]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/mm/fault.c
858b47b5221be716eba34760cfd44d511b9183e9
[mirror_ubuntu-artful-kernel.git] / arch / x86 / mm / fault.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
5 */
6 #include <linux/magic.h> /* STACK_END_MAGIC */
7 #include <linux/sched.h> /* test_thread_flag(), ... */
8 #include <linux/kdebug.h> /* oops_begin/end, ... */
9 #include <linux/module.h> /* search_exception_table */
10 #include <linux/bootmem.h> /* max_low_pfn */
11 #include <linux/kprobes.h> /* __kprobes, ... */
12 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
13 #include <linux/perf_event.h> /* perf_sw_event */
14 #include <linux/hugetlb.h> /* hstate_index_to_shift */
15 #include <linux/prefetch.h> /* prefetchw */
16 #include <linux/context_tracking.h> /* exception_enter(), ... */
17
18 #include <asm/traps.h> /* dotraplinkage, ... */
19 #include <asm/pgalloc.h> /* pgd_*(), ... */
20 #include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
21 #include <asm/fixmap.h> /* VSYSCALL_ADDR */
22 #include <asm/vsyscall.h> /* emulate_vsyscall */
23
24 #define CREATE_TRACE_POINTS
25 #include <asm/trace/exceptions.h>
26
27 /*
28 * Page fault error code bits:
29 *
30 * bit 0 == 0: no page found 1: protection fault
31 * bit 1 == 0: read access 1: write access
32 * bit 2 == 0: kernel-mode access 1: user-mode access
33 * bit 3 == 1: use of reserved bit detected
34 * bit 4 == 1: fault was an instruction fetch
35 */
36 enum x86_pf_error_code {
37
38 PF_PROT = 1 << 0,
39 PF_WRITE = 1 << 1,
40 PF_USER = 1 << 2,
41 PF_RSVD = 1 << 3,
42 PF_INSTR = 1 << 4,
43 };
44
45 /*
46 * Returns 0 if mmiotrace is disabled, or if the fault is not
47 * handled by mmiotrace:
48 */
49 static inline int __kprobes
50 kmmio_fault(struct pt_regs *regs, unsigned long addr)
51 {
52 if (unlikely(is_kmmio_active()))
53 if (kmmio_handler(regs, addr) == 1)
54 return -1;
55 return 0;
56 }
57
58 static inline int __kprobes kprobes_fault(struct pt_regs *regs)
59 {
60 int ret = 0;
61
62 /* kprobe_running() needs smp_processor_id() */
63 if (kprobes_built_in() && !user_mode_vm(regs)) {
64 preempt_disable();
65 if (kprobe_running() && kprobe_fault_handler(regs, 14))
66 ret = 1;
67 preempt_enable();
68 }
69
70 return ret;
71 }
72
73 /*
74 * Prefetch quirks:
75 *
76 * 32-bit mode:
77 *
78 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
79 * Check that here and ignore it.
80 *
81 * 64-bit mode:
82 *
83 * Sometimes the CPU reports invalid exceptions on prefetch.
84 * Check that here and ignore it.
85 *
86 * Opcode checker based on code by Richard Brunner.
87 */
88 static inline int
89 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
90 unsigned char opcode, int *prefetch)
91 {
92 unsigned char instr_hi = opcode & 0xf0;
93 unsigned char instr_lo = opcode & 0x0f;
94
95 switch (instr_hi) {
96 case 0x20:
97 case 0x30:
98 /*
99 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
100 * In X86_64 long mode, the CPU will signal invalid
101 * opcode if some of these prefixes are present so
102 * X86_64 will never get here anyway
103 */
104 return ((instr_lo & 7) == 0x6);
105 #ifdef CONFIG_X86_64
106 case 0x40:
107 /*
108 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
109 * Need to figure out under what instruction mode the
110 * instruction was issued. Could check the LDT for lm,
111 * but for now it's good enough to assume that long
112 * mode only uses well known segments or kernel.
113 */
114 return (!user_mode(regs) || user_64bit_mode(regs));
115 #endif
116 case 0x60:
117 /* 0x64 thru 0x67 are valid prefixes in all modes. */
118 return (instr_lo & 0xC) == 0x4;
119 case 0xF0:
120 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
121 return !instr_lo || (instr_lo>>1) == 1;
122 case 0x00:
123 /* Prefetch instruction is 0x0F0D or 0x0F18 */
124 if (probe_kernel_address(instr, opcode))
125 return 0;
126
127 *prefetch = (instr_lo == 0xF) &&
128 (opcode == 0x0D || opcode == 0x18);
129 return 0;
130 default:
131 return 0;
132 }
133 }
134
135 static int
136 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
137 {
138 unsigned char *max_instr;
139 unsigned char *instr;
140 int prefetch = 0;
141
142 /*
143 * If it was a exec (instruction fetch) fault on NX page, then
144 * do not ignore the fault:
145 */
146 if (error_code & PF_INSTR)
147 return 0;
148
149 instr = (void *)convert_ip_to_linear(current, regs);
150 max_instr = instr + 15;
151
152 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
153 return 0;
154
155 while (instr < max_instr) {
156 unsigned char opcode;
157
158 if (probe_kernel_address(instr, opcode))
159 break;
160
161 instr++;
162
163 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
164 break;
165 }
166 return prefetch;
167 }
168
169 static void
170 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
171 struct task_struct *tsk, int fault)
172 {
173 unsigned lsb = 0;
174 siginfo_t info;
175
176 info.si_signo = si_signo;
177 info.si_errno = 0;
178 info.si_code = si_code;
179 info.si_addr = (void __user *)address;
180 if (fault & VM_FAULT_HWPOISON_LARGE)
181 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
182 if (fault & VM_FAULT_HWPOISON)
183 lsb = PAGE_SHIFT;
184 info.si_addr_lsb = lsb;
185
186 force_sig_info(si_signo, &info, tsk);
187 }
188
189 DEFINE_SPINLOCK(pgd_lock);
190 LIST_HEAD(pgd_list);
191
192 #ifdef CONFIG_X86_32
193 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
194 {
195 unsigned index = pgd_index(address);
196 pgd_t *pgd_k;
197 pud_t *pud, *pud_k;
198 pmd_t *pmd, *pmd_k;
199
200 pgd += index;
201 pgd_k = init_mm.pgd + index;
202
203 if (!pgd_present(*pgd_k))
204 return NULL;
205
206 /*
207 * set_pgd(pgd, *pgd_k); here would be useless on PAE
208 * and redundant with the set_pmd() on non-PAE. As would
209 * set_pud.
210 */
211 pud = pud_offset(pgd, address);
212 pud_k = pud_offset(pgd_k, address);
213 if (!pud_present(*pud_k))
214 return NULL;
215
216 pmd = pmd_offset(pud, address);
217 pmd_k = pmd_offset(pud_k, address);
218 if (!pmd_present(*pmd_k))
219 return NULL;
220
221 if (!pmd_present(*pmd))
222 set_pmd(pmd, *pmd_k);
223 else
224 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
225
226 return pmd_k;
227 }
228
229 void vmalloc_sync_all(void)
230 {
231 unsigned long address;
232
233 if (SHARED_KERNEL_PMD)
234 return;
235
236 for (address = VMALLOC_START & PMD_MASK;
237 address >= TASK_SIZE && address < FIXADDR_TOP;
238 address += PMD_SIZE) {
239 struct page *page;
240
241 spin_lock(&pgd_lock);
242 list_for_each_entry(page, &pgd_list, lru) {
243 spinlock_t *pgt_lock;
244 pmd_t *ret;
245
246 /* the pgt_lock only for Xen */
247 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
248
249 spin_lock(pgt_lock);
250 ret = vmalloc_sync_one(page_address(page), address);
251 spin_unlock(pgt_lock);
252
253 if (!ret)
254 break;
255 }
256 spin_unlock(&pgd_lock);
257 }
258 }
259
260 /*
261 * 32-bit:
262 *
263 * Handle a fault on the vmalloc or module mapping area
264 */
265 static noinline __kprobes int vmalloc_fault(unsigned long address)
266 {
267 unsigned long pgd_paddr;
268 pmd_t *pmd_k;
269 pte_t *pte_k;
270
271 /* Make sure we are in vmalloc area: */
272 if (!(address >= VMALLOC_START && address < VMALLOC_END))
273 return -1;
274
275 WARN_ON_ONCE(in_nmi());
276
277 /*
278 * Synchronize this task's top level page-table
279 * with the 'reference' page table.
280 *
281 * Do _not_ use "current" here. We might be inside
282 * an interrupt in the middle of a task switch..
283 */
284 pgd_paddr = read_cr3();
285 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
286 if (!pmd_k)
287 return -1;
288
289 pte_k = pte_offset_kernel(pmd_k, address);
290 if (!pte_present(*pte_k))
291 return -1;
292
293 return 0;
294 }
295
296 /*
297 * Did it hit the DOS screen memory VA from vm86 mode?
298 */
299 static inline void
300 check_v8086_mode(struct pt_regs *regs, unsigned long address,
301 struct task_struct *tsk)
302 {
303 unsigned long bit;
304
305 if (!v8086_mode(regs))
306 return;
307
308 bit = (address - 0xA0000) >> PAGE_SHIFT;
309 if (bit < 32)
310 tsk->thread.screen_bitmap |= 1 << bit;
311 }
312
313 static bool low_pfn(unsigned long pfn)
314 {
315 return pfn < max_low_pfn;
316 }
317
318 static void dump_pagetable(unsigned long address)
319 {
320 pgd_t *base = __va(read_cr3());
321 pgd_t *pgd = &base[pgd_index(address)];
322 pmd_t *pmd;
323 pte_t *pte;
324
325 #ifdef CONFIG_X86_PAE
326 printk("*pdpt = %016Lx ", pgd_val(*pgd));
327 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
328 goto out;
329 #endif
330 pmd = pmd_offset(pud_offset(pgd, address), address);
331 printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
332
333 /*
334 * We must not directly access the pte in the highpte
335 * case if the page table is located in highmem.
336 * And let's rather not kmap-atomic the pte, just in case
337 * it's allocated already:
338 */
339 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
340 goto out;
341
342 pte = pte_offset_kernel(pmd, address);
343 printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
344 out:
345 printk("\n");
346 }
347
348 #else /* CONFIG_X86_64: */
349
350 void vmalloc_sync_all(void)
351 {
352 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
353 }
354
355 /*
356 * 64-bit:
357 *
358 * Handle a fault on the vmalloc area
359 *
360 * This assumes no large pages in there.
361 */
362 static noinline __kprobes int vmalloc_fault(unsigned long address)
363 {
364 pgd_t *pgd, *pgd_ref;
365 pud_t *pud, *pud_ref;
366 pmd_t *pmd, *pmd_ref;
367 pte_t *pte, *pte_ref;
368
369 /* Make sure we are in vmalloc area: */
370 if (!(address >= VMALLOC_START && address < VMALLOC_END))
371 return -1;
372
373 WARN_ON_ONCE(in_nmi());
374
375 /*
376 * Copy kernel mappings over when needed. This can also
377 * happen within a race in page table update. In the later
378 * case just flush:
379 */
380 pgd = pgd_offset(current->active_mm, address);
381 pgd_ref = pgd_offset_k(address);
382 if (pgd_none(*pgd_ref))
383 return -1;
384
385 if (pgd_none(*pgd)) {
386 set_pgd(pgd, *pgd_ref);
387 arch_flush_lazy_mmu_mode();
388 } else {
389 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
390 }
391
392 /*
393 * Below here mismatches are bugs because these lower tables
394 * are shared:
395 */
396
397 pud = pud_offset(pgd, address);
398 pud_ref = pud_offset(pgd_ref, address);
399 if (pud_none(*pud_ref))
400 return -1;
401
402 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
403 BUG();
404
405 pmd = pmd_offset(pud, address);
406 pmd_ref = pmd_offset(pud_ref, address);
407 if (pmd_none(*pmd_ref))
408 return -1;
409
410 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
411 BUG();
412
413 pte_ref = pte_offset_kernel(pmd_ref, address);
414 if (!pte_present(*pte_ref))
415 return -1;
416
417 pte = pte_offset_kernel(pmd, address);
418
419 /*
420 * Don't use pte_page here, because the mappings can point
421 * outside mem_map, and the NUMA hash lookup cannot handle
422 * that:
423 */
424 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
425 BUG();
426
427 return 0;
428 }
429
430 #ifdef CONFIG_CPU_SUP_AMD
431 static const char errata93_warning[] =
432 KERN_ERR
433 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
434 "******* Working around it, but it may cause SEGVs or burn power.\n"
435 "******* Please consider a BIOS update.\n"
436 "******* Disabling USB legacy in the BIOS may also help.\n";
437 #endif
438
439 /*
440 * No vm86 mode in 64-bit mode:
441 */
442 static inline void
443 check_v8086_mode(struct pt_regs *regs, unsigned long address,
444 struct task_struct *tsk)
445 {
446 }
447
448 static int bad_address(void *p)
449 {
450 unsigned long dummy;
451
452 return probe_kernel_address((unsigned long *)p, dummy);
453 }
454
455 static void dump_pagetable(unsigned long address)
456 {
457 pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
458 pgd_t *pgd = base + pgd_index(address);
459 pud_t *pud;
460 pmd_t *pmd;
461 pte_t *pte;
462
463 if (bad_address(pgd))
464 goto bad;
465
466 printk("PGD %lx ", pgd_val(*pgd));
467
468 if (!pgd_present(*pgd))
469 goto out;
470
471 pud = pud_offset(pgd, address);
472 if (bad_address(pud))
473 goto bad;
474
475 printk("PUD %lx ", pud_val(*pud));
476 if (!pud_present(*pud) || pud_large(*pud))
477 goto out;
478
479 pmd = pmd_offset(pud, address);
480 if (bad_address(pmd))
481 goto bad;
482
483 printk("PMD %lx ", pmd_val(*pmd));
484 if (!pmd_present(*pmd) || pmd_large(*pmd))
485 goto out;
486
487 pte = pte_offset_kernel(pmd, address);
488 if (bad_address(pte))
489 goto bad;
490
491 printk("PTE %lx", pte_val(*pte));
492 out:
493 printk("\n");
494 return;
495 bad:
496 printk("BAD\n");
497 }
498
499 #endif /* CONFIG_X86_64 */
500
501 /*
502 * Workaround for K8 erratum #93 & buggy BIOS.
503 *
504 * BIOS SMM functions are required to use a specific workaround
505 * to avoid corruption of the 64bit RIP register on C stepping K8.
506 *
507 * A lot of BIOS that didn't get tested properly miss this.
508 *
509 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
510 * Try to work around it here.
511 *
512 * Note we only handle faults in kernel here.
513 * Does nothing on 32-bit.
514 */
515 static int is_errata93(struct pt_regs *regs, unsigned long address)
516 {
517 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
518 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
519 || boot_cpu_data.x86 != 0xf)
520 return 0;
521
522 if (address != regs->ip)
523 return 0;
524
525 if ((address >> 32) != 0)
526 return 0;
527
528 address |= 0xffffffffUL << 32;
529 if ((address >= (u64)_stext && address <= (u64)_etext) ||
530 (address >= MODULES_VADDR && address <= MODULES_END)) {
531 printk_once(errata93_warning);
532 regs->ip = address;
533 return 1;
534 }
535 #endif
536 return 0;
537 }
538
539 /*
540 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
541 * to illegal addresses >4GB.
542 *
543 * We catch this in the page fault handler because these addresses
544 * are not reachable. Just detect this case and return. Any code
545 * segment in LDT is compatibility mode.
546 */
547 static int is_errata100(struct pt_regs *regs, unsigned long address)
548 {
549 #ifdef CONFIG_X86_64
550 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
551 return 1;
552 #endif
553 return 0;
554 }
555
556 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
557 {
558 #ifdef CONFIG_X86_F00F_BUG
559 unsigned long nr;
560
561 /*
562 * Pentium F0 0F C7 C8 bug workaround:
563 */
564 if (boot_cpu_has_bug(X86_BUG_F00F)) {
565 nr = (address - idt_descr.address) >> 3;
566
567 if (nr == 6) {
568 do_invalid_op(regs, 0);
569 return 1;
570 }
571 }
572 #endif
573 return 0;
574 }
575
576 static const char nx_warning[] = KERN_CRIT
577 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
578
579 static void
580 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
581 unsigned long address)
582 {
583 if (!oops_may_print())
584 return;
585
586 if (error_code & PF_INSTR) {
587 unsigned int level;
588 pgd_t *pgd;
589 pte_t *pte;
590
591 pgd = __va(read_cr3() & PHYSICAL_PAGE_MASK);
592 pgd += pgd_index(address);
593
594 pte = lookup_address_in_pgd(pgd, address, &level);
595
596 if (pte && pte_present(*pte) && !pte_exec(*pte))
597 printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
598 }
599
600 printk(KERN_ALERT "BUG: unable to handle kernel ");
601 if (address < PAGE_SIZE)
602 printk(KERN_CONT "NULL pointer dereference");
603 else
604 printk(KERN_CONT "paging request");
605
606 printk(KERN_CONT " at %p\n", (void *) address);
607 printk(KERN_ALERT "IP:");
608 printk_address(regs->ip);
609
610 dump_pagetable(address);
611 }
612
613 static noinline void
614 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
615 unsigned long address)
616 {
617 struct task_struct *tsk;
618 unsigned long flags;
619 int sig;
620
621 flags = oops_begin();
622 tsk = current;
623 sig = SIGKILL;
624
625 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
626 tsk->comm, address);
627 dump_pagetable(address);
628
629 tsk->thread.cr2 = address;
630 tsk->thread.trap_nr = X86_TRAP_PF;
631 tsk->thread.error_code = error_code;
632
633 if (__die("Bad pagetable", regs, error_code))
634 sig = 0;
635
636 oops_end(flags, regs, sig);
637 }
638
639 static noinline void
640 no_context(struct pt_regs *regs, unsigned long error_code,
641 unsigned long address, int signal, int si_code)
642 {
643 struct task_struct *tsk = current;
644 unsigned long *stackend;
645 unsigned long flags;
646 int sig;
647
648 /* Are we prepared to handle this kernel fault? */
649 if (fixup_exception(regs)) {
650 /*
651 * Any interrupt that takes a fault gets the fixup. This makes
652 * the below recursive fault logic only apply to a faults from
653 * task context.
654 */
655 if (in_interrupt())
656 return;
657
658 /*
659 * Per the above we're !in_interrupt(), aka. task context.
660 *
661 * In this case we need to make sure we're not recursively
662 * faulting through the emulate_vsyscall() logic.
663 */
664 if (current_thread_info()->sig_on_uaccess_error && signal) {
665 tsk->thread.trap_nr = X86_TRAP_PF;
666 tsk->thread.error_code = error_code | PF_USER;
667 tsk->thread.cr2 = address;
668
669 /* XXX: hwpoison faults will set the wrong code. */
670 force_sig_info_fault(signal, si_code, address, tsk, 0);
671 }
672
673 /*
674 * Barring that, we can do the fixup and be happy.
675 */
676 return;
677 }
678
679 /*
680 * 32-bit:
681 *
682 * Valid to do another page fault here, because if this fault
683 * had been triggered by is_prefetch fixup_exception would have
684 * handled it.
685 *
686 * 64-bit:
687 *
688 * Hall of shame of CPU/BIOS bugs.
689 */
690 if (is_prefetch(regs, error_code, address))
691 return;
692
693 if (is_errata93(regs, address))
694 return;
695
696 /*
697 * Oops. The kernel tried to access some bad page. We'll have to
698 * terminate things with extreme prejudice:
699 */
700 flags = oops_begin();
701
702 show_fault_oops(regs, error_code, address);
703
704 stackend = end_of_stack(tsk);
705 if (tsk != &init_task && *stackend != STACK_END_MAGIC)
706 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
707
708 tsk->thread.cr2 = address;
709 tsk->thread.trap_nr = X86_TRAP_PF;
710 tsk->thread.error_code = error_code;
711
712 sig = SIGKILL;
713 if (__die("Oops", regs, error_code))
714 sig = 0;
715
716 /* Executive summary in case the body of the oops scrolled away */
717 printk(KERN_DEFAULT "CR2: %016lx\n", address);
718
719 oops_end(flags, regs, sig);
720 }
721
722 /*
723 * Print out info about fatal segfaults, if the show_unhandled_signals
724 * sysctl is set:
725 */
726 static inline void
727 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
728 unsigned long address, struct task_struct *tsk)
729 {
730 if (!unhandled_signal(tsk, SIGSEGV))
731 return;
732
733 if (!printk_ratelimit())
734 return;
735
736 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
737 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
738 tsk->comm, task_pid_nr(tsk), address,
739 (void *)regs->ip, (void *)regs->sp, error_code);
740
741 print_vma_addr(KERN_CONT " in ", regs->ip);
742
743 printk(KERN_CONT "\n");
744 }
745
746 static void
747 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
748 unsigned long address, int si_code)
749 {
750 struct task_struct *tsk = current;
751
752 /* User mode accesses just cause a SIGSEGV */
753 if (error_code & PF_USER) {
754 /*
755 * It's possible to have interrupts off here:
756 */
757 local_irq_enable();
758
759 /*
760 * Valid to do another page fault here because this one came
761 * from user space:
762 */
763 if (is_prefetch(regs, error_code, address))
764 return;
765
766 if (is_errata100(regs, address))
767 return;
768
769 #ifdef CONFIG_X86_64
770 /*
771 * Instruction fetch faults in the vsyscall page might need
772 * emulation.
773 */
774 if (unlikely((error_code & PF_INSTR) &&
775 ((address & ~0xfff) == VSYSCALL_ADDR))) {
776 if (emulate_vsyscall(regs, address))
777 return;
778 }
779 #endif
780 /* Kernel addresses are always protection faults: */
781 if (address >= TASK_SIZE)
782 error_code |= PF_PROT;
783
784 if (likely(show_unhandled_signals))
785 show_signal_msg(regs, error_code, address, tsk);
786
787 tsk->thread.cr2 = address;
788 tsk->thread.error_code = error_code;
789 tsk->thread.trap_nr = X86_TRAP_PF;
790
791 force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0);
792
793 return;
794 }
795
796 if (is_f00f_bug(regs, address))
797 return;
798
799 no_context(regs, error_code, address, SIGSEGV, si_code);
800 }
801
802 static noinline void
803 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
804 unsigned long address)
805 {
806 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
807 }
808
809 static void
810 __bad_area(struct pt_regs *regs, unsigned long error_code,
811 unsigned long address, int si_code)
812 {
813 struct mm_struct *mm = current->mm;
814
815 /*
816 * Something tried to access memory that isn't in our memory map..
817 * Fix it, but check if it's kernel or user first..
818 */
819 up_read(&mm->mmap_sem);
820
821 __bad_area_nosemaphore(regs, error_code, address, si_code);
822 }
823
824 static noinline void
825 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
826 {
827 __bad_area(regs, error_code, address, SEGV_MAPERR);
828 }
829
830 static noinline void
831 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
832 unsigned long address)
833 {
834 __bad_area(regs, error_code, address, SEGV_ACCERR);
835 }
836
837 static void
838 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
839 unsigned int fault)
840 {
841 struct task_struct *tsk = current;
842 struct mm_struct *mm = tsk->mm;
843 int code = BUS_ADRERR;
844
845 up_read(&mm->mmap_sem);
846
847 /* Kernel mode? Handle exceptions or die: */
848 if (!(error_code & PF_USER)) {
849 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
850 return;
851 }
852
853 /* User-space => ok to do another page fault: */
854 if (is_prefetch(regs, error_code, address))
855 return;
856
857 tsk->thread.cr2 = address;
858 tsk->thread.error_code = error_code;
859 tsk->thread.trap_nr = X86_TRAP_PF;
860
861 #ifdef CONFIG_MEMORY_FAILURE
862 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
863 printk(KERN_ERR
864 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
865 tsk->comm, tsk->pid, address);
866 code = BUS_MCEERR_AR;
867 }
868 #endif
869 force_sig_info_fault(SIGBUS, code, address, tsk, fault);
870 }
871
872 static noinline void
873 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
874 unsigned long address, unsigned int fault)
875 {
876 if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
877 up_read(&current->mm->mmap_sem);
878 no_context(regs, error_code, address, 0, 0);
879 return;
880 }
881
882 if (fault & VM_FAULT_OOM) {
883 /* Kernel mode? Handle exceptions or die: */
884 if (!(error_code & PF_USER)) {
885 up_read(&current->mm->mmap_sem);
886 no_context(regs, error_code, address,
887 SIGSEGV, SEGV_MAPERR);
888 return;
889 }
890
891 up_read(&current->mm->mmap_sem);
892
893 /*
894 * We ran out of memory, call the OOM killer, and return the
895 * userspace (which will retry the fault, or kill us if we got
896 * oom-killed):
897 */
898 pagefault_out_of_memory();
899 } else {
900 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
901 VM_FAULT_HWPOISON_LARGE))
902 do_sigbus(regs, error_code, address, fault);
903 else
904 BUG();
905 }
906 }
907
908 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
909 {
910 if ((error_code & PF_WRITE) && !pte_write(*pte))
911 return 0;
912
913 if ((error_code & PF_INSTR) && !pte_exec(*pte))
914 return 0;
915
916 return 1;
917 }
918
919 /*
920 * Handle a spurious fault caused by a stale TLB entry.
921 *
922 * This allows us to lazily refresh the TLB when increasing the
923 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
924 * eagerly is very expensive since that implies doing a full
925 * cross-processor TLB flush, even if no stale TLB entries exist
926 * on other processors.
927 *
928 * There are no security implications to leaving a stale TLB when
929 * increasing the permissions on a page.
930 */
931 static noinline __kprobes int
932 spurious_fault(unsigned long error_code, unsigned long address)
933 {
934 pgd_t *pgd;
935 pud_t *pud;
936 pmd_t *pmd;
937 pte_t *pte;
938 int ret;
939
940 /* Reserved-bit violation or user access to kernel space? */
941 if (error_code & (PF_USER | PF_RSVD))
942 return 0;
943
944 pgd = init_mm.pgd + pgd_index(address);
945 if (!pgd_present(*pgd))
946 return 0;
947
948 pud = pud_offset(pgd, address);
949 if (!pud_present(*pud))
950 return 0;
951
952 if (pud_large(*pud))
953 return spurious_fault_check(error_code, (pte_t *) pud);
954
955 pmd = pmd_offset(pud, address);
956 if (!pmd_present(*pmd))
957 return 0;
958
959 if (pmd_large(*pmd))
960 return spurious_fault_check(error_code, (pte_t *) pmd);
961
962 pte = pte_offset_kernel(pmd, address);
963 if (!pte_present(*pte))
964 return 0;
965
966 ret = spurious_fault_check(error_code, pte);
967 if (!ret)
968 return 0;
969
970 /*
971 * Make sure we have permissions in PMD.
972 * If not, then there's a bug in the page tables:
973 */
974 ret = spurious_fault_check(error_code, (pte_t *) pmd);
975 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
976
977 return ret;
978 }
979
980 int show_unhandled_signals = 1;
981
982 static inline int
983 access_error(unsigned long error_code, struct vm_area_struct *vma)
984 {
985 if (error_code & PF_WRITE) {
986 /* write, present and write, not present: */
987 if (unlikely(!(vma->vm_flags & VM_WRITE)))
988 return 1;
989 return 0;
990 }
991
992 /* read, present: */
993 if (unlikely(error_code & PF_PROT))
994 return 1;
995
996 /* read, not present: */
997 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
998 return 1;
999
1000 return 0;
1001 }
1002
1003 static int fault_in_kernel_space(unsigned long address)
1004 {
1005 return address >= TASK_SIZE_MAX;
1006 }
1007
1008 static inline bool smap_violation(int error_code, struct pt_regs *regs)
1009 {
1010 if (!IS_ENABLED(CONFIG_X86_SMAP))
1011 return false;
1012
1013 if (!static_cpu_has(X86_FEATURE_SMAP))
1014 return false;
1015
1016 if (error_code & PF_USER)
1017 return false;
1018
1019 if (!user_mode_vm(regs) && (regs->flags & X86_EFLAGS_AC))
1020 return false;
1021
1022 return true;
1023 }
1024
1025 /*
1026 * This routine handles page faults. It determines the address,
1027 * and the problem, and then passes it off to one of the appropriate
1028 * routines.
1029 *
1030 * This function must have noinline because both callers
1031 * {,trace_}do_page_fault() have notrace on. Having this an actual function
1032 * guarantees there's a function trace entry.
1033 */
1034 static void __kprobes noinline
1035 __do_page_fault(struct pt_regs *regs, unsigned long error_code,
1036 unsigned long address)
1037 {
1038 struct vm_area_struct *vma;
1039 struct task_struct *tsk;
1040 struct mm_struct *mm;
1041 int fault;
1042 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1043
1044 tsk = current;
1045 mm = tsk->mm;
1046
1047 /*
1048 * Detect and handle instructions that would cause a page fault for
1049 * both a tracked kernel page and a userspace page.
1050 */
1051 if (kmemcheck_active(regs))
1052 kmemcheck_hide(regs);
1053 prefetchw(&mm->mmap_sem);
1054
1055 if (unlikely(kmmio_fault(regs, address)))
1056 return;
1057
1058 /*
1059 * We fault-in kernel-space virtual memory on-demand. The
1060 * 'reference' page table is init_mm.pgd.
1061 *
1062 * NOTE! We MUST NOT take any locks for this case. We may
1063 * be in an interrupt or a critical region, and should
1064 * only copy the information from the master page table,
1065 * nothing more.
1066 *
1067 * This verifies that the fault happens in kernel space
1068 * (error_code & 4) == 0, and that the fault was not a
1069 * protection error (error_code & 9) == 0.
1070 */
1071 if (unlikely(fault_in_kernel_space(address))) {
1072 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1073 if (vmalloc_fault(address) >= 0)
1074 return;
1075
1076 if (kmemcheck_fault(regs, address, error_code))
1077 return;
1078 }
1079
1080 /* Can handle a stale RO->RW TLB: */
1081 if (spurious_fault(error_code, address))
1082 return;
1083
1084 /* kprobes don't want to hook the spurious faults: */
1085 if (kprobes_fault(regs))
1086 return;
1087 /*
1088 * Don't take the mm semaphore here. If we fixup a prefetch
1089 * fault we could otherwise deadlock:
1090 */
1091 bad_area_nosemaphore(regs, error_code, address);
1092
1093 return;
1094 }
1095
1096 /* kprobes don't want to hook the spurious faults: */
1097 if (unlikely(kprobes_fault(regs)))
1098 return;
1099
1100 if (unlikely(error_code & PF_RSVD))
1101 pgtable_bad(regs, error_code, address);
1102
1103 if (unlikely(smap_violation(error_code, regs))) {
1104 bad_area_nosemaphore(regs, error_code, address);
1105 return;
1106 }
1107
1108 /*
1109 * If we're in an interrupt, have no user context or are running
1110 * in an atomic region then we must not take the fault:
1111 */
1112 if (unlikely(in_atomic() || !mm)) {
1113 bad_area_nosemaphore(regs, error_code, address);
1114 return;
1115 }
1116
1117 /*
1118 * It's safe to allow irq's after cr2 has been saved and the
1119 * vmalloc fault has been handled.
1120 *
1121 * User-mode registers count as a user access even for any
1122 * potential system fault or CPU buglet:
1123 */
1124 if (user_mode_vm(regs)) {
1125 local_irq_enable();
1126 error_code |= PF_USER;
1127 flags |= FAULT_FLAG_USER;
1128 } else {
1129 if (regs->flags & X86_EFLAGS_IF)
1130 local_irq_enable();
1131 }
1132
1133 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1134
1135 if (error_code & PF_WRITE)
1136 flags |= FAULT_FLAG_WRITE;
1137
1138 /*
1139 * When running in the kernel we expect faults to occur only to
1140 * addresses in user space. All other faults represent errors in
1141 * the kernel and should generate an OOPS. Unfortunately, in the
1142 * case of an erroneous fault occurring in a code path which already
1143 * holds mmap_sem we will deadlock attempting to validate the fault
1144 * against the address space. Luckily the kernel only validly
1145 * references user space from well defined areas of code, which are
1146 * listed in the exceptions table.
1147 *
1148 * As the vast majority of faults will be valid we will only perform
1149 * the source reference check when there is a possibility of a
1150 * deadlock. Attempt to lock the address space, if we cannot we then
1151 * validate the source. If this is invalid we can skip the address
1152 * space check, thus avoiding the deadlock:
1153 */
1154 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1155 if ((error_code & PF_USER) == 0 &&
1156 !search_exception_tables(regs->ip)) {
1157 bad_area_nosemaphore(regs, error_code, address);
1158 return;
1159 }
1160 retry:
1161 down_read(&mm->mmap_sem);
1162 } else {
1163 /*
1164 * The above down_read_trylock() might have succeeded in
1165 * which case we'll have missed the might_sleep() from
1166 * down_read():
1167 */
1168 might_sleep();
1169 }
1170
1171 vma = find_vma(mm, address);
1172 if (unlikely(!vma)) {
1173 bad_area(regs, error_code, address);
1174 return;
1175 }
1176 if (likely(vma->vm_start <= address))
1177 goto good_area;
1178 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1179 bad_area(regs, error_code, address);
1180 return;
1181 }
1182 if (error_code & PF_USER) {
1183 /*
1184 * Accessing the stack below %sp is always a bug.
1185 * The large cushion allows instructions like enter
1186 * and pusha to work. ("enter $65535, $31" pushes
1187 * 32 pointers and then decrements %sp by 65535.)
1188 */
1189 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1190 bad_area(regs, error_code, address);
1191 return;
1192 }
1193 }
1194 if (unlikely(expand_stack(vma, address))) {
1195 bad_area(regs, error_code, address);
1196 return;
1197 }
1198
1199 /*
1200 * Ok, we have a good vm_area for this memory access, so
1201 * we can handle it..
1202 */
1203 good_area:
1204 if (unlikely(access_error(error_code, vma))) {
1205 bad_area_access_error(regs, error_code, address);
1206 return;
1207 }
1208
1209 /*
1210 * If for any reason at all we couldn't handle the fault,
1211 * make sure we exit gracefully rather than endlessly redo
1212 * the fault:
1213 */
1214 fault = handle_mm_fault(mm, vma, address, flags);
1215
1216 /*
1217 * If we need to retry but a fatal signal is pending, handle the
1218 * signal first. We do not need to release the mmap_sem because it
1219 * would already be released in __lock_page_or_retry in mm/filemap.c.
1220 */
1221 if (unlikely((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)))
1222 return;
1223
1224 if (unlikely(fault & VM_FAULT_ERROR)) {
1225 mm_fault_error(regs, error_code, address, fault);
1226 return;
1227 }
1228
1229 /*
1230 * Major/minor page fault accounting is only done on the
1231 * initial attempt. If we go through a retry, it is extremely
1232 * likely that the page will be found in page cache at that point.
1233 */
1234 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1235 if (fault & VM_FAULT_MAJOR) {
1236 tsk->maj_flt++;
1237 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
1238 regs, address);
1239 } else {
1240 tsk->min_flt++;
1241 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
1242 regs, address);
1243 }
1244 if (fault & VM_FAULT_RETRY) {
1245 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
1246 * of starvation. */
1247 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1248 flags |= FAULT_FLAG_TRIED;
1249 goto retry;
1250 }
1251 }
1252
1253 check_v8086_mode(regs, address, tsk);
1254
1255 up_read(&mm->mmap_sem);
1256 }
1257
1258 dotraplinkage void __kprobes notrace
1259 do_page_fault(struct pt_regs *regs, unsigned long error_code)
1260 {
1261 unsigned long address = read_cr2(); /* Get the faulting address */
1262 enum ctx_state prev_state;
1263
1264 /*
1265 * We must have this function tagged with __kprobes, notrace and call
1266 * read_cr2() before calling anything else. To avoid calling any kind
1267 * of tracing machinery before we've observed the CR2 value.
1268 *
1269 * exception_{enter,exit}() contain all sorts of tracepoints.
1270 */
1271
1272 prev_state = exception_enter();
1273 __do_page_fault(regs, error_code, address);
1274 exception_exit(prev_state);
1275 }
1276
1277 #ifdef CONFIG_TRACING
1278 static void trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1279 unsigned long error_code)
1280 {
1281 if (user_mode(regs))
1282 trace_page_fault_user(address, regs, error_code);
1283 else
1284 trace_page_fault_kernel(address, regs, error_code);
1285 }
1286
1287 dotraplinkage void __kprobes notrace
1288 trace_do_page_fault(struct pt_regs *regs, unsigned long error_code)
1289 {
1290 /*
1291 * The exception_enter and tracepoint processing could
1292 * trigger another page faults (user space callchain
1293 * reading) and destroy the original cr2 value, so read
1294 * the faulting address now.
1295 */
1296 unsigned long address = read_cr2();
1297 enum ctx_state prev_state;
1298
1299 prev_state = exception_enter();
1300 trace_page_fault_entries(address, regs, error_code);
1301 __do_page_fault(regs, error_code, address);
1302 exception_exit(prev_state);
1303 }
1304 #endif /* CONFIG_TRACING */