]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/mm/fault.c
efi/arm: Fix boot crash with CONFIG_CPUMASK_OFFSTACK=y
[mirror_ubuntu-artful-kernel.git] / arch / x86 / mm / fault.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
5 */
6 #include <linux/sched.h> /* test_thread_flag(), ... */
7 #include <linux/kdebug.h> /* oops_begin/end, ... */
8 #include <linux/extable.h> /* search_exception_tables */
9 #include <linux/bootmem.h> /* max_low_pfn */
10 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
11 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
12 #include <linux/perf_event.h> /* perf_sw_event */
13 #include <linux/hugetlb.h> /* hstate_index_to_shift */
14 #include <linux/prefetch.h> /* prefetchw */
15 #include <linux/context_tracking.h> /* exception_enter(), ... */
16 #include <linux/uaccess.h> /* faulthandler_disabled() */
17
18 #include <asm/cpufeature.h> /* boot_cpu_has, ... */
19 #include <asm/traps.h> /* dotraplinkage, ... */
20 #include <asm/pgalloc.h> /* pgd_*(), ... */
21 #include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
22 #include <asm/fixmap.h> /* VSYSCALL_ADDR */
23 #include <asm/vsyscall.h> /* emulate_vsyscall */
24 #include <asm/vm86.h> /* struct vm86 */
25 #include <asm/mmu_context.h> /* vma_pkey() */
26
27 #define CREATE_TRACE_POINTS
28 #include <asm/trace/exceptions.h>
29
30 /*
31 * Page fault error code bits:
32 *
33 * bit 0 == 0: no page found 1: protection fault
34 * bit 1 == 0: read access 1: write access
35 * bit 2 == 0: kernel-mode access 1: user-mode access
36 * bit 3 == 1: use of reserved bit detected
37 * bit 4 == 1: fault was an instruction fetch
38 * bit 5 == 1: protection keys block access
39 */
40 enum x86_pf_error_code {
41
42 PF_PROT = 1 << 0,
43 PF_WRITE = 1 << 1,
44 PF_USER = 1 << 2,
45 PF_RSVD = 1 << 3,
46 PF_INSTR = 1 << 4,
47 PF_PK = 1 << 5,
48 };
49
50 /*
51 * Returns 0 if mmiotrace is disabled, or if the fault is not
52 * handled by mmiotrace:
53 */
54 static nokprobe_inline int
55 kmmio_fault(struct pt_regs *regs, unsigned long addr)
56 {
57 if (unlikely(is_kmmio_active()))
58 if (kmmio_handler(regs, addr) == 1)
59 return -1;
60 return 0;
61 }
62
63 static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
64 {
65 int ret = 0;
66
67 /* kprobe_running() needs smp_processor_id() */
68 if (kprobes_built_in() && !user_mode(regs)) {
69 preempt_disable();
70 if (kprobe_running() && kprobe_fault_handler(regs, 14))
71 ret = 1;
72 preempt_enable();
73 }
74
75 return ret;
76 }
77
78 /*
79 * Prefetch quirks:
80 *
81 * 32-bit mode:
82 *
83 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
84 * Check that here and ignore it.
85 *
86 * 64-bit mode:
87 *
88 * Sometimes the CPU reports invalid exceptions on prefetch.
89 * Check that here and ignore it.
90 *
91 * Opcode checker based on code by Richard Brunner.
92 */
93 static inline int
94 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
95 unsigned char opcode, int *prefetch)
96 {
97 unsigned char instr_hi = opcode & 0xf0;
98 unsigned char instr_lo = opcode & 0x0f;
99
100 switch (instr_hi) {
101 case 0x20:
102 case 0x30:
103 /*
104 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
105 * In X86_64 long mode, the CPU will signal invalid
106 * opcode if some of these prefixes are present so
107 * X86_64 will never get here anyway
108 */
109 return ((instr_lo & 7) == 0x6);
110 #ifdef CONFIG_X86_64
111 case 0x40:
112 /*
113 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
114 * Need to figure out under what instruction mode the
115 * instruction was issued. Could check the LDT for lm,
116 * but for now it's good enough to assume that long
117 * mode only uses well known segments or kernel.
118 */
119 return (!user_mode(regs) || user_64bit_mode(regs));
120 #endif
121 case 0x60:
122 /* 0x64 thru 0x67 are valid prefixes in all modes. */
123 return (instr_lo & 0xC) == 0x4;
124 case 0xF0:
125 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
126 return !instr_lo || (instr_lo>>1) == 1;
127 case 0x00:
128 /* Prefetch instruction is 0x0F0D or 0x0F18 */
129 if (probe_kernel_address(instr, opcode))
130 return 0;
131
132 *prefetch = (instr_lo == 0xF) &&
133 (opcode == 0x0D || opcode == 0x18);
134 return 0;
135 default:
136 return 0;
137 }
138 }
139
140 static int
141 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
142 {
143 unsigned char *max_instr;
144 unsigned char *instr;
145 int prefetch = 0;
146
147 /*
148 * If it was a exec (instruction fetch) fault on NX page, then
149 * do not ignore the fault:
150 */
151 if (error_code & PF_INSTR)
152 return 0;
153
154 instr = (void *)convert_ip_to_linear(current, regs);
155 max_instr = instr + 15;
156
157 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
158 return 0;
159
160 while (instr < max_instr) {
161 unsigned char opcode;
162
163 if (probe_kernel_address(instr, opcode))
164 break;
165
166 instr++;
167
168 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
169 break;
170 }
171 return prefetch;
172 }
173
174 /*
175 * A protection key fault means that the PKRU value did not allow
176 * access to some PTE. Userspace can figure out what PKRU was
177 * from the XSAVE state, and this function fills out a field in
178 * siginfo so userspace can discover which protection key was set
179 * on the PTE.
180 *
181 * If we get here, we know that the hardware signaled a PF_PK
182 * fault and that there was a VMA once we got in the fault
183 * handler. It does *not* guarantee that the VMA we find here
184 * was the one that we faulted on.
185 *
186 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
187 * 2. T1 : set PKRU to deny access to pkey=4, touches page
188 * 3. T1 : faults...
189 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
190 * 5. T1 : enters fault handler, takes mmap_sem, etc...
191 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
192 * faulted on a pte with its pkey=4.
193 */
194 static void fill_sig_info_pkey(int si_code, siginfo_t *info,
195 struct vm_area_struct *vma)
196 {
197 /* This is effectively an #ifdef */
198 if (!boot_cpu_has(X86_FEATURE_OSPKE))
199 return;
200
201 /* Fault not from Protection Keys: nothing to do */
202 if (si_code != SEGV_PKUERR)
203 return;
204 /*
205 * force_sig_info_fault() is called from a number of
206 * contexts, some of which have a VMA and some of which
207 * do not. The PF_PK handing happens after we have a
208 * valid VMA, so we should never reach this without a
209 * valid VMA.
210 */
211 if (!vma) {
212 WARN_ONCE(1, "PKU fault with no VMA passed in");
213 info->si_pkey = 0;
214 return;
215 }
216 /*
217 * si_pkey should be thought of as a strong hint, but not
218 * absolutely guranteed to be 100% accurate because of
219 * the race explained above.
220 */
221 info->si_pkey = vma_pkey(vma);
222 }
223
224 static void
225 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
226 struct task_struct *tsk, struct vm_area_struct *vma,
227 int fault)
228 {
229 unsigned lsb = 0;
230 siginfo_t info;
231
232 info.si_signo = si_signo;
233 info.si_errno = 0;
234 info.si_code = si_code;
235 info.si_addr = (void __user *)address;
236 if (fault & VM_FAULT_HWPOISON_LARGE)
237 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
238 if (fault & VM_FAULT_HWPOISON)
239 lsb = PAGE_SHIFT;
240 info.si_addr_lsb = lsb;
241
242 fill_sig_info_pkey(si_code, &info, vma);
243
244 force_sig_info(si_signo, &info, tsk);
245 }
246
247 DEFINE_SPINLOCK(pgd_lock);
248 LIST_HEAD(pgd_list);
249
250 #ifdef CONFIG_X86_32
251 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
252 {
253 unsigned index = pgd_index(address);
254 pgd_t *pgd_k;
255 pud_t *pud, *pud_k;
256 pmd_t *pmd, *pmd_k;
257
258 pgd += index;
259 pgd_k = init_mm.pgd + index;
260
261 if (!pgd_present(*pgd_k))
262 return NULL;
263
264 /*
265 * set_pgd(pgd, *pgd_k); here would be useless on PAE
266 * and redundant with the set_pmd() on non-PAE. As would
267 * set_pud.
268 */
269 pud = pud_offset(pgd, address);
270 pud_k = pud_offset(pgd_k, address);
271 if (!pud_present(*pud_k))
272 return NULL;
273
274 pmd = pmd_offset(pud, address);
275 pmd_k = pmd_offset(pud_k, address);
276 if (!pmd_present(*pmd_k))
277 return NULL;
278
279 if (!pmd_present(*pmd))
280 set_pmd(pmd, *pmd_k);
281 else
282 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
283
284 return pmd_k;
285 }
286
287 void vmalloc_sync_all(void)
288 {
289 unsigned long address;
290
291 if (SHARED_KERNEL_PMD)
292 return;
293
294 for (address = VMALLOC_START & PMD_MASK;
295 address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
296 address += PMD_SIZE) {
297 struct page *page;
298
299 spin_lock(&pgd_lock);
300 list_for_each_entry(page, &pgd_list, lru) {
301 spinlock_t *pgt_lock;
302 pmd_t *ret;
303
304 /* the pgt_lock only for Xen */
305 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
306
307 spin_lock(pgt_lock);
308 ret = vmalloc_sync_one(page_address(page), address);
309 spin_unlock(pgt_lock);
310
311 if (!ret)
312 break;
313 }
314 spin_unlock(&pgd_lock);
315 }
316 }
317
318 /*
319 * 32-bit:
320 *
321 * Handle a fault on the vmalloc or module mapping area
322 */
323 static noinline int vmalloc_fault(unsigned long address)
324 {
325 unsigned long pgd_paddr;
326 pmd_t *pmd_k;
327 pte_t *pte_k;
328
329 /* Make sure we are in vmalloc area: */
330 if (!(address >= VMALLOC_START && address < VMALLOC_END))
331 return -1;
332
333 WARN_ON_ONCE(in_nmi());
334
335 /*
336 * Synchronize this task's top level page-table
337 * with the 'reference' page table.
338 *
339 * Do _not_ use "current" here. We might be inside
340 * an interrupt in the middle of a task switch..
341 */
342 pgd_paddr = read_cr3();
343 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
344 if (!pmd_k)
345 return -1;
346
347 if (pmd_huge(*pmd_k))
348 return 0;
349
350 pte_k = pte_offset_kernel(pmd_k, address);
351 if (!pte_present(*pte_k))
352 return -1;
353
354 return 0;
355 }
356 NOKPROBE_SYMBOL(vmalloc_fault);
357
358 /*
359 * Did it hit the DOS screen memory VA from vm86 mode?
360 */
361 static inline void
362 check_v8086_mode(struct pt_regs *regs, unsigned long address,
363 struct task_struct *tsk)
364 {
365 #ifdef CONFIG_VM86
366 unsigned long bit;
367
368 if (!v8086_mode(regs) || !tsk->thread.vm86)
369 return;
370
371 bit = (address - 0xA0000) >> PAGE_SHIFT;
372 if (bit < 32)
373 tsk->thread.vm86->screen_bitmap |= 1 << bit;
374 #endif
375 }
376
377 static bool low_pfn(unsigned long pfn)
378 {
379 return pfn < max_low_pfn;
380 }
381
382 static void dump_pagetable(unsigned long address)
383 {
384 pgd_t *base = __va(read_cr3());
385 pgd_t *pgd = &base[pgd_index(address)];
386 pmd_t *pmd;
387 pte_t *pte;
388
389 #ifdef CONFIG_X86_PAE
390 printk("*pdpt = %016Lx ", pgd_val(*pgd));
391 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
392 goto out;
393 #endif
394 pmd = pmd_offset(pud_offset(pgd, address), address);
395 printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
396
397 /*
398 * We must not directly access the pte in the highpte
399 * case if the page table is located in highmem.
400 * And let's rather not kmap-atomic the pte, just in case
401 * it's allocated already:
402 */
403 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
404 goto out;
405
406 pte = pte_offset_kernel(pmd, address);
407 printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
408 out:
409 printk("\n");
410 }
411
412 #else /* CONFIG_X86_64: */
413
414 void vmalloc_sync_all(void)
415 {
416 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
417 }
418
419 /*
420 * 64-bit:
421 *
422 * Handle a fault on the vmalloc area
423 */
424 static noinline int vmalloc_fault(unsigned long address)
425 {
426 pgd_t *pgd, *pgd_ref;
427 pud_t *pud, *pud_ref;
428 pmd_t *pmd, *pmd_ref;
429 pte_t *pte, *pte_ref;
430
431 /* Make sure we are in vmalloc area: */
432 if (!(address >= VMALLOC_START && address < VMALLOC_END))
433 return -1;
434
435 WARN_ON_ONCE(in_nmi());
436
437 /*
438 * Copy kernel mappings over when needed. This can also
439 * happen within a race in page table update. In the later
440 * case just flush:
441 */
442 pgd = (pgd_t *)__va(read_cr3()) + pgd_index(address);
443 pgd_ref = pgd_offset_k(address);
444 if (pgd_none(*pgd_ref))
445 return -1;
446
447 if (pgd_none(*pgd)) {
448 set_pgd(pgd, *pgd_ref);
449 arch_flush_lazy_mmu_mode();
450 } else {
451 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
452 }
453
454 /*
455 * Below here mismatches are bugs because these lower tables
456 * are shared:
457 */
458
459 pud = pud_offset(pgd, address);
460 pud_ref = pud_offset(pgd_ref, address);
461 if (pud_none(*pud_ref))
462 return -1;
463
464 if (pud_none(*pud) || pud_pfn(*pud) != pud_pfn(*pud_ref))
465 BUG();
466
467 if (pud_huge(*pud))
468 return 0;
469
470 pmd = pmd_offset(pud, address);
471 pmd_ref = pmd_offset(pud_ref, address);
472 if (pmd_none(*pmd_ref))
473 return -1;
474
475 if (pmd_none(*pmd) || pmd_pfn(*pmd) != pmd_pfn(*pmd_ref))
476 BUG();
477
478 if (pmd_huge(*pmd))
479 return 0;
480
481 pte_ref = pte_offset_kernel(pmd_ref, address);
482 if (!pte_present(*pte_ref))
483 return -1;
484
485 pte = pte_offset_kernel(pmd, address);
486
487 /*
488 * Don't use pte_page here, because the mappings can point
489 * outside mem_map, and the NUMA hash lookup cannot handle
490 * that:
491 */
492 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
493 BUG();
494
495 return 0;
496 }
497 NOKPROBE_SYMBOL(vmalloc_fault);
498
499 #ifdef CONFIG_CPU_SUP_AMD
500 static const char errata93_warning[] =
501 KERN_ERR
502 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
503 "******* Working around it, but it may cause SEGVs or burn power.\n"
504 "******* Please consider a BIOS update.\n"
505 "******* Disabling USB legacy in the BIOS may also help.\n";
506 #endif
507
508 /*
509 * No vm86 mode in 64-bit mode:
510 */
511 static inline void
512 check_v8086_mode(struct pt_regs *regs, unsigned long address,
513 struct task_struct *tsk)
514 {
515 }
516
517 static int bad_address(void *p)
518 {
519 unsigned long dummy;
520
521 return probe_kernel_address((unsigned long *)p, dummy);
522 }
523
524 static void dump_pagetable(unsigned long address)
525 {
526 pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
527 pgd_t *pgd = base + pgd_index(address);
528 pud_t *pud;
529 pmd_t *pmd;
530 pte_t *pte;
531
532 if (bad_address(pgd))
533 goto bad;
534
535 printk("PGD %lx ", pgd_val(*pgd));
536
537 if (!pgd_present(*pgd))
538 goto out;
539
540 pud = pud_offset(pgd, address);
541 if (bad_address(pud))
542 goto bad;
543
544 printk("PUD %lx ", pud_val(*pud));
545 if (!pud_present(*pud) || pud_large(*pud))
546 goto out;
547
548 pmd = pmd_offset(pud, address);
549 if (bad_address(pmd))
550 goto bad;
551
552 printk("PMD %lx ", pmd_val(*pmd));
553 if (!pmd_present(*pmd) || pmd_large(*pmd))
554 goto out;
555
556 pte = pte_offset_kernel(pmd, address);
557 if (bad_address(pte))
558 goto bad;
559
560 printk("PTE %lx", pte_val(*pte));
561 out:
562 printk("\n");
563 return;
564 bad:
565 printk("BAD\n");
566 }
567
568 #endif /* CONFIG_X86_64 */
569
570 /*
571 * Workaround for K8 erratum #93 & buggy BIOS.
572 *
573 * BIOS SMM functions are required to use a specific workaround
574 * to avoid corruption of the 64bit RIP register on C stepping K8.
575 *
576 * A lot of BIOS that didn't get tested properly miss this.
577 *
578 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
579 * Try to work around it here.
580 *
581 * Note we only handle faults in kernel here.
582 * Does nothing on 32-bit.
583 */
584 static int is_errata93(struct pt_regs *regs, unsigned long address)
585 {
586 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
587 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
588 || boot_cpu_data.x86 != 0xf)
589 return 0;
590
591 if (address != regs->ip)
592 return 0;
593
594 if ((address >> 32) != 0)
595 return 0;
596
597 address |= 0xffffffffUL << 32;
598 if ((address >= (u64)_stext && address <= (u64)_etext) ||
599 (address >= MODULES_VADDR && address <= MODULES_END)) {
600 printk_once(errata93_warning);
601 regs->ip = address;
602 return 1;
603 }
604 #endif
605 return 0;
606 }
607
608 /*
609 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
610 * to illegal addresses >4GB.
611 *
612 * We catch this in the page fault handler because these addresses
613 * are not reachable. Just detect this case and return. Any code
614 * segment in LDT is compatibility mode.
615 */
616 static int is_errata100(struct pt_regs *regs, unsigned long address)
617 {
618 #ifdef CONFIG_X86_64
619 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
620 return 1;
621 #endif
622 return 0;
623 }
624
625 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
626 {
627 #ifdef CONFIG_X86_F00F_BUG
628 unsigned long nr;
629
630 /*
631 * Pentium F0 0F C7 C8 bug workaround:
632 */
633 if (boot_cpu_has_bug(X86_BUG_F00F)) {
634 nr = (address - idt_descr.address) >> 3;
635
636 if (nr == 6) {
637 do_invalid_op(regs, 0);
638 return 1;
639 }
640 }
641 #endif
642 return 0;
643 }
644
645 static const char nx_warning[] = KERN_CRIT
646 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
647 static const char smep_warning[] = KERN_CRIT
648 "unable to execute userspace code (SMEP?) (uid: %d)\n";
649
650 static void
651 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
652 unsigned long address)
653 {
654 if (!oops_may_print())
655 return;
656
657 if (error_code & PF_INSTR) {
658 unsigned int level;
659 pgd_t *pgd;
660 pte_t *pte;
661
662 pgd = __va(read_cr3() & PHYSICAL_PAGE_MASK);
663 pgd += pgd_index(address);
664
665 pte = lookup_address_in_pgd(pgd, address, &level);
666
667 if (pte && pte_present(*pte) && !pte_exec(*pte))
668 printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
669 if (pte && pte_present(*pte) && pte_exec(*pte) &&
670 (pgd_flags(*pgd) & _PAGE_USER) &&
671 (__read_cr4() & X86_CR4_SMEP))
672 printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
673 }
674
675 printk(KERN_ALERT "BUG: unable to handle kernel ");
676 if (address < PAGE_SIZE)
677 printk(KERN_CONT "NULL pointer dereference");
678 else
679 printk(KERN_CONT "paging request");
680
681 printk(KERN_CONT " at %p\n", (void *) address);
682 printk(KERN_ALERT "IP: %pS\n", (void *)regs->ip);
683
684 dump_pagetable(address);
685 }
686
687 static noinline void
688 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
689 unsigned long address)
690 {
691 struct task_struct *tsk;
692 unsigned long flags;
693 int sig;
694
695 flags = oops_begin();
696 tsk = current;
697 sig = SIGKILL;
698
699 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
700 tsk->comm, address);
701 dump_pagetable(address);
702
703 tsk->thread.cr2 = address;
704 tsk->thread.trap_nr = X86_TRAP_PF;
705 tsk->thread.error_code = error_code;
706
707 if (__die("Bad pagetable", regs, error_code))
708 sig = 0;
709
710 oops_end(flags, regs, sig);
711 }
712
713 static noinline void
714 no_context(struct pt_regs *regs, unsigned long error_code,
715 unsigned long address, int signal, int si_code)
716 {
717 struct task_struct *tsk = current;
718 unsigned long flags;
719 int sig;
720 /* No context means no VMA to pass down */
721 struct vm_area_struct *vma = NULL;
722
723 /* Are we prepared to handle this kernel fault? */
724 if (fixup_exception(regs, X86_TRAP_PF)) {
725 /*
726 * Any interrupt that takes a fault gets the fixup. This makes
727 * the below recursive fault logic only apply to a faults from
728 * task context.
729 */
730 if (in_interrupt())
731 return;
732
733 /*
734 * Per the above we're !in_interrupt(), aka. task context.
735 *
736 * In this case we need to make sure we're not recursively
737 * faulting through the emulate_vsyscall() logic.
738 */
739 if (current->thread.sig_on_uaccess_err && signal) {
740 tsk->thread.trap_nr = X86_TRAP_PF;
741 tsk->thread.error_code = error_code | PF_USER;
742 tsk->thread.cr2 = address;
743
744 /* XXX: hwpoison faults will set the wrong code. */
745 force_sig_info_fault(signal, si_code, address,
746 tsk, vma, 0);
747 }
748
749 /*
750 * Barring that, we can do the fixup and be happy.
751 */
752 return;
753 }
754
755 #ifdef CONFIG_VMAP_STACK
756 /*
757 * Stack overflow? During boot, we can fault near the initial
758 * stack in the direct map, but that's not an overflow -- check
759 * that we're in vmalloc space to avoid this.
760 */
761 if (is_vmalloc_addr((void *)address) &&
762 (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
763 address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
764 register void *__sp asm("rsp");
765 unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *);
766 /*
767 * We're likely to be running with very little stack space
768 * left. It's plausible that we'd hit this condition but
769 * double-fault even before we get this far, in which case
770 * we're fine: the double-fault handler will deal with it.
771 *
772 * We don't want to make it all the way into the oops code
773 * and then double-fault, though, because we're likely to
774 * break the console driver and lose most of the stack dump.
775 */
776 asm volatile ("movq %[stack], %%rsp\n\t"
777 "call handle_stack_overflow\n\t"
778 "1: jmp 1b"
779 : "+r" (__sp)
780 : "D" ("kernel stack overflow (page fault)"),
781 "S" (regs), "d" (address),
782 [stack] "rm" (stack));
783 unreachable();
784 }
785 #endif
786
787 /*
788 * 32-bit:
789 *
790 * Valid to do another page fault here, because if this fault
791 * had been triggered by is_prefetch fixup_exception would have
792 * handled it.
793 *
794 * 64-bit:
795 *
796 * Hall of shame of CPU/BIOS bugs.
797 */
798 if (is_prefetch(regs, error_code, address))
799 return;
800
801 if (is_errata93(regs, address))
802 return;
803
804 /*
805 * Oops. The kernel tried to access some bad page. We'll have to
806 * terminate things with extreme prejudice:
807 */
808 flags = oops_begin();
809
810 show_fault_oops(regs, error_code, address);
811
812 if (task_stack_end_corrupted(tsk))
813 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
814
815 tsk->thread.cr2 = address;
816 tsk->thread.trap_nr = X86_TRAP_PF;
817 tsk->thread.error_code = error_code;
818
819 sig = SIGKILL;
820 if (__die("Oops", regs, error_code))
821 sig = 0;
822
823 /* Executive summary in case the body of the oops scrolled away */
824 printk(KERN_DEFAULT "CR2: %016lx\n", address);
825
826 oops_end(flags, regs, sig);
827 }
828
829 /*
830 * Print out info about fatal segfaults, if the show_unhandled_signals
831 * sysctl is set:
832 */
833 static inline void
834 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
835 unsigned long address, struct task_struct *tsk)
836 {
837 if (!unhandled_signal(tsk, SIGSEGV))
838 return;
839
840 if (!printk_ratelimit())
841 return;
842
843 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
844 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
845 tsk->comm, task_pid_nr(tsk), address,
846 (void *)regs->ip, (void *)regs->sp, error_code);
847
848 print_vma_addr(KERN_CONT " in ", regs->ip);
849
850 printk(KERN_CONT "\n");
851 }
852
853 static void
854 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
855 unsigned long address, struct vm_area_struct *vma,
856 int si_code)
857 {
858 struct task_struct *tsk = current;
859
860 /* User mode accesses just cause a SIGSEGV */
861 if (error_code & PF_USER) {
862 /*
863 * It's possible to have interrupts off here:
864 */
865 local_irq_enable();
866
867 /*
868 * Valid to do another page fault here because this one came
869 * from user space:
870 */
871 if (is_prefetch(regs, error_code, address))
872 return;
873
874 if (is_errata100(regs, address))
875 return;
876
877 #ifdef CONFIG_X86_64
878 /*
879 * Instruction fetch faults in the vsyscall page might need
880 * emulation.
881 */
882 if (unlikely((error_code & PF_INSTR) &&
883 ((address & ~0xfff) == VSYSCALL_ADDR))) {
884 if (emulate_vsyscall(regs, address))
885 return;
886 }
887 #endif
888
889 /*
890 * To avoid leaking information about the kernel page table
891 * layout, pretend that user-mode accesses to kernel addresses
892 * are always protection faults.
893 */
894 if (address >= TASK_SIZE_MAX)
895 error_code |= PF_PROT;
896
897 if (likely(show_unhandled_signals))
898 show_signal_msg(regs, error_code, address, tsk);
899
900 tsk->thread.cr2 = address;
901 tsk->thread.error_code = error_code;
902 tsk->thread.trap_nr = X86_TRAP_PF;
903
904 force_sig_info_fault(SIGSEGV, si_code, address, tsk, vma, 0);
905
906 return;
907 }
908
909 if (is_f00f_bug(regs, address))
910 return;
911
912 no_context(regs, error_code, address, SIGSEGV, si_code);
913 }
914
915 static noinline void
916 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
917 unsigned long address, struct vm_area_struct *vma)
918 {
919 __bad_area_nosemaphore(regs, error_code, address, vma, SEGV_MAPERR);
920 }
921
922 static void
923 __bad_area(struct pt_regs *regs, unsigned long error_code,
924 unsigned long address, struct vm_area_struct *vma, int si_code)
925 {
926 struct mm_struct *mm = current->mm;
927
928 /*
929 * Something tried to access memory that isn't in our memory map..
930 * Fix it, but check if it's kernel or user first..
931 */
932 up_read(&mm->mmap_sem);
933
934 __bad_area_nosemaphore(regs, error_code, address, vma, si_code);
935 }
936
937 static noinline void
938 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
939 {
940 __bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
941 }
942
943 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
944 struct vm_area_struct *vma)
945 {
946 /* This code is always called on the current mm */
947 bool foreign = false;
948
949 if (!boot_cpu_has(X86_FEATURE_OSPKE))
950 return false;
951 if (error_code & PF_PK)
952 return true;
953 /* this checks permission keys on the VMA: */
954 if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
955 (error_code & PF_INSTR), foreign))
956 return true;
957 return false;
958 }
959
960 static noinline void
961 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
962 unsigned long address, struct vm_area_struct *vma)
963 {
964 /*
965 * This OSPKE check is not strictly necessary at runtime.
966 * But, doing it this way allows compiler optimizations
967 * if pkeys are compiled out.
968 */
969 if (bad_area_access_from_pkeys(error_code, vma))
970 __bad_area(regs, error_code, address, vma, SEGV_PKUERR);
971 else
972 __bad_area(regs, error_code, address, vma, SEGV_ACCERR);
973 }
974
975 static void
976 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
977 struct vm_area_struct *vma, unsigned int fault)
978 {
979 struct task_struct *tsk = current;
980 int code = BUS_ADRERR;
981
982 /* Kernel mode? Handle exceptions or die: */
983 if (!(error_code & PF_USER)) {
984 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
985 return;
986 }
987
988 /* User-space => ok to do another page fault: */
989 if (is_prefetch(regs, error_code, address))
990 return;
991
992 tsk->thread.cr2 = address;
993 tsk->thread.error_code = error_code;
994 tsk->thread.trap_nr = X86_TRAP_PF;
995
996 #ifdef CONFIG_MEMORY_FAILURE
997 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
998 printk(KERN_ERR
999 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
1000 tsk->comm, tsk->pid, address);
1001 code = BUS_MCEERR_AR;
1002 }
1003 #endif
1004 force_sig_info_fault(SIGBUS, code, address, tsk, vma, fault);
1005 }
1006
1007 static noinline void
1008 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
1009 unsigned long address, struct vm_area_struct *vma,
1010 unsigned int fault)
1011 {
1012 if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
1013 no_context(regs, error_code, address, 0, 0);
1014 return;
1015 }
1016
1017 if (fault & VM_FAULT_OOM) {
1018 /* Kernel mode? Handle exceptions or die: */
1019 if (!(error_code & PF_USER)) {
1020 no_context(regs, error_code, address,
1021 SIGSEGV, SEGV_MAPERR);
1022 return;
1023 }
1024
1025 /*
1026 * We ran out of memory, call the OOM killer, and return the
1027 * userspace (which will retry the fault, or kill us if we got
1028 * oom-killed):
1029 */
1030 pagefault_out_of_memory();
1031 } else {
1032 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1033 VM_FAULT_HWPOISON_LARGE))
1034 do_sigbus(regs, error_code, address, vma, fault);
1035 else if (fault & VM_FAULT_SIGSEGV)
1036 bad_area_nosemaphore(regs, error_code, address, vma);
1037 else
1038 BUG();
1039 }
1040 }
1041
1042 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
1043 {
1044 if ((error_code & PF_WRITE) && !pte_write(*pte))
1045 return 0;
1046
1047 if ((error_code & PF_INSTR) && !pte_exec(*pte))
1048 return 0;
1049 /*
1050 * Note: We do not do lazy flushing on protection key
1051 * changes, so no spurious fault will ever set PF_PK.
1052 */
1053 if ((error_code & PF_PK))
1054 return 1;
1055
1056 return 1;
1057 }
1058
1059 /*
1060 * Handle a spurious fault caused by a stale TLB entry.
1061 *
1062 * This allows us to lazily refresh the TLB when increasing the
1063 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
1064 * eagerly is very expensive since that implies doing a full
1065 * cross-processor TLB flush, even if no stale TLB entries exist
1066 * on other processors.
1067 *
1068 * Spurious faults may only occur if the TLB contains an entry with
1069 * fewer permission than the page table entry. Non-present (P = 0)
1070 * and reserved bit (R = 1) faults are never spurious.
1071 *
1072 * There are no security implications to leaving a stale TLB when
1073 * increasing the permissions on a page.
1074 *
1075 * Returns non-zero if a spurious fault was handled, zero otherwise.
1076 *
1077 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1078 * (Optional Invalidation).
1079 */
1080 static noinline int
1081 spurious_fault(unsigned long error_code, unsigned long address)
1082 {
1083 pgd_t *pgd;
1084 pud_t *pud;
1085 pmd_t *pmd;
1086 pte_t *pte;
1087 int ret;
1088
1089 /*
1090 * Only writes to RO or instruction fetches from NX may cause
1091 * spurious faults.
1092 *
1093 * These could be from user or supervisor accesses but the TLB
1094 * is only lazily flushed after a kernel mapping protection
1095 * change, so user accesses are not expected to cause spurious
1096 * faults.
1097 */
1098 if (error_code != (PF_WRITE | PF_PROT)
1099 && error_code != (PF_INSTR | PF_PROT))
1100 return 0;
1101
1102 pgd = init_mm.pgd + pgd_index(address);
1103 if (!pgd_present(*pgd))
1104 return 0;
1105
1106 pud = pud_offset(pgd, address);
1107 if (!pud_present(*pud))
1108 return 0;
1109
1110 if (pud_large(*pud))
1111 return spurious_fault_check(error_code, (pte_t *) pud);
1112
1113 pmd = pmd_offset(pud, address);
1114 if (!pmd_present(*pmd))
1115 return 0;
1116
1117 if (pmd_large(*pmd))
1118 return spurious_fault_check(error_code, (pte_t *) pmd);
1119
1120 pte = pte_offset_kernel(pmd, address);
1121 if (!pte_present(*pte))
1122 return 0;
1123
1124 ret = spurious_fault_check(error_code, pte);
1125 if (!ret)
1126 return 0;
1127
1128 /*
1129 * Make sure we have permissions in PMD.
1130 * If not, then there's a bug in the page tables:
1131 */
1132 ret = spurious_fault_check(error_code, (pte_t *) pmd);
1133 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1134
1135 return ret;
1136 }
1137 NOKPROBE_SYMBOL(spurious_fault);
1138
1139 int show_unhandled_signals = 1;
1140
1141 static inline int
1142 access_error(unsigned long error_code, struct vm_area_struct *vma)
1143 {
1144 /* This is only called for the current mm, so: */
1145 bool foreign = false;
1146
1147 /*
1148 * Read or write was blocked by protection keys. This is
1149 * always an unconditional error and can never result in
1150 * a follow-up action to resolve the fault, like a COW.
1151 */
1152 if (error_code & PF_PK)
1153 return 1;
1154
1155 /*
1156 * Make sure to check the VMA so that we do not perform
1157 * faults just to hit a PF_PK as soon as we fill in a
1158 * page.
1159 */
1160 if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
1161 (error_code & PF_INSTR), foreign))
1162 return 1;
1163
1164 if (error_code & PF_WRITE) {
1165 /* write, present and write, not present: */
1166 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1167 return 1;
1168 return 0;
1169 }
1170
1171 /* read, present: */
1172 if (unlikely(error_code & PF_PROT))
1173 return 1;
1174
1175 /* read, not present: */
1176 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1177 return 1;
1178
1179 return 0;
1180 }
1181
1182 static int fault_in_kernel_space(unsigned long address)
1183 {
1184 return address >= TASK_SIZE_MAX;
1185 }
1186
1187 static inline bool smap_violation(int error_code, struct pt_regs *regs)
1188 {
1189 if (!IS_ENABLED(CONFIG_X86_SMAP))
1190 return false;
1191
1192 if (!static_cpu_has(X86_FEATURE_SMAP))
1193 return false;
1194
1195 if (error_code & PF_USER)
1196 return false;
1197
1198 if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
1199 return false;
1200
1201 return true;
1202 }
1203
1204 /*
1205 * This routine handles page faults. It determines the address,
1206 * and the problem, and then passes it off to one of the appropriate
1207 * routines.
1208 *
1209 * This function must have noinline because both callers
1210 * {,trace_}do_page_fault() have notrace on. Having this an actual function
1211 * guarantees there's a function trace entry.
1212 */
1213 static noinline void
1214 __do_page_fault(struct pt_regs *regs, unsigned long error_code,
1215 unsigned long address)
1216 {
1217 struct vm_area_struct *vma;
1218 struct task_struct *tsk;
1219 struct mm_struct *mm;
1220 int fault, major = 0;
1221 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1222
1223 tsk = current;
1224 mm = tsk->mm;
1225
1226 /*
1227 * Detect and handle instructions that would cause a page fault for
1228 * both a tracked kernel page and a userspace page.
1229 */
1230 if (kmemcheck_active(regs))
1231 kmemcheck_hide(regs);
1232 prefetchw(&mm->mmap_sem);
1233
1234 if (unlikely(kmmio_fault(regs, address)))
1235 return;
1236
1237 /*
1238 * We fault-in kernel-space virtual memory on-demand. The
1239 * 'reference' page table is init_mm.pgd.
1240 *
1241 * NOTE! We MUST NOT take any locks for this case. We may
1242 * be in an interrupt or a critical region, and should
1243 * only copy the information from the master page table,
1244 * nothing more.
1245 *
1246 * This verifies that the fault happens in kernel space
1247 * (error_code & 4) == 0, and that the fault was not a
1248 * protection error (error_code & 9) == 0.
1249 */
1250 if (unlikely(fault_in_kernel_space(address))) {
1251 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1252 if (vmalloc_fault(address) >= 0)
1253 return;
1254
1255 if (kmemcheck_fault(regs, address, error_code))
1256 return;
1257 }
1258
1259 /* Can handle a stale RO->RW TLB: */
1260 if (spurious_fault(error_code, address))
1261 return;
1262
1263 /* kprobes don't want to hook the spurious faults: */
1264 if (kprobes_fault(regs))
1265 return;
1266 /*
1267 * Don't take the mm semaphore here. If we fixup a prefetch
1268 * fault we could otherwise deadlock:
1269 */
1270 bad_area_nosemaphore(regs, error_code, address, NULL);
1271
1272 return;
1273 }
1274
1275 /* kprobes don't want to hook the spurious faults: */
1276 if (unlikely(kprobes_fault(regs)))
1277 return;
1278
1279 if (unlikely(error_code & PF_RSVD))
1280 pgtable_bad(regs, error_code, address);
1281
1282 if (unlikely(smap_violation(error_code, regs))) {
1283 bad_area_nosemaphore(regs, error_code, address, NULL);
1284 return;
1285 }
1286
1287 /*
1288 * If we're in an interrupt, have no user context or are running
1289 * in a region with pagefaults disabled then we must not take the fault
1290 */
1291 if (unlikely(faulthandler_disabled() || !mm)) {
1292 bad_area_nosemaphore(regs, error_code, address, NULL);
1293 return;
1294 }
1295
1296 /*
1297 * It's safe to allow irq's after cr2 has been saved and the
1298 * vmalloc fault has been handled.
1299 *
1300 * User-mode registers count as a user access even for any
1301 * potential system fault or CPU buglet:
1302 */
1303 if (user_mode(regs)) {
1304 local_irq_enable();
1305 error_code |= PF_USER;
1306 flags |= FAULT_FLAG_USER;
1307 } else {
1308 if (regs->flags & X86_EFLAGS_IF)
1309 local_irq_enable();
1310 }
1311
1312 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1313
1314 if (error_code & PF_WRITE)
1315 flags |= FAULT_FLAG_WRITE;
1316 if (error_code & PF_INSTR)
1317 flags |= FAULT_FLAG_INSTRUCTION;
1318
1319 /*
1320 * When running in the kernel we expect faults to occur only to
1321 * addresses in user space. All other faults represent errors in
1322 * the kernel and should generate an OOPS. Unfortunately, in the
1323 * case of an erroneous fault occurring in a code path which already
1324 * holds mmap_sem we will deadlock attempting to validate the fault
1325 * against the address space. Luckily the kernel only validly
1326 * references user space from well defined areas of code, which are
1327 * listed in the exceptions table.
1328 *
1329 * As the vast majority of faults will be valid we will only perform
1330 * the source reference check when there is a possibility of a
1331 * deadlock. Attempt to lock the address space, if we cannot we then
1332 * validate the source. If this is invalid we can skip the address
1333 * space check, thus avoiding the deadlock:
1334 */
1335 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1336 if ((error_code & PF_USER) == 0 &&
1337 !search_exception_tables(regs->ip)) {
1338 bad_area_nosemaphore(regs, error_code, address, NULL);
1339 return;
1340 }
1341 retry:
1342 down_read(&mm->mmap_sem);
1343 } else {
1344 /*
1345 * The above down_read_trylock() might have succeeded in
1346 * which case we'll have missed the might_sleep() from
1347 * down_read():
1348 */
1349 might_sleep();
1350 }
1351
1352 vma = find_vma(mm, address);
1353 if (unlikely(!vma)) {
1354 bad_area(regs, error_code, address);
1355 return;
1356 }
1357 if (likely(vma->vm_start <= address))
1358 goto good_area;
1359 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1360 bad_area(regs, error_code, address);
1361 return;
1362 }
1363 if (error_code & PF_USER) {
1364 /*
1365 * Accessing the stack below %sp is always a bug.
1366 * The large cushion allows instructions like enter
1367 * and pusha to work. ("enter $65535, $31" pushes
1368 * 32 pointers and then decrements %sp by 65535.)
1369 */
1370 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1371 bad_area(regs, error_code, address);
1372 return;
1373 }
1374 }
1375 if (unlikely(expand_stack(vma, address))) {
1376 bad_area(regs, error_code, address);
1377 return;
1378 }
1379
1380 /*
1381 * Ok, we have a good vm_area for this memory access, so
1382 * we can handle it..
1383 */
1384 good_area:
1385 if (unlikely(access_error(error_code, vma))) {
1386 bad_area_access_error(regs, error_code, address, vma);
1387 return;
1388 }
1389
1390 /*
1391 * If for any reason at all we couldn't handle the fault,
1392 * make sure we exit gracefully rather than endlessly redo
1393 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1394 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1395 */
1396 fault = handle_mm_fault(vma, address, flags);
1397 major |= fault & VM_FAULT_MAJOR;
1398
1399 /*
1400 * If we need to retry the mmap_sem has already been released,
1401 * and if there is a fatal signal pending there is no guarantee
1402 * that we made any progress. Handle this case first.
1403 */
1404 if (unlikely(fault & VM_FAULT_RETRY)) {
1405 /* Retry at most once */
1406 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1407 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1408 flags |= FAULT_FLAG_TRIED;
1409 if (!fatal_signal_pending(tsk))
1410 goto retry;
1411 }
1412
1413 /* User mode? Just return to handle the fatal exception */
1414 if (flags & FAULT_FLAG_USER)
1415 return;
1416
1417 /* Not returning to user mode? Handle exceptions or die: */
1418 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1419 return;
1420 }
1421
1422 up_read(&mm->mmap_sem);
1423 if (unlikely(fault & VM_FAULT_ERROR)) {
1424 mm_fault_error(regs, error_code, address, vma, fault);
1425 return;
1426 }
1427
1428 /*
1429 * Major/minor page fault accounting. If any of the events
1430 * returned VM_FAULT_MAJOR, we account it as a major fault.
1431 */
1432 if (major) {
1433 tsk->maj_flt++;
1434 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1435 } else {
1436 tsk->min_flt++;
1437 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1438 }
1439
1440 check_v8086_mode(regs, address, tsk);
1441 }
1442 NOKPROBE_SYMBOL(__do_page_fault);
1443
1444 dotraplinkage void notrace
1445 do_page_fault(struct pt_regs *regs, unsigned long error_code)
1446 {
1447 unsigned long address = read_cr2(); /* Get the faulting address */
1448 enum ctx_state prev_state;
1449
1450 /*
1451 * We must have this function tagged with __kprobes, notrace and call
1452 * read_cr2() before calling anything else. To avoid calling any kind
1453 * of tracing machinery before we've observed the CR2 value.
1454 *
1455 * exception_{enter,exit}() contain all sorts of tracepoints.
1456 */
1457
1458 prev_state = exception_enter();
1459 __do_page_fault(regs, error_code, address);
1460 exception_exit(prev_state);
1461 }
1462 NOKPROBE_SYMBOL(do_page_fault);
1463
1464 #ifdef CONFIG_TRACING
1465 static nokprobe_inline void
1466 trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1467 unsigned long error_code)
1468 {
1469 if (user_mode(regs))
1470 trace_page_fault_user(address, regs, error_code);
1471 else
1472 trace_page_fault_kernel(address, regs, error_code);
1473 }
1474
1475 dotraplinkage void notrace
1476 trace_do_page_fault(struct pt_regs *regs, unsigned long error_code)
1477 {
1478 /*
1479 * The exception_enter and tracepoint processing could
1480 * trigger another page faults (user space callchain
1481 * reading) and destroy the original cr2 value, so read
1482 * the faulting address now.
1483 */
1484 unsigned long address = read_cr2();
1485 enum ctx_state prev_state;
1486
1487 prev_state = exception_enter();
1488 trace_page_fault_entries(address, regs, error_code);
1489 __do_page_fault(regs, error_code, address);
1490 exception_exit(prev_state);
1491 }
1492 NOKPROBE_SYMBOL(trace_do_page_fault);
1493 #endif /* CONFIG_TRACING */