]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - arch/x86/mm/fault.c
Merge tag 'perf-urgent-for-mingo' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-eoan-kernel.git] / arch / x86 / mm / fault.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
5 */
6 #include <linux/magic.h> /* STACK_END_MAGIC */
7 #include <linux/sched.h> /* test_thread_flag(), ... */
8 #include <linux/kdebug.h> /* oops_begin/end, ... */
9 #include <linux/module.h> /* search_exception_table */
10 #include <linux/bootmem.h> /* max_low_pfn */
11 #include <linux/kprobes.h> /* __kprobes, ... */
12 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
13 #include <linux/perf_event.h> /* perf_sw_event */
14 #include <linux/hugetlb.h> /* hstate_index_to_shift */
15 #include <linux/prefetch.h> /* prefetchw */
16 #include <linux/context_tracking.h> /* exception_enter(), ... */
17
18 #include <asm/traps.h> /* dotraplinkage, ... */
19 #include <asm/pgalloc.h> /* pgd_*(), ... */
20 #include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
21 #include <asm/fixmap.h> /* VSYSCALL_START */
22
23 #define CREATE_TRACE_POINTS
24 #include <asm/trace/exceptions.h>
25
26 /*
27 * Page fault error code bits:
28 *
29 * bit 0 == 0: no page found 1: protection fault
30 * bit 1 == 0: read access 1: write access
31 * bit 2 == 0: kernel-mode access 1: user-mode access
32 * bit 3 == 1: use of reserved bit detected
33 * bit 4 == 1: fault was an instruction fetch
34 */
35 enum x86_pf_error_code {
36
37 PF_PROT = 1 << 0,
38 PF_WRITE = 1 << 1,
39 PF_USER = 1 << 2,
40 PF_RSVD = 1 << 3,
41 PF_INSTR = 1 << 4,
42 };
43
44 /*
45 * Returns 0 if mmiotrace is disabled, or if the fault is not
46 * handled by mmiotrace:
47 */
48 static inline int __kprobes
49 kmmio_fault(struct pt_regs *regs, unsigned long addr)
50 {
51 if (unlikely(is_kmmio_active()))
52 if (kmmio_handler(regs, addr) == 1)
53 return -1;
54 return 0;
55 }
56
57 static inline int __kprobes kprobes_fault(struct pt_regs *regs)
58 {
59 int ret = 0;
60
61 /* kprobe_running() needs smp_processor_id() */
62 if (kprobes_built_in() && !user_mode_vm(regs)) {
63 preempt_disable();
64 if (kprobe_running() && kprobe_fault_handler(regs, 14))
65 ret = 1;
66 preempt_enable();
67 }
68
69 return ret;
70 }
71
72 /*
73 * Prefetch quirks:
74 *
75 * 32-bit mode:
76 *
77 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
78 * Check that here and ignore it.
79 *
80 * 64-bit mode:
81 *
82 * Sometimes the CPU reports invalid exceptions on prefetch.
83 * Check that here and ignore it.
84 *
85 * Opcode checker based on code by Richard Brunner.
86 */
87 static inline int
88 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
89 unsigned char opcode, int *prefetch)
90 {
91 unsigned char instr_hi = opcode & 0xf0;
92 unsigned char instr_lo = opcode & 0x0f;
93
94 switch (instr_hi) {
95 case 0x20:
96 case 0x30:
97 /*
98 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
99 * In X86_64 long mode, the CPU will signal invalid
100 * opcode if some of these prefixes are present so
101 * X86_64 will never get here anyway
102 */
103 return ((instr_lo & 7) == 0x6);
104 #ifdef CONFIG_X86_64
105 case 0x40:
106 /*
107 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
108 * Need to figure out under what instruction mode the
109 * instruction was issued. Could check the LDT for lm,
110 * but for now it's good enough to assume that long
111 * mode only uses well known segments or kernel.
112 */
113 return (!user_mode(regs) || user_64bit_mode(regs));
114 #endif
115 case 0x60:
116 /* 0x64 thru 0x67 are valid prefixes in all modes. */
117 return (instr_lo & 0xC) == 0x4;
118 case 0xF0:
119 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
120 return !instr_lo || (instr_lo>>1) == 1;
121 case 0x00:
122 /* Prefetch instruction is 0x0F0D or 0x0F18 */
123 if (probe_kernel_address(instr, opcode))
124 return 0;
125
126 *prefetch = (instr_lo == 0xF) &&
127 (opcode == 0x0D || opcode == 0x18);
128 return 0;
129 default:
130 return 0;
131 }
132 }
133
134 static int
135 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
136 {
137 unsigned char *max_instr;
138 unsigned char *instr;
139 int prefetch = 0;
140
141 /*
142 * If it was a exec (instruction fetch) fault on NX page, then
143 * do not ignore the fault:
144 */
145 if (error_code & PF_INSTR)
146 return 0;
147
148 instr = (void *)convert_ip_to_linear(current, regs);
149 max_instr = instr + 15;
150
151 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
152 return 0;
153
154 while (instr < max_instr) {
155 unsigned char opcode;
156
157 if (probe_kernel_address(instr, opcode))
158 break;
159
160 instr++;
161
162 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
163 break;
164 }
165 return prefetch;
166 }
167
168 static void
169 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
170 struct task_struct *tsk, int fault)
171 {
172 unsigned lsb = 0;
173 siginfo_t info;
174
175 info.si_signo = si_signo;
176 info.si_errno = 0;
177 info.si_code = si_code;
178 info.si_addr = (void __user *)address;
179 if (fault & VM_FAULT_HWPOISON_LARGE)
180 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
181 if (fault & VM_FAULT_HWPOISON)
182 lsb = PAGE_SHIFT;
183 info.si_addr_lsb = lsb;
184
185 force_sig_info(si_signo, &info, tsk);
186 }
187
188 DEFINE_SPINLOCK(pgd_lock);
189 LIST_HEAD(pgd_list);
190
191 #ifdef CONFIG_X86_32
192 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
193 {
194 unsigned index = pgd_index(address);
195 pgd_t *pgd_k;
196 pud_t *pud, *pud_k;
197 pmd_t *pmd, *pmd_k;
198
199 pgd += index;
200 pgd_k = init_mm.pgd + index;
201
202 if (!pgd_present(*pgd_k))
203 return NULL;
204
205 /*
206 * set_pgd(pgd, *pgd_k); here would be useless on PAE
207 * and redundant with the set_pmd() on non-PAE. As would
208 * set_pud.
209 */
210 pud = pud_offset(pgd, address);
211 pud_k = pud_offset(pgd_k, address);
212 if (!pud_present(*pud_k))
213 return NULL;
214
215 pmd = pmd_offset(pud, address);
216 pmd_k = pmd_offset(pud_k, address);
217 if (!pmd_present(*pmd_k))
218 return NULL;
219
220 if (!pmd_present(*pmd))
221 set_pmd(pmd, *pmd_k);
222 else
223 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
224
225 return pmd_k;
226 }
227
228 void vmalloc_sync_all(void)
229 {
230 unsigned long address;
231
232 if (SHARED_KERNEL_PMD)
233 return;
234
235 for (address = VMALLOC_START & PMD_MASK;
236 address >= TASK_SIZE && address < FIXADDR_TOP;
237 address += PMD_SIZE) {
238 struct page *page;
239
240 spin_lock(&pgd_lock);
241 list_for_each_entry(page, &pgd_list, lru) {
242 spinlock_t *pgt_lock;
243 pmd_t *ret;
244
245 /* the pgt_lock only for Xen */
246 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
247
248 spin_lock(pgt_lock);
249 ret = vmalloc_sync_one(page_address(page), address);
250 spin_unlock(pgt_lock);
251
252 if (!ret)
253 break;
254 }
255 spin_unlock(&pgd_lock);
256 }
257 }
258
259 /*
260 * 32-bit:
261 *
262 * Handle a fault on the vmalloc or module mapping area
263 */
264 static noinline __kprobes int vmalloc_fault(unsigned long address)
265 {
266 unsigned long pgd_paddr;
267 pmd_t *pmd_k;
268 pte_t *pte_k;
269
270 /* Make sure we are in vmalloc area: */
271 if (!(address >= VMALLOC_START && address < VMALLOC_END))
272 return -1;
273
274 WARN_ON_ONCE(in_nmi());
275
276 /*
277 * Synchronize this task's top level page-table
278 * with the 'reference' page table.
279 *
280 * Do _not_ use "current" here. We might be inside
281 * an interrupt in the middle of a task switch..
282 */
283 pgd_paddr = read_cr3();
284 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
285 if (!pmd_k)
286 return -1;
287
288 pte_k = pte_offset_kernel(pmd_k, address);
289 if (!pte_present(*pte_k))
290 return -1;
291
292 return 0;
293 }
294
295 /*
296 * Did it hit the DOS screen memory VA from vm86 mode?
297 */
298 static inline void
299 check_v8086_mode(struct pt_regs *regs, unsigned long address,
300 struct task_struct *tsk)
301 {
302 unsigned long bit;
303
304 if (!v8086_mode(regs))
305 return;
306
307 bit = (address - 0xA0000) >> PAGE_SHIFT;
308 if (bit < 32)
309 tsk->thread.screen_bitmap |= 1 << bit;
310 }
311
312 static bool low_pfn(unsigned long pfn)
313 {
314 return pfn < max_low_pfn;
315 }
316
317 static void dump_pagetable(unsigned long address)
318 {
319 pgd_t *base = __va(read_cr3());
320 pgd_t *pgd = &base[pgd_index(address)];
321 pmd_t *pmd;
322 pte_t *pte;
323
324 #ifdef CONFIG_X86_PAE
325 printk("*pdpt = %016Lx ", pgd_val(*pgd));
326 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
327 goto out;
328 #endif
329 pmd = pmd_offset(pud_offset(pgd, address), address);
330 printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
331
332 /*
333 * We must not directly access the pte in the highpte
334 * case if the page table is located in highmem.
335 * And let's rather not kmap-atomic the pte, just in case
336 * it's allocated already:
337 */
338 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
339 goto out;
340
341 pte = pte_offset_kernel(pmd, address);
342 printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
343 out:
344 printk("\n");
345 }
346
347 #else /* CONFIG_X86_64: */
348
349 void vmalloc_sync_all(void)
350 {
351 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
352 }
353
354 /*
355 * 64-bit:
356 *
357 * Handle a fault on the vmalloc area
358 *
359 * This assumes no large pages in there.
360 */
361 static noinline __kprobes int vmalloc_fault(unsigned long address)
362 {
363 pgd_t *pgd, *pgd_ref;
364 pud_t *pud, *pud_ref;
365 pmd_t *pmd, *pmd_ref;
366 pte_t *pte, *pte_ref;
367
368 /* Make sure we are in vmalloc area: */
369 if (!(address >= VMALLOC_START && address < VMALLOC_END))
370 return -1;
371
372 WARN_ON_ONCE(in_nmi());
373
374 /*
375 * Copy kernel mappings over when needed. This can also
376 * happen within a race in page table update. In the later
377 * case just flush:
378 */
379 pgd = pgd_offset(current->active_mm, address);
380 pgd_ref = pgd_offset_k(address);
381 if (pgd_none(*pgd_ref))
382 return -1;
383
384 if (pgd_none(*pgd)) {
385 set_pgd(pgd, *pgd_ref);
386 arch_flush_lazy_mmu_mode();
387 } else {
388 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
389 }
390
391 /*
392 * Below here mismatches are bugs because these lower tables
393 * are shared:
394 */
395
396 pud = pud_offset(pgd, address);
397 pud_ref = pud_offset(pgd_ref, address);
398 if (pud_none(*pud_ref))
399 return -1;
400
401 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
402 BUG();
403
404 pmd = pmd_offset(pud, address);
405 pmd_ref = pmd_offset(pud_ref, address);
406 if (pmd_none(*pmd_ref))
407 return -1;
408
409 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
410 BUG();
411
412 pte_ref = pte_offset_kernel(pmd_ref, address);
413 if (!pte_present(*pte_ref))
414 return -1;
415
416 pte = pte_offset_kernel(pmd, address);
417
418 /*
419 * Don't use pte_page here, because the mappings can point
420 * outside mem_map, and the NUMA hash lookup cannot handle
421 * that:
422 */
423 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
424 BUG();
425
426 return 0;
427 }
428
429 #ifdef CONFIG_CPU_SUP_AMD
430 static const char errata93_warning[] =
431 KERN_ERR
432 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
433 "******* Working around it, but it may cause SEGVs or burn power.\n"
434 "******* Please consider a BIOS update.\n"
435 "******* Disabling USB legacy in the BIOS may also help.\n";
436 #endif
437
438 /*
439 * No vm86 mode in 64-bit mode:
440 */
441 static inline void
442 check_v8086_mode(struct pt_regs *regs, unsigned long address,
443 struct task_struct *tsk)
444 {
445 }
446
447 static int bad_address(void *p)
448 {
449 unsigned long dummy;
450
451 return probe_kernel_address((unsigned long *)p, dummy);
452 }
453
454 static void dump_pagetable(unsigned long address)
455 {
456 pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
457 pgd_t *pgd = base + pgd_index(address);
458 pud_t *pud;
459 pmd_t *pmd;
460 pte_t *pte;
461
462 if (bad_address(pgd))
463 goto bad;
464
465 printk("PGD %lx ", pgd_val(*pgd));
466
467 if (!pgd_present(*pgd))
468 goto out;
469
470 pud = pud_offset(pgd, address);
471 if (bad_address(pud))
472 goto bad;
473
474 printk("PUD %lx ", pud_val(*pud));
475 if (!pud_present(*pud) || pud_large(*pud))
476 goto out;
477
478 pmd = pmd_offset(pud, address);
479 if (bad_address(pmd))
480 goto bad;
481
482 printk("PMD %lx ", pmd_val(*pmd));
483 if (!pmd_present(*pmd) || pmd_large(*pmd))
484 goto out;
485
486 pte = pte_offset_kernel(pmd, address);
487 if (bad_address(pte))
488 goto bad;
489
490 printk("PTE %lx", pte_val(*pte));
491 out:
492 printk("\n");
493 return;
494 bad:
495 printk("BAD\n");
496 }
497
498 #endif /* CONFIG_X86_64 */
499
500 /*
501 * Workaround for K8 erratum #93 & buggy BIOS.
502 *
503 * BIOS SMM functions are required to use a specific workaround
504 * to avoid corruption of the 64bit RIP register on C stepping K8.
505 *
506 * A lot of BIOS that didn't get tested properly miss this.
507 *
508 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
509 * Try to work around it here.
510 *
511 * Note we only handle faults in kernel here.
512 * Does nothing on 32-bit.
513 */
514 static int is_errata93(struct pt_regs *regs, unsigned long address)
515 {
516 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
517 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
518 || boot_cpu_data.x86 != 0xf)
519 return 0;
520
521 if (address != regs->ip)
522 return 0;
523
524 if ((address >> 32) != 0)
525 return 0;
526
527 address |= 0xffffffffUL << 32;
528 if ((address >= (u64)_stext && address <= (u64)_etext) ||
529 (address >= MODULES_VADDR && address <= MODULES_END)) {
530 printk_once(errata93_warning);
531 regs->ip = address;
532 return 1;
533 }
534 #endif
535 return 0;
536 }
537
538 /*
539 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
540 * to illegal addresses >4GB.
541 *
542 * We catch this in the page fault handler because these addresses
543 * are not reachable. Just detect this case and return. Any code
544 * segment in LDT is compatibility mode.
545 */
546 static int is_errata100(struct pt_regs *regs, unsigned long address)
547 {
548 #ifdef CONFIG_X86_64
549 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
550 return 1;
551 #endif
552 return 0;
553 }
554
555 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
556 {
557 #ifdef CONFIG_X86_F00F_BUG
558 unsigned long nr;
559
560 /*
561 * Pentium F0 0F C7 C8 bug workaround:
562 */
563 if (boot_cpu_has_bug(X86_BUG_F00F)) {
564 nr = (address - idt_descr.address) >> 3;
565
566 if (nr == 6) {
567 do_invalid_op(regs, 0);
568 return 1;
569 }
570 }
571 #endif
572 return 0;
573 }
574
575 static const char nx_warning[] = KERN_CRIT
576 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
577
578 static void
579 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
580 unsigned long address)
581 {
582 if (!oops_may_print())
583 return;
584
585 if (error_code & PF_INSTR) {
586 unsigned int level;
587
588 pte_t *pte = lookup_address(address, &level);
589
590 if (pte && pte_present(*pte) && !pte_exec(*pte))
591 printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
592 }
593
594 printk(KERN_ALERT "BUG: unable to handle kernel ");
595 if (address < PAGE_SIZE)
596 printk(KERN_CONT "NULL pointer dereference");
597 else
598 printk(KERN_CONT "paging request");
599
600 printk(KERN_CONT " at %p\n", (void *) address);
601 printk(KERN_ALERT "IP:");
602 printk_address(regs->ip);
603
604 dump_pagetable(address);
605 }
606
607 static noinline void
608 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
609 unsigned long address)
610 {
611 struct task_struct *tsk;
612 unsigned long flags;
613 int sig;
614
615 flags = oops_begin();
616 tsk = current;
617 sig = SIGKILL;
618
619 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
620 tsk->comm, address);
621 dump_pagetable(address);
622
623 tsk->thread.cr2 = address;
624 tsk->thread.trap_nr = X86_TRAP_PF;
625 tsk->thread.error_code = error_code;
626
627 if (__die("Bad pagetable", regs, error_code))
628 sig = 0;
629
630 oops_end(flags, regs, sig);
631 }
632
633 static noinline void
634 no_context(struct pt_regs *regs, unsigned long error_code,
635 unsigned long address, int signal, int si_code)
636 {
637 struct task_struct *tsk = current;
638 unsigned long *stackend;
639 unsigned long flags;
640 int sig;
641
642 /* Are we prepared to handle this kernel fault? */
643 if (fixup_exception(regs)) {
644 /*
645 * Any interrupt that takes a fault gets the fixup. This makes
646 * the below recursive fault logic only apply to a faults from
647 * task context.
648 */
649 if (in_interrupt())
650 return;
651
652 /*
653 * Per the above we're !in_interrupt(), aka. task context.
654 *
655 * In this case we need to make sure we're not recursively
656 * faulting through the emulate_vsyscall() logic.
657 */
658 if (current_thread_info()->sig_on_uaccess_error && signal) {
659 tsk->thread.trap_nr = X86_TRAP_PF;
660 tsk->thread.error_code = error_code | PF_USER;
661 tsk->thread.cr2 = address;
662
663 /* XXX: hwpoison faults will set the wrong code. */
664 force_sig_info_fault(signal, si_code, address, tsk, 0);
665 }
666
667 /*
668 * Barring that, we can do the fixup and be happy.
669 */
670 return;
671 }
672
673 /*
674 * 32-bit:
675 *
676 * Valid to do another page fault here, because if this fault
677 * had been triggered by is_prefetch fixup_exception would have
678 * handled it.
679 *
680 * 64-bit:
681 *
682 * Hall of shame of CPU/BIOS bugs.
683 */
684 if (is_prefetch(regs, error_code, address))
685 return;
686
687 if (is_errata93(regs, address))
688 return;
689
690 /*
691 * Oops. The kernel tried to access some bad page. We'll have to
692 * terminate things with extreme prejudice:
693 */
694 flags = oops_begin();
695
696 show_fault_oops(regs, error_code, address);
697
698 stackend = end_of_stack(tsk);
699 if (tsk != &init_task && *stackend != STACK_END_MAGIC)
700 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
701
702 tsk->thread.cr2 = address;
703 tsk->thread.trap_nr = X86_TRAP_PF;
704 tsk->thread.error_code = error_code;
705
706 sig = SIGKILL;
707 if (__die("Oops", regs, error_code))
708 sig = 0;
709
710 /* Executive summary in case the body of the oops scrolled away */
711 printk(KERN_DEFAULT "CR2: %016lx\n", address);
712
713 oops_end(flags, regs, sig);
714 }
715
716 /*
717 * Print out info about fatal segfaults, if the show_unhandled_signals
718 * sysctl is set:
719 */
720 static inline void
721 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
722 unsigned long address, struct task_struct *tsk)
723 {
724 if (!unhandled_signal(tsk, SIGSEGV))
725 return;
726
727 if (!printk_ratelimit())
728 return;
729
730 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
731 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
732 tsk->comm, task_pid_nr(tsk), address,
733 (void *)regs->ip, (void *)regs->sp, error_code);
734
735 print_vma_addr(KERN_CONT " in ", regs->ip);
736
737 printk(KERN_CONT "\n");
738 }
739
740 static void
741 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
742 unsigned long address, int si_code)
743 {
744 struct task_struct *tsk = current;
745
746 /* User mode accesses just cause a SIGSEGV */
747 if (error_code & PF_USER) {
748 /*
749 * It's possible to have interrupts off here:
750 */
751 local_irq_enable();
752
753 /*
754 * Valid to do another page fault here because this one came
755 * from user space:
756 */
757 if (is_prefetch(regs, error_code, address))
758 return;
759
760 if (is_errata100(regs, address))
761 return;
762
763 #ifdef CONFIG_X86_64
764 /*
765 * Instruction fetch faults in the vsyscall page might need
766 * emulation.
767 */
768 if (unlikely((error_code & PF_INSTR) &&
769 ((address & ~0xfff) == VSYSCALL_START))) {
770 if (emulate_vsyscall(regs, address))
771 return;
772 }
773 #endif
774 /* Kernel addresses are always protection faults: */
775 if (address >= TASK_SIZE)
776 error_code |= PF_PROT;
777
778 if (likely(show_unhandled_signals))
779 show_signal_msg(regs, error_code, address, tsk);
780
781 tsk->thread.cr2 = address;
782 tsk->thread.error_code = error_code;
783 tsk->thread.trap_nr = X86_TRAP_PF;
784
785 force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0);
786
787 return;
788 }
789
790 if (is_f00f_bug(regs, address))
791 return;
792
793 no_context(regs, error_code, address, SIGSEGV, si_code);
794 }
795
796 static noinline void
797 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
798 unsigned long address)
799 {
800 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
801 }
802
803 static void
804 __bad_area(struct pt_regs *regs, unsigned long error_code,
805 unsigned long address, int si_code)
806 {
807 struct mm_struct *mm = current->mm;
808
809 /*
810 * Something tried to access memory that isn't in our memory map..
811 * Fix it, but check if it's kernel or user first..
812 */
813 up_read(&mm->mmap_sem);
814
815 __bad_area_nosemaphore(regs, error_code, address, si_code);
816 }
817
818 static noinline void
819 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
820 {
821 __bad_area(regs, error_code, address, SEGV_MAPERR);
822 }
823
824 static noinline void
825 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
826 unsigned long address)
827 {
828 __bad_area(regs, error_code, address, SEGV_ACCERR);
829 }
830
831 static void
832 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
833 unsigned int fault)
834 {
835 struct task_struct *tsk = current;
836 struct mm_struct *mm = tsk->mm;
837 int code = BUS_ADRERR;
838
839 up_read(&mm->mmap_sem);
840
841 /* Kernel mode? Handle exceptions or die: */
842 if (!(error_code & PF_USER)) {
843 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
844 return;
845 }
846
847 /* User-space => ok to do another page fault: */
848 if (is_prefetch(regs, error_code, address))
849 return;
850
851 tsk->thread.cr2 = address;
852 tsk->thread.error_code = error_code;
853 tsk->thread.trap_nr = X86_TRAP_PF;
854
855 #ifdef CONFIG_MEMORY_FAILURE
856 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
857 printk(KERN_ERR
858 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
859 tsk->comm, tsk->pid, address);
860 code = BUS_MCEERR_AR;
861 }
862 #endif
863 force_sig_info_fault(SIGBUS, code, address, tsk, fault);
864 }
865
866 static noinline void
867 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
868 unsigned long address, unsigned int fault)
869 {
870 if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
871 up_read(&current->mm->mmap_sem);
872 no_context(regs, error_code, address, 0, 0);
873 return;
874 }
875
876 if (fault & VM_FAULT_OOM) {
877 /* Kernel mode? Handle exceptions or die: */
878 if (!(error_code & PF_USER)) {
879 up_read(&current->mm->mmap_sem);
880 no_context(regs, error_code, address,
881 SIGSEGV, SEGV_MAPERR);
882 return;
883 }
884
885 up_read(&current->mm->mmap_sem);
886
887 /*
888 * We ran out of memory, call the OOM killer, and return the
889 * userspace (which will retry the fault, or kill us if we got
890 * oom-killed):
891 */
892 pagefault_out_of_memory();
893 } else {
894 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
895 VM_FAULT_HWPOISON_LARGE))
896 do_sigbus(regs, error_code, address, fault);
897 else
898 BUG();
899 }
900 }
901
902 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
903 {
904 if ((error_code & PF_WRITE) && !pte_write(*pte))
905 return 0;
906
907 if ((error_code & PF_INSTR) && !pte_exec(*pte))
908 return 0;
909
910 return 1;
911 }
912
913 /*
914 * Handle a spurious fault caused by a stale TLB entry.
915 *
916 * This allows us to lazily refresh the TLB when increasing the
917 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
918 * eagerly is very expensive since that implies doing a full
919 * cross-processor TLB flush, even if no stale TLB entries exist
920 * on other processors.
921 *
922 * There are no security implications to leaving a stale TLB when
923 * increasing the permissions on a page.
924 */
925 static noinline __kprobes int
926 spurious_fault(unsigned long error_code, unsigned long address)
927 {
928 pgd_t *pgd;
929 pud_t *pud;
930 pmd_t *pmd;
931 pte_t *pte;
932 int ret;
933
934 /* Reserved-bit violation or user access to kernel space? */
935 if (error_code & (PF_USER | PF_RSVD))
936 return 0;
937
938 pgd = init_mm.pgd + pgd_index(address);
939 if (!pgd_present(*pgd))
940 return 0;
941
942 pud = pud_offset(pgd, address);
943 if (!pud_present(*pud))
944 return 0;
945
946 if (pud_large(*pud))
947 return spurious_fault_check(error_code, (pte_t *) pud);
948
949 pmd = pmd_offset(pud, address);
950 if (!pmd_present(*pmd))
951 return 0;
952
953 if (pmd_large(*pmd))
954 return spurious_fault_check(error_code, (pte_t *) pmd);
955
956 pte = pte_offset_kernel(pmd, address);
957 if (!pte_present(*pte))
958 return 0;
959
960 ret = spurious_fault_check(error_code, pte);
961 if (!ret)
962 return 0;
963
964 /*
965 * Make sure we have permissions in PMD.
966 * If not, then there's a bug in the page tables:
967 */
968 ret = spurious_fault_check(error_code, (pte_t *) pmd);
969 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
970
971 return ret;
972 }
973
974 int show_unhandled_signals = 1;
975
976 static inline int
977 access_error(unsigned long error_code, struct vm_area_struct *vma)
978 {
979 if (error_code & PF_WRITE) {
980 /* write, present and write, not present: */
981 if (unlikely(!(vma->vm_flags & VM_WRITE)))
982 return 1;
983 return 0;
984 }
985
986 /* read, present: */
987 if (unlikely(error_code & PF_PROT))
988 return 1;
989
990 /* read, not present: */
991 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
992 return 1;
993
994 return 0;
995 }
996
997 static int fault_in_kernel_space(unsigned long address)
998 {
999 return address >= TASK_SIZE_MAX;
1000 }
1001
1002 static inline bool smap_violation(int error_code, struct pt_regs *regs)
1003 {
1004 if (!IS_ENABLED(CONFIG_X86_SMAP))
1005 return false;
1006
1007 if (!static_cpu_has(X86_FEATURE_SMAP))
1008 return false;
1009
1010 if (error_code & PF_USER)
1011 return false;
1012
1013 if (!user_mode_vm(regs) && (regs->flags & X86_EFLAGS_AC))
1014 return false;
1015
1016 return true;
1017 }
1018
1019 /*
1020 * This routine handles page faults. It determines the address,
1021 * and the problem, and then passes it off to one of the appropriate
1022 * routines.
1023 *
1024 * This function must have noinline because both callers
1025 * {,trace_}do_page_fault() have notrace on. Having this an actual function
1026 * guarantees there's a function trace entry.
1027 */
1028 static void __kprobes noinline
1029 __do_page_fault(struct pt_regs *regs, unsigned long error_code,
1030 unsigned long address)
1031 {
1032 struct vm_area_struct *vma;
1033 struct task_struct *tsk;
1034 struct mm_struct *mm;
1035 int fault;
1036 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1037
1038 tsk = current;
1039 mm = tsk->mm;
1040
1041 /*
1042 * Detect and handle instructions that would cause a page fault for
1043 * both a tracked kernel page and a userspace page.
1044 */
1045 if (kmemcheck_active(regs))
1046 kmemcheck_hide(regs);
1047 prefetchw(&mm->mmap_sem);
1048
1049 if (unlikely(kmmio_fault(regs, address)))
1050 return;
1051
1052 /*
1053 * We fault-in kernel-space virtual memory on-demand. The
1054 * 'reference' page table is init_mm.pgd.
1055 *
1056 * NOTE! We MUST NOT take any locks for this case. We may
1057 * be in an interrupt or a critical region, and should
1058 * only copy the information from the master page table,
1059 * nothing more.
1060 *
1061 * This verifies that the fault happens in kernel space
1062 * (error_code & 4) == 0, and that the fault was not a
1063 * protection error (error_code & 9) == 0.
1064 */
1065 if (unlikely(fault_in_kernel_space(address))) {
1066 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1067 if (vmalloc_fault(address) >= 0)
1068 return;
1069
1070 if (kmemcheck_fault(regs, address, error_code))
1071 return;
1072 }
1073
1074 /* Can handle a stale RO->RW TLB: */
1075 if (spurious_fault(error_code, address))
1076 return;
1077
1078 /* kprobes don't want to hook the spurious faults: */
1079 if (kprobes_fault(regs))
1080 return;
1081 /*
1082 * Don't take the mm semaphore here. If we fixup a prefetch
1083 * fault we could otherwise deadlock:
1084 */
1085 bad_area_nosemaphore(regs, error_code, address);
1086
1087 return;
1088 }
1089
1090 /* kprobes don't want to hook the spurious faults: */
1091 if (unlikely(kprobes_fault(regs)))
1092 return;
1093
1094 if (unlikely(error_code & PF_RSVD))
1095 pgtable_bad(regs, error_code, address);
1096
1097 if (unlikely(smap_violation(error_code, regs))) {
1098 bad_area_nosemaphore(regs, error_code, address);
1099 return;
1100 }
1101
1102 /*
1103 * If we're in an interrupt, have no user context or are running
1104 * in an atomic region then we must not take the fault:
1105 */
1106 if (unlikely(in_atomic() || !mm)) {
1107 bad_area_nosemaphore(regs, error_code, address);
1108 return;
1109 }
1110
1111 /*
1112 * It's safe to allow irq's after cr2 has been saved and the
1113 * vmalloc fault has been handled.
1114 *
1115 * User-mode registers count as a user access even for any
1116 * potential system fault or CPU buglet:
1117 */
1118 if (user_mode_vm(regs)) {
1119 local_irq_enable();
1120 error_code |= PF_USER;
1121 flags |= FAULT_FLAG_USER;
1122 } else {
1123 if (regs->flags & X86_EFLAGS_IF)
1124 local_irq_enable();
1125 }
1126
1127 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1128
1129 if (error_code & PF_WRITE)
1130 flags |= FAULT_FLAG_WRITE;
1131
1132 /*
1133 * When running in the kernel we expect faults to occur only to
1134 * addresses in user space. All other faults represent errors in
1135 * the kernel and should generate an OOPS. Unfortunately, in the
1136 * case of an erroneous fault occurring in a code path which already
1137 * holds mmap_sem we will deadlock attempting to validate the fault
1138 * against the address space. Luckily the kernel only validly
1139 * references user space from well defined areas of code, which are
1140 * listed in the exceptions table.
1141 *
1142 * As the vast majority of faults will be valid we will only perform
1143 * the source reference check when there is a possibility of a
1144 * deadlock. Attempt to lock the address space, if we cannot we then
1145 * validate the source. If this is invalid we can skip the address
1146 * space check, thus avoiding the deadlock:
1147 */
1148 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1149 if ((error_code & PF_USER) == 0 &&
1150 !search_exception_tables(regs->ip)) {
1151 bad_area_nosemaphore(regs, error_code, address);
1152 return;
1153 }
1154 retry:
1155 down_read(&mm->mmap_sem);
1156 } else {
1157 /*
1158 * The above down_read_trylock() might have succeeded in
1159 * which case we'll have missed the might_sleep() from
1160 * down_read():
1161 */
1162 might_sleep();
1163 }
1164
1165 vma = find_vma(mm, address);
1166 if (unlikely(!vma)) {
1167 bad_area(regs, error_code, address);
1168 return;
1169 }
1170 if (likely(vma->vm_start <= address))
1171 goto good_area;
1172 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1173 bad_area(regs, error_code, address);
1174 return;
1175 }
1176 if (error_code & PF_USER) {
1177 /*
1178 * Accessing the stack below %sp is always a bug.
1179 * The large cushion allows instructions like enter
1180 * and pusha to work. ("enter $65535, $31" pushes
1181 * 32 pointers and then decrements %sp by 65535.)
1182 */
1183 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1184 bad_area(regs, error_code, address);
1185 return;
1186 }
1187 }
1188 if (unlikely(expand_stack(vma, address))) {
1189 bad_area(regs, error_code, address);
1190 return;
1191 }
1192
1193 /*
1194 * Ok, we have a good vm_area for this memory access, so
1195 * we can handle it..
1196 */
1197 good_area:
1198 if (unlikely(access_error(error_code, vma))) {
1199 bad_area_access_error(regs, error_code, address);
1200 return;
1201 }
1202
1203 /*
1204 * If for any reason at all we couldn't handle the fault,
1205 * make sure we exit gracefully rather than endlessly redo
1206 * the fault:
1207 */
1208 fault = handle_mm_fault(mm, vma, address, flags);
1209
1210 /*
1211 * If we need to retry but a fatal signal is pending, handle the
1212 * signal first. We do not need to release the mmap_sem because it
1213 * would already be released in __lock_page_or_retry in mm/filemap.c.
1214 */
1215 if (unlikely((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)))
1216 return;
1217
1218 if (unlikely(fault & VM_FAULT_ERROR)) {
1219 mm_fault_error(regs, error_code, address, fault);
1220 return;
1221 }
1222
1223 /*
1224 * Major/minor page fault accounting is only done on the
1225 * initial attempt. If we go through a retry, it is extremely
1226 * likely that the page will be found in page cache at that point.
1227 */
1228 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1229 if (fault & VM_FAULT_MAJOR) {
1230 tsk->maj_flt++;
1231 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
1232 regs, address);
1233 } else {
1234 tsk->min_flt++;
1235 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
1236 regs, address);
1237 }
1238 if (fault & VM_FAULT_RETRY) {
1239 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
1240 * of starvation. */
1241 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1242 flags |= FAULT_FLAG_TRIED;
1243 goto retry;
1244 }
1245 }
1246
1247 check_v8086_mode(regs, address, tsk);
1248
1249 up_read(&mm->mmap_sem);
1250 }
1251
1252 dotraplinkage void __kprobes notrace
1253 do_page_fault(struct pt_regs *regs, unsigned long error_code)
1254 {
1255 unsigned long address = read_cr2(); /* Get the faulting address */
1256 enum ctx_state prev_state;
1257
1258 /*
1259 * We must have this function tagged with __kprobes, notrace and call
1260 * read_cr2() before calling anything else. To avoid calling any kind
1261 * of tracing machinery before we've observed the CR2 value.
1262 *
1263 * exception_{enter,exit}() contain all sorts of tracepoints.
1264 */
1265
1266 prev_state = exception_enter();
1267 __do_page_fault(regs, error_code, address);
1268 exception_exit(prev_state);
1269 }
1270
1271 #ifdef CONFIG_TRACING
1272 static void trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1273 unsigned long error_code)
1274 {
1275 if (user_mode(regs))
1276 trace_page_fault_user(address, regs, error_code);
1277 else
1278 trace_page_fault_kernel(address, regs, error_code);
1279 }
1280
1281 dotraplinkage void __kprobes notrace
1282 trace_do_page_fault(struct pt_regs *regs, unsigned long error_code)
1283 {
1284 /*
1285 * The exception_enter and tracepoint processing could
1286 * trigger another page faults (user space callchain
1287 * reading) and destroy the original cr2 value, so read
1288 * the faulting address now.
1289 */
1290 unsigned long address = read_cr2();
1291 enum ctx_state prev_state;
1292
1293 prev_state = exception_enter();
1294 trace_page_fault_entries(address, regs, error_code);
1295 __do_page_fault(regs, error_code, address);
1296 exception_exit(prev_state);
1297 }
1298 #endif /* CONFIG_TRACING */