]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/x86/mm/fault.c
x86/entry: Switch page fault exception to IDTENTRY_RAW
[mirror_ubuntu-hirsute-kernel.git] / arch / x86 / mm / fault.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1995 Linus Torvalds
4 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6 */
7 #include <linux/sched.h> /* test_thread_flag(), ... */
8 #include <linux/sched/task_stack.h> /* task_stack_*(), ... */
9 #include <linux/kdebug.h> /* oops_begin/end, ... */
10 #include <linux/extable.h> /* search_exception_tables */
11 #include <linux/memblock.h> /* max_low_pfn */
12 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
13 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
14 #include <linux/perf_event.h> /* perf_sw_event */
15 #include <linux/hugetlb.h> /* hstate_index_to_shift */
16 #include <linux/prefetch.h> /* prefetchw */
17 #include <linux/context_tracking.h> /* exception_enter(), ... */
18 #include <linux/uaccess.h> /* faulthandler_disabled() */
19 #include <linux/efi.h> /* efi_recover_from_page_fault()*/
20 #include <linux/mm_types.h>
21
22 #include <asm/cpufeature.h> /* boot_cpu_has, ... */
23 #include <asm/traps.h> /* dotraplinkage, ... */
24 #include <asm/pgalloc.h> /* pgd_*(), ... */
25 #include <asm/fixmap.h> /* VSYSCALL_ADDR */
26 #include <asm/vsyscall.h> /* emulate_vsyscall */
27 #include <asm/vm86.h> /* struct vm86 */
28 #include <asm/mmu_context.h> /* vma_pkey() */
29 #include <asm/efi.h> /* efi_recover_from_page_fault()*/
30 #include <asm/desc.h> /* store_idt(), ... */
31 #include <asm/cpu_entry_area.h> /* exception stack */
32 #include <asm/pgtable_areas.h> /* VMALLOC_START, ... */
33 #include <asm/kvm_para.h> /* kvm_handle_async_pf */
34
35 #define CREATE_TRACE_POINTS
36 #include <asm/trace/exceptions.h>
37
38 /*
39 * Returns 0 if mmiotrace is disabled, or if the fault is not
40 * handled by mmiotrace:
41 */
42 static nokprobe_inline int
43 kmmio_fault(struct pt_regs *regs, unsigned long addr)
44 {
45 if (unlikely(is_kmmio_active()))
46 if (kmmio_handler(regs, addr) == 1)
47 return -1;
48 return 0;
49 }
50
51 /*
52 * Prefetch quirks:
53 *
54 * 32-bit mode:
55 *
56 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
57 * Check that here and ignore it.
58 *
59 * 64-bit mode:
60 *
61 * Sometimes the CPU reports invalid exceptions on prefetch.
62 * Check that here and ignore it.
63 *
64 * Opcode checker based on code by Richard Brunner.
65 */
66 static inline int
67 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
68 unsigned char opcode, int *prefetch)
69 {
70 unsigned char instr_hi = opcode & 0xf0;
71 unsigned char instr_lo = opcode & 0x0f;
72
73 switch (instr_hi) {
74 case 0x20:
75 case 0x30:
76 /*
77 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
78 * In X86_64 long mode, the CPU will signal invalid
79 * opcode if some of these prefixes are present so
80 * X86_64 will never get here anyway
81 */
82 return ((instr_lo & 7) == 0x6);
83 #ifdef CONFIG_X86_64
84 case 0x40:
85 /*
86 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
87 * Need to figure out under what instruction mode the
88 * instruction was issued. Could check the LDT for lm,
89 * but for now it's good enough to assume that long
90 * mode only uses well known segments or kernel.
91 */
92 return (!user_mode(regs) || user_64bit_mode(regs));
93 #endif
94 case 0x60:
95 /* 0x64 thru 0x67 are valid prefixes in all modes. */
96 return (instr_lo & 0xC) == 0x4;
97 case 0xF0:
98 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
99 return !instr_lo || (instr_lo>>1) == 1;
100 case 0x00:
101 /* Prefetch instruction is 0x0F0D or 0x0F18 */
102 if (probe_kernel_address(instr, opcode))
103 return 0;
104
105 *prefetch = (instr_lo == 0xF) &&
106 (opcode == 0x0D || opcode == 0x18);
107 return 0;
108 default:
109 return 0;
110 }
111 }
112
113 static int
114 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
115 {
116 unsigned char *max_instr;
117 unsigned char *instr;
118 int prefetch = 0;
119
120 /*
121 * If it was a exec (instruction fetch) fault on NX page, then
122 * do not ignore the fault:
123 */
124 if (error_code & X86_PF_INSTR)
125 return 0;
126
127 instr = (void *)convert_ip_to_linear(current, regs);
128 max_instr = instr + 15;
129
130 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
131 return 0;
132
133 while (instr < max_instr) {
134 unsigned char opcode;
135
136 if (probe_kernel_address(instr, opcode))
137 break;
138
139 instr++;
140
141 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
142 break;
143 }
144 return prefetch;
145 }
146
147 DEFINE_SPINLOCK(pgd_lock);
148 LIST_HEAD(pgd_list);
149
150 #ifdef CONFIG_X86_32
151 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
152 {
153 unsigned index = pgd_index(address);
154 pgd_t *pgd_k;
155 p4d_t *p4d, *p4d_k;
156 pud_t *pud, *pud_k;
157 pmd_t *pmd, *pmd_k;
158
159 pgd += index;
160 pgd_k = init_mm.pgd + index;
161
162 if (!pgd_present(*pgd_k))
163 return NULL;
164
165 /*
166 * set_pgd(pgd, *pgd_k); here would be useless on PAE
167 * and redundant with the set_pmd() on non-PAE. As would
168 * set_p4d/set_pud.
169 */
170 p4d = p4d_offset(pgd, address);
171 p4d_k = p4d_offset(pgd_k, address);
172 if (!p4d_present(*p4d_k))
173 return NULL;
174
175 pud = pud_offset(p4d, address);
176 pud_k = pud_offset(p4d_k, address);
177 if (!pud_present(*pud_k))
178 return NULL;
179
180 pmd = pmd_offset(pud, address);
181 pmd_k = pmd_offset(pud_k, address);
182
183 if (pmd_present(*pmd) != pmd_present(*pmd_k))
184 set_pmd(pmd, *pmd_k);
185
186 if (!pmd_present(*pmd_k))
187 return NULL;
188 else
189 BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
190
191 return pmd_k;
192 }
193
194 void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
195 {
196 unsigned long addr;
197
198 for (addr = start & PMD_MASK;
199 addr >= TASK_SIZE_MAX && addr < VMALLOC_END;
200 addr += PMD_SIZE) {
201 struct page *page;
202
203 spin_lock(&pgd_lock);
204 list_for_each_entry(page, &pgd_list, lru) {
205 spinlock_t *pgt_lock;
206
207 /* the pgt_lock only for Xen */
208 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
209
210 spin_lock(pgt_lock);
211 vmalloc_sync_one(page_address(page), addr);
212 spin_unlock(pgt_lock);
213 }
214 spin_unlock(&pgd_lock);
215 }
216 }
217
218 /*
219 * Did it hit the DOS screen memory VA from vm86 mode?
220 */
221 static inline void
222 check_v8086_mode(struct pt_regs *regs, unsigned long address,
223 struct task_struct *tsk)
224 {
225 #ifdef CONFIG_VM86
226 unsigned long bit;
227
228 if (!v8086_mode(regs) || !tsk->thread.vm86)
229 return;
230
231 bit = (address - 0xA0000) >> PAGE_SHIFT;
232 if (bit < 32)
233 tsk->thread.vm86->screen_bitmap |= 1 << bit;
234 #endif
235 }
236
237 static bool low_pfn(unsigned long pfn)
238 {
239 return pfn < max_low_pfn;
240 }
241
242 static void dump_pagetable(unsigned long address)
243 {
244 pgd_t *base = __va(read_cr3_pa());
245 pgd_t *pgd = &base[pgd_index(address)];
246 p4d_t *p4d;
247 pud_t *pud;
248 pmd_t *pmd;
249 pte_t *pte;
250
251 #ifdef CONFIG_X86_PAE
252 pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
253 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
254 goto out;
255 #define pr_pde pr_cont
256 #else
257 #define pr_pde pr_info
258 #endif
259 p4d = p4d_offset(pgd, address);
260 pud = pud_offset(p4d, address);
261 pmd = pmd_offset(pud, address);
262 pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
263 #undef pr_pde
264
265 /*
266 * We must not directly access the pte in the highpte
267 * case if the page table is located in highmem.
268 * And let's rather not kmap-atomic the pte, just in case
269 * it's allocated already:
270 */
271 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
272 goto out;
273
274 pte = pte_offset_kernel(pmd, address);
275 pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
276 out:
277 pr_cont("\n");
278 }
279
280 #else /* CONFIG_X86_64: */
281
282 #ifdef CONFIG_CPU_SUP_AMD
283 static const char errata93_warning[] =
284 KERN_ERR
285 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
286 "******* Working around it, but it may cause SEGVs or burn power.\n"
287 "******* Please consider a BIOS update.\n"
288 "******* Disabling USB legacy in the BIOS may also help.\n";
289 #endif
290
291 /*
292 * No vm86 mode in 64-bit mode:
293 */
294 static inline void
295 check_v8086_mode(struct pt_regs *regs, unsigned long address,
296 struct task_struct *tsk)
297 {
298 }
299
300 static int bad_address(void *p)
301 {
302 unsigned long dummy;
303
304 return probe_kernel_address((unsigned long *)p, dummy);
305 }
306
307 static void dump_pagetable(unsigned long address)
308 {
309 pgd_t *base = __va(read_cr3_pa());
310 pgd_t *pgd = base + pgd_index(address);
311 p4d_t *p4d;
312 pud_t *pud;
313 pmd_t *pmd;
314 pte_t *pte;
315
316 if (bad_address(pgd))
317 goto bad;
318
319 pr_info("PGD %lx ", pgd_val(*pgd));
320
321 if (!pgd_present(*pgd))
322 goto out;
323
324 p4d = p4d_offset(pgd, address);
325 if (bad_address(p4d))
326 goto bad;
327
328 pr_cont("P4D %lx ", p4d_val(*p4d));
329 if (!p4d_present(*p4d) || p4d_large(*p4d))
330 goto out;
331
332 pud = pud_offset(p4d, address);
333 if (bad_address(pud))
334 goto bad;
335
336 pr_cont("PUD %lx ", pud_val(*pud));
337 if (!pud_present(*pud) || pud_large(*pud))
338 goto out;
339
340 pmd = pmd_offset(pud, address);
341 if (bad_address(pmd))
342 goto bad;
343
344 pr_cont("PMD %lx ", pmd_val(*pmd));
345 if (!pmd_present(*pmd) || pmd_large(*pmd))
346 goto out;
347
348 pte = pte_offset_kernel(pmd, address);
349 if (bad_address(pte))
350 goto bad;
351
352 pr_cont("PTE %lx", pte_val(*pte));
353 out:
354 pr_cont("\n");
355 return;
356 bad:
357 pr_info("BAD\n");
358 }
359
360 #endif /* CONFIG_X86_64 */
361
362 /*
363 * Workaround for K8 erratum #93 & buggy BIOS.
364 *
365 * BIOS SMM functions are required to use a specific workaround
366 * to avoid corruption of the 64bit RIP register on C stepping K8.
367 *
368 * A lot of BIOS that didn't get tested properly miss this.
369 *
370 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
371 * Try to work around it here.
372 *
373 * Note we only handle faults in kernel here.
374 * Does nothing on 32-bit.
375 */
376 static int is_errata93(struct pt_regs *regs, unsigned long address)
377 {
378 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
379 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
380 || boot_cpu_data.x86 != 0xf)
381 return 0;
382
383 if (address != regs->ip)
384 return 0;
385
386 if ((address >> 32) != 0)
387 return 0;
388
389 address |= 0xffffffffUL << 32;
390 if ((address >= (u64)_stext && address <= (u64)_etext) ||
391 (address >= MODULES_VADDR && address <= MODULES_END)) {
392 printk_once(errata93_warning);
393 regs->ip = address;
394 return 1;
395 }
396 #endif
397 return 0;
398 }
399
400 /*
401 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
402 * to illegal addresses >4GB.
403 *
404 * We catch this in the page fault handler because these addresses
405 * are not reachable. Just detect this case and return. Any code
406 * segment in LDT is compatibility mode.
407 */
408 static int is_errata100(struct pt_regs *regs, unsigned long address)
409 {
410 #ifdef CONFIG_X86_64
411 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
412 return 1;
413 #endif
414 return 0;
415 }
416
417 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
418 {
419 #ifdef CONFIG_X86_F00F_BUG
420 unsigned long nr;
421
422 /*
423 * Pentium F0 0F C7 C8 bug workaround:
424 */
425 if (boot_cpu_has_bug(X86_BUG_F00F)) {
426 nr = (address - idt_descr.address) >> 3;
427
428 if (nr == 6) {
429 handle_invalid_op(regs);
430 return 1;
431 }
432 }
433 #endif
434 return 0;
435 }
436
437 static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
438 {
439 u32 offset = (index >> 3) * sizeof(struct desc_struct);
440 unsigned long addr;
441 struct ldttss_desc desc;
442
443 if (index == 0) {
444 pr_alert("%s: NULL\n", name);
445 return;
446 }
447
448 if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
449 pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
450 return;
451 }
452
453 if (probe_kernel_read(&desc, (void *)(gdt->address + offset),
454 sizeof(struct ldttss_desc))) {
455 pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
456 name, index);
457 return;
458 }
459
460 addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
461 #ifdef CONFIG_X86_64
462 addr |= ((u64)desc.base3 << 32);
463 #endif
464 pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
465 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
466 }
467
468 static void
469 show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
470 {
471 if (!oops_may_print())
472 return;
473
474 if (error_code & X86_PF_INSTR) {
475 unsigned int level;
476 pgd_t *pgd;
477 pte_t *pte;
478
479 pgd = __va(read_cr3_pa());
480 pgd += pgd_index(address);
481
482 pte = lookup_address_in_pgd(pgd, address, &level);
483
484 if (pte && pte_present(*pte) && !pte_exec(*pte))
485 pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
486 from_kuid(&init_user_ns, current_uid()));
487 if (pte && pte_present(*pte) && pte_exec(*pte) &&
488 (pgd_flags(*pgd) & _PAGE_USER) &&
489 (__read_cr4() & X86_CR4_SMEP))
490 pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
491 from_kuid(&init_user_ns, current_uid()));
492 }
493
494 if (address < PAGE_SIZE && !user_mode(regs))
495 pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
496 (void *)address);
497 else
498 pr_alert("BUG: unable to handle page fault for address: %px\n",
499 (void *)address);
500
501 pr_alert("#PF: %s %s in %s mode\n",
502 (error_code & X86_PF_USER) ? "user" : "supervisor",
503 (error_code & X86_PF_INSTR) ? "instruction fetch" :
504 (error_code & X86_PF_WRITE) ? "write access" :
505 "read access",
506 user_mode(regs) ? "user" : "kernel");
507 pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
508 !(error_code & X86_PF_PROT) ? "not-present page" :
509 (error_code & X86_PF_RSVD) ? "reserved bit violation" :
510 (error_code & X86_PF_PK) ? "protection keys violation" :
511 "permissions violation");
512
513 if (!(error_code & X86_PF_USER) && user_mode(regs)) {
514 struct desc_ptr idt, gdt;
515 u16 ldtr, tr;
516
517 /*
518 * This can happen for quite a few reasons. The more obvious
519 * ones are faults accessing the GDT, or LDT. Perhaps
520 * surprisingly, if the CPU tries to deliver a benign or
521 * contributory exception from user code and gets a page fault
522 * during delivery, the page fault can be delivered as though
523 * it originated directly from user code. This could happen
524 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
525 * kernel or IST stack.
526 */
527 store_idt(&idt);
528
529 /* Usable even on Xen PV -- it's just slow. */
530 native_store_gdt(&gdt);
531
532 pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
533 idt.address, idt.size, gdt.address, gdt.size);
534
535 store_ldt(ldtr);
536 show_ldttss(&gdt, "LDTR", ldtr);
537
538 store_tr(tr);
539 show_ldttss(&gdt, "TR", tr);
540 }
541
542 dump_pagetable(address);
543 }
544
545 static noinline void
546 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
547 unsigned long address)
548 {
549 struct task_struct *tsk;
550 unsigned long flags;
551 int sig;
552
553 flags = oops_begin();
554 tsk = current;
555 sig = SIGKILL;
556
557 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
558 tsk->comm, address);
559 dump_pagetable(address);
560
561 if (__die("Bad pagetable", regs, error_code))
562 sig = 0;
563
564 oops_end(flags, regs, sig);
565 }
566
567 static void set_signal_archinfo(unsigned long address,
568 unsigned long error_code)
569 {
570 struct task_struct *tsk = current;
571
572 /*
573 * To avoid leaking information about the kernel page
574 * table layout, pretend that user-mode accesses to
575 * kernel addresses are always protection faults.
576 *
577 * NB: This means that failed vsyscalls with vsyscall=none
578 * will have the PROT bit. This doesn't leak any
579 * information and does not appear to cause any problems.
580 */
581 if (address >= TASK_SIZE_MAX)
582 error_code |= X86_PF_PROT;
583
584 tsk->thread.trap_nr = X86_TRAP_PF;
585 tsk->thread.error_code = error_code | X86_PF_USER;
586 tsk->thread.cr2 = address;
587 }
588
589 static noinline void
590 no_context(struct pt_regs *regs, unsigned long error_code,
591 unsigned long address, int signal, int si_code)
592 {
593 struct task_struct *tsk = current;
594 unsigned long flags;
595 int sig;
596
597 if (user_mode(regs)) {
598 /*
599 * This is an implicit supervisor-mode access from user
600 * mode. Bypass all the kernel-mode recovery code and just
601 * OOPS.
602 */
603 goto oops;
604 }
605
606 /* Are we prepared to handle this kernel fault? */
607 if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) {
608 /*
609 * Any interrupt that takes a fault gets the fixup. This makes
610 * the below recursive fault logic only apply to a faults from
611 * task context.
612 */
613 if (in_interrupt())
614 return;
615
616 /*
617 * Per the above we're !in_interrupt(), aka. task context.
618 *
619 * In this case we need to make sure we're not recursively
620 * faulting through the emulate_vsyscall() logic.
621 */
622 if (current->thread.sig_on_uaccess_err && signal) {
623 set_signal_archinfo(address, error_code);
624
625 /* XXX: hwpoison faults will set the wrong code. */
626 force_sig_fault(signal, si_code, (void __user *)address);
627 }
628
629 /*
630 * Barring that, we can do the fixup and be happy.
631 */
632 return;
633 }
634
635 #ifdef CONFIG_VMAP_STACK
636 /*
637 * Stack overflow? During boot, we can fault near the initial
638 * stack in the direct map, but that's not an overflow -- check
639 * that we're in vmalloc space to avoid this.
640 */
641 if (is_vmalloc_addr((void *)address) &&
642 (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
643 address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
644 unsigned long stack = __this_cpu_ist_top_va(DF) - sizeof(void *);
645 /*
646 * We're likely to be running with very little stack space
647 * left. It's plausible that we'd hit this condition but
648 * double-fault even before we get this far, in which case
649 * we're fine: the double-fault handler will deal with it.
650 *
651 * We don't want to make it all the way into the oops code
652 * and then double-fault, though, because we're likely to
653 * break the console driver and lose most of the stack dump.
654 */
655 asm volatile ("movq %[stack], %%rsp\n\t"
656 "call handle_stack_overflow\n\t"
657 "1: jmp 1b"
658 : ASM_CALL_CONSTRAINT
659 : "D" ("kernel stack overflow (page fault)"),
660 "S" (regs), "d" (address),
661 [stack] "rm" (stack));
662 unreachable();
663 }
664 #endif
665
666 /*
667 * 32-bit:
668 *
669 * Valid to do another page fault here, because if this fault
670 * had been triggered by is_prefetch fixup_exception would have
671 * handled it.
672 *
673 * 64-bit:
674 *
675 * Hall of shame of CPU/BIOS bugs.
676 */
677 if (is_prefetch(regs, error_code, address))
678 return;
679
680 if (is_errata93(regs, address))
681 return;
682
683 /*
684 * Buggy firmware could access regions which might page fault, try to
685 * recover from such faults.
686 */
687 if (IS_ENABLED(CONFIG_EFI))
688 efi_recover_from_page_fault(address);
689
690 oops:
691 /*
692 * Oops. The kernel tried to access some bad page. We'll have to
693 * terminate things with extreme prejudice:
694 */
695 flags = oops_begin();
696
697 show_fault_oops(regs, error_code, address);
698
699 if (task_stack_end_corrupted(tsk))
700 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
701
702 sig = SIGKILL;
703 if (__die("Oops", regs, error_code))
704 sig = 0;
705
706 /* Executive summary in case the body of the oops scrolled away */
707 printk(KERN_DEFAULT "CR2: %016lx\n", address);
708
709 oops_end(flags, regs, sig);
710 }
711
712 /*
713 * Print out info about fatal segfaults, if the show_unhandled_signals
714 * sysctl is set:
715 */
716 static inline void
717 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
718 unsigned long address, struct task_struct *tsk)
719 {
720 const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
721
722 if (!unhandled_signal(tsk, SIGSEGV))
723 return;
724
725 if (!printk_ratelimit())
726 return;
727
728 printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
729 loglvl, tsk->comm, task_pid_nr(tsk), address,
730 (void *)regs->ip, (void *)regs->sp, error_code);
731
732 print_vma_addr(KERN_CONT " in ", regs->ip);
733
734 printk(KERN_CONT "\n");
735
736 show_opcodes(regs, loglvl);
737 }
738
739 /*
740 * The (legacy) vsyscall page is the long page in the kernel portion
741 * of the address space that has user-accessible permissions.
742 */
743 static bool is_vsyscall_vaddr(unsigned long vaddr)
744 {
745 return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR);
746 }
747
748 static void
749 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
750 unsigned long address, u32 pkey, int si_code)
751 {
752 struct task_struct *tsk = current;
753
754 /* User mode accesses just cause a SIGSEGV */
755 if (user_mode(regs) && (error_code & X86_PF_USER)) {
756 /*
757 * It's possible to have interrupts off here:
758 */
759 local_irq_enable();
760
761 /*
762 * Valid to do another page fault here because this one came
763 * from user space:
764 */
765 if (is_prefetch(regs, error_code, address))
766 return;
767
768 if (is_errata100(regs, address))
769 return;
770
771 /*
772 * To avoid leaking information about the kernel page table
773 * layout, pretend that user-mode accesses to kernel addresses
774 * are always protection faults.
775 */
776 if (address >= TASK_SIZE_MAX)
777 error_code |= X86_PF_PROT;
778
779 if (likely(show_unhandled_signals))
780 show_signal_msg(regs, error_code, address, tsk);
781
782 set_signal_archinfo(address, error_code);
783
784 if (si_code == SEGV_PKUERR)
785 force_sig_pkuerr((void __user *)address, pkey);
786
787 force_sig_fault(SIGSEGV, si_code, (void __user *)address);
788
789 local_irq_disable();
790
791 return;
792 }
793
794 if (is_f00f_bug(regs, address))
795 return;
796
797 no_context(regs, error_code, address, SIGSEGV, si_code);
798 }
799
800 static noinline void
801 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
802 unsigned long address)
803 {
804 __bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
805 }
806
807 static void
808 __bad_area(struct pt_regs *regs, unsigned long error_code,
809 unsigned long address, u32 pkey, int si_code)
810 {
811 struct mm_struct *mm = current->mm;
812 /*
813 * Something tried to access memory that isn't in our memory map..
814 * Fix it, but check if it's kernel or user first..
815 */
816 mmap_read_unlock(mm);
817
818 __bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
819 }
820
821 static noinline void
822 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
823 {
824 __bad_area(regs, error_code, address, 0, SEGV_MAPERR);
825 }
826
827 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
828 struct vm_area_struct *vma)
829 {
830 /* This code is always called on the current mm */
831 bool foreign = false;
832
833 if (!boot_cpu_has(X86_FEATURE_OSPKE))
834 return false;
835 if (error_code & X86_PF_PK)
836 return true;
837 /* this checks permission keys on the VMA: */
838 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
839 (error_code & X86_PF_INSTR), foreign))
840 return true;
841 return false;
842 }
843
844 static noinline void
845 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
846 unsigned long address, struct vm_area_struct *vma)
847 {
848 /*
849 * This OSPKE check is not strictly necessary at runtime.
850 * But, doing it this way allows compiler optimizations
851 * if pkeys are compiled out.
852 */
853 if (bad_area_access_from_pkeys(error_code, vma)) {
854 /*
855 * A protection key fault means that the PKRU value did not allow
856 * access to some PTE. Userspace can figure out what PKRU was
857 * from the XSAVE state. This function captures the pkey from
858 * the vma and passes it to userspace so userspace can discover
859 * which protection key was set on the PTE.
860 *
861 * If we get here, we know that the hardware signaled a X86_PF_PK
862 * fault and that there was a VMA once we got in the fault
863 * handler. It does *not* guarantee that the VMA we find here
864 * was the one that we faulted on.
865 *
866 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
867 * 2. T1 : set PKRU to deny access to pkey=4, touches page
868 * 3. T1 : faults...
869 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
870 * 5. T1 : enters fault handler, takes mmap_lock, etc...
871 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
872 * faulted on a pte with its pkey=4.
873 */
874 u32 pkey = vma_pkey(vma);
875
876 __bad_area(regs, error_code, address, pkey, SEGV_PKUERR);
877 } else {
878 __bad_area(regs, error_code, address, 0, SEGV_ACCERR);
879 }
880 }
881
882 static void
883 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
884 vm_fault_t fault)
885 {
886 /* Kernel mode? Handle exceptions or die: */
887 if (!(error_code & X86_PF_USER)) {
888 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
889 return;
890 }
891
892 /* User-space => ok to do another page fault: */
893 if (is_prefetch(regs, error_code, address))
894 return;
895
896 set_signal_archinfo(address, error_code);
897
898 #ifdef CONFIG_MEMORY_FAILURE
899 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
900 struct task_struct *tsk = current;
901 unsigned lsb = 0;
902
903 pr_err(
904 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
905 tsk->comm, tsk->pid, address);
906 if (fault & VM_FAULT_HWPOISON_LARGE)
907 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
908 if (fault & VM_FAULT_HWPOISON)
909 lsb = PAGE_SHIFT;
910 force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
911 return;
912 }
913 #endif
914 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
915 }
916
917 static noinline void
918 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
919 unsigned long address, vm_fault_t fault)
920 {
921 if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) {
922 no_context(regs, error_code, address, 0, 0);
923 return;
924 }
925
926 if (fault & VM_FAULT_OOM) {
927 /* Kernel mode? Handle exceptions or die: */
928 if (!(error_code & X86_PF_USER)) {
929 no_context(regs, error_code, address,
930 SIGSEGV, SEGV_MAPERR);
931 return;
932 }
933
934 /*
935 * We ran out of memory, call the OOM killer, and return the
936 * userspace (which will retry the fault, or kill us if we got
937 * oom-killed):
938 */
939 pagefault_out_of_memory();
940 } else {
941 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
942 VM_FAULT_HWPOISON_LARGE))
943 do_sigbus(regs, error_code, address, fault);
944 else if (fault & VM_FAULT_SIGSEGV)
945 bad_area_nosemaphore(regs, error_code, address);
946 else
947 BUG();
948 }
949 }
950
951 static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
952 {
953 if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
954 return 0;
955
956 if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
957 return 0;
958
959 return 1;
960 }
961
962 /*
963 * Handle a spurious fault caused by a stale TLB entry.
964 *
965 * This allows us to lazily refresh the TLB when increasing the
966 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
967 * eagerly is very expensive since that implies doing a full
968 * cross-processor TLB flush, even if no stale TLB entries exist
969 * on other processors.
970 *
971 * Spurious faults may only occur if the TLB contains an entry with
972 * fewer permission than the page table entry. Non-present (P = 0)
973 * and reserved bit (R = 1) faults are never spurious.
974 *
975 * There are no security implications to leaving a stale TLB when
976 * increasing the permissions on a page.
977 *
978 * Returns non-zero if a spurious fault was handled, zero otherwise.
979 *
980 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
981 * (Optional Invalidation).
982 */
983 static noinline int
984 spurious_kernel_fault(unsigned long error_code, unsigned long address)
985 {
986 pgd_t *pgd;
987 p4d_t *p4d;
988 pud_t *pud;
989 pmd_t *pmd;
990 pte_t *pte;
991 int ret;
992
993 /*
994 * Only writes to RO or instruction fetches from NX may cause
995 * spurious faults.
996 *
997 * These could be from user or supervisor accesses but the TLB
998 * is only lazily flushed after a kernel mapping protection
999 * change, so user accesses are not expected to cause spurious
1000 * faults.
1001 */
1002 if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1003 error_code != (X86_PF_INSTR | X86_PF_PROT))
1004 return 0;
1005
1006 pgd = init_mm.pgd + pgd_index(address);
1007 if (!pgd_present(*pgd))
1008 return 0;
1009
1010 p4d = p4d_offset(pgd, address);
1011 if (!p4d_present(*p4d))
1012 return 0;
1013
1014 if (p4d_large(*p4d))
1015 return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1016
1017 pud = pud_offset(p4d, address);
1018 if (!pud_present(*pud))
1019 return 0;
1020
1021 if (pud_large(*pud))
1022 return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1023
1024 pmd = pmd_offset(pud, address);
1025 if (!pmd_present(*pmd))
1026 return 0;
1027
1028 if (pmd_large(*pmd))
1029 return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1030
1031 pte = pte_offset_kernel(pmd, address);
1032 if (!pte_present(*pte))
1033 return 0;
1034
1035 ret = spurious_kernel_fault_check(error_code, pte);
1036 if (!ret)
1037 return 0;
1038
1039 /*
1040 * Make sure we have permissions in PMD.
1041 * If not, then there's a bug in the page tables:
1042 */
1043 ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1044 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1045
1046 return ret;
1047 }
1048 NOKPROBE_SYMBOL(spurious_kernel_fault);
1049
1050 int show_unhandled_signals = 1;
1051
1052 static inline int
1053 access_error(unsigned long error_code, struct vm_area_struct *vma)
1054 {
1055 /* This is only called for the current mm, so: */
1056 bool foreign = false;
1057
1058 /*
1059 * Read or write was blocked by protection keys. This is
1060 * always an unconditional error and can never result in
1061 * a follow-up action to resolve the fault, like a COW.
1062 */
1063 if (error_code & X86_PF_PK)
1064 return 1;
1065
1066 /*
1067 * Make sure to check the VMA so that we do not perform
1068 * faults just to hit a X86_PF_PK as soon as we fill in a
1069 * page.
1070 */
1071 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1072 (error_code & X86_PF_INSTR), foreign))
1073 return 1;
1074
1075 if (error_code & X86_PF_WRITE) {
1076 /* write, present and write, not present: */
1077 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1078 return 1;
1079 return 0;
1080 }
1081
1082 /* read, present: */
1083 if (unlikely(error_code & X86_PF_PROT))
1084 return 1;
1085
1086 /* read, not present: */
1087 if (unlikely(!vma_is_accessible(vma)))
1088 return 1;
1089
1090 return 0;
1091 }
1092
1093 static int fault_in_kernel_space(unsigned long address)
1094 {
1095 /*
1096 * On 64-bit systems, the vsyscall page is at an address above
1097 * TASK_SIZE_MAX, but is not considered part of the kernel
1098 * address space.
1099 */
1100 if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1101 return false;
1102
1103 return address >= TASK_SIZE_MAX;
1104 }
1105
1106 /*
1107 * Called for all faults where 'address' is part of the kernel address
1108 * space. Might get called for faults that originate from *code* that
1109 * ran in userspace or the kernel.
1110 */
1111 static void
1112 do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1113 unsigned long address)
1114 {
1115 /*
1116 * Protection keys exceptions only happen on user pages. We
1117 * have no user pages in the kernel portion of the address
1118 * space, so do not expect them here.
1119 */
1120 WARN_ON_ONCE(hw_error_code & X86_PF_PK);
1121
1122 /* Was the fault spurious, caused by lazy TLB invalidation? */
1123 if (spurious_kernel_fault(hw_error_code, address))
1124 return;
1125
1126 /* kprobes don't want to hook the spurious faults: */
1127 if (kprobe_page_fault(regs, X86_TRAP_PF))
1128 return;
1129
1130 /*
1131 * Note, despite being a "bad area", there are quite a few
1132 * acceptable reasons to get here, such as erratum fixups
1133 * and handling kernel code that can fault, like get_user().
1134 *
1135 * Don't take the mm semaphore here. If we fixup a prefetch
1136 * fault we could otherwise deadlock:
1137 */
1138 bad_area_nosemaphore(regs, hw_error_code, address);
1139 }
1140 NOKPROBE_SYMBOL(do_kern_addr_fault);
1141
1142 /* Handle faults in the user portion of the address space */
1143 static inline
1144 void do_user_addr_fault(struct pt_regs *regs,
1145 unsigned long hw_error_code,
1146 unsigned long address)
1147 {
1148 struct vm_area_struct *vma;
1149 struct task_struct *tsk;
1150 struct mm_struct *mm;
1151 vm_fault_t fault, major = 0;
1152 unsigned int flags = FAULT_FLAG_DEFAULT;
1153
1154 tsk = current;
1155 mm = tsk->mm;
1156
1157 /* kprobes don't want to hook the spurious faults: */
1158 if (unlikely(kprobe_page_fault(regs, X86_TRAP_PF)))
1159 return;
1160
1161 /*
1162 * Reserved bits are never expected to be set on
1163 * entries in the user portion of the page tables.
1164 */
1165 if (unlikely(hw_error_code & X86_PF_RSVD))
1166 pgtable_bad(regs, hw_error_code, address);
1167
1168 /*
1169 * If SMAP is on, check for invalid kernel (supervisor) access to user
1170 * pages in the user address space. The odd case here is WRUSS,
1171 * which, according to the preliminary documentation, does not respect
1172 * SMAP and will have the USER bit set so, in all cases, SMAP
1173 * enforcement appears to be consistent with the USER bit.
1174 */
1175 if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1176 !(hw_error_code & X86_PF_USER) &&
1177 !(regs->flags & X86_EFLAGS_AC)))
1178 {
1179 bad_area_nosemaphore(regs, hw_error_code, address);
1180 return;
1181 }
1182
1183 /*
1184 * If we're in an interrupt, have no user context or are running
1185 * in a region with pagefaults disabled then we must not take the fault
1186 */
1187 if (unlikely(faulthandler_disabled() || !mm)) {
1188 bad_area_nosemaphore(regs, hw_error_code, address);
1189 return;
1190 }
1191
1192 /*
1193 * It's safe to allow irq's after cr2 has been saved and the
1194 * vmalloc fault has been handled.
1195 *
1196 * User-mode registers count as a user access even for any
1197 * potential system fault or CPU buglet:
1198 */
1199 if (user_mode(regs)) {
1200 local_irq_enable();
1201 flags |= FAULT_FLAG_USER;
1202 } else {
1203 if (regs->flags & X86_EFLAGS_IF)
1204 local_irq_enable();
1205 }
1206
1207 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1208
1209 if (hw_error_code & X86_PF_WRITE)
1210 flags |= FAULT_FLAG_WRITE;
1211 if (hw_error_code & X86_PF_INSTR)
1212 flags |= FAULT_FLAG_INSTRUCTION;
1213
1214 #ifdef CONFIG_X86_64
1215 /*
1216 * Faults in the vsyscall page might need emulation. The
1217 * vsyscall page is at a high address (>PAGE_OFFSET), but is
1218 * considered to be part of the user address space.
1219 *
1220 * The vsyscall page does not have a "real" VMA, so do this
1221 * emulation before we go searching for VMAs.
1222 *
1223 * PKRU never rejects instruction fetches, so we don't need
1224 * to consider the PF_PK bit.
1225 */
1226 if (is_vsyscall_vaddr(address)) {
1227 if (emulate_vsyscall(hw_error_code, regs, address))
1228 return;
1229 }
1230 #endif
1231
1232 /*
1233 * Kernel-mode access to the user address space should only occur
1234 * on well-defined single instructions listed in the exception
1235 * tables. But, an erroneous kernel fault occurring outside one of
1236 * those areas which also holds mmap_lock might deadlock attempting
1237 * to validate the fault against the address space.
1238 *
1239 * Only do the expensive exception table search when we might be at
1240 * risk of a deadlock. This happens if we
1241 * 1. Failed to acquire mmap_lock, and
1242 * 2. The access did not originate in userspace.
1243 */
1244 if (unlikely(!mmap_read_trylock(mm))) {
1245 if (!user_mode(regs) && !search_exception_tables(regs->ip)) {
1246 /*
1247 * Fault from code in kernel from
1248 * which we do not expect faults.
1249 */
1250 bad_area_nosemaphore(regs, hw_error_code, address);
1251 return;
1252 }
1253 retry:
1254 mmap_read_lock(mm);
1255 } else {
1256 /*
1257 * The above down_read_trylock() might have succeeded in
1258 * which case we'll have missed the might_sleep() from
1259 * down_read():
1260 */
1261 might_sleep();
1262 }
1263
1264 vma = find_vma(mm, address);
1265 if (unlikely(!vma)) {
1266 bad_area(regs, hw_error_code, address);
1267 return;
1268 }
1269 if (likely(vma->vm_start <= address))
1270 goto good_area;
1271 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1272 bad_area(regs, hw_error_code, address);
1273 return;
1274 }
1275 if (unlikely(expand_stack(vma, address))) {
1276 bad_area(regs, hw_error_code, address);
1277 return;
1278 }
1279
1280 /*
1281 * Ok, we have a good vm_area for this memory access, so
1282 * we can handle it..
1283 */
1284 good_area:
1285 if (unlikely(access_error(hw_error_code, vma))) {
1286 bad_area_access_error(regs, hw_error_code, address, vma);
1287 return;
1288 }
1289
1290 /*
1291 * If for any reason at all we couldn't handle the fault,
1292 * make sure we exit gracefully rather than endlessly redo
1293 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1294 * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked.
1295 *
1296 * Note that handle_userfault() may also release and reacquire mmap_lock
1297 * (and not return with VM_FAULT_RETRY), when returning to userland to
1298 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1299 * (potentially after handling any pending signal during the return to
1300 * userland). The return to userland is identified whenever
1301 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1302 */
1303 fault = handle_mm_fault(vma, address, flags);
1304 major |= fault & VM_FAULT_MAJOR;
1305
1306 /* Quick path to respond to signals */
1307 if (fault_signal_pending(fault, regs)) {
1308 if (!user_mode(regs))
1309 no_context(regs, hw_error_code, address, SIGBUS,
1310 BUS_ADRERR);
1311 return;
1312 }
1313
1314 /*
1315 * If we need to retry the mmap_lock has already been released,
1316 * and if there is a fatal signal pending there is no guarantee
1317 * that we made any progress. Handle this case first.
1318 */
1319 if (unlikely((fault & VM_FAULT_RETRY) &&
1320 (flags & FAULT_FLAG_ALLOW_RETRY))) {
1321 flags |= FAULT_FLAG_TRIED;
1322 goto retry;
1323 }
1324
1325 mmap_read_unlock(mm);
1326 if (unlikely(fault & VM_FAULT_ERROR)) {
1327 mm_fault_error(regs, hw_error_code, address, fault);
1328 return;
1329 }
1330
1331 /*
1332 * Major/minor page fault accounting. If any of the events
1333 * returned VM_FAULT_MAJOR, we account it as a major fault.
1334 */
1335 if (major) {
1336 tsk->maj_flt++;
1337 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1338 } else {
1339 tsk->min_flt++;
1340 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1341 }
1342
1343 check_v8086_mode(regs, address, tsk);
1344 }
1345 NOKPROBE_SYMBOL(do_user_addr_fault);
1346
1347 static __always_inline void
1348 trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
1349 unsigned long address)
1350 {
1351 if (!trace_pagefault_enabled())
1352 return;
1353
1354 if (user_mode(regs))
1355 trace_page_fault_user(address, regs, error_code);
1356 else
1357 trace_page_fault_kernel(address, regs, error_code);
1358 }
1359
1360 static __always_inline void
1361 handle_page_fault(struct pt_regs *regs, unsigned long error_code,
1362 unsigned long address)
1363 {
1364 trace_page_fault_entries(regs, error_code, address);
1365
1366 if (unlikely(kmmio_fault(regs, address)))
1367 return;
1368
1369 /* Was the fault on kernel-controlled part of the address space? */
1370 if (unlikely(fault_in_kernel_space(address))) {
1371 do_kern_addr_fault(regs, error_code, address);
1372 } else {
1373 do_user_addr_fault(regs, error_code, address);
1374 /*
1375 * User address page fault handling might have reenabled
1376 * interrupts. Fixing up all potential exit points of
1377 * do_user_addr_fault() and its leaf functions is just not
1378 * doable w/o creating an unholy mess or turning the code
1379 * upside down.
1380 */
1381 local_irq_disable();
1382 }
1383 }
1384
1385 DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)
1386 {
1387 unsigned long address = read_cr2();
1388 bool rcu_exit;
1389
1390 prefetchw(&current->mm->mmap_lock);
1391
1392 /*
1393 * KVM has two types of events that are, logically, interrupts, but
1394 * are unfortunately delivered using the #PF vector. These events are
1395 * "you just accessed valid memory, but the host doesn't have it right
1396 * now, so I'll put you to sleep if you continue" and "that memory
1397 * you tried to access earlier is available now."
1398 *
1399 * We are relying on the interrupted context being sane (valid RSP,
1400 * relevant locks not held, etc.), which is fine as long as the
1401 * interrupted context had IF=1. We are also relying on the KVM
1402 * async pf type field and CR2 being read consistently instead of
1403 * getting values from real and async page faults mixed up.
1404 *
1405 * Fingers crossed.
1406 *
1407 * The async #PF handling code takes care of idtentry handling
1408 * itself.
1409 */
1410 if (kvm_handle_async_pf(regs, (u32)address))
1411 return;
1412
1413 /*
1414 * Entry handling for valid #PF from kernel mode is slightly
1415 * different: RCU is already watching and rcu_irq_enter() must not
1416 * be invoked because a kernel fault on a user space address might
1417 * sleep.
1418 *
1419 * In case the fault hit a RCU idle region the conditional entry
1420 * code reenabled RCU to avoid subsequent wreckage which helps
1421 * debugability.
1422 */
1423 rcu_exit = idtentry_enter_cond_rcu(regs);
1424
1425 instrumentation_begin();
1426 handle_page_fault(regs, error_code, address);
1427 instrumentation_end();
1428
1429 idtentry_exit_cond_rcu(regs, rcu_exit);
1430 }