrupt(void)
770 {
771 /* do nothing */
772 }
773
774 static struct mm_struct *flush_mm;
775 static unsigned long flush_va;
776 static DEFINE_SPINLOCK(tlbstate_lock);
777
778 /*
779 * We cannot call mmdrop() because we are in interrupt context,
780 * instead update mm->cpu_vm_mask.
781 *
782 * We need to reload %cr3 since the page tables may be going
783 * away from under us..
784 */
785 static inline void voyager_leave_mm(unsigned long cpu)
786 {
787 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK)
788 BUG();
789 cpu_clear(cpu, per_cpu(cpu_tlbstate, cpu).active_mm->cpu_vm_mask);
790 load_cr3(swapper_pg_dir);
791 }
792
793 /*
794 * Invalidate call-back
795 */
796 static void smp_invalidate_interrupt(void)
797 {
798 __u8 cpu = smp_processor_id();
799
800 if (!test_bit(cpu, &smp_invalidate_needed))
801 return;
802 /* This will flood messages. Don't uncomment unless you see
803 * Problems with cross cpu invalidation
804 VDEBUG(("VOYAGER SMP: CPU%d received INVALIDATE_CPI\n",
805 smp_processor_id()));
806 */
807
808 if (flush_mm == per_cpu(cpu_tlbstate, cpu).active_mm) {
809 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) {
810 if (flush_va == TLB_FLUSH_ALL)
811 local_flush_tlb();
812 else
813 __flush_tlb_one(flush_va);
814 } else
815 voyager_leave_mm(cpu);
816 }
817 smp_mb__before_clear_bit();
818 clear_bit(cpu, &smp_invalidate_needed);
819 smp_mb__after_clear_bit();
820 }
821
822 /* All the new flush operations for 2.4 */
823
824 /* This routine is called with a physical cpu mask */
825 static void
826 voyager_flush_tlb_others(unsigned long cpumask, struct mm_struct *mm,
827 unsigned long va)
828 {
829 int stuck = 50000;
830
831 if (!cpumask)
832 BUG();
833 if ((cpumask & cpus_addr(cpu_online_map)[0]) != cpumask)
834 BUG();
835 if (cpumask & (1 << smp_processor_id()))
836 BUG();
837 if (!mm)
838 BUG();
839
840 spin_lock(&tlbstate_lock);
841
842 flush_mm = mm;
843 flush_va = va;
844 atomic_set_mask(cpumask, &smp_invalidate_needed);
845 /*
846 * We have to send the CPI only to
847 * CPUs affected.
848 */
849 send_CPI(cpumask, VIC_INVALIDATE_CPI);
850
851 while (smp_invalidate_needed) {
852 mb();
853 if (--stuck == 0) {
854 printk("***WARNING*** Stuck doing invalidate CPI "
855 "(CPU%d)\n", smp_processor_id());
856 break;
857 }
858 }
859
860 /* Uncomment only to debug invalidation problems
861 VDEBUG(("VOYAGER SMP: Completed invalidate CPI (CPU%d)\n", cpu));
862 */
863
864 flush_mm = NULL;
865 flush_va = 0;
866 spin_unlock(&tlbstate_lock);
867 }
868
869 void flush_tlb_current_task(void)
870 {
871 struct mm_struct *mm = current->mm;
872 unsigned long cpu_mask;
873
874 preempt_disable();
875
876 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
877 local_flush_tlb();
878 if (cpu_mask)
879 voyager_flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
880
881 preempt_enable();
882 }
883
884 void flush_tlb_mm(struct mm_struct *mm)
885 {
886 unsigned long cpu_mask;
887
888 preempt_disable();
889
890 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
891
892 if (current->active_mm == mm) {
893 if (current->mm)
894 local_flush_tlb();
895 else
896 voyager_leave_mm(smp_processor_id());
897 }
898 if (cpu_mask)
899 voyager_flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
900
901 preempt_enable();
902 }
903
904 void flush_tlb_page(struct vm_area_struct *vma, unsigned long va)
905 {
906 struct mm_struct *mm = vma->vm_mm;
907 unsigned long cpu_mask;
908
909 preempt_disable();
910
911 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
912 if (current->active_mm == mm) {
913 if (current->mm)
914 __flush_tlb_one(va);
915 else
916 voyager_leave_mm(smp_processor_id());
917 }
918
919 if (cpu_mask)
920 voyager_flush_tlb_others(cpu_mask, mm, va);
921
922 preempt_enable();
923 }
924
925 EXPORT_SYMBOL(flush_tlb_page);
926
927 /* enable the requested IRQs */
928 static void smp_enable_irq_interrupt(void)
929 {
930 __u8 irq;
931 __u8 cpu = get_cpu();
932
933 VDEBUG(("VOYAGER SMP: CPU%d enabling irq mask 0x%x\n", cpu,
934 vic_irq_enable_mask[cpu]));
935
936 spin_lock(&vic_irq_lock);
937 for (irq = 0; irq < 16; irq++) {
938 if (vic_irq_enable_mask[cpu] & (1 << irq))
939 enable_local_vic_irq(irq);
940 }
941 vic_irq_enable_mask[cpu] = 0;
942 spin_unlock(&vic_irq_lock);
943
944 put_cpu_no_resched();
945 }
946
947 /*
948 * CPU halt call-back
949 */
950 static void smp_stop_cpu_function(void *dummy)
951 {
952 VDEBUG(("VOYAGER SMP: CPU%d is STOPPING\n", smp_processor_id()));
953 cpu_clear(smp_processor_id(), cpu_online_map);
954 local_irq_disable();
955 for (;;)
956 halt();
957 }
958
959 /* execute a thread on a new CPU. The function to be called must be
960 * previously set up. This is used to schedule a function for
961 * execution on all CPUs - set up the function then broadcast a
962 * function_interrupt CPI to come here on each CPU */
963 static void smp_call_function_interrupt(void)
964 {
965 irq_enter();
966 generic_smp_call_function_interrupt();
967 __get_cpu_var(irq_stat).irq_call_count++;
968 irq_exit();
969 }
970
971 static void smp_call_function_single_interrupt(void)
972 {
973 irq_enter();
974 generic_smp_call_function_single_interrupt();
975 __get_cpu_var(irq_stat).irq_call_count++;
976 irq_exit();
977 }
978
979 /* Sorry about the name. In an APIC based system, the APICs
980 * themselves are programmed to send a timer interrupt. This is used
981 * by linux to reschedule the processor. Voyager doesn't have this,
982 * so we use the system clock to interrupt one processor, which in
983 * turn, broadcasts a timer CPI to all the others --- we receive that
984 * CPI here. We don't use this actually for counting so losing
985 * ticks doesn't matter
986 *
987 * FIXME: For those CPUs which actually have a local APIC, we could
988 * try to use it to trigger this interrupt instead of having to
989 * broadcast the timer tick. Unfortunately, all my pentium DYADs have
990 * no local APIC, so I can't do this
991 *
992 * This function is currently a placeholder and is unused in the code */
993 void smp_apic_timer_interrupt(struct pt_regs *regs)
994 {
995 struct pt_regs *old_regs = set_irq_regs(regs);
996 wrapper_smp_local_timer_interrupt();
997 set_irq_regs(old_regs);
998 }
999
1000 /* All of the QUAD interrupt GATES */
1001 void smp_qic_timer_interrupt(struct pt_regs *regs)
1002 {
1003 struct pt_regs *old_regs = set_irq_regs(regs);
1004 ack_QIC_CPI(QIC_TIMER_CPI);
1005 wrapper_smp_local_timer_interrupt();
1006 set_irq_regs(old_regs);
1007 }
1008
1009 void smp_qic_invalidate_interrupt(struct pt_regs *regs)
1010 {
1011 ack_QIC_CPI(QIC_INVALIDATE_CPI);
1012 smp_invalidate_interrupt();
1013 }
1014
1015 void smp_qic_reschedule_interrupt(struct pt_regs *regs)
1016 {
1017 ack_QIC_CPI(QIC_RESCHEDULE_CPI);
1018 smp_reschedule_interrupt();
1019 }
1020
1021 void smp_qic_enable_irq_interrupt(struct pt_regs *regs)
1022 {
1023 ack_QIC_CPI(QIC_ENABLE_IRQ_CPI);
1024 smp_enable_irq_interrupt();
1025 }
1026
1027 void smp_qic_call_function_interrupt(struct pt_regs *regs)
1028 {
1029 ack_QIC_CPI(QIC_CALL_FUNCTION_CPI);
1030 smp_call_function_interrupt();
1031 }
1032
1033 void smp_qic_call_function_single_interrupt(struct pt_regs *regs)
1034 {
1035 ack_QIC_CPI(QIC_CALL_FUNCTION_SINGLE_CPI);
1036 smp_call_function_single_interrupt();
1037 }
1038
1039 void smp_vic_cpi_interrupt(struct pt_regs *regs)
1040 {
1041 struct pt_regs *old_regs = set_irq_regs(regs);
1042 __u8 cpu = smp_processor_id();
1043
1044 if (is_cpu_quad())
1045 ack_QIC_CPI(VIC_CPI_LEVEL0);
1046 else
1047 ack_VIC_CPI(VIC_CPI_LEVEL0);
1048
1049 if (test_and_clear_bit(VIC_TIMER_CPI, &vic_cpi_mailbox[cpu]))
1050 wrapper_smp_local_timer_interrupt();
1051 if (test_and_clear_bit(VIC_INVALIDATE_CPI, &vic_cpi_mailbox[cpu]))
1052 smp_invalidate_interrupt();
1053 if (test_and_clear_bit(VIC_RESCHEDULE_CPI, &vic_cpi_mailbox[cpu]))
1054 smp_reschedule_interrupt();
1055 if (test_and_clear_bit(VIC_ENABLE_IRQ_CPI, &vic_cpi_mailbox[cpu]))
1056 smp_enable_irq_interrupt();
1057 if (test_and_clear_bit(VIC_CALL_FUNCTION_CPI, &vic_cpi_mailbox[cpu]))
1058 smp_call_function_interrupt();
1059 if (test_and_clear_bit(VIC_CALL_FUNCTION_SINGLE_CPI, &vic_cpi_mailbox[cpu]))
1060 smp_call_function_single_interrupt();
1061 set_irq_regs(old_regs);
1062 }
1063
1064 static void do_flush_tlb_all(void *info)
1065 {
1066 unsigned long cpu = smp_processor_id();
1067
1068 __flush_tlb_all();
1069 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_LAZY)
1070 voyager_leave_mm(cpu);
1071 }
1072
1073 /* flush the TLB of every active CPU in the system */
1074 void flush_tlb_all(void)
1075 {
1076 on_each_cpu(do_flush_tlb_all, 0, 1);
1077 }
1078
1079 /* send a reschedule CPI to one CPU by physical CPU number*/
1080 static void voyager_smp_send_reschedule(int cpu)
1081 {
1082 send_one_CPI(cpu, VIC_RESCHEDULE_CPI);
1083 }
1084
1085 int hard_smp_processor_id(void)
1086 {
1087 __u8 i;
1088 __u8 cpumask = inb(VIC_PROC_WHO_AM_I);
1089 if ((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER)
1090 return cpumask & 0x1F;
1091
1092 for (i = 0; i < 8; i++) {
1093 if (cpumask & (1 << i))
1094 return i;
1095 }
1096 printk("** WARNING ** Illegal cpuid returned by VIC: %d", cpumask);
1097 return 0;
1098 }
1099
1100 int safe_smp_processor_id(void)
1101 {
1102 return hard_smp_processor_id();
1103 }
1104
1105 /* broadcast a halt to all other CPUs */
1106 static void voyager_smp_send_stop(void)
1107 {
1108 smp_call_function(smp_stop_cpu_function, NULL, 1);
1109 }
1110
1111 /* this function is triggered in time.c when a clock tick fires
1112 * we need to re-broadcast the tick to all CPUs */
1113 void smp_vic_timer_interrupt(void)
1114 {
1115 send_CPI_allbutself(VIC_TIMER_CPI);
1116 smp_local_timer_interrupt();
1117 }
1118
1119 /* local (per CPU) timer interrupt. It does both profiling and
1120 * process statistics/rescheduling.
1121 *
1122 * We do profiling in every local tick, statistics/rescheduling
1123 * happen only every 'profiling multiplier' ticks. The default
1124 * multiplier is 1 and it can be changed by writing the new multiplier
1125 * value into /proc/profile.
1126 */
1127 void smp_local_timer_interrupt(void)
1128 {
1129 int cpu = smp_processor_id();
1130 long weight;
1131
1132 profile_tick(CPU_PROFILING);
1133 if (--per_cpu(prof_counter, cpu) <= 0) {
1134 /*
1135 * The multiplier may have changed since the last time we got
1136 * to this point as a result of the user writing to
1137 * /proc/profile. In this case we need to adjust the APIC
1138 * timer accordingly.
1139 *
1140 * Interrupts are already masked off at this point.
1141 */
1142 per_cpu(prof_counter, cpu) = per_cpu(prof_multiplier, cpu);
1143 if (per_cpu(prof_counter, cpu) !=
1144 per_cpu(prof_old_multiplier, cpu)) {
1145 /* FIXME: need to update the vic timer tick here */
1146 per_cpu(prof_old_multiplier, cpu) =
1147 per_cpu(prof_counter, cpu);
1148 }
1149
1150 update_process_times(user_mode_vm(get_irq_regs()));
1151 }
1152
1153 if (((1 << cpu) & voyager_extended_vic_processors) == 0)
1154 /* only extended VIC processors participate in
1155 * interrupt distribution */
1156 return;
1157
1158 /*
1159 * We take the 'long' return path, and there every subsystem
1160 * grabs the appropriate locks (kernel lock/ irq lock).
1161 *
1162 * we might want to decouple profiling from the 'long path',
1163 * and do the profiling totally in assembly.
1164 *
1165 * Currently this isn't too much of an issue (performance wise),
1166 * we can take more than 100K local irqs per second on a 100 MHz P5.
1167 */
1168
1169 if ((++vic_tick[cpu] & 0x7) != 0)
1170 return;
1171 /* get here every 16 ticks (about every 1/6 of a second) */
1172
1173 /* Change our priority to give someone else a chance at getting
1174 * the IRQ. The algorithm goes like this:
1175 *
1176 * In the VIC, the dynamically routed interrupt is always
1177 * handled by the lowest priority eligible (i.e. receiving
1178 * interrupts) CPU. If >1 eligible CPUs are equal lowest, the
1179 * lowest processor number gets it.
1180 *
1181 * The priority of a CPU is controlled by a special per-CPU
1182 * VIC priority register which is 3 bits wide 0 being lowest
1183 * and 7 highest priority..
1184 *
1185 * Therefore we subtract the average number of interrupts from
1186 * the number we've fielded. If this number is negative, we
1187 * lower the activity count and if it is positive, we raise
1188 * it.
1189 *
1190 * I'm afraid this still leads to odd looking interrupt counts:
1191 * the totals are all roughly equal, but the individual ones
1192 * look rather skewed.
1193 *
1194 * FIXME: This algorithm is total crap when mixed with SMP
1195 * affinity code since we now try to even up the interrupt
1196 * counts when an affinity binding is keeping them on a
1197 * particular CPU*/
1198 weight = (vic_intr_count[cpu] * voyager_extended_cpus
1199 - vic_intr_total) >> 4;
1200 weight += 4;
1201 if (weight > 7)
1202 weight = 7;
1203 if (weight < 0)
1204 weight = 0;
1205
1206 outb((__u8) weight, VIC_PRIORITY_REGISTER);
1207
1208 #ifdef VOYAGER_DEBUG
1209 if ((vic_tick[cpu] & 0xFFF) == 0) {
1210 /* print this message roughly every 25 secs */
1211 printk("VOYAGER SMP: vic_tick[%d] = %lu, weight = %ld\n",
1212 cpu, vic_tick[cpu], weight);
1213 }
1214 #endif
1215 }
1216
1217 /* setup the profiling timer */
1218 int setup_profiling_timer(unsigned int multiplier)
1219 {
1220 int i;
1221
1222 if ((!multiplier))
1223 return -EINVAL;
1224
1225 /*
1226 * Set the new multiplier for each CPU. CPUs don't start using the
1227 * new values until the next timer interrupt in which they do process
1228 * accounting.
1229 */
1230 for (i = 0; i < NR_CPUS; ++i)
1231 per_cpu(prof_multiplier, i) = multiplier;
1232
1233 return 0;
1234 }
1235
1236 /* This is a bit of a mess, but forced on us by the genirq changes
1237 * there's no genirq handler that really does what voyager wants
1238 * so hack it up with the simple IRQ handler */
1239 static void handle_vic_irq(unsigned int irq, struct irq_desc *desc)
1240 {
1241 before_handle_vic_irq(irq);
1242 handle_simple_irq(irq, desc);
1243 after_handle_vic_irq(irq);
1244 }
1245
1246 /* The CPIs are handled in the per cpu 8259s, so they must be
1247 * enabled to be received: FIX: enabling the CPIs in the early
1248 * boot sequence interferes with bug checking; enable them later
1249 * on in smp_init */
1250 #define VIC_SET_GATE(cpi, vector) \
1251 set_intr_gate((cpi) + VIC_DEFAULT_CPI_BASE, (vector))
1252 #define QIC_SET_GATE(cpi, vector) \
1253 set_intr_gate((cpi) + QIC_DEFAULT_CPI_BASE, (vector))
1254
1255 void __init voyager_smp_intr_init(void)
1256 {
1257 int i;
1258
1259 /* initialize the per cpu irq mask to all disabled */
1260 for (i = 0; i < NR_CPUS; i++)
1261 vic_irq_mask[i] = 0xFFFF;
1262
1263 VIC_SET_GATE(VIC_CPI_LEVEL0, vic_cpi_interrupt);
1264
1265 VIC_SET_GATE(VIC_SYS_INT, vic_sys_interrupt);
1266 VIC_SET_GATE(VIC_CMN_INT, vic_cmn_interrupt);
1267
1268 QIC_SET_GATE(QIC_TIMER_CPI, qic_timer_interrupt);
1269 QIC_SET_GATE(QIC_INVALIDATE_CPI, qic_invalidate_interrupt);
1270 QIC_SET_GATE(QIC_RESCHEDULE_CPI, qic_reschedule_interrupt);
1271 QIC_SET_GATE(QIC_ENABLE_IRQ_CPI, qic_enable_irq_interrupt);
1272 QIC_SET_GATE(QIC_CALL_FUNCTION_CPI, qic_call_function_interrupt);
1273
1274 /* now put the VIC descriptor into the first 48 IRQs
1275 *
1276 * This is for later: first 16 correspond to PC IRQs; next 16
1277 * are Primary MC IRQs and final 16 are Secondary MC IRQs */
1278 for (i = 0; i < 48; i++)
1279 set_irq_chip_and_handler(i, &vic_chip, handle_vic_irq);
1280 }
1281
1282 /* send a CPI at level cpi to a set of cpus in cpuset (set 1 bit per
1283 * processor to receive CPI */
1284 static void send_CPI(__u32 cpuset, __u8 cpi)
1285 {
1286 int cpu;
1287 __u32 quad_cpuset = (cpuset & voyager_quad_processors);
1288
1289 if (cpi < VIC_START_FAKE_CPI) {
1290 /* fake CPI are only used for booting, so send to the
1291 * extended quads as well---Quads must be VIC booted */
1292 outb((__u8) (cpuset), VIC_CPI_Registers[cpi]);
1293 return;
1294 }
1295 if (quad_cpuset)
1296 send_QIC_CPI(quad_cpuset, cpi);
1297 cpuset &= ~quad_cpuset;
1298 cpuset &= 0xff; /* only first 8 CPUs vaild for VIC CPI */
1299 if (cpuset == 0)
1300 return;
1301 for_each_online_cpu(cpu) {
1302 if (cpuset & (1 << cpu))
1303 set_bit(cpi, &vic_cpi_mailbox[cpu]);
1304 }
1305 if (cpuset)
1306 outb((__u8) cpuset, VIC_CPI_Registers[VIC_CPI_LEVEL0]);
1307 }
1308
1309 /* Acknowledge receipt of CPI in the QIC, clear in QIC hardware and
1310 * set the cache line to shared by reading it.
1311 *
1312 * DON'T make this inline otherwise the cache line read will be
1313 * optimised away
1314 * */
1315 static int ack_QIC_CPI(__u8 cpi)
1316 {
1317 __u8 cpu = hard_smp_processor_id();
1318
1319 cpi &= 7;
1320
1321 outb(1 << cpi, QIC_INTERRUPT_CLEAR1);
1322 return voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi;
1323 }
1324
1325 static void ack_special_QIC_CPI(__u8 cpi)
1326 {
1327 switch (cpi) {
1328 case VIC_CMN_INT:
1329 outb(QIC_CMN_INT, QIC_INTERRUPT_CLEAR0);
1330 break;
1331 case VIC_SYS_INT:
1332 outb(QIC_SYS_INT, QIC_INTERRUPT_CLEAR0);
1333 break;
1334 }
1335 /* also clear at the VIC, just in case (nop for non-extended proc) */
1336 ack_VIC_CPI(cpi);
1337 }
1338
1339 /* Acknowledge receipt of CPI in the VIC (essentially an EOI) */
1340 static void ack_VIC_CPI(__u8 cpi)
1341 {
1342 #ifdef VOYAGER_DEBUG
1343 unsigned long flags;
1344 __u16 isr;
1345 __u8 cpu = smp_processor_id();
1346
1347 local_irq_save(flags);
1348 isr = vic_read_isr();
1349 if ((isr & (1 << (cpi & 7))) == 0) {
1350 printk("VOYAGER SMP: CPU%d lost CPI%d\n", cpu, cpi);
1351 }
1352 #endif
1353 /* send specific EOI; the two system interrupts have
1354 * bit 4 set for a separate vector but behave as the
1355 * corresponding 3 bit intr */
1356 outb_p(0x60 | (cpi & 7), 0x20);
1357
1358 #ifdef VOYAGER_DEBUG
1359 if ((vic_read_isr() & (1 << (cpi & 7))) != 0) {
1360 printk("VOYAGER SMP: CPU%d still asserting CPI%d\n", cpu, cpi);
1361 }
1362 local_irq_restore(flags);
1363 #endif
1364 }
1365
1366 /* cribbed with thanks from irq.c */
1367 #define __byte(x,y) (((unsigned char *)&(y))[x])
1368 #define cached_21(cpu) (__byte(0,vic_irq_mask[cpu]))
1369 #define cached_A1(cpu) (__byte(1,vic_irq_mask[cpu]))
1370
1371 static unsigned int startup_vic_irq(unsigned int irq)
1372 {
1373 unmask_vic_irq(irq);
1374
1375 return 0;
1376 }
1377
1378 /* The enable and disable routines. This is where we run into
1379 * conflicting architectural philosophy. Fundamentally, the voyager
1380 * architecture does not expect to have to disable interrupts globally
1381 * (the IRQ controllers belong to each CPU). The processor masquerade
1382 * which is used to start the system shouldn't be used in a running OS
1383 * since it will cause great confusion if two separate CPUs drive to
1384 * the same IRQ controller (I know, I've tried it).
1385 *
1386 * The solution is a variant on the NCR lazy SPL design:
1387 *
1388 * 1) To disable an interrupt, do nothing (other than set the
1389 * IRQ_DISABLED flag). This dares the interrupt actually to arrive.
1390 *
1391 * 2) If the interrupt dares to come in, raise the local mask against
1392 * it (this will result in all the CPU masks being raised
1393 * eventually).
1394 *
1395 * 3) To enable the interrupt, lower the mask on the local CPU and
1396 * broadcast an Interrupt enable CPI which causes all other CPUs to
1397 * adjust their masks accordingly. */
1398
1399 static void unmask_vic_irq(unsigned int irq)
1400 {
1401 /* linux doesn't to processor-irq affinity, so enable on
1402 * all CPUs we know about */
1403 int cpu = smp_processor_id(), real_cpu;
1404 __u16 mask = (1 << irq);
1405 __u32 processorList = 0;
1406 unsigned long flags;
1407
1408 VDEBUG(("VOYAGER: unmask_vic_irq(%d) CPU%d affinity 0x%lx\n",
1409 irq, cpu, cpu_irq_affinity[cpu]));
1410 spin_lock_irqsave(&vic_irq_lock, flags);
1411 for_each_online_cpu(real_cpu) {
1412 if (!(voyager_extended_vic_processors & (1 << real_cpu)))
1413 continue;
1414 if (!(cpu_irq_affinity[real_cpu] & mask)) {
1415 /* irq has no affinity for this CPU, ignore */
1416 continue;
1417 }
1418 if (real_cpu == cpu) {
1419 enable_local_vic_irq(irq);
1420 } else if (vic_irq_mask[real_cpu] & mask) {
1421 vic_irq_enable_mask[real_cpu] |= mask;
1422 processorList |= (1 << real_cpu);
1423 }
1424 }
1425 spin_unlock_irqrestore(&vic_irq_lock, flags);
1426 if (processorList)
1427 send_CPI(processorList, VIC_ENABLE_IRQ_CPI);
1428 }
1429
1430 static void mask_vic_irq(unsigned int irq)
1431 {
1432 /* lazy disable, do nothing */
1433 }
1434
1435 static void enable_local_vic_irq(unsigned int irq)
1436 {
1437 __u8 cpu = smp_processor_id();
1438 __u16 mask = ~(1 << irq);
1439 __u16 old_mask = vic_irq_mask[cpu];
1440
1441 vic_irq_mask[cpu] &= mask;
1442 if (vic_irq_mask[cpu] == old_mask)
1443 return;
1444
1445 VDEBUG(("VOYAGER DEBUG: Enabling irq %d in hardware on CPU %d\n",
1446 irq, cpu));
1447
1448 if (irq & 8) {
1449 outb_p(cached_A1(cpu), 0xA1);
1450 (void)inb_p(0xA1);
1451 } else {
1452 outb_p(cached_21(cpu), 0x21);
1453 (void)inb_p(0x21);
1454 }
1455 }
1456
1457 static void disable_local_vic_irq(unsigned int irq)
1458 {
1459 __u8 cpu = smp_processor_id();
1460 __u16 mask = (1 << irq);
1461 __u16 old_mask = vic_irq_mask[cpu];
1462
1463 if (irq == 7)
1464 return;
1465
1466 vic_irq_mask[cpu] |= mask;
1467 if (old_mask == vic_irq_mask[cpu])
1468 return;
1469
1470 VDEBUG(("VOYAGER DEBUG: Disabling irq %d in hardware on CPU %d\n",
1471 irq, cpu));
1472
1473 if (irq & 8) {
1474 outb_p(cached_A1(cpu), 0xA1);
1475 (void)inb_p(0xA1);
1476 } else {
1477 outb_p(cached_21(cpu), 0x21);
1478 (void)inb_p(0x21);
1479 }
1480 }
1481
1482 /* The VIC is level triggered, so the ack can only be issued after the
1483 * interrupt completes. However, we do Voyager lazy interrupt
1484 * handling here: It is an extremely expensive operation to mask an
1485 * interrupt in the vic, so we merely set a flag (IRQ_DISABLED). If
1486 * this interrupt actually comes in, then we mask and ack here to push
1487 * the interrupt off to another CPU */
1488 static void before_handle_vic_irq(unsigned int irq)
1489 {
1490 irq_desc_t *desc = irq_to_desc(irq);
1491 __u8 cpu = smp_processor_id();
1492
1493 _raw_spin_lock(&vic_irq_lock);
1494 vic_intr_total++;
1495 vic_intr_count[cpu]++;
1496
1497 if (!(cpu_irq_affinity[cpu] & (1 << irq))) {
1498 /* The irq is not in our affinity mask, push it off
1499 * onto another CPU */
1500 VDEBUG(("VOYAGER DEBUG: affinity triggered disable of irq %d "
1501 "on cpu %d\n", irq, cpu));
1502 disable_local_vic_irq(irq);
1503 /* set IRQ_INPROGRESS to prevent the handler in irq.c from
1504 * actually calling the interrupt routine */
1505 desc->status |= IRQ_REPLAY | IRQ_INPROGRESS;
1506 } else if (desc->status & IRQ_DISABLED) {
1507 /* Damn, the interrupt actually arrived, do the lazy
1508 * disable thing. The interrupt routine in irq.c will
1509 * not handle a IRQ_DISABLED interrupt, so nothing more
1510 * need be done here */
1511 VDEBUG(("VOYAGER DEBUG: lazy disable of irq %d on CPU %d\n",
1512 irq, cpu));
1513 disable_local_vic_irq(irq);
1514 desc->status |= IRQ_REPLAY;
1515 } else {
1516 desc->status &= ~IRQ_REPLAY;
1517 }
1518
1519 _raw_spin_unlock(&vic_irq_lock);
1520 }
1521
1522 /* Finish the VIC interrupt: basically mask */
1523 static void after_handle_vic_irq(unsigned int irq)
1524 {
1525 irq_desc_t *desc = irq_to_desc(irq);
1526
1527 _raw_spin_lock(&vic_irq_lock);
1528 {
1529 unsigned int status = desc->status & ~IRQ_INPROGRESS;
1530 #ifdef VOYAGER_DEBUG
1531 __u16 isr;
1532 #endif
1533
1534 desc->status = status;
1535 if ((status & IRQ_DISABLED))
1536 disable_local_vic_irq(irq);
1537 #ifdef VOYAGER_DEBUG
1538 /* DEBUG: before we ack, check what's in progress */
1539 isr = vic_read_isr();
1540 if ((isr & (1 << irq) && !(status & IRQ_REPLAY)) == 0) {
1541 int i;
1542 __u8 cpu = smp_processor_id();
1543 __u8 real_cpu;
1544 int mask; /* Um... initialize me??? --RR */
1545
1546 printk("VOYAGER SMP: CPU%d lost interrupt %d\n",
1547 cpu, irq);
1548 for_each_possible_cpu(real_cpu, mask) {
1549
1550 outb(VIC_CPU_MASQUERADE_ENABLE | real_cpu,
1551 VIC_PROCESSOR_ID);
1552 isr = vic_read_isr();
1553 if (isr & (1 << irq)) {
1554 printk
1555 ("VOYAGER SMP: CPU%d ack irq %d\n",
1556 real_cpu, irq);
1557 ack_vic_irq(irq);
1558 }
1559 outb(cpu, VIC_PROCESSOR_ID);
1560 }
1561 }
1562 #endif /* VOYAGER_DEBUG */
1563 /* as soon as we ack, the interrupt is eligible for
1564 * receipt by another CPU so everything must be in
1565 * order here */
1566 ack_vic_irq(irq);
1567 if (status & IRQ_REPLAY) {
1568 /* replay is set if we disable the interrupt
1569 * in the before_handle_vic_irq() routine, so
1570 * clear the in progress bit here to allow the
1571 * next CPU to handle this correctly */
1572 desc->status &= ~(IRQ_REPLAY | IRQ_INPROGRESS);
1573 }
1574 #ifdef VOYAGER_DEBUG
1575 isr = vic_read_isr();
1576 if ((isr & (1 << irq)) != 0)
1577 printk("VOYAGER SMP: after_handle_vic_irq() after "
1578 "ack irq=%d, isr=0x%x\n", irq, isr);
1579 #endif /* VOYAGER_DEBUG */
1580 }
1581 _raw_spin_unlock(&vic_irq_lock);
1582
1583 /* All code after this point is out of the main path - the IRQ
1584 * may be intercepted by another CPU if reasserted */
1585 }
1586
1587 /* Linux processor - interrupt affinity manipulations.
1588 *
1589 * For each processor, we maintain a 32 bit irq affinity mask.
1590 * Initially it is set to all 1's so every processor accepts every
1591 * interrupt. In this call, we change the processor's affinity mask:
1592 *
1593 * Change from enable to disable:
1594 *
1595 * If the interrupt ever comes in to the processor, we will disable it
1596 * and ack it to push it off to another CPU, so just accept the mask here.
1597 *
1598 * Change from disable to enable:
1599 *
1600 * change the mask and then do an interrupt enable CPI to re-enable on
1601 * the selected processors */
1602
1603 void set_vic_irq_affinity(unsigned int irq, cpumask_t mask)
1604 {
1605 /* Only extended processors handle interrupts */
1606 unsigned long real_mask;
1607 unsigned long irq_mask = 1 << irq;
1608 int cpu;
1609
1610 real_mask = cpus_addr(mask)[0] & voyager_extended_vic_processors;
1611
1612 if (cpus_addr(mask)[0] == 0)
1613 /* can't have no CPUs to accept the interrupt -- extremely
1614 * bad things will happen */
1615 return;
1616
1617 if (irq == 0)
1618 /* can't change the affinity of the timer IRQ. This
1619 * is due to the constraint in the voyager
1620 * architecture that the CPI also comes in on and IRQ
1621 * line and we have chosen IRQ0 for this. If you
1622 * raise the mask on this interrupt, the processor
1623 * will no-longer be able to accept VIC CPIs */
1624 return;
1625
1626 if (irq >= 32)
1627 /* You can only have 32 interrupts in a voyager system
1628 * (and 32 only if you have a secondary microchannel
1629 * bus) */
1630 return;
1631
1632 for_each_online_cpu(cpu) {
1633 unsigned long cpu_mask = 1 << cpu;
1634
1635 if (cpu_mask & real_mask) {
1636 /* enable the interrupt for this cpu */
1637 cpu_irq_affinity[cpu] |= irq_mask;
1638 } else {
1639 /* disable the interrupt for this cpu */
1640 cpu_irq_affinity[cpu] &= ~irq_mask;
1641 }
1642 }
1643 /* this is magic, we now have the correct affinity maps, so
1644 * enable the interrupt. This will send an enable CPI to
1645 * those CPUs who need to enable it in their local masks,
1646 * causing them to correct for the new affinity . If the
1647 * interrupt is currently globally disabled, it will simply be
1648 * disabled again as it comes in (voyager lazy disable). If
1649 * the affinity map is tightened to disable the interrupt on a
1650 * cpu, it will be pushed off when it comes in */
1651 unmask_vic_irq(irq);
1652 }
1653
1654 static void ack_vic_irq(unsigned int irq)
1655 {
1656 if (irq & 8) {
1657 outb(0x62, 0x20); /* Specific EOI to cascade */
1658 outb(0x60 | (irq & 7), 0xA0);
1659 } else {
1660 outb(0x60 | (irq & 7), 0x20);
1661 }
1662 }
1663
1664 /* enable the CPIs. In the VIC, the CPIs are delivered by the 8259
1665 * but are not vectored by it. This means that the 8259 mask must be
1666 * lowered to receive them */
1667 static __init void vic_enable_cpi(void)
1668 {
1669 __u8 cpu = smp_processor_id();
1670
1671 /* just take a copy of the current mask (nop for boot cpu) */
1672 vic_irq_mask[cpu] = vic_irq_mask[boot_cpu_id];
1673
1674 enable_local_vic_irq(VIC_CPI_LEVEL0);
1675 enable_local_vic_irq(VIC_CPI_LEVEL1);
1676 /* for sys int and cmn int */
1677 enable_local_vic_irq(7);
1678
1679 if (is_cpu_quad()) {
1680 outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0);
1681 outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1);
1682 VDEBUG(("VOYAGER SMP: QIC ENABLE CPI: CPU%d: MASK 0x%x\n",
1683 cpu, QIC_CPI_ENABLE));
1684 }
1685
1686 VDEBUG(("VOYAGER SMP: ENABLE CPI: CPU%d: MASK 0x%x\n",
1687 cpu, vic_irq_mask[cpu]));
1688 }
1689
1690 void voyager_smp_dump()
1691 {
1692 int old_cpu = smp_processor_id(), cpu;
1693
1694 /* dump the interrupt masks of each processor */
1695 for_each_online_cpu(cpu) {
1696 __u16 imr, isr, irr;
1697 unsigned long flags;
1698
1699 local_irq_save(flags);
1700 outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID);
1701 imr = (inb(0xa1) << 8) | inb(0x21);
1702 outb(0x0a, 0xa0);
1703 irr = inb(0xa0) << 8;
1704 outb(0x0a, 0x20);
1705 irr |= inb(0x20);
1706 outb(0x0b, 0xa0);
1707 isr = inb(0xa0) << 8;
1708 outb(0x0b, 0x20);
1709 isr |= inb(0x20);
1710 outb(old_cpu, VIC_PROCESSOR_ID);
1711 local_irq_restore(flags);
1712 printk("\tCPU%d: mask=0x%x, IMR=0x%x, IRR=0x%x, ISR=0x%x\n",
1713 cpu, vic_irq_mask[cpu], imr, irr, isr);
1714 #if 0
1715 /* These lines are put in to try to unstick an un ack'd irq */
1716 if (isr != 0) {
1717 int irq;
1718 for (irq = 0; irq < 16; irq++) {
1719 if (isr & (1 << irq)) {
1720 printk("\tCPU%d: ack irq %d\n",
1721 cpu, irq);
1722 local_irq_save(flags);
1723 outb(VIC_CPU_MASQUERADE_ENABLE | cpu,
1724 VIC_PROCESSOR_ID);
1725 ack_vic_irq(irq);
1726 outb(old_cpu, VIC_PROCESSOR_ID);
1727 local_irq_restore(flags);
1728 }
1729 }
1730 }
1731 #endif
1732 }
1733 }
1734
1735 void smp_voyager_power_off(void *dummy)
1736 {
1737 if (smp_processor_id() == boot_cpu_id)
1738 voyager_power_off();
1739 else
1740 smp_stop_cpu_function(NULL);
1741 }
1742
1743 static void __init voyager_smp_prepare_cpus(unsigned int max_cpus)
1744 {
1745 /* FIXME: ignore max_cpus for now */
1746 smp_boot_cpus();
1747 }
1748
1749 static void __cpuinit voyager_smp_prepare_boot_cpu(void)
1750 {
1751 init_gdt(smp_processor_id());
1752 switch_to_new_gdt();
1753
1754 cpu_set(smp_processor_id(), cpu_online_map);
1755 cpu_set(smp_processor_id(), cpu_callout_map);
1756 cpu_set(smp_processor_id(), cpu_possible_map);
1757 cpu_set(smp_processor_id(), cpu_present_map);
1758 }
1759
1760 static int __cpuinit voyager_cpu_up(unsigned int cpu)
1761 {
1762 /* This only works at boot for x86. See "rewrite" above. */
1763 if (cpu_isset(cpu, smp_commenced_mask))
1764 return -ENOSYS;
1765
1766 /* In case one didn't come up */
1767 if (!cpu_isset(cpu, cpu_callin_map))
1768 return -EIO;
1769 /* Unleash the CPU! */
1770 cpu_set(cpu, smp_commenced_mask);
1771 while (!cpu_online(cpu))
1772 mb();
1773 return 0;
1774 }
1775
1776 static void __init voyager_smp_cpus_done(unsigned int max_cpus)
1777 {
1778 zap_low_mappings();
1779 }
1780
1781 void __init smp_setup_processor_id(void)
1782 {
1783 current_thread_info()->cpu = hard_smp_processor_id();
1784 x86_write_percpu(cpu_number, hard_smp_processor_id());
1785 }
1786
1787 static void voyager_send_call_func(cpumask_t callmask)
1788 {
1789 __u32 mask = cpus_addr(callmask)[0] & ~(1 << smp_processor_id());
1790 send_CPI(mask, VIC_CALL_FUNCTION_CPI);
1791 }
1792
1793 static void voyager_send_call_func_single(int cpu)
1794 {
1795 send_CPI(1 << cpu, VIC_CALL_FUNCTION_SINGLE_CPI);
1796 }
1797
1798 struct smp_ops smp_ops = {
1799 .smp_prepare_boot_cpu = voyager_smp_prepare_boot_cpu,
1800 .smp_prepare_cpus = voyager_smp_prepare_cpus,
1801 .cpu_up = voyager_cpu_up,
1802 .smp_cpus_done = voyager_smp_cpus_done,
1803
1804 .smp_send_stop = voyager_smp_send_stop,
1805 .smp_send_reschedule = voyager_smp_send_reschedule,
1806
1807 .send_call_func_ipi = voyager_send_call_func,
1808 .send_call_func_single_ipi = voyager_send_call_func_single,
1809 };