]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/x86/mm/fault.c
x86/mm/pkeys: Add new 'PF_PK' page fault error code bit
[mirror_ubuntu-zesty-kernel.git] / arch / x86 / mm / fault.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
5 */
6 #include <linux/sched.h> /* test_thread_flag(), ... */
7 #include <linux/kdebug.h> /* oops_begin/end, ... */
8 #include <linux/module.h> /* search_exception_table */
9 #include <linux/bootmem.h> /* max_low_pfn */
10 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
11 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
12 #include <linux/perf_event.h> /* perf_sw_event */
13 #include <linux/hugetlb.h> /* hstate_index_to_shift */
14 #include <linux/prefetch.h> /* prefetchw */
15 #include <linux/context_tracking.h> /* exception_enter(), ... */
16 #include <linux/uaccess.h> /* faulthandler_disabled() */
17
18 #include <asm/traps.h> /* dotraplinkage, ... */
19 #include <asm/pgalloc.h> /* pgd_*(), ... */
20 #include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
21 #include <asm/fixmap.h> /* VSYSCALL_ADDR */
22 #include <asm/vsyscall.h> /* emulate_vsyscall */
23 #include <asm/vm86.h> /* struct vm86 */
24
25 #define CREATE_TRACE_POINTS
26 #include <asm/trace/exceptions.h>
27
28 /*
29 * Page fault error code bits:
30 *
31 * bit 0 == 0: no page found 1: protection fault
32 * bit 1 == 0: read access 1: write access
33 * bit 2 == 0: kernel-mode access 1: user-mode access
34 * bit 3 == 1: use of reserved bit detected
35 * bit 4 == 1: fault was an instruction fetch
36 * bit 5 == 1: protection keys block access
37 */
38 enum x86_pf_error_code {
39
40 PF_PROT = 1 << 0,
41 PF_WRITE = 1 << 1,
42 PF_USER = 1 << 2,
43 PF_RSVD = 1 << 3,
44 PF_INSTR = 1 << 4,
45 PF_PK = 1 << 5,
46 };
47
48 /*
49 * Returns 0 if mmiotrace is disabled, or if the fault is not
50 * handled by mmiotrace:
51 */
52 static nokprobe_inline int
53 kmmio_fault(struct pt_regs *regs, unsigned long addr)
54 {
55 if (unlikely(is_kmmio_active()))
56 if (kmmio_handler(regs, addr) == 1)
57 return -1;
58 return 0;
59 }
60
61 static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
62 {
63 int ret = 0;
64
65 /* kprobe_running() needs smp_processor_id() */
66 if (kprobes_built_in() && !user_mode(regs)) {
67 preempt_disable();
68 if (kprobe_running() && kprobe_fault_handler(regs, 14))
69 ret = 1;
70 preempt_enable();
71 }
72
73 return ret;
74 }
75
76 /*
77 * Prefetch quirks:
78 *
79 * 32-bit mode:
80 *
81 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
82 * Check that here and ignore it.
83 *
84 * 64-bit mode:
85 *
86 * Sometimes the CPU reports invalid exceptions on prefetch.
87 * Check that here and ignore it.
88 *
89 * Opcode checker based on code by Richard Brunner.
90 */
91 static inline int
92 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
93 unsigned char opcode, int *prefetch)
94 {
95 unsigned char instr_hi = opcode & 0xf0;
96 unsigned char instr_lo = opcode & 0x0f;
97
98 switch (instr_hi) {
99 case 0x20:
100 case 0x30:
101 /*
102 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
103 * In X86_64 long mode, the CPU will signal invalid
104 * opcode if some of these prefixes are present so
105 * X86_64 will never get here anyway
106 */
107 return ((instr_lo & 7) == 0x6);
108 #ifdef CONFIG_X86_64
109 case 0x40:
110 /*
111 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
112 * Need to figure out under what instruction mode the
113 * instruction was issued. Could check the LDT for lm,
114 * but for now it's good enough to assume that long
115 * mode only uses well known segments or kernel.
116 */
117 return (!user_mode(regs) || user_64bit_mode(regs));
118 #endif
119 case 0x60:
120 /* 0x64 thru 0x67 are valid prefixes in all modes. */
121 return (instr_lo & 0xC) == 0x4;
122 case 0xF0:
123 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
124 return !instr_lo || (instr_lo>>1) == 1;
125 case 0x00:
126 /* Prefetch instruction is 0x0F0D or 0x0F18 */
127 if (probe_kernel_address(instr, opcode))
128 return 0;
129
130 *prefetch = (instr_lo == 0xF) &&
131 (opcode == 0x0D || opcode == 0x18);
132 return 0;
133 default:
134 return 0;
135 }
136 }
137
138 static int
139 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
140 {
141 unsigned char *max_instr;
142 unsigned char *instr;
143 int prefetch = 0;
144
145 /*
146 * If it was a exec (instruction fetch) fault on NX page, then
147 * do not ignore the fault:
148 */
149 if (error_code & PF_INSTR)
150 return 0;
151
152 instr = (void *)convert_ip_to_linear(current, regs);
153 max_instr = instr + 15;
154
155 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
156 return 0;
157
158 while (instr < max_instr) {
159 unsigned char opcode;
160
161 if (probe_kernel_address(instr, opcode))
162 break;
163
164 instr++;
165
166 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
167 break;
168 }
169 return prefetch;
170 }
171
172 static void
173 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
174 struct task_struct *tsk, int fault)
175 {
176 unsigned lsb = 0;
177 siginfo_t info;
178
179 info.si_signo = si_signo;
180 info.si_errno = 0;
181 info.si_code = si_code;
182 info.si_addr = (void __user *)address;
183 if (fault & VM_FAULT_HWPOISON_LARGE)
184 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
185 if (fault & VM_FAULT_HWPOISON)
186 lsb = PAGE_SHIFT;
187 info.si_addr_lsb = lsb;
188
189 force_sig_info(si_signo, &info, tsk);
190 }
191
192 DEFINE_SPINLOCK(pgd_lock);
193 LIST_HEAD(pgd_list);
194
195 #ifdef CONFIG_X86_32
196 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
197 {
198 unsigned index = pgd_index(address);
199 pgd_t *pgd_k;
200 pud_t *pud, *pud_k;
201 pmd_t *pmd, *pmd_k;
202
203 pgd += index;
204 pgd_k = init_mm.pgd + index;
205
206 if (!pgd_present(*pgd_k))
207 return NULL;
208
209 /*
210 * set_pgd(pgd, *pgd_k); here would be useless on PAE
211 * and redundant with the set_pmd() on non-PAE. As would
212 * set_pud.
213 */
214 pud = pud_offset(pgd, address);
215 pud_k = pud_offset(pgd_k, address);
216 if (!pud_present(*pud_k))
217 return NULL;
218
219 pmd = pmd_offset(pud, address);
220 pmd_k = pmd_offset(pud_k, address);
221 if (!pmd_present(*pmd_k))
222 return NULL;
223
224 if (!pmd_present(*pmd))
225 set_pmd(pmd, *pmd_k);
226 else
227 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
228
229 return pmd_k;
230 }
231
232 void vmalloc_sync_all(void)
233 {
234 unsigned long address;
235
236 if (SHARED_KERNEL_PMD)
237 return;
238
239 for (address = VMALLOC_START & PMD_MASK;
240 address >= TASK_SIZE && address < FIXADDR_TOP;
241 address += PMD_SIZE) {
242 struct page *page;
243
244 spin_lock(&pgd_lock);
245 list_for_each_entry(page, &pgd_list, lru) {
246 spinlock_t *pgt_lock;
247 pmd_t *ret;
248
249 /* the pgt_lock only for Xen */
250 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
251
252 spin_lock(pgt_lock);
253 ret = vmalloc_sync_one(page_address(page), address);
254 spin_unlock(pgt_lock);
255
256 if (!ret)
257 break;
258 }
259 spin_unlock(&pgd_lock);
260 }
261 }
262
263 /*
264 * 32-bit:
265 *
266 * Handle a fault on the vmalloc or module mapping area
267 */
268 static noinline int vmalloc_fault(unsigned long address)
269 {
270 unsigned long pgd_paddr;
271 pmd_t *pmd_k;
272 pte_t *pte_k;
273
274 /* Make sure we are in vmalloc area: */
275 if (!(address >= VMALLOC_START && address < VMALLOC_END))
276 return -1;
277
278 WARN_ON_ONCE(in_nmi());
279
280 /*
281 * Synchronize this task's top level page-table
282 * with the 'reference' page table.
283 *
284 * Do _not_ use "current" here. We might be inside
285 * an interrupt in the middle of a task switch..
286 */
287 pgd_paddr = read_cr3();
288 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
289 if (!pmd_k)
290 return -1;
291
292 pte_k = pte_offset_kernel(pmd_k, address);
293 if (!pte_present(*pte_k))
294 return -1;
295
296 return 0;
297 }
298 NOKPROBE_SYMBOL(vmalloc_fault);
299
300 /*
301 * Did it hit the DOS screen memory VA from vm86 mode?
302 */
303 static inline void
304 check_v8086_mode(struct pt_regs *regs, unsigned long address,
305 struct task_struct *tsk)
306 {
307 #ifdef CONFIG_VM86
308 unsigned long bit;
309
310 if (!v8086_mode(regs) || !tsk->thread.vm86)
311 return;
312
313 bit = (address - 0xA0000) >> PAGE_SHIFT;
314 if (bit < 32)
315 tsk->thread.vm86->screen_bitmap |= 1 << bit;
316 #endif
317 }
318
319 static bool low_pfn(unsigned long pfn)
320 {
321 return pfn < max_low_pfn;
322 }
323
324 static void dump_pagetable(unsigned long address)
325 {
326 pgd_t *base = __va(read_cr3());
327 pgd_t *pgd = &base[pgd_index(address)];
328 pmd_t *pmd;
329 pte_t *pte;
330
331 #ifdef CONFIG_X86_PAE
332 printk("*pdpt = %016Lx ", pgd_val(*pgd));
333 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
334 goto out;
335 #endif
336 pmd = pmd_offset(pud_offset(pgd, address), address);
337 printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
338
339 /*
340 * We must not directly access the pte in the highpte
341 * case if the page table is located in highmem.
342 * And let's rather not kmap-atomic the pte, just in case
343 * it's allocated already:
344 */
345 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
346 goto out;
347
348 pte = pte_offset_kernel(pmd, address);
349 printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
350 out:
351 printk("\n");
352 }
353
354 #else /* CONFIG_X86_64: */
355
356 void vmalloc_sync_all(void)
357 {
358 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END, 0);
359 }
360
361 /*
362 * 64-bit:
363 *
364 * Handle a fault on the vmalloc area
365 *
366 * This assumes no large pages in there.
367 */
368 static noinline int vmalloc_fault(unsigned long address)
369 {
370 pgd_t *pgd, *pgd_ref;
371 pud_t *pud, *pud_ref;
372 pmd_t *pmd, *pmd_ref;
373 pte_t *pte, *pte_ref;
374
375 /* Make sure we are in vmalloc area: */
376 if (!(address >= VMALLOC_START && address < VMALLOC_END))
377 return -1;
378
379 WARN_ON_ONCE(in_nmi());
380
381 /*
382 * Copy kernel mappings over when needed. This can also
383 * happen within a race in page table update. In the later
384 * case just flush:
385 */
386 pgd = pgd_offset(current->active_mm, address);
387 pgd_ref = pgd_offset_k(address);
388 if (pgd_none(*pgd_ref))
389 return -1;
390
391 if (pgd_none(*pgd)) {
392 set_pgd(pgd, *pgd_ref);
393 arch_flush_lazy_mmu_mode();
394 } else {
395 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
396 }
397
398 /*
399 * Below here mismatches are bugs because these lower tables
400 * are shared:
401 */
402
403 pud = pud_offset(pgd, address);
404 pud_ref = pud_offset(pgd_ref, address);
405 if (pud_none(*pud_ref))
406 return -1;
407
408 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
409 BUG();
410
411 pmd = pmd_offset(pud, address);
412 pmd_ref = pmd_offset(pud_ref, address);
413 if (pmd_none(*pmd_ref))
414 return -1;
415
416 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
417 BUG();
418
419 pte_ref = pte_offset_kernel(pmd_ref, address);
420 if (!pte_present(*pte_ref))
421 return -1;
422
423 pte = pte_offset_kernel(pmd, address);
424
425 /*
426 * Don't use pte_page here, because the mappings can point
427 * outside mem_map, and the NUMA hash lookup cannot handle
428 * that:
429 */
430 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
431 BUG();
432
433 return 0;
434 }
435 NOKPROBE_SYMBOL(vmalloc_fault);
436
437 #ifdef CONFIG_CPU_SUP_AMD
438 static const char errata93_warning[] =
439 KERN_ERR
440 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
441 "******* Working around it, but it may cause SEGVs or burn power.\n"
442 "******* Please consider a BIOS update.\n"
443 "******* Disabling USB legacy in the BIOS may also help.\n";
444 #endif
445
446 /*
447 * No vm86 mode in 64-bit mode:
448 */
449 static inline void
450 check_v8086_mode(struct pt_regs *regs, unsigned long address,
451 struct task_struct *tsk)
452 {
453 }
454
455 static int bad_address(void *p)
456 {
457 unsigned long dummy;
458
459 return probe_kernel_address((unsigned long *)p, dummy);
460 }
461
462 static void dump_pagetable(unsigned long address)
463 {
464 pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
465 pgd_t *pgd = base + pgd_index(address);
466 pud_t *pud;
467 pmd_t *pmd;
468 pte_t *pte;
469
470 if (bad_address(pgd))
471 goto bad;
472
473 printk("PGD %lx ", pgd_val(*pgd));
474
475 if (!pgd_present(*pgd))
476 goto out;
477
478 pud = pud_offset(pgd, address);
479 if (bad_address(pud))
480 goto bad;
481
482 printk("PUD %lx ", pud_val(*pud));
483 if (!pud_present(*pud) || pud_large(*pud))
484 goto out;
485
486 pmd = pmd_offset(pud, address);
487 if (bad_address(pmd))
488 goto bad;
489
490 printk("PMD %lx ", pmd_val(*pmd));
491 if (!pmd_present(*pmd) || pmd_large(*pmd))
492 goto out;
493
494 pte = pte_offset_kernel(pmd, address);
495 if (bad_address(pte))
496 goto bad;
497
498 printk("PTE %lx", pte_val(*pte));
499 out:
500 printk("\n");
501 return;
502 bad:
503 printk("BAD\n");
504 }
505
506 #endif /* CONFIG_X86_64 */
507
508 /*
509 * Workaround for K8 erratum #93 & buggy BIOS.
510 *
511 * BIOS SMM functions are required to use a specific workaround
512 * to avoid corruption of the 64bit RIP register on C stepping K8.
513 *
514 * A lot of BIOS that didn't get tested properly miss this.
515 *
516 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
517 * Try to work around it here.
518 *
519 * Note we only handle faults in kernel here.
520 * Does nothing on 32-bit.
521 */
522 static int is_errata93(struct pt_regs *regs, unsigned long address)
523 {
524 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
525 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
526 || boot_cpu_data.x86 != 0xf)
527 return 0;
528
529 if (address != regs->ip)
530 return 0;
531
532 if ((address >> 32) != 0)
533 return 0;
534
535 address |= 0xffffffffUL << 32;
536 if ((address >= (u64)_stext && address <= (u64)_etext) ||
537 (address >= MODULES_VADDR && address <= MODULES_END)) {
538 printk_once(errata93_warning);
539 regs->ip = address;
540 return 1;
541 }
542 #endif
543 return 0;
544 }
545
546 /*
547 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
548 * to illegal addresses >4GB.
549 *
550 * We catch this in the page fault handler because these addresses
551 * are not reachable. Just detect this case and return. Any code
552 * segment in LDT is compatibility mode.
553 */
554 static int is_errata100(struct pt_regs *regs, unsigned long address)
555 {
556 #ifdef CONFIG_X86_64
557 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
558 return 1;
559 #endif
560 return 0;
561 }
562
563 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
564 {
565 #ifdef CONFIG_X86_F00F_BUG
566 unsigned long nr;
567
568 /*
569 * Pentium F0 0F C7 C8 bug workaround:
570 */
571 if (boot_cpu_has_bug(X86_BUG_F00F)) {
572 nr = (address - idt_descr.address) >> 3;
573
574 if (nr == 6) {
575 do_invalid_op(regs, 0);
576 return 1;
577 }
578 }
579 #endif
580 return 0;
581 }
582
583 static const char nx_warning[] = KERN_CRIT
584 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
585 static const char smep_warning[] = KERN_CRIT
586 "unable to execute userspace code (SMEP?) (uid: %d)\n";
587
588 static void
589 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
590 unsigned long address)
591 {
592 if (!oops_may_print())
593 return;
594
595 if (error_code & PF_INSTR) {
596 unsigned int level;
597 pgd_t *pgd;
598 pte_t *pte;
599
600 pgd = __va(read_cr3() & PHYSICAL_PAGE_MASK);
601 pgd += pgd_index(address);
602
603 pte = lookup_address_in_pgd(pgd, address, &level);
604
605 if (pte && pte_present(*pte) && !pte_exec(*pte))
606 printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
607 if (pte && pte_present(*pte) && pte_exec(*pte) &&
608 (pgd_flags(*pgd) & _PAGE_USER) &&
609 (__read_cr4() & X86_CR4_SMEP))
610 printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
611 }
612
613 printk(KERN_ALERT "BUG: unable to handle kernel ");
614 if (address < PAGE_SIZE)
615 printk(KERN_CONT "NULL pointer dereference");
616 else
617 printk(KERN_CONT "paging request");
618
619 printk(KERN_CONT " at %p\n", (void *) address);
620 printk(KERN_ALERT "IP:");
621 printk_address(regs->ip);
622
623 dump_pagetable(address);
624 }
625
626 static noinline void
627 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
628 unsigned long address)
629 {
630 struct task_struct *tsk;
631 unsigned long flags;
632 int sig;
633
634 flags = oops_begin();
635 tsk = current;
636 sig = SIGKILL;
637
638 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
639 tsk->comm, address);
640 dump_pagetable(address);
641
642 tsk->thread.cr2 = address;
643 tsk->thread.trap_nr = X86_TRAP_PF;
644 tsk->thread.error_code = error_code;
645
646 if (__die("Bad pagetable", regs, error_code))
647 sig = 0;
648
649 oops_end(flags, regs, sig);
650 }
651
652 static noinline void
653 no_context(struct pt_regs *regs, unsigned long error_code,
654 unsigned long address, int signal, int si_code)
655 {
656 struct task_struct *tsk = current;
657 unsigned long flags;
658 int sig;
659
660 /* Are we prepared to handle this kernel fault? */
661 if (fixup_exception(regs)) {
662 /*
663 * Any interrupt that takes a fault gets the fixup. This makes
664 * the below recursive fault logic only apply to a faults from
665 * task context.
666 */
667 if (in_interrupt())
668 return;
669
670 /*
671 * Per the above we're !in_interrupt(), aka. task context.
672 *
673 * In this case we need to make sure we're not recursively
674 * faulting through the emulate_vsyscall() logic.
675 */
676 if (current_thread_info()->sig_on_uaccess_error && signal) {
677 tsk->thread.trap_nr = X86_TRAP_PF;
678 tsk->thread.error_code = error_code | PF_USER;
679 tsk->thread.cr2 = address;
680
681 /* XXX: hwpoison faults will set the wrong code. */
682 force_sig_info_fault(signal, si_code, address, tsk, 0);
683 }
684
685 /*
686 * Barring that, we can do the fixup and be happy.
687 */
688 return;
689 }
690
691 /*
692 * 32-bit:
693 *
694 * Valid to do another page fault here, because if this fault
695 * had been triggered by is_prefetch fixup_exception would have
696 * handled it.
697 *
698 * 64-bit:
699 *
700 * Hall of shame of CPU/BIOS bugs.
701 */
702 if (is_prefetch(regs, error_code, address))
703 return;
704
705 if (is_errata93(regs, address))
706 return;
707
708 /*
709 * Oops. The kernel tried to access some bad page. We'll have to
710 * terminate things with extreme prejudice:
711 */
712 flags = oops_begin();
713
714 show_fault_oops(regs, error_code, address);
715
716 if (task_stack_end_corrupted(tsk))
717 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
718
719 tsk->thread.cr2 = address;
720 tsk->thread.trap_nr = X86_TRAP_PF;
721 tsk->thread.error_code = error_code;
722
723 sig = SIGKILL;
724 if (__die("Oops", regs, error_code))
725 sig = 0;
726
727 /* Executive summary in case the body of the oops scrolled away */
728 printk(KERN_DEFAULT "CR2: %016lx\n", address);
729
730 oops_end(flags, regs, sig);
731 }
732
733 /*
734 * Print out info about fatal segfaults, if the show_unhandled_signals
735 * sysctl is set:
736 */
737 static inline void
738 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
739 unsigned long address, struct task_struct *tsk)
740 {
741 if (!unhandled_signal(tsk, SIGSEGV))
742 return;
743
744 if (!printk_ratelimit())
745 return;
746
747 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
748 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
749 tsk->comm, task_pid_nr(tsk), address,
750 (void *)regs->ip, (void *)regs->sp, error_code);
751
752 print_vma_addr(KERN_CONT " in ", regs->ip);
753
754 printk(KERN_CONT "\n");
755 }
756
757 static void
758 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
759 unsigned long address, int si_code)
760 {
761 struct task_struct *tsk = current;
762
763 /* User mode accesses just cause a SIGSEGV */
764 if (error_code & PF_USER) {
765 /*
766 * It's possible to have interrupts off here:
767 */
768 local_irq_enable();
769
770 /*
771 * Valid to do another page fault here because this one came
772 * from user space:
773 */
774 if (is_prefetch(regs, error_code, address))
775 return;
776
777 if (is_errata100(regs, address))
778 return;
779
780 #ifdef CONFIG_X86_64
781 /*
782 * Instruction fetch faults in the vsyscall page might need
783 * emulation.
784 */
785 if (unlikely((error_code & PF_INSTR) &&
786 ((address & ~0xfff) == VSYSCALL_ADDR))) {
787 if (emulate_vsyscall(regs, address))
788 return;
789 }
790 #endif
791 /* Kernel addresses are always protection faults: */
792 if (address >= TASK_SIZE)
793 error_code |= PF_PROT;
794
795 if (likely(show_unhandled_signals))
796 show_signal_msg(regs, error_code, address, tsk);
797
798 tsk->thread.cr2 = address;
799 tsk->thread.error_code = error_code;
800 tsk->thread.trap_nr = X86_TRAP_PF;
801
802 force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0);
803
804 return;
805 }
806
807 if (is_f00f_bug(regs, address))
808 return;
809
810 no_context(regs, error_code, address, SIGSEGV, si_code);
811 }
812
813 static noinline void
814 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
815 unsigned long address)
816 {
817 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
818 }
819
820 static void
821 __bad_area(struct pt_regs *regs, unsigned long error_code,
822 unsigned long address, int si_code)
823 {
824 struct mm_struct *mm = current->mm;
825
826 /*
827 * Something tried to access memory that isn't in our memory map..
828 * Fix it, but check if it's kernel or user first..
829 */
830 up_read(&mm->mmap_sem);
831
832 __bad_area_nosemaphore(regs, error_code, address, si_code);
833 }
834
835 static noinline void
836 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
837 {
838 __bad_area(regs, error_code, address, SEGV_MAPERR);
839 }
840
841 static noinline void
842 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
843 unsigned long address)
844 {
845 __bad_area(regs, error_code, address, SEGV_ACCERR);
846 }
847
848 static void
849 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
850 unsigned int fault)
851 {
852 struct task_struct *tsk = current;
853 int code = BUS_ADRERR;
854
855 /* Kernel mode? Handle exceptions or die: */
856 if (!(error_code & PF_USER)) {
857 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
858 return;
859 }
860
861 /* User-space => ok to do another page fault: */
862 if (is_prefetch(regs, error_code, address))
863 return;
864
865 tsk->thread.cr2 = address;
866 tsk->thread.error_code = error_code;
867 tsk->thread.trap_nr = X86_TRAP_PF;
868
869 #ifdef CONFIG_MEMORY_FAILURE
870 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
871 printk(KERN_ERR
872 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
873 tsk->comm, tsk->pid, address);
874 code = BUS_MCEERR_AR;
875 }
876 #endif
877 force_sig_info_fault(SIGBUS, code, address, tsk, fault);
878 }
879
880 static noinline void
881 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
882 unsigned long address, unsigned int fault)
883 {
884 if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
885 no_context(regs, error_code, address, 0, 0);
886 return;
887 }
888
889 if (fault & VM_FAULT_OOM) {
890 /* Kernel mode? Handle exceptions or die: */
891 if (!(error_code & PF_USER)) {
892 no_context(regs, error_code, address,
893 SIGSEGV, SEGV_MAPERR);
894 return;
895 }
896
897 /*
898 * We ran out of memory, call the OOM killer, and return the
899 * userspace (which will retry the fault, or kill us if we got
900 * oom-killed):
901 */
902 pagefault_out_of_memory();
903 } else {
904 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
905 VM_FAULT_HWPOISON_LARGE))
906 do_sigbus(regs, error_code, address, fault);
907 else if (fault & VM_FAULT_SIGSEGV)
908 bad_area_nosemaphore(regs, error_code, address);
909 else
910 BUG();
911 }
912 }
913
914 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
915 {
916 if ((error_code & PF_WRITE) && !pte_write(*pte))
917 return 0;
918
919 if ((error_code & PF_INSTR) && !pte_exec(*pte))
920 return 0;
921 /*
922 * Note: We do not do lazy flushing on protection key
923 * changes, so no spurious fault will ever set PF_PK.
924 */
925 if ((error_code & PF_PK))
926 return 1;
927
928 return 1;
929 }
930
931 /*
932 * Handle a spurious fault caused by a stale TLB entry.
933 *
934 * This allows us to lazily refresh the TLB when increasing the
935 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
936 * eagerly is very expensive since that implies doing a full
937 * cross-processor TLB flush, even if no stale TLB entries exist
938 * on other processors.
939 *
940 * Spurious faults may only occur if the TLB contains an entry with
941 * fewer permission than the page table entry. Non-present (P = 0)
942 * and reserved bit (R = 1) faults are never spurious.
943 *
944 * There are no security implications to leaving a stale TLB when
945 * increasing the permissions on a page.
946 *
947 * Returns non-zero if a spurious fault was handled, zero otherwise.
948 *
949 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
950 * (Optional Invalidation).
951 */
952 static noinline int
953 spurious_fault(unsigned long error_code, unsigned long address)
954 {
955 pgd_t *pgd;
956 pud_t *pud;
957 pmd_t *pmd;
958 pte_t *pte;
959 int ret;
960
961 /*
962 * Only writes to RO or instruction fetches from NX may cause
963 * spurious faults.
964 *
965 * These could be from user or supervisor accesses but the TLB
966 * is only lazily flushed after a kernel mapping protection
967 * change, so user accesses are not expected to cause spurious
968 * faults.
969 */
970 if (error_code != (PF_WRITE | PF_PROT)
971 && error_code != (PF_INSTR | PF_PROT))
972 return 0;
973
974 pgd = init_mm.pgd + pgd_index(address);
975 if (!pgd_present(*pgd))
976 return 0;
977
978 pud = pud_offset(pgd, address);
979 if (!pud_present(*pud))
980 return 0;
981
982 if (pud_large(*pud))
983 return spurious_fault_check(error_code, (pte_t *) pud);
984
985 pmd = pmd_offset(pud, address);
986 if (!pmd_present(*pmd))
987 return 0;
988
989 if (pmd_large(*pmd))
990 return spurious_fault_check(error_code, (pte_t *) pmd);
991
992 pte = pte_offset_kernel(pmd, address);
993 if (!pte_present(*pte))
994 return 0;
995
996 ret = spurious_fault_check(error_code, pte);
997 if (!ret)
998 return 0;
999
1000 /*
1001 * Make sure we have permissions in PMD.
1002 * If not, then there's a bug in the page tables:
1003 */
1004 ret = spurious_fault_check(error_code, (pte_t *) pmd);
1005 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1006
1007 return ret;
1008 }
1009 NOKPROBE_SYMBOL(spurious_fault);
1010
1011 int show_unhandled_signals = 1;
1012
1013 static inline int
1014 access_error(unsigned long error_code, struct vm_area_struct *vma)
1015 {
1016 if (error_code & PF_WRITE) {
1017 /* write, present and write, not present: */
1018 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1019 return 1;
1020 return 0;
1021 }
1022
1023 /* read, present: */
1024 if (unlikely(error_code & PF_PROT))
1025 return 1;
1026
1027 /* read, not present: */
1028 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1029 return 1;
1030
1031 return 0;
1032 }
1033
1034 static int fault_in_kernel_space(unsigned long address)
1035 {
1036 return address >= TASK_SIZE_MAX;
1037 }
1038
1039 static inline bool smap_violation(int error_code, struct pt_regs *regs)
1040 {
1041 if (!IS_ENABLED(CONFIG_X86_SMAP))
1042 return false;
1043
1044 if (!static_cpu_has(X86_FEATURE_SMAP))
1045 return false;
1046
1047 if (error_code & PF_USER)
1048 return false;
1049
1050 if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
1051 return false;
1052
1053 return true;
1054 }
1055
1056 /*
1057 * This routine handles page faults. It determines the address,
1058 * and the problem, and then passes it off to one of the appropriate
1059 * routines.
1060 *
1061 * This function must have noinline because both callers
1062 * {,trace_}do_page_fault() have notrace on. Having this an actual function
1063 * guarantees there's a function trace entry.
1064 */
1065 static noinline void
1066 __do_page_fault(struct pt_regs *regs, unsigned long error_code,
1067 unsigned long address)
1068 {
1069 struct vm_area_struct *vma;
1070 struct task_struct *tsk;
1071 struct mm_struct *mm;
1072 int fault, major = 0;
1073 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1074
1075 tsk = current;
1076 mm = tsk->mm;
1077
1078 /*
1079 * Detect and handle instructions that would cause a page fault for
1080 * both a tracked kernel page and a userspace page.
1081 */
1082 if (kmemcheck_active(regs))
1083 kmemcheck_hide(regs);
1084 prefetchw(&mm->mmap_sem);
1085
1086 if (unlikely(kmmio_fault(regs, address)))
1087 return;
1088
1089 /*
1090 * We fault-in kernel-space virtual memory on-demand. The
1091 * 'reference' page table is init_mm.pgd.
1092 *
1093 * NOTE! We MUST NOT take any locks for this case. We may
1094 * be in an interrupt or a critical region, and should
1095 * only copy the information from the master page table,
1096 * nothing more.
1097 *
1098 * This verifies that the fault happens in kernel space
1099 * (error_code & 4) == 0, and that the fault was not a
1100 * protection error (error_code & 9) == 0.
1101 */
1102 if (unlikely(fault_in_kernel_space(address))) {
1103 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1104 if (vmalloc_fault(address) >= 0)
1105 return;
1106
1107 if (kmemcheck_fault(regs, address, error_code))
1108 return;
1109 }
1110
1111 /* Can handle a stale RO->RW TLB: */
1112 if (spurious_fault(error_code, address))
1113 return;
1114
1115 /* kprobes don't want to hook the spurious faults: */
1116 if (kprobes_fault(regs))
1117 return;
1118 /*
1119 * Don't take the mm semaphore here. If we fixup a prefetch
1120 * fault we could otherwise deadlock:
1121 */
1122 bad_area_nosemaphore(regs, error_code, address);
1123
1124 return;
1125 }
1126
1127 /* kprobes don't want to hook the spurious faults: */
1128 if (unlikely(kprobes_fault(regs)))
1129 return;
1130
1131 if (unlikely(error_code & PF_RSVD))
1132 pgtable_bad(regs, error_code, address);
1133
1134 if (unlikely(smap_violation(error_code, regs))) {
1135 bad_area_nosemaphore(regs, error_code, address);
1136 return;
1137 }
1138
1139 /*
1140 * If we're in an interrupt, have no user context or are running
1141 * in a region with pagefaults disabled then we must not take the fault
1142 */
1143 if (unlikely(faulthandler_disabled() || !mm)) {
1144 bad_area_nosemaphore(regs, error_code, address);
1145 return;
1146 }
1147
1148 /*
1149 * It's safe to allow irq's after cr2 has been saved and the
1150 * vmalloc fault has been handled.
1151 *
1152 * User-mode registers count as a user access even for any
1153 * potential system fault or CPU buglet:
1154 */
1155 if (user_mode(regs)) {
1156 local_irq_enable();
1157 error_code |= PF_USER;
1158 flags |= FAULT_FLAG_USER;
1159 } else {
1160 if (regs->flags & X86_EFLAGS_IF)
1161 local_irq_enable();
1162 }
1163
1164 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1165
1166 if (error_code & PF_WRITE)
1167 flags |= FAULT_FLAG_WRITE;
1168
1169 /*
1170 * When running in the kernel we expect faults to occur only to
1171 * addresses in user space. All other faults represent errors in
1172 * the kernel and should generate an OOPS. Unfortunately, in the
1173 * case of an erroneous fault occurring in a code path which already
1174 * holds mmap_sem we will deadlock attempting to validate the fault
1175 * against the address space. Luckily the kernel only validly
1176 * references user space from well defined areas of code, which are
1177 * listed in the exceptions table.
1178 *
1179 * As the vast majority of faults will be valid we will only perform
1180 * the source reference check when there is a possibility of a
1181 * deadlock. Attempt to lock the address space, if we cannot we then
1182 * validate the source. If this is invalid we can skip the address
1183 * space check, thus avoiding the deadlock:
1184 */
1185 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1186 if ((error_code & PF_USER) == 0 &&
1187 !search_exception_tables(regs->ip)) {
1188 bad_area_nosemaphore(regs, error_code, address);
1189 return;
1190 }
1191 retry:
1192 down_read(&mm->mmap_sem);
1193 } else {
1194 /*
1195 * The above down_read_trylock() might have succeeded in
1196 * which case we'll have missed the might_sleep() from
1197 * down_read():
1198 */
1199 might_sleep();
1200 }
1201
1202 vma = find_vma(mm, address);
1203 if (unlikely(!vma)) {
1204 bad_area(regs, error_code, address);
1205 return;
1206 }
1207 if (likely(vma->vm_start <= address))
1208 goto good_area;
1209 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1210 bad_area(regs, error_code, address);
1211 return;
1212 }
1213 if (error_code & PF_USER) {
1214 /*
1215 * Accessing the stack below %sp is always a bug.
1216 * The large cushion allows instructions like enter
1217 * and pusha to work. ("enter $65535, $31" pushes
1218 * 32 pointers and then decrements %sp by 65535.)
1219 */
1220 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1221 bad_area(regs, error_code, address);
1222 return;
1223 }
1224 }
1225 if (unlikely(expand_stack(vma, address))) {
1226 bad_area(regs, error_code, address);
1227 return;
1228 }
1229
1230 /*
1231 * Ok, we have a good vm_area for this memory access, so
1232 * we can handle it..
1233 */
1234 good_area:
1235 if (unlikely(access_error(error_code, vma))) {
1236 bad_area_access_error(regs, error_code, address);
1237 return;
1238 }
1239
1240 /*
1241 * If for any reason at all we couldn't handle the fault,
1242 * make sure we exit gracefully rather than endlessly redo
1243 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1244 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1245 */
1246 fault = handle_mm_fault(mm, vma, address, flags);
1247 major |= fault & VM_FAULT_MAJOR;
1248
1249 /*
1250 * If we need to retry the mmap_sem has already been released,
1251 * and if there is a fatal signal pending there is no guarantee
1252 * that we made any progress. Handle this case first.
1253 */
1254 if (unlikely(fault & VM_FAULT_RETRY)) {
1255 /* Retry at most once */
1256 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1257 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1258 flags |= FAULT_FLAG_TRIED;
1259 if (!fatal_signal_pending(tsk))
1260 goto retry;
1261 }
1262
1263 /* User mode? Just return to handle the fatal exception */
1264 if (flags & FAULT_FLAG_USER)
1265 return;
1266
1267 /* Not returning to user mode? Handle exceptions or die: */
1268 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1269 return;
1270 }
1271
1272 up_read(&mm->mmap_sem);
1273 if (unlikely(fault & VM_FAULT_ERROR)) {
1274 mm_fault_error(regs, error_code, address, fault);
1275 return;
1276 }
1277
1278 /*
1279 * Major/minor page fault accounting. If any of the events
1280 * returned VM_FAULT_MAJOR, we account it as a major fault.
1281 */
1282 if (major) {
1283 tsk->maj_flt++;
1284 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1285 } else {
1286 tsk->min_flt++;
1287 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1288 }
1289
1290 check_v8086_mode(regs, address, tsk);
1291 }
1292 NOKPROBE_SYMBOL(__do_page_fault);
1293
1294 dotraplinkage void notrace
1295 do_page_fault(struct pt_regs *regs, unsigned long error_code)
1296 {
1297 unsigned long address = read_cr2(); /* Get the faulting address */
1298 enum ctx_state prev_state;
1299
1300 /*
1301 * We must have this function tagged with __kprobes, notrace and call
1302 * read_cr2() before calling anything else. To avoid calling any kind
1303 * of tracing machinery before we've observed the CR2 value.
1304 *
1305 * exception_{enter,exit}() contain all sorts of tracepoints.
1306 */
1307
1308 prev_state = exception_enter();
1309 __do_page_fault(regs, error_code, address);
1310 exception_exit(prev_state);
1311 }
1312 NOKPROBE_SYMBOL(do_page_fault);
1313
1314 #ifdef CONFIG_TRACING
1315 static nokprobe_inline void
1316 trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1317 unsigned long error_code)
1318 {
1319 if (user_mode(regs))
1320 trace_page_fault_user(address, regs, error_code);
1321 else
1322 trace_page_fault_kernel(address, regs, error_code);
1323 }
1324
1325 dotraplinkage void notrace
1326 trace_do_page_fault(struct pt_regs *regs, unsigned long error_code)
1327 {
1328 /*
1329 * The exception_enter and tracepoint processing could
1330 * trigger another page faults (user space callchain
1331 * reading) and destroy the original cr2 value, so read
1332 * the faulting address now.
1333 */
1334 unsigned long address = read_cr2();
1335 enum ctx_state prev_state;
1336
1337 prev_state = exception_enter();
1338 trace_page_fault_entries(address, regs, error_code);
1339 __do_page_fault(regs, error_code, address);
1340 exception_exit(prev_state);
1341 }
1342 NOKPROBE_SYMBOL(trace_do_page_fault);
1343 #endif /* CONFIG_TRACING */