]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/x86/mm/fault.c
Merge branch 'x86/boot' into x86/mm, to avoid conflict
[mirror_ubuntu-focal-kernel.git] / arch / x86 / mm / fault.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
5 */
6 #include <linux/sched.h> /* test_thread_flag(), ... */
7 #include <linux/sched/task_stack.h> /* task_stack_*(), ... */
8 #include <linux/kdebug.h> /* oops_begin/end, ... */
9 #include <linux/extable.h> /* search_exception_tables */
10 #include <linux/bootmem.h> /* max_low_pfn */
11 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
12 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
13 #include <linux/perf_event.h> /* perf_sw_event */
14 #include <linux/hugetlb.h> /* hstate_index_to_shift */
15 #include <linux/prefetch.h> /* prefetchw */
16 #include <linux/context_tracking.h> /* exception_enter(), ... */
17 #include <linux/uaccess.h> /* faulthandler_disabled() */
18
19 #include <asm/cpufeature.h> /* boot_cpu_has, ... */
20 #include <asm/traps.h> /* dotraplinkage, ... */
21 #include <asm/pgalloc.h> /* pgd_*(), ... */
22 #include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
23 #include <asm/fixmap.h> /* VSYSCALL_ADDR */
24 #include <asm/vsyscall.h> /* emulate_vsyscall */
25 #include <asm/vm86.h> /* struct vm86 */
26 #include <asm/mmu_context.h> /* vma_pkey() */
27
28 #define CREATE_TRACE_POINTS
29 #include <asm/trace/exceptions.h>
30
31 /*
32 * Page fault error code bits:
33 *
34 * bit 0 == 0: no page found 1: protection fault
35 * bit 1 == 0: read access 1: write access
36 * bit 2 == 0: kernel-mode access 1: user-mode access
37 * bit 3 == 1: use of reserved bit detected
38 * bit 4 == 1: fault was an instruction fetch
39 * bit 5 == 1: protection keys block access
40 */
41 enum x86_pf_error_code {
42
43 PF_PROT = 1 << 0,
44 PF_WRITE = 1 << 1,
45 PF_USER = 1 << 2,
46 PF_RSVD = 1 << 3,
47 PF_INSTR = 1 << 4,
48 PF_PK = 1 << 5,
49 };
50
51 /*
52 * Returns 0 if mmiotrace is disabled, or if the fault is not
53 * handled by mmiotrace:
54 */
55 static nokprobe_inline int
56 kmmio_fault(struct pt_regs *regs, unsigned long addr)
57 {
58 if (unlikely(is_kmmio_active()))
59 if (kmmio_handler(regs, addr) == 1)
60 return -1;
61 return 0;
62 }
63
64 static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
65 {
66 int ret = 0;
67
68 /* kprobe_running() needs smp_processor_id() */
69 if (kprobes_built_in() && !user_mode(regs)) {
70 preempt_disable();
71 if (kprobe_running() && kprobe_fault_handler(regs, 14))
72 ret = 1;
73 preempt_enable();
74 }
75
76 return ret;
77 }
78
79 /*
80 * Prefetch quirks:
81 *
82 * 32-bit mode:
83 *
84 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
85 * Check that here and ignore it.
86 *
87 * 64-bit mode:
88 *
89 * Sometimes the CPU reports invalid exceptions on prefetch.
90 * Check that here and ignore it.
91 *
92 * Opcode checker based on code by Richard Brunner.
93 */
94 static inline int
95 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
96 unsigned char opcode, int *prefetch)
97 {
98 unsigned char instr_hi = opcode & 0xf0;
99 unsigned char instr_lo = opcode & 0x0f;
100
101 switch (instr_hi) {
102 case 0x20:
103 case 0x30:
104 /*
105 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
106 * In X86_64 long mode, the CPU will signal invalid
107 * opcode if some of these prefixes are present so
108 * X86_64 will never get here anyway
109 */
110 return ((instr_lo & 7) == 0x6);
111 #ifdef CONFIG_X86_64
112 case 0x40:
113 /*
114 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
115 * Need to figure out under what instruction mode the
116 * instruction was issued. Could check the LDT for lm,
117 * but for now it's good enough to assume that long
118 * mode only uses well known segments or kernel.
119 */
120 return (!user_mode(regs) || user_64bit_mode(regs));
121 #endif
122 case 0x60:
123 /* 0x64 thru 0x67 are valid prefixes in all modes. */
124 return (instr_lo & 0xC) == 0x4;
125 case 0xF0:
126 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
127 return !instr_lo || (instr_lo>>1) == 1;
128 case 0x00:
129 /* Prefetch instruction is 0x0F0D or 0x0F18 */
130 if (probe_kernel_address(instr, opcode))
131 return 0;
132
133 *prefetch = (instr_lo == 0xF) &&
134 (opcode == 0x0D || opcode == 0x18);
135 return 0;
136 default:
137 return 0;
138 }
139 }
140
141 static int
142 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
143 {
144 unsigned char *max_instr;
145 unsigned char *instr;
146 int prefetch = 0;
147
148 /*
149 * If it was a exec (instruction fetch) fault on NX page, then
150 * do not ignore the fault:
151 */
152 if (error_code & PF_INSTR)
153 return 0;
154
155 instr = (void *)convert_ip_to_linear(current, regs);
156 max_instr = instr + 15;
157
158 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
159 return 0;
160
161 while (instr < max_instr) {
162 unsigned char opcode;
163
164 if (probe_kernel_address(instr, opcode))
165 break;
166
167 instr++;
168
169 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
170 break;
171 }
172 return prefetch;
173 }
174
175 /*
176 * A protection key fault means that the PKRU value did not allow
177 * access to some PTE. Userspace can figure out what PKRU was
178 * from the XSAVE state, and this function fills out a field in
179 * siginfo so userspace can discover which protection key was set
180 * on the PTE.
181 *
182 * If we get here, we know that the hardware signaled a PF_PK
183 * fault and that there was a VMA once we got in the fault
184 * handler. It does *not* guarantee that the VMA we find here
185 * was the one that we faulted on.
186 *
187 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
188 * 2. T1 : set PKRU to deny access to pkey=4, touches page
189 * 3. T1 : faults...
190 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
191 * 5. T1 : enters fault handler, takes mmap_sem, etc...
192 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
193 * faulted on a pte with its pkey=4.
194 */
195 static void fill_sig_info_pkey(int si_code, siginfo_t *info,
196 struct vm_area_struct *vma)
197 {
198 /* This is effectively an #ifdef */
199 if (!boot_cpu_has(X86_FEATURE_OSPKE))
200 return;
201
202 /* Fault not from Protection Keys: nothing to do */
203 if (si_code != SEGV_PKUERR)
204 return;
205 /*
206 * force_sig_info_fault() is called from a number of
207 * contexts, some of which have a VMA and some of which
208 * do not. The PF_PK handing happens after we have a
209 * valid VMA, so we should never reach this without a
210 * valid VMA.
211 */
212 if (!vma) {
213 WARN_ONCE(1, "PKU fault with no VMA passed in");
214 info->si_pkey = 0;
215 return;
216 }
217 /*
218 * si_pkey should be thought of as a strong hint, but not
219 * absolutely guranteed to be 100% accurate because of
220 * the race explained above.
221 */
222 info->si_pkey = vma_pkey(vma);
223 }
224
225 static void
226 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
227 struct task_struct *tsk, struct vm_area_struct *vma,
228 int fault)
229 {
230 unsigned lsb = 0;
231 siginfo_t info;
232
233 info.si_signo = si_signo;
234 info.si_errno = 0;
235 info.si_code = si_code;
236 info.si_addr = (void __user *)address;
237 if (fault & VM_FAULT_HWPOISON_LARGE)
238 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
239 if (fault & VM_FAULT_HWPOISON)
240 lsb = PAGE_SHIFT;
241 info.si_addr_lsb = lsb;
242
243 fill_sig_info_pkey(si_code, &info, vma);
244
245 force_sig_info(si_signo, &info, tsk);
246 }
247
248 DEFINE_SPINLOCK(pgd_lock);
249 LIST_HEAD(pgd_list);
250
251 #ifdef CONFIG_X86_32
252 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
253 {
254 unsigned index = pgd_index(address);
255 pgd_t *pgd_k;
256 p4d_t *p4d, *p4d_k;
257 pud_t *pud, *pud_k;
258 pmd_t *pmd, *pmd_k;
259
260 pgd += index;
261 pgd_k = init_mm.pgd + index;
262
263 if (!pgd_present(*pgd_k))
264 return NULL;
265
266 /*
267 * set_pgd(pgd, *pgd_k); here would be useless on PAE
268 * and redundant with the set_pmd() on non-PAE. As would
269 * set_p4d/set_pud.
270 */
271 p4d = p4d_offset(pgd, address);
272 p4d_k = p4d_offset(pgd_k, address);
273 if (!p4d_present(*p4d_k))
274 return NULL;
275
276 pud = pud_offset(p4d, address);
277 pud_k = pud_offset(p4d_k, address);
278 if (!pud_present(*pud_k))
279 return NULL;
280
281 pmd = pmd_offset(pud, address);
282 pmd_k = pmd_offset(pud_k, address);
283 if (!pmd_present(*pmd_k))
284 return NULL;
285
286 if (!pmd_present(*pmd))
287 set_pmd(pmd, *pmd_k);
288 else
289 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
290
291 return pmd_k;
292 }
293
294 void vmalloc_sync_all(void)
295 {
296 unsigned long address;
297
298 if (SHARED_KERNEL_PMD)
299 return;
300
301 for (address = VMALLOC_START & PMD_MASK;
302 address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
303 address += PMD_SIZE) {
304 struct page *page;
305
306 spin_lock(&pgd_lock);
307 list_for_each_entry(page, &pgd_list, lru) {
308 spinlock_t *pgt_lock;
309 pmd_t *ret;
310
311 /* the pgt_lock only for Xen */
312 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
313
314 spin_lock(pgt_lock);
315 ret = vmalloc_sync_one(page_address(page), address);
316 spin_unlock(pgt_lock);
317
318 if (!ret)
319 break;
320 }
321 spin_unlock(&pgd_lock);
322 }
323 }
324
325 /*
326 * 32-bit:
327 *
328 * Handle a fault on the vmalloc or module mapping area
329 */
330 static noinline int vmalloc_fault(unsigned long address)
331 {
332 unsigned long pgd_paddr;
333 pmd_t *pmd_k;
334 pte_t *pte_k;
335
336 /* Make sure we are in vmalloc area: */
337 if (!(address >= VMALLOC_START && address < VMALLOC_END))
338 return -1;
339
340 WARN_ON_ONCE(in_nmi());
341
342 /*
343 * Synchronize this task's top level page-table
344 * with the 'reference' page table.
345 *
346 * Do _not_ use "current" here. We might be inside
347 * an interrupt in the middle of a task switch..
348 */
349 pgd_paddr = read_cr3();
350 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
351 if (!pmd_k)
352 return -1;
353
354 if (pmd_huge(*pmd_k))
355 return 0;
356
357 pte_k = pte_offset_kernel(pmd_k, address);
358 if (!pte_present(*pte_k))
359 return -1;
360
361 return 0;
362 }
363 NOKPROBE_SYMBOL(vmalloc_fault);
364
365 /*
366 * Did it hit the DOS screen memory VA from vm86 mode?
367 */
368 static inline void
369 check_v8086_mode(struct pt_regs *regs, unsigned long address,
370 struct task_struct *tsk)
371 {
372 #ifdef CONFIG_VM86
373 unsigned long bit;
374
375 if (!v8086_mode(regs) || !tsk->thread.vm86)
376 return;
377
378 bit = (address - 0xA0000) >> PAGE_SHIFT;
379 if (bit < 32)
380 tsk->thread.vm86->screen_bitmap |= 1 << bit;
381 #endif
382 }
383
384 static bool low_pfn(unsigned long pfn)
385 {
386 return pfn < max_low_pfn;
387 }
388
389 static void dump_pagetable(unsigned long address)
390 {
391 pgd_t *base = __va(read_cr3());
392 pgd_t *pgd = &base[pgd_index(address)];
393 p4d_t *p4d;
394 pud_t *pud;
395 pmd_t *pmd;
396 pte_t *pte;
397
398 #ifdef CONFIG_X86_PAE
399 printk("*pdpt = %016Lx ", pgd_val(*pgd));
400 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
401 goto out;
402 #endif
403 p4d = p4d_offset(pgd, address);
404 pud = pud_offset(p4d, address);
405 pmd = pmd_offset(pud, address);
406 printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
407
408 /*
409 * We must not directly access the pte in the highpte
410 * case if the page table is located in highmem.
411 * And let's rather not kmap-atomic the pte, just in case
412 * it's allocated already:
413 */
414 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
415 goto out;
416
417 pte = pte_offset_kernel(pmd, address);
418 printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
419 out:
420 printk("\n");
421 }
422
423 #else /* CONFIG_X86_64: */
424
425 void vmalloc_sync_all(void)
426 {
427 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
428 }
429
430 /*
431 * 64-bit:
432 *
433 * Handle a fault on the vmalloc area
434 */
435 static noinline int vmalloc_fault(unsigned long address)
436 {
437 pgd_t *pgd, *pgd_ref;
438 p4d_t *p4d, *p4d_ref;
439 pud_t *pud, *pud_ref;
440 pmd_t *pmd, *pmd_ref;
441 pte_t *pte, *pte_ref;
442
443 /* Make sure we are in vmalloc area: */
444 if (!(address >= VMALLOC_START && address < VMALLOC_END))
445 return -1;
446
447 WARN_ON_ONCE(in_nmi());
448
449 /*
450 * Copy kernel mappings over when needed. This can also
451 * happen within a race in page table update. In the later
452 * case just flush:
453 */
454 pgd = (pgd_t *)__va(read_cr3()) + pgd_index(address);
455 pgd_ref = pgd_offset_k(address);
456 if (pgd_none(*pgd_ref))
457 return -1;
458
459 if (pgd_none(*pgd)) {
460 set_pgd(pgd, *pgd_ref);
461 arch_flush_lazy_mmu_mode();
462 } else if (CONFIG_PGTABLE_LEVELS > 4) {
463 /*
464 * With folded p4d, pgd_none() is always false, so the pgd may
465 * point to an empty page table entry and pgd_page_vaddr()
466 * will return garbage.
467 *
468 * We will do the correct sanity check on the p4d level.
469 */
470 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
471 }
472
473 /* With 4-level paging, copying happens on the p4d level. */
474 p4d = p4d_offset(pgd, address);
475 p4d_ref = p4d_offset(pgd_ref, address);
476 if (p4d_none(*p4d_ref))
477 return -1;
478
479 if (p4d_none(*p4d)) {
480 set_p4d(p4d, *p4d_ref);
481 arch_flush_lazy_mmu_mode();
482 } else {
483 BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_ref));
484 }
485
486 /*
487 * Below here mismatches are bugs because these lower tables
488 * are shared:
489 */
490
491 pud = pud_offset(p4d, address);
492 pud_ref = pud_offset(p4d_ref, address);
493 if (pud_none(*pud_ref))
494 return -1;
495
496 if (pud_none(*pud) || pud_pfn(*pud) != pud_pfn(*pud_ref))
497 BUG();
498
499 if (pud_huge(*pud))
500 return 0;
501
502 pmd = pmd_offset(pud, address);
503 pmd_ref = pmd_offset(pud_ref, address);
504 if (pmd_none(*pmd_ref))
505 return -1;
506
507 if (pmd_none(*pmd) || pmd_pfn(*pmd) != pmd_pfn(*pmd_ref))
508 BUG();
509
510 if (pmd_huge(*pmd))
511 return 0;
512
513 pte_ref = pte_offset_kernel(pmd_ref, address);
514 if (!pte_present(*pte_ref))
515 return -1;
516
517 pte = pte_offset_kernel(pmd, address);
518
519 /*
520 * Don't use pte_page here, because the mappings can point
521 * outside mem_map, and the NUMA hash lookup cannot handle
522 * that:
523 */
524 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
525 BUG();
526
527 return 0;
528 }
529 NOKPROBE_SYMBOL(vmalloc_fault);
530
531 #ifdef CONFIG_CPU_SUP_AMD
532 static const char errata93_warning[] =
533 KERN_ERR
534 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
535 "******* Working around it, but it may cause SEGVs or burn power.\n"
536 "******* Please consider a BIOS update.\n"
537 "******* Disabling USB legacy in the BIOS may also help.\n";
538 #endif
539
540 /*
541 * No vm86 mode in 64-bit mode:
542 */
543 static inline void
544 check_v8086_mode(struct pt_regs *regs, unsigned long address,
545 struct task_struct *tsk)
546 {
547 }
548
549 static int bad_address(void *p)
550 {
551 unsigned long dummy;
552
553 return probe_kernel_address((unsigned long *)p, dummy);
554 }
555
556 static void dump_pagetable(unsigned long address)
557 {
558 pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
559 pgd_t *pgd = base + pgd_index(address);
560 p4d_t *p4d;
561 pud_t *pud;
562 pmd_t *pmd;
563 pte_t *pte;
564
565 if (bad_address(pgd))
566 goto bad;
567
568 printk("PGD %lx ", pgd_val(*pgd));
569
570 if (!pgd_present(*pgd))
571 goto out;
572
573 p4d = p4d_offset(pgd, address);
574 if (bad_address(p4d))
575 goto bad;
576
577 printk("P4D %lx ", p4d_val(*p4d));
578 if (!p4d_present(*p4d) || p4d_large(*p4d))
579 goto out;
580
581 pud = pud_offset(p4d, address);
582 if (bad_address(pud))
583 goto bad;
584
585 printk("PUD %lx ", pud_val(*pud));
586 if (!pud_present(*pud) || pud_large(*pud))
587 goto out;
588
589 pmd = pmd_offset(pud, address);
590 if (bad_address(pmd))
591 goto bad;
592
593 printk("PMD %lx ", pmd_val(*pmd));
594 if (!pmd_present(*pmd) || pmd_large(*pmd))
595 goto out;
596
597 pte = pte_offset_kernel(pmd, address);
598 if (bad_address(pte))
599 goto bad;
600
601 printk("PTE %lx", pte_val(*pte));
602 out:
603 printk("\n");
604 return;
605 bad:
606 printk("BAD\n");
607 }
608
609 #endif /* CONFIG_X86_64 */
610
611 /*
612 * Workaround for K8 erratum #93 & buggy BIOS.
613 *
614 * BIOS SMM functions are required to use a specific workaround
615 * to avoid corruption of the 64bit RIP register on C stepping K8.
616 *
617 * A lot of BIOS that didn't get tested properly miss this.
618 *
619 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
620 * Try to work around it here.
621 *
622 * Note we only handle faults in kernel here.
623 * Does nothing on 32-bit.
624 */
625 static int is_errata93(struct pt_regs *regs, unsigned long address)
626 {
627 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
628 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
629 || boot_cpu_data.x86 != 0xf)
630 return 0;
631
632 if (address != regs->ip)
633 return 0;
634
635 if ((address >> 32) != 0)
636 return 0;
637
638 address |= 0xffffffffUL << 32;
639 if ((address >= (u64)_stext && address <= (u64)_etext) ||
640 (address >= MODULES_VADDR && address <= MODULES_END)) {
641 printk_once(errata93_warning);
642 regs->ip = address;
643 return 1;
644 }
645 #endif
646 return 0;
647 }
648
649 /*
650 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
651 * to illegal addresses >4GB.
652 *
653 * We catch this in the page fault handler because these addresses
654 * are not reachable. Just detect this case and return. Any code
655 * segment in LDT is compatibility mode.
656 */
657 static int is_errata100(struct pt_regs *regs, unsigned long address)
658 {
659 #ifdef CONFIG_X86_64
660 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
661 return 1;
662 #endif
663 return 0;
664 }
665
666 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
667 {
668 #ifdef CONFIG_X86_F00F_BUG
669 unsigned long nr;
670
671 /*
672 * Pentium F0 0F C7 C8 bug workaround:
673 */
674 if (boot_cpu_has_bug(X86_BUG_F00F)) {
675 nr = (address - idt_descr.address) >> 3;
676
677 if (nr == 6) {
678 do_invalid_op(regs, 0);
679 return 1;
680 }
681 }
682 #endif
683 return 0;
684 }
685
686 static const char nx_warning[] = KERN_CRIT
687 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
688 static const char smep_warning[] = KERN_CRIT
689 "unable to execute userspace code (SMEP?) (uid: %d)\n";
690
691 static void
692 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
693 unsigned long address)
694 {
695 if (!oops_may_print())
696 return;
697
698 if (error_code & PF_INSTR) {
699 unsigned int level;
700 pgd_t *pgd;
701 pte_t *pte;
702
703 pgd = __va(read_cr3() & PHYSICAL_PAGE_MASK);
704 pgd += pgd_index(address);
705
706 pte = lookup_address_in_pgd(pgd, address, &level);
707
708 if (pte && pte_present(*pte) && !pte_exec(*pte))
709 printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
710 if (pte && pte_present(*pte) && pte_exec(*pte) &&
711 (pgd_flags(*pgd) & _PAGE_USER) &&
712 (__read_cr4() & X86_CR4_SMEP))
713 printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
714 }
715
716 printk(KERN_ALERT "BUG: unable to handle kernel ");
717 if (address < PAGE_SIZE)
718 printk(KERN_CONT "NULL pointer dereference");
719 else
720 printk(KERN_CONT "paging request");
721
722 printk(KERN_CONT " at %p\n", (void *) address);
723 printk(KERN_ALERT "IP: %pS\n", (void *)regs->ip);
724
725 dump_pagetable(address);
726 }
727
728 static noinline void
729 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
730 unsigned long address)
731 {
732 struct task_struct *tsk;
733 unsigned long flags;
734 int sig;
735
736 flags = oops_begin();
737 tsk = current;
738 sig = SIGKILL;
739
740 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
741 tsk->comm, address);
742 dump_pagetable(address);
743
744 tsk->thread.cr2 = address;
745 tsk->thread.trap_nr = X86_TRAP_PF;
746 tsk->thread.error_code = error_code;
747
748 if (__die("Bad pagetable", regs, error_code))
749 sig = 0;
750
751 oops_end(flags, regs, sig);
752 }
753
754 static noinline void
755 no_context(struct pt_regs *regs, unsigned long error_code,
756 unsigned long address, int signal, int si_code)
757 {
758 struct task_struct *tsk = current;
759 unsigned long flags;
760 int sig;
761 /* No context means no VMA to pass down */
762 struct vm_area_struct *vma = NULL;
763
764 /* Are we prepared to handle this kernel fault? */
765 if (fixup_exception(regs, X86_TRAP_PF)) {
766 /*
767 * Any interrupt that takes a fault gets the fixup. This makes
768 * the below recursive fault logic only apply to a faults from
769 * task context.
770 */
771 if (in_interrupt())
772 return;
773
774 /*
775 * Per the above we're !in_interrupt(), aka. task context.
776 *
777 * In this case we need to make sure we're not recursively
778 * faulting through the emulate_vsyscall() logic.
779 */
780 if (current->thread.sig_on_uaccess_err && signal) {
781 tsk->thread.trap_nr = X86_TRAP_PF;
782 tsk->thread.error_code = error_code | PF_USER;
783 tsk->thread.cr2 = address;
784
785 /* XXX: hwpoison faults will set the wrong code. */
786 force_sig_info_fault(signal, si_code, address,
787 tsk, vma, 0);
788 }
789
790 /*
791 * Barring that, we can do the fixup and be happy.
792 */
793 return;
794 }
795
796 #ifdef CONFIG_VMAP_STACK
797 /*
798 * Stack overflow? During boot, we can fault near the initial
799 * stack in the direct map, but that's not an overflow -- check
800 * that we're in vmalloc space to avoid this.
801 */
802 if (is_vmalloc_addr((void *)address) &&
803 (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
804 address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
805 register void *__sp asm("rsp");
806 unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *);
807 /*
808 * We're likely to be running with very little stack space
809 * left. It's plausible that we'd hit this condition but
810 * double-fault even before we get this far, in which case
811 * we're fine: the double-fault handler will deal with it.
812 *
813 * We don't want to make it all the way into the oops code
814 * and then double-fault, though, because we're likely to
815 * break the console driver and lose most of the stack dump.
816 */
817 asm volatile ("movq %[stack], %%rsp\n\t"
818 "call handle_stack_overflow\n\t"
819 "1: jmp 1b"
820 : "+r" (__sp)
821 : "D" ("kernel stack overflow (page fault)"),
822 "S" (regs), "d" (address),
823 [stack] "rm" (stack));
824 unreachable();
825 }
826 #endif
827
828 /*
829 * 32-bit:
830 *
831 * Valid to do another page fault here, because if this fault
832 * had been triggered by is_prefetch fixup_exception would have
833 * handled it.
834 *
835 * 64-bit:
836 *
837 * Hall of shame of CPU/BIOS bugs.
838 */
839 if (is_prefetch(regs, error_code, address))
840 return;
841
842 if (is_errata93(regs, address))
843 return;
844
845 /*
846 * Oops. The kernel tried to access some bad page. We'll have to
847 * terminate things with extreme prejudice:
848 */
849 flags = oops_begin();
850
851 show_fault_oops(regs, error_code, address);
852
853 if (task_stack_end_corrupted(tsk))
854 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
855
856 tsk->thread.cr2 = address;
857 tsk->thread.trap_nr = X86_TRAP_PF;
858 tsk->thread.error_code = error_code;
859
860 sig = SIGKILL;
861 if (__die("Oops", regs, error_code))
862 sig = 0;
863
864 /* Executive summary in case the body of the oops scrolled away */
865 printk(KERN_DEFAULT "CR2: %016lx\n", address);
866
867 oops_end(flags, regs, sig);
868 }
869
870 /*
871 * Print out info about fatal segfaults, if the show_unhandled_signals
872 * sysctl is set:
873 */
874 static inline void
875 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
876 unsigned long address, struct task_struct *tsk)
877 {
878 if (!unhandled_signal(tsk, SIGSEGV))
879 return;
880
881 if (!printk_ratelimit())
882 return;
883
884 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
885 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
886 tsk->comm, task_pid_nr(tsk), address,
887 (void *)regs->ip, (void *)regs->sp, error_code);
888
889 print_vma_addr(KERN_CONT " in ", regs->ip);
890
891 printk(KERN_CONT "\n");
892 }
893
894 static void
895 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
896 unsigned long address, struct vm_area_struct *vma,
897 int si_code)
898 {
899 struct task_struct *tsk = current;
900
901 /* User mode accesses just cause a SIGSEGV */
902 if (error_code & PF_USER) {
903 /*
904 * It's possible to have interrupts off here:
905 */
906 local_irq_enable();
907
908 /*
909 * Valid to do another page fault here because this one came
910 * from user space:
911 */
912 if (is_prefetch(regs, error_code, address))
913 return;
914
915 if (is_errata100(regs, address))
916 return;
917
918 #ifdef CONFIG_X86_64
919 /*
920 * Instruction fetch faults in the vsyscall page might need
921 * emulation.
922 */
923 if (unlikely((error_code & PF_INSTR) &&
924 ((address & ~0xfff) == VSYSCALL_ADDR))) {
925 if (emulate_vsyscall(regs, address))
926 return;
927 }
928 #endif
929
930 /*
931 * To avoid leaking information about the kernel page table
932 * layout, pretend that user-mode accesses to kernel addresses
933 * are always protection faults.
934 */
935 if (address >= TASK_SIZE_MAX)
936 error_code |= PF_PROT;
937
938 if (likely(show_unhandled_signals))
939 show_signal_msg(regs, error_code, address, tsk);
940
941 tsk->thread.cr2 = address;
942 tsk->thread.error_code = error_code;
943 tsk->thread.trap_nr = X86_TRAP_PF;
944
945 force_sig_info_fault(SIGSEGV, si_code, address, tsk, vma, 0);
946
947 return;
948 }
949
950 if (is_f00f_bug(regs, address))
951 return;
952
953 no_context(regs, error_code, address, SIGSEGV, si_code);
954 }
955
956 static noinline void
957 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
958 unsigned long address, struct vm_area_struct *vma)
959 {
960 __bad_area_nosemaphore(regs, error_code, address, vma, SEGV_MAPERR);
961 }
962
963 static void
964 __bad_area(struct pt_regs *regs, unsigned long error_code,
965 unsigned long address, struct vm_area_struct *vma, int si_code)
966 {
967 struct mm_struct *mm = current->mm;
968
969 /*
970 * Something tried to access memory that isn't in our memory map..
971 * Fix it, but check if it's kernel or user first..
972 */
973 up_read(&mm->mmap_sem);
974
975 __bad_area_nosemaphore(regs, error_code, address, vma, si_code);
976 }
977
978 static noinline void
979 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
980 {
981 __bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
982 }
983
984 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
985 struct vm_area_struct *vma)
986 {
987 /* This code is always called on the current mm */
988 bool foreign = false;
989
990 if (!boot_cpu_has(X86_FEATURE_OSPKE))
991 return false;
992 if (error_code & PF_PK)
993 return true;
994 /* this checks permission keys on the VMA: */
995 if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
996 (error_code & PF_INSTR), foreign))
997 return true;
998 return false;
999 }
1000
1001 static noinline void
1002 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
1003 unsigned long address, struct vm_area_struct *vma)
1004 {
1005 /*
1006 * This OSPKE check is not strictly necessary at runtime.
1007 * But, doing it this way allows compiler optimizations
1008 * if pkeys are compiled out.
1009 */
1010 if (bad_area_access_from_pkeys(error_code, vma))
1011 __bad_area(regs, error_code, address, vma, SEGV_PKUERR);
1012 else
1013 __bad_area(regs, error_code, address, vma, SEGV_ACCERR);
1014 }
1015
1016 static void
1017 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
1018 struct vm_area_struct *vma, unsigned int fault)
1019 {
1020 struct task_struct *tsk = current;
1021 int code = BUS_ADRERR;
1022
1023 /* Kernel mode? Handle exceptions or die: */
1024 if (!(error_code & PF_USER)) {
1025 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1026 return;
1027 }
1028
1029 /* User-space => ok to do another page fault: */
1030 if (is_prefetch(regs, error_code, address))
1031 return;
1032
1033 tsk->thread.cr2 = address;
1034 tsk->thread.error_code = error_code;
1035 tsk->thread.trap_nr = X86_TRAP_PF;
1036
1037 #ifdef CONFIG_MEMORY_FAILURE
1038 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
1039 printk(KERN_ERR
1040 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
1041 tsk->comm, tsk->pid, address);
1042 code = BUS_MCEERR_AR;
1043 }
1044 #endif
1045 force_sig_info_fault(SIGBUS, code, address, tsk, vma, fault);
1046 }
1047
1048 static noinline void
1049 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
1050 unsigned long address, struct vm_area_struct *vma,
1051 unsigned int fault)
1052 {
1053 if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
1054 no_context(regs, error_code, address, 0, 0);
1055 return;
1056 }
1057
1058 if (fault & VM_FAULT_OOM) {
1059 /* Kernel mode? Handle exceptions or die: */
1060 if (!(error_code & PF_USER)) {
1061 no_context(regs, error_code, address,
1062 SIGSEGV, SEGV_MAPERR);
1063 return;
1064 }
1065
1066 /*
1067 * We ran out of memory, call the OOM killer, and return the
1068 * userspace (which will retry the fault, or kill us if we got
1069 * oom-killed):
1070 */
1071 pagefault_out_of_memory();
1072 } else {
1073 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1074 VM_FAULT_HWPOISON_LARGE))
1075 do_sigbus(regs, error_code, address, vma, fault);
1076 else if (fault & VM_FAULT_SIGSEGV)
1077 bad_area_nosemaphore(regs, error_code, address, vma);
1078 else
1079 BUG();
1080 }
1081 }
1082
1083 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
1084 {
1085 if ((error_code & PF_WRITE) && !pte_write(*pte))
1086 return 0;
1087
1088 if ((error_code & PF_INSTR) && !pte_exec(*pte))
1089 return 0;
1090 /*
1091 * Note: We do not do lazy flushing on protection key
1092 * changes, so no spurious fault will ever set PF_PK.
1093 */
1094 if ((error_code & PF_PK))
1095 return 1;
1096
1097 return 1;
1098 }
1099
1100 /*
1101 * Handle a spurious fault caused by a stale TLB entry.
1102 *
1103 * This allows us to lazily refresh the TLB when increasing the
1104 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
1105 * eagerly is very expensive since that implies doing a full
1106 * cross-processor TLB flush, even if no stale TLB entries exist
1107 * on other processors.
1108 *
1109 * Spurious faults may only occur if the TLB contains an entry with
1110 * fewer permission than the page table entry. Non-present (P = 0)
1111 * and reserved bit (R = 1) faults are never spurious.
1112 *
1113 * There are no security implications to leaving a stale TLB when
1114 * increasing the permissions on a page.
1115 *
1116 * Returns non-zero if a spurious fault was handled, zero otherwise.
1117 *
1118 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1119 * (Optional Invalidation).
1120 */
1121 static noinline int
1122 spurious_fault(unsigned long error_code, unsigned long address)
1123 {
1124 pgd_t *pgd;
1125 p4d_t *p4d;
1126 pud_t *pud;
1127 pmd_t *pmd;
1128 pte_t *pte;
1129 int ret;
1130
1131 /*
1132 * Only writes to RO or instruction fetches from NX may cause
1133 * spurious faults.
1134 *
1135 * These could be from user or supervisor accesses but the TLB
1136 * is only lazily flushed after a kernel mapping protection
1137 * change, so user accesses are not expected to cause spurious
1138 * faults.
1139 */
1140 if (error_code != (PF_WRITE | PF_PROT)
1141 && error_code != (PF_INSTR | PF_PROT))
1142 return 0;
1143
1144 pgd = init_mm.pgd + pgd_index(address);
1145 if (!pgd_present(*pgd))
1146 return 0;
1147
1148 p4d = p4d_offset(pgd, address);
1149 if (!p4d_present(*p4d))
1150 return 0;
1151
1152 if (p4d_large(*p4d))
1153 return spurious_fault_check(error_code, (pte_t *) p4d);
1154
1155 pud = pud_offset(p4d, address);
1156 if (!pud_present(*pud))
1157 return 0;
1158
1159 if (pud_large(*pud))
1160 return spurious_fault_check(error_code, (pte_t *) pud);
1161
1162 pmd = pmd_offset(pud, address);
1163 if (!pmd_present(*pmd))
1164 return 0;
1165
1166 if (pmd_large(*pmd))
1167 return spurious_fault_check(error_code, (pte_t *) pmd);
1168
1169 pte = pte_offset_kernel(pmd, address);
1170 if (!pte_present(*pte))
1171 return 0;
1172
1173 ret = spurious_fault_check(error_code, pte);
1174 if (!ret)
1175 return 0;
1176
1177 /*
1178 * Make sure we have permissions in PMD.
1179 * If not, then there's a bug in the page tables:
1180 */
1181 ret = spurious_fault_check(error_code, (pte_t *) pmd);
1182 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1183
1184 return ret;
1185 }
1186 NOKPROBE_SYMBOL(spurious_fault);
1187
1188 int show_unhandled_signals = 1;
1189
1190 static inline int
1191 access_error(unsigned long error_code, struct vm_area_struct *vma)
1192 {
1193 /* This is only called for the current mm, so: */
1194 bool foreign = false;
1195
1196 /*
1197 * Read or write was blocked by protection keys. This is
1198 * always an unconditional error and can never result in
1199 * a follow-up action to resolve the fault, like a COW.
1200 */
1201 if (error_code & PF_PK)
1202 return 1;
1203
1204 /*
1205 * Make sure to check the VMA so that we do not perform
1206 * faults just to hit a PF_PK as soon as we fill in a
1207 * page.
1208 */
1209 if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
1210 (error_code & PF_INSTR), foreign))
1211 return 1;
1212
1213 if (error_code & PF_WRITE) {
1214 /* write, present and write, not present: */
1215 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1216 return 1;
1217 return 0;
1218 }
1219
1220 /* read, present: */
1221 if (unlikely(error_code & PF_PROT))
1222 return 1;
1223
1224 /* read, not present: */
1225 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1226 return 1;
1227
1228 return 0;
1229 }
1230
1231 static int fault_in_kernel_space(unsigned long address)
1232 {
1233 return address >= TASK_SIZE_MAX;
1234 }
1235
1236 static inline bool smap_violation(int error_code, struct pt_regs *regs)
1237 {
1238 if (!IS_ENABLED(CONFIG_X86_SMAP))
1239 return false;
1240
1241 if (!static_cpu_has(X86_FEATURE_SMAP))
1242 return false;
1243
1244 if (error_code & PF_USER)
1245 return false;
1246
1247 if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
1248 return false;
1249
1250 return true;
1251 }
1252
1253 /*
1254 * This routine handles page faults. It determines the address,
1255 * and the problem, and then passes it off to one of the appropriate
1256 * routines.
1257 *
1258 * This function must have noinline because both callers
1259 * {,trace_}do_page_fault() have notrace on. Having this an actual function
1260 * guarantees there's a function trace entry.
1261 */
1262 static noinline void
1263 __do_page_fault(struct pt_regs *regs, unsigned long error_code,
1264 unsigned long address)
1265 {
1266 struct vm_area_struct *vma;
1267 struct task_struct *tsk;
1268 struct mm_struct *mm;
1269 int fault, major = 0;
1270 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1271
1272 tsk = current;
1273 mm = tsk->mm;
1274
1275 /*
1276 * Detect and handle instructions that would cause a page fault for
1277 * both a tracked kernel page and a userspace page.
1278 */
1279 if (kmemcheck_active(regs))
1280 kmemcheck_hide(regs);
1281 prefetchw(&mm->mmap_sem);
1282
1283 if (unlikely(kmmio_fault(regs, address)))
1284 return;
1285
1286 /*
1287 * We fault-in kernel-space virtual memory on-demand. The
1288 * 'reference' page table is init_mm.pgd.
1289 *
1290 * NOTE! We MUST NOT take any locks for this case. We may
1291 * be in an interrupt or a critical region, and should
1292 * only copy the information from the master page table,
1293 * nothing more.
1294 *
1295 * This verifies that the fault happens in kernel space
1296 * (error_code & 4) == 0, and that the fault was not a
1297 * protection error (error_code & 9) == 0.
1298 */
1299 if (unlikely(fault_in_kernel_space(address))) {
1300 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1301 if (vmalloc_fault(address) >= 0)
1302 return;
1303
1304 if (kmemcheck_fault(regs, address, error_code))
1305 return;
1306 }
1307
1308 /* Can handle a stale RO->RW TLB: */
1309 if (spurious_fault(error_code, address))
1310 return;
1311
1312 /* kprobes don't want to hook the spurious faults: */
1313 if (kprobes_fault(regs))
1314 return;
1315 /*
1316 * Don't take the mm semaphore here. If we fixup a prefetch
1317 * fault we could otherwise deadlock:
1318 */
1319 bad_area_nosemaphore(regs, error_code, address, NULL);
1320
1321 return;
1322 }
1323
1324 /* kprobes don't want to hook the spurious faults: */
1325 if (unlikely(kprobes_fault(regs)))
1326 return;
1327
1328 if (unlikely(error_code & PF_RSVD))
1329 pgtable_bad(regs, error_code, address);
1330
1331 if (unlikely(smap_violation(error_code, regs))) {
1332 bad_area_nosemaphore(regs, error_code, address, NULL);
1333 return;
1334 }
1335
1336 /*
1337 * If we're in an interrupt, have no user context or are running
1338 * in a region with pagefaults disabled then we must not take the fault
1339 */
1340 if (unlikely(faulthandler_disabled() || !mm)) {
1341 bad_area_nosemaphore(regs, error_code, address, NULL);
1342 return;
1343 }
1344
1345 /*
1346 * It's safe to allow irq's after cr2 has been saved and the
1347 * vmalloc fault has been handled.
1348 *
1349 * User-mode registers count as a user access even for any
1350 * potential system fault or CPU buglet:
1351 */
1352 if (user_mode(regs)) {
1353 local_irq_enable();
1354 error_code |= PF_USER;
1355 flags |= FAULT_FLAG_USER;
1356 } else {
1357 if (regs->flags & X86_EFLAGS_IF)
1358 local_irq_enable();
1359 }
1360
1361 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1362
1363 if (error_code & PF_WRITE)
1364 flags |= FAULT_FLAG_WRITE;
1365 if (error_code & PF_INSTR)
1366 flags |= FAULT_FLAG_INSTRUCTION;
1367
1368 /*
1369 * When running in the kernel we expect faults to occur only to
1370 * addresses in user space. All other faults represent errors in
1371 * the kernel and should generate an OOPS. Unfortunately, in the
1372 * case of an erroneous fault occurring in a code path which already
1373 * holds mmap_sem we will deadlock attempting to validate the fault
1374 * against the address space. Luckily the kernel only validly
1375 * references user space from well defined areas of code, which are
1376 * listed in the exceptions table.
1377 *
1378 * As the vast majority of faults will be valid we will only perform
1379 * the source reference check when there is a possibility of a
1380 * deadlock. Attempt to lock the address space, if we cannot we then
1381 * validate the source. If this is invalid we can skip the address
1382 * space check, thus avoiding the deadlock:
1383 */
1384 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1385 if ((error_code & PF_USER) == 0 &&
1386 !search_exception_tables(regs->ip)) {
1387 bad_area_nosemaphore(regs, error_code, address, NULL);
1388 return;
1389 }
1390 retry:
1391 down_read(&mm->mmap_sem);
1392 } else {
1393 /*
1394 * The above down_read_trylock() might have succeeded in
1395 * which case we'll have missed the might_sleep() from
1396 * down_read():
1397 */
1398 might_sleep();
1399 }
1400
1401 vma = find_vma(mm, address);
1402 if (unlikely(!vma)) {
1403 bad_area(regs, error_code, address);
1404 return;
1405 }
1406 if (likely(vma->vm_start <= address))
1407 goto good_area;
1408 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1409 bad_area(regs, error_code, address);
1410 return;
1411 }
1412 if (error_code & PF_USER) {
1413 /*
1414 * Accessing the stack below %sp is always a bug.
1415 * The large cushion allows instructions like enter
1416 * and pusha to work. ("enter $65535, $31" pushes
1417 * 32 pointers and then decrements %sp by 65535.)
1418 */
1419 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1420 bad_area(regs, error_code, address);
1421 return;
1422 }
1423 }
1424 if (unlikely(expand_stack(vma, address))) {
1425 bad_area(regs, error_code, address);
1426 return;
1427 }
1428
1429 /*
1430 * Ok, we have a good vm_area for this memory access, so
1431 * we can handle it..
1432 */
1433 good_area:
1434 if (unlikely(access_error(error_code, vma))) {
1435 bad_area_access_error(regs, error_code, address, vma);
1436 return;
1437 }
1438
1439 /*
1440 * If for any reason at all we couldn't handle the fault,
1441 * make sure we exit gracefully rather than endlessly redo
1442 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1443 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1444 */
1445 fault = handle_mm_fault(vma, address, flags);
1446 major |= fault & VM_FAULT_MAJOR;
1447
1448 /*
1449 * If we need to retry the mmap_sem has already been released,
1450 * and if there is a fatal signal pending there is no guarantee
1451 * that we made any progress. Handle this case first.
1452 */
1453 if (unlikely(fault & VM_FAULT_RETRY)) {
1454 /* Retry at most once */
1455 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1456 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1457 flags |= FAULT_FLAG_TRIED;
1458 if (!fatal_signal_pending(tsk))
1459 goto retry;
1460 }
1461
1462 /* User mode? Just return to handle the fatal exception */
1463 if (flags & FAULT_FLAG_USER)
1464 return;
1465
1466 /* Not returning to user mode? Handle exceptions or die: */
1467 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1468 return;
1469 }
1470
1471 up_read(&mm->mmap_sem);
1472 if (unlikely(fault & VM_FAULT_ERROR)) {
1473 mm_fault_error(regs, error_code, address, vma, fault);
1474 return;
1475 }
1476
1477 /*
1478 * Major/minor page fault accounting. If any of the events
1479 * returned VM_FAULT_MAJOR, we account it as a major fault.
1480 */
1481 if (major) {
1482 tsk->maj_flt++;
1483 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1484 } else {
1485 tsk->min_flt++;
1486 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1487 }
1488
1489 check_v8086_mode(regs, address, tsk);
1490 }
1491 NOKPROBE_SYMBOL(__do_page_fault);
1492
1493 dotraplinkage void notrace
1494 do_page_fault(struct pt_regs *regs, unsigned long error_code)
1495 {
1496 unsigned long address = read_cr2(); /* Get the faulting address */
1497 enum ctx_state prev_state;
1498
1499 /*
1500 * We must have this function tagged with __kprobes, notrace and call
1501 * read_cr2() before calling anything else. To avoid calling any kind
1502 * of tracing machinery before we've observed the CR2 value.
1503 *
1504 * exception_{enter,exit}() contain all sorts of tracepoints.
1505 */
1506
1507 prev_state = exception_enter();
1508 __do_page_fault(regs, error_code, address);
1509 exception_exit(prev_state);
1510 }
1511 NOKPROBE_SYMBOL(do_page_fault);
1512
1513 #ifdef CONFIG_TRACING
1514 static nokprobe_inline void
1515 trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1516 unsigned long error_code)
1517 {
1518 if (user_mode(regs))
1519 trace_page_fault_user(address, regs, error_code);
1520 else
1521 trace_page_fault_kernel(address, regs, error_code);
1522 }
1523
1524 dotraplinkage void notrace
1525 trace_do_page_fault(struct pt_regs *regs, unsigned long error_code)
1526 {
1527 /*
1528 * The exception_enter and tracepoint processing could
1529 * trigger another page faults (user space callchain
1530 * reading) and destroy the original cr2 value, so read
1531 * the faulting address now.
1532 */
1533 unsigned long address = read_cr2();
1534 enum ctx_state prev_state;
1535
1536 prev_state = exception_enter();
1537 trace_page_fault_entries(address, regs, error_code);
1538 __do_page_fault(regs, error_code, address);
1539 exception_exit(prev_state);
1540 }
1541 NOKPROBE_SYMBOL(trace_do_page_fault);
1542 #endif /* CONFIG_TRACING */