]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/mm/discontig_32.c
[XFS] Added quota targets and removed dmapi directory
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / mm / discontig_32.c
1 /*
2 * Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation
3 * August 2002: added remote node KVA remap - Martin J. Bligh
4 *
5 * Copyright (C) 2002, IBM Corp.
6 *
7 * All rights reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
17 * NON INFRINGEMENT. See the GNU General Public License for more
18 * details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25 #include <linux/mm.h>
26 #include <linux/bootmem.h>
27 #include <linux/mmzone.h>
28 #include <linux/highmem.h>
29 #include <linux/initrd.h>
30 #include <linux/nodemask.h>
31 #include <linux/module.h>
32 #include <linux/kexec.h>
33 #include <linux/pfn.h>
34 #include <linux/swap.h>
35 #include <linux/acpi.h>
36
37 #include <asm/e820.h>
38 #include <asm/setup.h>
39 #include <asm/mmzone.h>
40 #include <bios_ebda.h>
41
42 struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
43 EXPORT_SYMBOL(node_data);
44 static bootmem_data_t node0_bdata;
45
46 /*
47 * numa interface - we expect the numa architecture specific code to have
48 * populated the following initialisation.
49 *
50 * 1) node_online_map - the map of all nodes configured (online) in the system
51 * 2) node_start_pfn - the starting page frame number for a node
52 * 3) node_end_pfn - the ending page fram number for a node
53 */
54 unsigned long node_start_pfn[MAX_NUMNODES] __read_mostly;
55 unsigned long node_end_pfn[MAX_NUMNODES] __read_mostly;
56
57
58 #ifdef CONFIG_DISCONTIGMEM
59 /*
60 * 4) physnode_map - the mapping between a pfn and owning node
61 * physnode_map keeps track of the physical memory layout of a generic
62 * numa node on a 256Mb break (each element of the array will
63 * represent 256Mb of memory and will be marked by the node id. so,
64 * if the first gig is on node 0, and the second gig is on node 1
65 * physnode_map will contain:
66 *
67 * physnode_map[0-3] = 0;
68 * physnode_map[4-7] = 1;
69 * physnode_map[8- ] = -1;
70 */
71 s8 physnode_map[MAX_ELEMENTS] __read_mostly = { [0 ... (MAX_ELEMENTS - 1)] = -1};
72 EXPORT_SYMBOL(physnode_map);
73
74 void memory_present(int nid, unsigned long start, unsigned long end)
75 {
76 unsigned long pfn;
77
78 printk(KERN_INFO "Node: %d, start_pfn: %ld, end_pfn: %ld\n",
79 nid, start, end);
80 printk(KERN_DEBUG " Setting physnode_map array to node %d for pfns:\n", nid);
81 printk(KERN_DEBUG " ");
82 for (pfn = start; pfn < end; pfn += PAGES_PER_ELEMENT) {
83 physnode_map[pfn / PAGES_PER_ELEMENT] = nid;
84 printk("%ld ", pfn);
85 }
86 printk("\n");
87 }
88
89 unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn,
90 unsigned long end_pfn)
91 {
92 unsigned long nr_pages = end_pfn - start_pfn;
93
94 if (!nr_pages)
95 return 0;
96
97 return (nr_pages + 1) * sizeof(struct page);
98 }
99 #endif
100
101 extern unsigned long find_max_low_pfn(void);
102 extern void add_one_highpage_init(struct page *, int, int);
103 extern unsigned long highend_pfn, highstart_pfn;
104
105 #define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE)
106
107 unsigned long node_remap_size[MAX_NUMNODES];
108 static void *node_remap_start_vaddr[MAX_NUMNODES];
109 void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags);
110
111 static unsigned long kva_start_pfn;
112 static unsigned long kva_pages;
113 /*
114 * FLAT - support for basic PC memory model with discontig enabled, essentially
115 * a single node with all available processors in it with a flat
116 * memory map.
117 */
118 int __init get_memcfg_numa_flat(void)
119 {
120 printk("NUMA - single node, flat memory mode\n");
121
122 /* Run the memory configuration and find the top of memory. */
123 find_max_pfn();
124 node_start_pfn[0] = 0;
125 node_end_pfn[0] = max_pfn;
126 memory_present(0, 0, max_pfn);
127
128 /* Indicate there is one node available. */
129 nodes_clear(node_online_map);
130 node_set_online(0);
131 return 1;
132 }
133
134 /*
135 * Find the highest page frame number we have available for the node
136 */
137 static void __init find_max_pfn_node(int nid)
138 {
139 if (node_end_pfn[nid] > max_pfn)
140 node_end_pfn[nid] = max_pfn;
141 /*
142 * if a user has given mem=XXXX, then we need to make sure
143 * that the node _starts_ before that, too, not just ends
144 */
145 if (node_start_pfn[nid] > max_pfn)
146 node_start_pfn[nid] = max_pfn;
147 BUG_ON(node_start_pfn[nid] > node_end_pfn[nid]);
148 }
149
150 /*
151 * Allocate memory for the pg_data_t for this node via a crude pre-bootmem
152 * method. For node zero take this from the bottom of memory, for
153 * subsequent nodes place them at node_remap_start_vaddr which contains
154 * node local data in physically node local memory. See setup_memory()
155 * for details.
156 */
157 static void __init allocate_pgdat(int nid)
158 {
159 if (nid && node_has_online_mem(nid))
160 NODE_DATA(nid) = (pg_data_t *)node_remap_start_vaddr[nid];
161 else {
162 NODE_DATA(nid) = (pg_data_t *)(pfn_to_kaddr(min_low_pfn));
163 min_low_pfn += PFN_UP(sizeof(pg_data_t));
164 }
165 }
166
167 #ifdef CONFIG_DISCONTIGMEM
168 /*
169 * In the discontig memory model, a portion of the kernel virtual area (KVA)
170 * is reserved and portions of nodes are mapped using it. This is to allow
171 * node-local memory to be allocated for structures that would normally require
172 * ZONE_NORMAL. The memory is allocated with alloc_remap() and callers
173 * should be prepared to allocate from the bootmem allocator instead. This KVA
174 * mechanism is incompatible with SPARSEMEM as it makes assumptions about the
175 * layout of memory that are broken if alloc_remap() succeeds for some of the
176 * map and fails for others
177 */
178 static unsigned long node_remap_start_pfn[MAX_NUMNODES];
179 static void *node_remap_end_vaddr[MAX_NUMNODES];
180 static void *node_remap_alloc_vaddr[MAX_NUMNODES];
181 static unsigned long node_remap_offset[MAX_NUMNODES];
182
183 void *alloc_remap(int nid, unsigned long size)
184 {
185 void *allocation = node_remap_alloc_vaddr[nid];
186
187 size = ALIGN(size, L1_CACHE_BYTES);
188
189 if (!allocation || (allocation + size) >= node_remap_end_vaddr[nid])
190 return 0;
191
192 node_remap_alloc_vaddr[nid] += size;
193 memset(allocation, 0, size);
194
195 return allocation;
196 }
197
198 void __init remap_numa_kva(void)
199 {
200 void *vaddr;
201 unsigned long pfn;
202 int node;
203
204 for_each_online_node(node) {
205 for (pfn=0; pfn < node_remap_size[node]; pfn += PTRS_PER_PTE) {
206 vaddr = node_remap_start_vaddr[node]+(pfn<<PAGE_SHIFT);
207 set_pmd_pfn((ulong) vaddr,
208 node_remap_start_pfn[node] + pfn,
209 PAGE_KERNEL_LARGE);
210 }
211 }
212 }
213
214 static unsigned long calculate_numa_remap_pages(void)
215 {
216 int nid;
217 unsigned long size, reserve_pages = 0;
218 unsigned long pfn;
219
220 for_each_online_node(nid) {
221 unsigned old_end_pfn = node_end_pfn[nid];
222
223 /*
224 * The acpi/srat node info can show hot-add memroy zones
225 * where memory could be added but not currently present.
226 */
227 if (node_start_pfn[nid] > max_pfn)
228 continue;
229 if (node_end_pfn[nid] > max_pfn)
230 node_end_pfn[nid] = max_pfn;
231
232 /* ensure the remap includes space for the pgdat. */
233 size = node_remap_size[nid] + sizeof(pg_data_t);
234
235 /* convert size to large (pmd size) pages, rounding up */
236 size = (size + LARGE_PAGE_BYTES - 1) / LARGE_PAGE_BYTES;
237 /* now the roundup is correct, convert to PAGE_SIZE pages */
238 size = size * PTRS_PER_PTE;
239
240 /*
241 * Validate the region we are allocating only contains valid
242 * pages.
243 */
244 for (pfn = node_end_pfn[nid] - size;
245 pfn < node_end_pfn[nid]; pfn++)
246 if (!page_is_ram(pfn))
247 break;
248
249 if (pfn != node_end_pfn[nid])
250 size = 0;
251
252 printk("Reserving %ld pages of KVA for lmem_map of node %d\n",
253 size, nid);
254 node_remap_size[nid] = size;
255 node_remap_offset[nid] = reserve_pages;
256 reserve_pages += size;
257 printk("Shrinking node %d from %ld pages to %ld pages\n",
258 nid, node_end_pfn[nid], node_end_pfn[nid] - size);
259
260 if (node_end_pfn[nid] & (PTRS_PER_PTE-1)) {
261 /*
262 * Align node_end_pfn[] and node_remap_start_pfn[] to
263 * pmd boundary. remap_numa_kva will barf otherwise.
264 */
265 printk("Shrinking node %d further by %ld pages for proper alignment\n",
266 nid, node_end_pfn[nid] & (PTRS_PER_PTE-1));
267 size += node_end_pfn[nid] & (PTRS_PER_PTE-1);
268 }
269
270 node_end_pfn[nid] -= size;
271 node_remap_start_pfn[nid] = node_end_pfn[nid];
272 shrink_active_range(nid, old_end_pfn, node_end_pfn[nid]);
273 }
274 printk("Reserving total of %ld pages for numa KVA remap\n",
275 reserve_pages);
276 return reserve_pages;
277 }
278
279 static void init_remap_allocator(int nid)
280 {
281 node_remap_start_vaddr[nid] = pfn_to_kaddr(
282 kva_start_pfn + node_remap_offset[nid]);
283 node_remap_end_vaddr[nid] = node_remap_start_vaddr[nid] +
284 (node_remap_size[nid] * PAGE_SIZE);
285 node_remap_alloc_vaddr[nid] = node_remap_start_vaddr[nid] +
286 ALIGN(sizeof(pg_data_t), PAGE_SIZE);
287
288 printk ("node %d will remap to vaddr %08lx - %08lx\n", nid,
289 (ulong) node_remap_start_vaddr[nid],
290 (ulong) pfn_to_kaddr(highstart_pfn
291 + node_remap_offset[nid] + node_remap_size[nid]));
292 }
293 #else
294 void *alloc_remap(int nid, unsigned long size)
295 {
296 return NULL;
297 }
298
299 static unsigned long calculate_numa_remap_pages(void)
300 {
301 return 0;
302 }
303
304 static void init_remap_allocator(int nid)
305 {
306 }
307
308 void __init remap_numa_kva(void)
309 {
310 }
311 #endif /* CONFIG_DISCONTIGMEM */
312
313 extern void setup_bootmem_allocator(void);
314 unsigned long __init setup_memory(void)
315 {
316 int nid;
317 unsigned long system_start_pfn, system_max_low_pfn;
318 unsigned long wasted_pages;
319
320 /*
321 * When mapping a NUMA machine we allocate the node_mem_map arrays
322 * from node local memory. They are then mapped directly into KVA
323 * between zone normal and vmalloc space. Calculate the size of
324 * this space and use it to adjust the boundary between ZONE_NORMAL
325 * and ZONE_HIGHMEM.
326 */
327 find_max_pfn();
328 get_memcfg_numa();
329
330 kva_pages = calculate_numa_remap_pages();
331
332 /* partially used pages are not usable - thus round upwards */
333 system_start_pfn = min_low_pfn = PFN_UP(init_pg_tables_end);
334
335 kva_start_pfn = find_max_low_pfn() - kva_pages;
336
337 #ifdef CONFIG_BLK_DEV_INITRD
338 /* Numa kva area is below the initrd */
339 if (initrd_start)
340 kva_start_pfn = PFN_DOWN(initrd_start - PAGE_OFFSET)
341 - kva_pages;
342 #endif
343
344 /*
345 * We waste pages past at the end of the KVA for no good reason other
346 * than how it is located. This is bad.
347 */
348 wasted_pages = kva_start_pfn & (PTRS_PER_PTE-1);
349 kva_start_pfn -= wasted_pages;
350 kva_pages += wasted_pages;
351
352 system_max_low_pfn = max_low_pfn = find_max_low_pfn();
353 printk("kva_start_pfn ~ %ld find_max_low_pfn() ~ %ld\n",
354 kva_start_pfn, max_low_pfn);
355 printk("max_pfn = %ld\n", max_pfn);
356 #ifdef CONFIG_HIGHMEM
357 highstart_pfn = highend_pfn = max_pfn;
358 if (max_pfn > system_max_low_pfn)
359 highstart_pfn = system_max_low_pfn;
360 printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
361 pages_to_mb(highend_pfn - highstart_pfn));
362 num_physpages = highend_pfn;
363 high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1;
364 #else
365 num_physpages = system_max_low_pfn;
366 high_memory = (void *) __va(system_max_low_pfn * PAGE_SIZE - 1) + 1;
367 #endif
368 printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
369 pages_to_mb(system_max_low_pfn));
370 printk("min_low_pfn = %ld, max_low_pfn = %ld, highstart_pfn = %ld\n",
371 min_low_pfn, max_low_pfn, highstart_pfn);
372
373 printk("Low memory ends at vaddr %08lx\n",
374 (ulong) pfn_to_kaddr(max_low_pfn));
375 for_each_online_node(nid) {
376 init_remap_allocator(nid);
377
378 allocate_pgdat(nid);
379 }
380 printk("High memory starts at vaddr %08lx\n",
381 (ulong) pfn_to_kaddr(highstart_pfn));
382 for_each_online_node(nid)
383 find_max_pfn_node(nid);
384
385 memset(NODE_DATA(0), 0, sizeof(struct pglist_data));
386 NODE_DATA(0)->bdata = &node0_bdata;
387 setup_bootmem_allocator();
388 return max_low_pfn;
389 }
390
391 void __init numa_kva_reserve(void)
392 {
393 if (kva_pages)
394 reserve_bootmem(PFN_PHYS(kva_start_pfn), PFN_PHYS(kva_pages));
395 }
396
397 void __init zone_sizes_init(void)
398 {
399 int nid;
400 unsigned long max_zone_pfns[MAX_NR_ZONES];
401 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
402 max_zone_pfns[ZONE_DMA] =
403 virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;
404 max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
405 #ifdef CONFIG_HIGHMEM
406 max_zone_pfns[ZONE_HIGHMEM] = highend_pfn;
407 #endif
408
409 /* If SRAT has not registered memory, register it now */
410 if (find_max_pfn_with_active_regions() == 0) {
411 for_each_online_node(nid) {
412 if (node_has_online_mem(nid))
413 add_active_range(nid, node_start_pfn[nid],
414 node_end_pfn[nid]);
415 }
416 }
417
418 free_area_init_nodes(max_zone_pfns);
419 return;
420 }
421
422 void __init set_highmem_pages_init(int bad_ppro)
423 {
424 #ifdef CONFIG_HIGHMEM
425 struct zone *zone;
426 struct page *page;
427
428 for_each_zone(zone) {
429 unsigned long node_pfn, zone_start_pfn, zone_end_pfn;
430
431 if (!is_highmem(zone))
432 continue;
433
434 zone_start_pfn = zone->zone_start_pfn;
435 zone_end_pfn = zone_start_pfn + zone->spanned_pages;
436
437 printk("Initializing %s for node %d (%08lx:%08lx)\n",
438 zone->name, zone_to_nid(zone),
439 zone_start_pfn, zone_end_pfn);
440
441 for (node_pfn = zone_start_pfn; node_pfn < zone_end_pfn; node_pfn++) {
442 if (!pfn_valid(node_pfn))
443 continue;
444 page = pfn_to_page(node_pfn);
445 add_one_highpage_init(page, node_pfn, bad_ppro);
446 }
447 }
448 totalram_pages += totalhigh_pages;
449 #endif
450 }
451
452 #ifdef CONFIG_MEMORY_HOTPLUG
453 static int paddr_to_nid(u64 addr)
454 {
455 int nid;
456 unsigned long pfn = PFN_DOWN(addr);
457
458 for_each_node(nid)
459 if (node_start_pfn[nid] <= pfn &&
460 pfn < node_end_pfn[nid])
461 return nid;
462
463 return -1;
464 }
465
466 /*
467 * This function is used to ask node id BEFORE memmap and mem_section's
468 * initialization (pfn_to_nid() can't be used yet).
469 * If _PXM is not defined on ACPI's DSDT, node id must be found by this.
470 */
471 int memory_add_physaddr_to_nid(u64 addr)
472 {
473 int nid = paddr_to_nid(addr);
474 return (nid >= 0) ? nid : 0;
475 }
476
477 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
478 #endif
479
480 #ifndef CONFIG_HAVE_ARCH_PARSE_SRAT
481 /*
482 * XXX FIXME: Make SLIT table parsing available to 32-bit NUMA
483 *
484 * These stub functions are needed to compile 32-bit NUMA when SRAT is
485 * not set. There are functions in srat_64.c for parsing this table
486 * and it may be possible to make them common functions.
487 */
488 void acpi_numa_slit_init (struct acpi_table_slit *slit)
489 {
490 printk(KERN_INFO "ACPI: No support for parsing SLIT table\n");
491 }
492
493 void acpi_numa_processor_affinity_init (struct acpi_srat_cpu_affinity *pa)
494 {
495 }
496
497 void acpi_numa_memory_affinity_init (struct acpi_srat_mem_affinity *ma)
498 {
499 }
500
501 void acpi_numa_arch_fixup(void)
502 {
503 }
504 #endif /* CONFIG_HAVE_ARCH_PARSE_SRAT */