]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - arch/x86/mm/fault.c
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
[mirror_ubuntu-kernels.git] / arch / x86 / mm / fault.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1995 Linus Torvalds
4 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6 */
7 #include <linux/sched.h> /* test_thread_flag(), ... */
8 #include <linux/sched/task_stack.h> /* task_stack_*(), ... */
9 #include <linux/kdebug.h> /* oops_begin/end, ... */
10 #include <linux/extable.h> /* search_exception_tables */
11 #include <linux/bootmem.h> /* max_low_pfn */
12 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
13 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
14 #include <linux/perf_event.h> /* perf_sw_event */
15 #include <linux/hugetlb.h> /* hstate_index_to_shift */
16 #include <linux/prefetch.h> /* prefetchw */
17 #include <linux/context_tracking.h> /* exception_enter(), ... */
18 #include <linux/uaccess.h> /* faulthandler_disabled() */
19
20 #include <asm/cpufeature.h> /* boot_cpu_has, ... */
21 #include <asm/traps.h> /* dotraplinkage, ... */
22 #include <asm/pgalloc.h> /* pgd_*(), ... */
23 #include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
24 #include <asm/fixmap.h> /* VSYSCALL_ADDR */
25 #include <asm/vsyscall.h> /* emulate_vsyscall */
26 #include <asm/vm86.h> /* struct vm86 */
27 #include <asm/mmu_context.h> /* vma_pkey() */
28
29 #define CREATE_TRACE_POINTS
30 #include <asm/trace/exceptions.h>
31
32 /*
33 * Page fault error code bits:
34 *
35 * bit 0 == 0: no page found 1: protection fault
36 * bit 1 == 0: read access 1: write access
37 * bit 2 == 0: kernel-mode access 1: user-mode access
38 * bit 3 == 1: use of reserved bit detected
39 * bit 4 == 1: fault was an instruction fetch
40 * bit 5 == 1: protection keys block access
41 */
42 enum x86_pf_error_code {
43
44 PF_PROT = 1 << 0,
45 PF_WRITE = 1 << 1,
46 PF_USER = 1 << 2,
47 PF_RSVD = 1 << 3,
48 PF_INSTR = 1 << 4,
49 PF_PK = 1 << 5,
50 };
51
52 /*
53 * Returns 0 if mmiotrace is disabled, or if the fault is not
54 * handled by mmiotrace:
55 */
56 static nokprobe_inline int
57 kmmio_fault(struct pt_regs *regs, unsigned long addr)
58 {
59 if (unlikely(is_kmmio_active()))
60 if (kmmio_handler(regs, addr) == 1)
61 return -1;
62 return 0;
63 }
64
65 static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
66 {
67 int ret = 0;
68
69 /* kprobe_running() needs smp_processor_id() */
70 if (kprobes_built_in() && !user_mode(regs)) {
71 preempt_disable();
72 if (kprobe_running() && kprobe_fault_handler(regs, 14))
73 ret = 1;
74 preempt_enable();
75 }
76
77 return ret;
78 }
79
80 /*
81 * Prefetch quirks:
82 *
83 * 32-bit mode:
84 *
85 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
86 * Check that here and ignore it.
87 *
88 * 64-bit mode:
89 *
90 * Sometimes the CPU reports invalid exceptions on prefetch.
91 * Check that here and ignore it.
92 *
93 * Opcode checker based on code by Richard Brunner.
94 */
95 static inline int
96 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
97 unsigned char opcode, int *prefetch)
98 {
99 unsigned char instr_hi = opcode & 0xf0;
100 unsigned char instr_lo = opcode & 0x0f;
101
102 switch (instr_hi) {
103 case 0x20:
104 case 0x30:
105 /*
106 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
107 * In X86_64 long mode, the CPU will signal invalid
108 * opcode if some of these prefixes are present so
109 * X86_64 will never get here anyway
110 */
111 return ((instr_lo & 7) == 0x6);
112 #ifdef CONFIG_X86_64
113 case 0x40:
114 /*
115 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
116 * Need to figure out under what instruction mode the
117 * instruction was issued. Could check the LDT for lm,
118 * but for now it's good enough to assume that long
119 * mode only uses well known segments or kernel.
120 */
121 return (!user_mode(regs) || user_64bit_mode(regs));
122 #endif
123 case 0x60:
124 /* 0x64 thru 0x67 are valid prefixes in all modes. */
125 return (instr_lo & 0xC) == 0x4;
126 case 0xF0:
127 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
128 return !instr_lo || (instr_lo>>1) == 1;
129 case 0x00:
130 /* Prefetch instruction is 0x0F0D or 0x0F18 */
131 if (probe_kernel_address(instr, opcode))
132 return 0;
133
134 *prefetch = (instr_lo == 0xF) &&
135 (opcode == 0x0D || opcode == 0x18);
136 return 0;
137 default:
138 return 0;
139 }
140 }
141
142 static int
143 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
144 {
145 unsigned char *max_instr;
146 unsigned char *instr;
147 int prefetch = 0;
148
149 /*
150 * If it was a exec (instruction fetch) fault on NX page, then
151 * do not ignore the fault:
152 */
153 if (error_code & PF_INSTR)
154 return 0;
155
156 instr = (void *)convert_ip_to_linear(current, regs);
157 max_instr = instr + 15;
158
159 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
160 return 0;
161
162 while (instr < max_instr) {
163 unsigned char opcode;
164
165 if (probe_kernel_address(instr, opcode))
166 break;
167
168 instr++;
169
170 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
171 break;
172 }
173 return prefetch;
174 }
175
176 /*
177 * A protection key fault means that the PKRU value did not allow
178 * access to some PTE. Userspace can figure out what PKRU was
179 * from the XSAVE state, and this function fills out a field in
180 * siginfo so userspace can discover which protection key was set
181 * on the PTE.
182 *
183 * If we get here, we know that the hardware signaled a PF_PK
184 * fault and that there was a VMA once we got in the fault
185 * handler. It does *not* guarantee that the VMA we find here
186 * was the one that we faulted on.
187 *
188 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
189 * 2. T1 : set PKRU to deny access to pkey=4, touches page
190 * 3. T1 : faults...
191 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
192 * 5. T1 : enters fault handler, takes mmap_sem, etc...
193 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
194 * faulted on a pte with its pkey=4.
195 */
196 static void fill_sig_info_pkey(int si_code, siginfo_t *info, u32 *pkey)
197 {
198 /* This is effectively an #ifdef */
199 if (!boot_cpu_has(X86_FEATURE_OSPKE))
200 return;
201
202 /* Fault not from Protection Keys: nothing to do */
203 if (si_code != SEGV_PKUERR)
204 return;
205 /*
206 * force_sig_info_fault() is called from a number of
207 * contexts, some of which have a VMA and some of which
208 * do not. The PF_PK handing happens after we have a
209 * valid VMA, so we should never reach this without a
210 * valid VMA.
211 */
212 if (!pkey) {
213 WARN_ONCE(1, "PKU fault with no VMA passed in");
214 info->si_pkey = 0;
215 return;
216 }
217 /*
218 * si_pkey should be thought of as a strong hint, but not
219 * absolutely guranteed to be 100% accurate because of
220 * the race explained above.
221 */
222 info->si_pkey = *pkey;
223 }
224
225 static void
226 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
227 struct task_struct *tsk, u32 *pkey, int fault)
228 {
229 unsigned lsb = 0;
230 siginfo_t info;
231
232 info.si_signo = si_signo;
233 info.si_errno = 0;
234 info.si_code = si_code;
235 info.si_addr = (void __user *)address;
236 if (fault & VM_FAULT_HWPOISON_LARGE)
237 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
238 if (fault & VM_FAULT_HWPOISON)
239 lsb = PAGE_SHIFT;
240 info.si_addr_lsb = lsb;
241
242 fill_sig_info_pkey(si_code, &info, pkey);
243
244 force_sig_info(si_signo, &info, tsk);
245 }
246
247 DEFINE_SPINLOCK(pgd_lock);
248 LIST_HEAD(pgd_list);
249
250 #ifdef CONFIG_X86_32
251 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
252 {
253 unsigned index = pgd_index(address);
254 pgd_t *pgd_k;
255 p4d_t *p4d, *p4d_k;
256 pud_t *pud, *pud_k;
257 pmd_t *pmd, *pmd_k;
258
259 pgd += index;
260 pgd_k = init_mm.pgd + index;
261
262 if (!pgd_present(*pgd_k))
263 return NULL;
264
265 /*
266 * set_pgd(pgd, *pgd_k); here would be useless on PAE
267 * and redundant with the set_pmd() on non-PAE. As would
268 * set_p4d/set_pud.
269 */
270 p4d = p4d_offset(pgd, address);
271 p4d_k = p4d_offset(pgd_k, address);
272 if (!p4d_present(*p4d_k))
273 return NULL;
274
275 pud = pud_offset(p4d, address);
276 pud_k = pud_offset(p4d_k, address);
277 if (!pud_present(*pud_k))
278 return NULL;
279
280 pmd = pmd_offset(pud, address);
281 pmd_k = pmd_offset(pud_k, address);
282 if (!pmd_present(*pmd_k))
283 return NULL;
284
285 if (!pmd_present(*pmd))
286 set_pmd(pmd, *pmd_k);
287 else
288 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
289
290 return pmd_k;
291 }
292
293 void vmalloc_sync_all(void)
294 {
295 unsigned long address;
296
297 if (SHARED_KERNEL_PMD)
298 return;
299
300 for (address = VMALLOC_START & PMD_MASK;
301 address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
302 address += PMD_SIZE) {
303 struct page *page;
304
305 spin_lock(&pgd_lock);
306 list_for_each_entry(page, &pgd_list, lru) {
307 spinlock_t *pgt_lock;
308 pmd_t *ret;
309
310 /* the pgt_lock only for Xen */
311 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
312
313 spin_lock(pgt_lock);
314 ret = vmalloc_sync_one(page_address(page), address);
315 spin_unlock(pgt_lock);
316
317 if (!ret)
318 break;
319 }
320 spin_unlock(&pgd_lock);
321 }
322 }
323
324 /*
325 * 32-bit:
326 *
327 * Handle a fault on the vmalloc or module mapping area
328 */
329 static noinline int vmalloc_fault(unsigned long address)
330 {
331 unsigned long pgd_paddr;
332 pmd_t *pmd_k;
333 pte_t *pte_k;
334
335 /* Make sure we are in vmalloc area: */
336 if (!(address >= VMALLOC_START && address < VMALLOC_END))
337 return -1;
338
339 WARN_ON_ONCE(in_nmi());
340
341 /*
342 * Synchronize this task's top level page-table
343 * with the 'reference' page table.
344 *
345 * Do _not_ use "current" here. We might be inside
346 * an interrupt in the middle of a task switch..
347 */
348 pgd_paddr = read_cr3_pa();
349 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
350 if (!pmd_k)
351 return -1;
352
353 if (pmd_huge(*pmd_k))
354 return 0;
355
356 pte_k = pte_offset_kernel(pmd_k, address);
357 if (!pte_present(*pte_k))
358 return -1;
359
360 return 0;
361 }
362 NOKPROBE_SYMBOL(vmalloc_fault);
363
364 /*
365 * Did it hit the DOS screen memory VA from vm86 mode?
366 */
367 static inline void
368 check_v8086_mode(struct pt_regs *regs, unsigned long address,
369 struct task_struct *tsk)
370 {
371 #ifdef CONFIG_VM86
372 unsigned long bit;
373
374 if (!v8086_mode(regs) || !tsk->thread.vm86)
375 return;
376
377 bit = (address - 0xA0000) >> PAGE_SHIFT;
378 if (bit < 32)
379 tsk->thread.vm86->screen_bitmap |= 1 << bit;
380 #endif
381 }
382
383 static bool low_pfn(unsigned long pfn)
384 {
385 return pfn < max_low_pfn;
386 }
387
388 static void dump_pagetable(unsigned long address)
389 {
390 pgd_t *base = __va(read_cr3_pa());
391 pgd_t *pgd = &base[pgd_index(address)];
392 p4d_t *p4d;
393 pud_t *pud;
394 pmd_t *pmd;
395 pte_t *pte;
396
397 #ifdef CONFIG_X86_PAE
398 pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
399 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
400 goto out;
401 #define pr_pde pr_cont
402 #else
403 #define pr_pde pr_info
404 #endif
405 p4d = p4d_offset(pgd, address);
406 pud = pud_offset(p4d, address);
407 pmd = pmd_offset(pud, address);
408 pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
409 #undef pr_pde
410
411 /*
412 * We must not directly access the pte in the highpte
413 * case if the page table is located in highmem.
414 * And let's rather not kmap-atomic the pte, just in case
415 * it's allocated already:
416 */
417 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
418 goto out;
419
420 pte = pte_offset_kernel(pmd, address);
421 pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
422 out:
423 pr_cont("\n");
424 }
425
426 #else /* CONFIG_X86_64: */
427
428 void vmalloc_sync_all(void)
429 {
430 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
431 }
432
433 /*
434 * 64-bit:
435 *
436 * Handle a fault on the vmalloc area
437 */
438 static noinline int vmalloc_fault(unsigned long address)
439 {
440 pgd_t *pgd, *pgd_ref;
441 p4d_t *p4d, *p4d_ref;
442 pud_t *pud, *pud_ref;
443 pmd_t *pmd, *pmd_ref;
444 pte_t *pte, *pte_ref;
445
446 /* Make sure we are in vmalloc area: */
447 if (!(address >= VMALLOC_START && address < VMALLOC_END))
448 return -1;
449
450 WARN_ON_ONCE(in_nmi());
451
452 /*
453 * Copy kernel mappings over when needed. This can also
454 * happen within a race in page table update. In the later
455 * case just flush:
456 */
457 pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address);
458 pgd_ref = pgd_offset_k(address);
459 if (pgd_none(*pgd_ref))
460 return -1;
461
462 if (pgd_none(*pgd)) {
463 set_pgd(pgd, *pgd_ref);
464 arch_flush_lazy_mmu_mode();
465 } else if (CONFIG_PGTABLE_LEVELS > 4) {
466 /*
467 * With folded p4d, pgd_none() is always false, so the pgd may
468 * point to an empty page table entry and pgd_page_vaddr()
469 * will return garbage.
470 *
471 * We will do the correct sanity check on the p4d level.
472 */
473 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
474 }
475
476 /* With 4-level paging, copying happens on the p4d level. */
477 p4d = p4d_offset(pgd, address);
478 p4d_ref = p4d_offset(pgd_ref, address);
479 if (p4d_none(*p4d_ref))
480 return -1;
481
482 if (p4d_none(*p4d)) {
483 set_p4d(p4d, *p4d_ref);
484 arch_flush_lazy_mmu_mode();
485 } else {
486 BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_ref));
487 }
488
489 /*
490 * Below here mismatches are bugs because these lower tables
491 * are shared:
492 */
493
494 pud = pud_offset(p4d, address);
495 pud_ref = pud_offset(p4d_ref, address);
496 if (pud_none(*pud_ref))
497 return -1;
498
499 if (pud_none(*pud) || pud_pfn(*pud) != pud_pfn(*pud_ref))
500 BUG();
501
502 if (pud_huge(*pud))
503 return 0;
504
505 pmd = pmd_offset(pud, address);
506 pmd_ref = pmd_offset(pud_ref, address);
507 if (pmd_none(*pmd_ref))
508 return -1;
509
510 if (pmd_none(*pmd) || pmd_pfn(*pmd) != pmd_pfn(*pmd_ref))
511 BUG();
512
513 if (pmd_huge(*pmd))
514 return 0;
515
516 pte_ref = pte_offset_kernel(pmd_ref, address);
517 if (!pte_present(*pte_ref))
518 return -1;
519
520 pte = pte_offset_kernel(pmd, address);
521
522 /*
523 * Don't use pte_page here, because the mappings can point
524 * outside mem_map, and the NUMA hash lookup cannot handle
525 * that:
526 */
527 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
528 BUG();
529
530 return 0;
531 }
532 NOKPROBE_SYMBOL(vmalloc_fault);
533
534 #ifdef CONFIG_CPU_SUP_AMD
535 static const char errata93_warning[] =
536 KERN_ERR
537 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
538 "******* Working around it, but it may cause SEGVs or burn power.\n"
539 "******* Please consider a BIOS update.\n"
540 "******* Disabling USB legacy in the BIOS may also help.\n";
541 #endif
542
543 /*
544 * No vm86 mode in 64-bit mode:
545 */
546 static inline void
547 check_v8086_mode(struct pt_regs *regs, unsigned long address,
548 struct task_struct *tsk)
549 {
550 }
551
552 static int bad_address(void *p)
553 {
554 unsigned long dummy;
555
556 return probe_kernel_address((unsigned long *)p, dummy);
557 }
558
559 static void dump_pagetable(unsigned long address)
560 {
561 pgd_t *base = __va(read_cr3_pa());
562 pgd_t *pgd = base + pgd_index(address);
563 p4d_t *p4d;
564 pud_t *pud;
565 pmd_t *pmd;
566 pte_t *pte;
567
568 if (bad_address(pgd))
569 goto bad;
570
571 pr_info("PGD %lx ", pgd_val(*pgd));
572
573 if (!pgd_present(*pgd))
574 goto out;
575
576 p4d = p4d_offset(pgd, address);
577 if (bad_address(p4d))
578 goto bad;
579
580 pr_cont("P4D %lx ", p4d_val(*p4d));
581 if (!p4d_present(*p4d) || p4d_large(*p4d))
582 goto out;
583
584 pud = pud_offset(p4d, address);
585 if (bad_address(pud))
586 goto bad;
587
588 pr_cont("PUD %lx ", pud_val(*pud));
589 if (!pud_present(*pud) || pud_large(*pud))
590 goto out;
591
592 pmd = pmd_offset(pud, address);
593 if (bad_address(pmd))
594 goto bad;
595
596 pr_cont("PMD %lx ", pmd_val(*pmd));
597 if (!pmd_present(*pmd) || pmd_large(*pmd))
598 goto out;
599
600 pte = pte_offset_kernel(pmd, address);
601 if (bad_address(pte))
602 goto bad;
603
604 pr_cont("PTE %lx", pte_val(*pte));
605 out:
606 pr_cont("\n");
607 return;
608 bad:
609 pr_info("BAD\n");
610 }
611
612 #endif /* CONFIG_X86_64 */
613
614 /*
615 * Workaround for K8 erratum #93 & buggy BIOS.
616 *
617 * BIOS SMM functions are required to use a specific workaround
618 * to avoid corruption of the 64bit RIP register on C stepping K8.
619 *
620 * A lot of BIOS that didn't get tested properly miss this.
621 *
622 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
623 * Try to work around it here.
624 *
625 * Note we only handle faults in kernel here.
626 * Does nothing on 32-bit.
627 */
628 static int is_errata93(struct pt_regs *regs, unsigned long address)
629 {
630 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
631 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
632 || boot_cpu_data.x86 != 0xf)
633 return 0;
634
635 if (address != regs->ip)
636 return 0;
637
638 if ((address >> 32) != 0)
639 return 0;
640
641 address |= 0xffffffffUL << 32;
642 if ((address >= (u64)_stext && address <= (u64)_etext) ||
643 (address >= MODULES_VADDR && address <= MODULES_END)) {
644 printk_once(errata93_warning);
645 regs->ip = address;
646 return 1;
647 }
648 #endif
649 return 0;
650 }
651
652 /*
653 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
654 * to illegal addresses >4GB.
655 *
656 * We catch this in the page fault handler because these addresses
657 * are not reachable. Just detect this case and return. Any code
658 * segment in LDT is compatibility mode.
659 */
660 static int is_errata100(struct pt_regs *regs, unsigned long address)
661 {
662 #ifdef CONFIG_X86_64
663 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
664 return 1;
665 #endif
666 return 0;
667 }
668
669 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
670 {
671 #ifdef CONFIG_X86_F00F_BUG
672 unsigned long nr;
673
674 /*
675 * Pentium F0 0F C7 C8 bug workaround:
676 */
677 if (boot_cpu_has_bug(X86_BUG_F00F)) {
678 nr = (address - idt_descr.address) >> 3;
679
680 if (nr == 6) {
681 do_invalid_op(regs, 0);
682 return 1;
683 }
684 }
685 #endif
686 return 0;
687 }
688
689 static const char nx_warning[] = KERN_CRIT
690 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
691 static const char smep_warning[] = KERN_CRIT
692 "unable to execute userspace code (SMEP?) (uid: %d)\n";
693
694 static void
695 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
696 unsigned long address)
697 {
698 if (!oops_may_print())
699 return;
700
701 if (error_code & PF_INSTR) {
702 unsigned int level;
703 pgd_t *pgd;
704 pte_t *pte;
705
706 pgd = __va(read_cr3_pa());
707 pgd += pgd_index(address);
708
709 pte = lookup_address_in_pgd(pgd, address, &level);
710
711 if (pte && pte_present(*pte) && !pte_exec(*pte))
712 printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
713 if (pte && pte_present(*pte) && pte_exec(*pte) &&
714 (pgd_flags(*pgd) & _PAGE_USER) &&
715 (__read_cr4() & X86_CR4_SMEP))
716 printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
717 }
718
719 printk(KERN_ALERT "BUG: unable to handle kernel ");
720 if (address < PAGE_SIZE)
721 printk(KERN_CONT "NULL pointer dereference");
722 else
723 printk(KERN_CONT "paging request");
724
725 printk(KERN_CONT " at %p\n", (void *) address);
726 printk(KERN_ALERT "IP: %pS\n", (void *)regs->ip);
727
728 dump_pagetable(address);
729 }
730
731 static noinline void
732 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
733 unsigned long address)
734 {
735 struct task_struct *tsk;
736 unsigned long flags;
737 int sig;
738
739 flags = oops_begin();
740 tsk = current;
741 sig = SIGKILL;
742
743 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
744 tsk->comm, address);
745 dump_pagetable(address);
746
747 tsk->thread.cr2 = address;
748 tsk->thread.trap_nr = X86_TRAP_PF;
749 tsk->thread.error_code = error_code;
750
751 if (__die("Bad pagetable", regs, error_code))
752 sig = 0;
753
754 oops_end(flags, regs, sig);
755 }
756
757 static noinline void
758 no_context(struct pt_regs *regs, unsigned long error_code,
759 unsigned long address, int signal, int si_code)
760 {
761 struct task_struct *tsk = current;
762 unsigned long flags;
763 int sig;
764
765 /* Are we prepared to handle this kernel fault? */
766 if (fixup_exception(regs, X86_TRAP_PF)) {
767 /*
768 * Any interrupt that takes a fault gets the fixup. This makes
769 * the below recursive fault logic only apply to a faults from
770 * task context.
771 */
772 if (in_interrupt())
773 return;
774
775 /*
776 * Per the above we're !in_interrupt(), aka. task context.
777 *
778 * In this case we need to make sure we're not recursively
779 * faulting through the emulate_vsyscall() logic.
780 */
781 if (current->thread.sig_on_uaccess_err && signal) {
782 tsk->thread.trap_nr = X86_TRAP_PF;
783 tsk->thread.error_code = error_code | PF_USER;
784 tsk->thread.cr2 = address;
785
786 /* XXX: hwpoison faults will set the wrong code. */
787 force_sig_info_fault(signal, si_code, address,
788 tsk, NULL, 0);
789 }
790
791 /*
792 * Barring that, we can do the fixup and be happy.
793 */
794 return;
795 }
796
797 #ifdef CONFIG_VMAP_STACK
798 /*
799 * Stack overflow? During boot, we can fault near the initial
800 * stack in the direct map, but that's not an overflow -- check
801 * that we're in vmalloc space to avoid this.
802 */
803 if (is_vmalloc_addr((void *)address) &&
804 (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
805 address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
806 unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *);
807 /*
808 * We're likely to be running with very little stack space
809 * left. It's plausible that we'd hit this condition but
810 * double-fault even before we get this far, in which case
811 * we're fine: the double-fault handler will deal with it.
812 *
813 * We don't want to make it all the way into the oops code
814 * and then double-fault, though, because we're likely to
815 * break the console driver and lose most of the stack dump.
816 */
817 asm volatile ("movq %[stack], %%rsp\n\t"
818 "call handle_stack_overflow\n\t"
819 "1: jmp 1b"
820 : ASM_CALL_CONSTRAINT
821 : "D" ("kernel stack overflow (page fault)"),
822 "S" (regs), "d" (address),
823 [stack] "rm" (stack));
824 unreachable();
825 }
826 #endif
827
828 /*
829 * 32-bit:
830 *
831 * Valid to do another page fault here, because if this fault
832 * had been triggered by is_prefetch fixup_exception would have
833 * handled it.
834 *
835 * 64-bit:
836 *
837 * Hall of shame of CPU/BIOS bugs.
838 */
839 if (is_prefetch(regs, error_code, address))
840 return;
841
842 if (is_errata93(regs, address))
843 return;
844
845 /*
846 * Oops. The kernel tried to access some bad page. We'll have to
847 * terminate things with extreme prejudice:
848 */
849 flags = oops_begin();
850
851 show_fault_oops(regs, error_code, address);
852
853 if (task_stack_end_corrupted(tsk))
854 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
855
856 tsk->thread.cr2 = address;
857 tsk->thread.trap_nr = X86_TRAP_PF;
858 tsk->thread.error_code = error_code;
859
860 sig = SIGKILL;
861 if (__die("Oops", regs, error_code))
862 sig = 0;
863
864 /* Executive summary in case the body of the oops scrolled away */
865 printk(KERN_DEFAULT "CR2: %016lx\n", address);
866
867 oops_end(flags, regs, sig);
868 }
869
870 /*
871 * Print out info about fatal segfaults, if the show_unhandled_signals
872 * sysctl is set:
873 */
874 static inline void
875 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
876 unsigned long address, struct task_struct *tsk)
877 {
878 if (!unhandled_signal(tsk, SIGSEGV))
879 return;
880
881 if (!printk_ratelimit())
882 return;
883
884 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
885 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
886 tsk->comm, task_pid_nr(tsk), address,
887 (void *)regs->ip, (void *)regs->sp, error_code);
888
889 print_vma_addr(KERN_CONT " in ", regs->ip);
890
891 printk(KERN_CONT "\n");
892 }
893
894 static void
895 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
896 unsigned long address, u32 *pkey, int si_code)
897 {
898 struct task_struct *tsk = current;
899
900 /* User mode accesses just cause a SIGSEGV */
901 if (error_code & PF_USER) {
902 /*
903 * It's possible to have interrupts off here:
904 */
905 local_irq_enable();
906
907 /*
908 * Valid to do another page fault here because this one came
909 * from user space:
910 */
911 if (is_prefetch(regs, error_code, address))
912 return;
913
914 if (is_errata100(regs, address))
915 return;
916
917 #ifdef CONFIG_X86_64
918 /*
919 * Instruction fetch faults in the vsyscall page might need
920 * emulation.
921 */
922 if (unlikely((error_code & PF_INSTR) &&
923 ((address & ~0xfff) == VSYSCALL_ADDR))) {
924 if (emulate_vsyscall(regs, address))
925 return;
926 }
927 #endif
928
929 /*
930 * To avoid leaking information about the kernel page table
931 * layout, pretend that user-mode accesses to kernel addresses
932 * are always protection faults.
933 */
934 if (address >= TASK_SIZE_MAX)
935 error_code |= PF_PROT;
936
937 if (likely(show_unhandled_signals))
938 show_signal_msg(regs, error_code, address, tsk);
939
940 tsk->thread.cr2 = address;
941 tsk->thread.error_code = error_code;
942 tsk->thread.trap_nr = X86_TRAP_PF;
943
944 force_sig_info_fault(SIGSEGV, si_code, address, tsk, pkey, 0);
945
946 return;
947 }
948
949 if (is_f00f_bug(regs, address))
950 return;
951
952 no_context(regs, error_code, address, SIGSEGV, si_code);
953 }
954
955 static noinline void
956 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
957 unsigned long address, u32 *pkey)
958 {
959 __bad_area_nosemaphore(regs, error_code, address, pkey, SEGV_MAPERR);
960 }
961
962 static void
963 __bad_area(struct pt_regs *regs, unsigned long error_code,
964 unsigned long address, struct vm_area_struct *vma, int si_code)
965 {
966 struct mm_struct *mm = current->mm;
967 u32 pkey;
968
969 if (vma)
970 pkey = vma_pkey(vma);
971
972 /*
973 * Something tried to access memory that isn't in our memory map..
974 * Fix it, but check if it's kernel or user first..
975 */
976 up_read(&mm->mmap_sem);
977
978 __bad_area_nosemaphore(regs, error_code, address,
979 (vma) ? &pkey : NULL, si_code);
980 }
981
982 static noinline void
983 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
984 {
985 __bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
986 }
987
988 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
989 struct vm_area_struct *vma)
990 {
991 /* This code is always called on the current mm */
992 bool foreign = false;
993
994 if (!boot_cpu_has(X86_FEATURE_OSPKE))
995 return false;
996 if (error_code & PF_PK)
997 return true;
998 /* this checks permission keys on the VMA: */
999 if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
1000 (error_code & PF_INSTR), foreign))
1001 return true;
1002 return false;
1003 }
1004
1005 static noinline void
1006 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
1007 unsigned long address, struct vm_area_struct *vma)
1008 {
1009 /*
1010 * This OSPKE check is not strictly necessary at runtime.
1011 * But, doing it this way allows compiler optimizations
1012 * if pkeys are compiled out.
1013 */
1014 if (bad_area_access_from_pkeys(error_code, vma))
1015 __bad_area(regs, error_code, address, vma, SEGV_PKUERR);
1016 else
1017 __bad_area(regs, error_code, address, vma, SEGV_ACCERR);
1018 }
1019
1020 static void
1021 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
1022 u32 *pkey, unsigned int fault)
1023 {
1024 struct task_struct *tsk = current;
1025 int code = BUS_ADRERR;
1026
1027 /* Kernel mode? Handle exceptions or die: */
1028 if (!(error_code & PF_USER)) {
1029 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1030 return;
1031 }
1032
1033 /* User-space => ok to do another page fault: */
1034 if (is_prefetch(regs, error_code, address))
1035 return;
1036
1037 tsk->thread.cr2 = address;
1038 tsk->thread.error_code = error_code;
1039 tsk->thread.trap_nr = X86_TRAP_PF;
1040
1041 #ifdef CONFIG_MEMORY_FAILURE
1042 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
1043 printk(KERN_ERR
1044 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
1045 tsk->comm, tsk->pid, address);
1046 code = BUS_MCEERR_AR;
1047 }
1048 #endif
1049 force_sig_info_fault(SIGBUS, code, address, tsk, pkey, fault);
1050 }
1051
1052 static noinline void
1053 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
1054 unsigned long address, u32 *pkey, unsigned int fault)
1055 {
1056 if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
1057 no_context(regs, error_code, address, 0, 0);
1058 return;
1059 }
1060
1061 if (fault & VM_FAULT_OOM) {
1062 /* Kernel mode? Handle exceptions or die: */
1063 if (!(error_code & PF_USER)) {
1064 no_context(regs, error_code, address,
1065 SIGSEGV, SEGV_MAPERR);
1066 return;
1067 }
1068
1069 /*
1070 * We ran out of memory, call the OOM killer, and return the
1071 * userspace (which will retry the fault, or kill us if we got
1072 * oom-killed):
1073 */
1074 pagefault_out_of_memory();
1075 } else {
1076 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1077 VM_FAULT_HWPOISON_LARGE))
1078 do_sigbus(regs, error_code, address, pkey, fault);
1079 else if (fault & VM_FAULT_SIGSEGV)
1080 bad_area_nosemaphore(regs, error_code, address, pkey);
1081 else
1082 BUG();
1083 }
1084 }
1085
1086 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
1087 {
1088 if ((error_code & PF_WRITE) && !pte_write(*pte))
1089 return 0;
1090
1091 if ((error_code & PF_INSTR) && !pte_exec(*pte))
1092 return 0;
1093 /*
1094 * Note: We do not do lazy flushing on protection key
1095 * changes, so no spurious fault will ever set PF_PK.
1096 */
1097 if ((error_code & PF_PK))
1098 return 1;
1099
1100 return 1;
1101 }
1102
1103 /*
1104 * Handle a spurious fault caused by a stale TLB entry.
1105 *
1106 * This allows us to lazily refresh the TLB when increasing the
1107 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
1108 * eagerly is very expensive since that implies doing a full
1109 * cross-processor TLB flush, even if no stale TLB entries exist
1110 * on other processors.
1111 *
1112 * Spurious faults may only occur if the TLB contains an entry with
1113 * fewer permission than the page table entry. Non-present (P = 0)
1114 * and reserved bit (R = 1) faults are never spurious.
1115 *
1116 * There are no security implications to leaving a stale TLB when
1117 * increasing the permissions on a page.
1118 *
1119 * Returns non-zero if a spurious fault was handled, zero otherwise.
1120 *
1121 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1122 * (Optional Invalidation).
1123 */
1124 static noinline int
1125 spurious_fault(unsigned long error_code, unsigned long address)
1126 {
1127 pgd_t *pgd;
1128 p4d_t *p4d;
1129 pud_t *pud;
1130 pmd_t *pmd;
1131 pte_t *pte;
1132 int ret;
1133
1134 /*
1135 * Only writes to RO or instruction fetches from NX may cause
1136 * spurious faults.
1137 *
1138 * These could be from user or supervisor accesses but the TLB
1139 * is only lazily flushed after a kernel mapping protection
1140 * change, so user accesses are not expected to cause spurious
1141 * faults.
1142 */
1143 if (error_code != (PF_WRITE | PF_PROT)
1144 && error_code != (PF_INSTR | PF_PROT))
1145 return 0;
1146
1147 pgd = init_mm.pgd + pgd_index(address);
1148 if (!pgd_present(*pgd))
1149 return 0;
1150
1151 p4d = p4d_offset(pgd, address);
1152 if (!p4d_present(*p4d))
1153 return 0;
1154
1155 if (p4d_large(*p4d))
1156 return spurious_fault_check(error_code, (pte_t *) p4d);
1157
1158 pud = pud_offset(p4d, address);
1159 if (!pud_present(*pud))
1160 return 0;
1161
1162 if (pud_large(*pud))
1163 return spurious_fault_check(error_code, (pte_t *) pud);
1164
1165 pmd = pmd_offset(pud, address);
1166 if (!pmd_present(*pmd))
1167 return 0;
1168
1169 if (pmd_large(*pmd))
1170 return spurious_fault_check(error_code, (pte_t *) pmd);
1171
1172 pte = pte_offset_kernel(pmd, address);
1173 if (!pte_present(*pte))
1174 return 0;
1175
1176 ret = spurious_fault_check(error_code, pte);
1177 if (!ret)
1178 return 0;
1179
1180 /*
1181 * Make sure we have permissions in PMD.
1182 * If not, then there's a bug in the page tables:
1183 */
1184 ret = spurious_fault_check(error_code, (pte_t *) pmd);
1185 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1186
1187 return ret;
1188 }
1189 NOKPROBE_SYMBOL(spurious_fault);
1190
1191 int show_unhandled_signals = 1;
1192
1193 static inline int
1194 access_error(unsigned long error_code, struct vm_area_struct *vma)
1195 {
1196 /* This is only called for the current mm, so: */
1197 bool foreign = false;
1198
1199 /*
1200 * Read or write was blocked by protection keys. This is
1201 * always an unconditional error and can never result in
1202 * a follow-up action to resolve the fault, like a COW.
1203 */
1204 if (error_code & PF_PK)
1205 return 1;
1206
1207 /*
1208 * Make sure to check the VMA so that we do not perform
1209 * faults just to hit a PF_PK as soon as we fill in a
1210 * page.
1211 */
1212 if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
1213 (error_code & PF_INSTR), foreign))
1214 return 1;
1215
1216 if (error_code & PF_WRITE) {
1217 /* write, present and write, not present: */
1218 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1219 return 1;
1220 return 0;
1221 }
1222
1223 /* read, present: */
1224 if (unlikely(error_code & PF_PROT))
1225 return 1;
1226
1227 /* read, not present: */
1228 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1229 return 1;
1230
1231 return 0;
1232 }
1233
1234 static int fault_in_kernel_space(unsigned long address)
1235 {
1236 return address >= TASK_SIZE_MAX;
1237 }
1238
1239 static inline bool smap_violation(int error_code, struct pt_regs *regs)
1240 {
1241 if (!IS_ENABLED(CONFIG_X86_SMAP))
1242 return false;
1243
1244 if (!static_cpu_has(X86_FEATURE_SMAP))
1245 return false;
1246
1247 if (error_code & PF_USER)
1248 return false;
1249
1250 if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
1251 return false;
1252
1253 return true;
1254 }
1255
1256 /*
1257 * This routine handles page faults. It determines the address,
1258 * and the problem, and then passes it off to one of the appropriate
1259 * routines.
1260 */
1261 static noinline void
1262 __do_page_fault(struct pt_regs *regs, unsigned long error_code,
1263 unsigned long address)
1264 {
1265 struct vm_area_struct *vma;
1266 struct task_struct *tsk;
1267 struct mm_struct *mm;
1268 int fault, major = 0;
1269 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1270 u32 pkey;
1271
1272 tsk = current;
1273 mm = tsk->mm;
1274
1275 /*
1276 * Detect and handle instructions that would cause a page fault for
1277 * both a tracked kernel page and a userspace page.
1278 */
1279 if (kmemcheck_active(regs))
1280 kmemcheck_hide(regs);
1281 prefetchw(&mm->mmap_sem);
1282
1283 if (unlikely(kmmio_fault(regs, address)))
1284 return;
1285
1286 /*
1287 * We fault-in kernel-space virtual memory on-demand. The
1288 * 'reference' page table is init_mm.pgd.
1289 *
1290 * NOTE! We MUST NOT take any locks for this case. We may
1291 * be in an interrupt or a critical region, and should
1292 * only copy the information from the master page table,
1293 * nothing more.
1294 *
1295 * This verifies that the fault happens in kernel space
1296 * (error_code & 4) == 0, and that the fault was not a
1297 * protection error (error_code & 9) == 0.
1298 */
1299 if (unlikely(fault_in_kernel_space(address))) {
1300 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1301 if (vmalloc_fault(address) >= 0)
1302 return;
1303
1304 if (kmemcheck_fault(regs, address, error_code))
1305 return;
1306 }
1307
1308 /* Can handle a stale RO->RW TLB: */
1309 if (spurious_fault(error_code, address))
1310 return;
1311
1312 /* kprobes don't want to hook the spurious faults: */
1313 if (kprobes_fault(regs))
1314 return;
1315 /*
1316 * Don't take the mm semaphore here. If we fixup a prefetch
1317 * fault we could otherwise deadlock:
1318 */
1319 bad_area_nosemaphore(regs, error_code, address, NULL);
1320
1321 return;
1322 }
1323
1324 /* kprobes don't want to hook the spurious faults: */
1325 if (unlikely(kprobes_fault(regs)))
1326 return;
1327
1328 if (unlikely(error_code & PF_RSVD))
1329 pgtable_bad(regs, error_code, address);
1330
1331 if (unlikely(smap_violation(error_code, regs))) {
1332 bad_area_nosemaphore(regs, error_code, address, NULL);
1333 return;
1334 }
1335
1336 /*
1337 * If we're in an interrupt, have no user context or are running
1338 * in a region with pagefaults disabled then we must not take the fault
1339 */
1340 if (unlikely(faulthandler_disabled() || !mm)) {
1341 bad_area_nosemaphore(regs, error_code, address, NULL);
1342 return;
1343 }
1344
1345 /*
1346 * It's safe to allow irq's after cr2 has been saved and the
1347 * vmalloc fault has been handled.
1348 *
1349 * User-mode registers count as a user access even for any
1350 * potential system fault or CPU buglet:
1351 */
1352 if (user_mode(regs)) {
1353 local_irq_enable();
1354 error_code |= PF_USER;
1355 flags |= FAULT_FLAG_USER;
1356 } else {
1357 if (regs->flags & X86_EFLAGS_IF)
1358 local_irq_enable();
1359 }
1360
1361 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1362
1363 if (error_code & PF_WRITE)
1364 flags |= FAULT_FLAG_WRITE;
1365 if (error_code & PF_INSTR)
1366 flags |= FAULT_FLAG_INSTRUCTION;
1367
1368 /*
1369 * When running in the kernel we expect faults to occur only to
1370 * addresses in user space. All other faults represent errors in
1371 * the kernel and should generate an OOPS. Unfortunately, in the
1372 * case of an erroneous fault occurring in a code path which already
1373 * holds mmap_sem we will deadlock attempting to validate the fault
1374 * against the address space. Luckily the kernel only validly
1375 * references user space from well defined areas of code, which are
1376 * listed in the exceptions table.
1377 *
1378 * As the vast majority of faults will be valid we will only perform
1379 * the source reference check when there is a possibility of a
1380 * deadlock. Attempt to lock the address space, if we cannot we then
1381 * validate the source. If this is invalid we can skip the address
1382 * space check, thus avoiding the deadlock:
1383 */
1384 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1385 if ((error_code & PF_USER) == 0 &&
1386 !search_exception_tables(regs->ip)) {
1387 bad_area_nosemaphore(regs, error_code, address, NULL);
1388 return;
1389 }
1390 retry:
1391 down_read(&mm->mmap_sem);
1392 } else {
1393 /*
1394 * The above down_read_trylock() might have succeeded in
1395 * which case we'll have missed the might_sleep() from
1396 * down_read():
1397 */
1398 might_sleep();
1399 }
1400
1401 vma = find_vma(mm, address);
1402 if (unlikely(!vma)) {
1403 bad_area(regs, error_code, address);
1404 return;
1405 }
1406 if (likely(vma->vm_start <= address))
1407 goto good_area;
1408 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1409 bad_area(regs, error_code, address);
1410 return;
1411 }
1412 if (error_code & PF_USER) {
1413 /*
1414 * Accessing the stack below %sp is always a bug.
1415 * The large cushion allows instructions like enter
1416 * and pusha to work. ("enter $65535, $31" pushes
1417 * 32 pointers and then decrements %sp by 65535.)
1418 */
1419 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1420 bad_area(regs, error_code, address);
1421 return;
1422 }
1423 }
1424 if (unlikely(expand_stack(vma, address))) {
1425 bad_area(regs, error_code, address);
1426 return;
1427 }
1428
1429 /*
1430 * Ok, we have a good vm_area for this memory access, so
1431 * we can handle it..
1432 */
1433 good_area:
1434 if (unlikely(access_error(error_code, vma))) {
1435 bad_area_access_error(regs, error_code, address, vma);
1436 return;
1437 }
1438
1439 /*
1440 * If for any reason at all we couldn't handle the fault,
1441 * make sure we exit gracefully rather than endlessly redo
1442 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1443 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1444 */
1445 fault = handle_mm_fault(vma, address, flags);
1446 major |= fault & VM_FAULT_MAJOR;
1447
1448 /*
1449 * If we need to retry the mmap_sem has already been released,
1450 * and if there is a fatal signal pending there is no guarantee
1451 * that we made any progress. Handle this case first.
1452 */
1453 if (unlikely(fault & VM_FAULT_RETRY)) {
1454 /* Retry at most once */
1455 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1456 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1457 flags |= FAULT_FLAG_TRIED;
1458 if (!fatal_signal_pending(tsk))
1459 goto retry;
1460 }
1461
1462 /* User mode? Just return to handle the fatal exception */
1463 if (flags & FAULT_FLAG_USER)
1464 return;
1465
1466 /* Not returning to user mode? Handle exceptions or die: */
1467 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1468 return;
1469 }
1470
1471 pkey = vma_pkey(vma);
1472 up_read(&mm->mmap_sem);
1473 if (unlikely(fault & VM_FAULT_ERROR)) {
1474 mm_fault_error(regs, error_code, address, &pkey, fault);
1475 return;
1476 }
1477
1478 /*
1479 * Major/minor page fault accounting. If any of the events
1480 * returned VM_FAULT_MAJOR, we account it as a major fault.
1481 */
1482 if (major) {
1483 tsk->maj_flt++;
1484 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1485 } else {
1486 tsk->min_flt++;
1487 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1488 }
1489
1490 check_v8086_mode(regs, address, tsk);
1491 }
1492 NOKPROBE_SYMBOL(__do_page_fault);
1493
1494 static nokprobe_inline void
1495 trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1496 unsigned long error_code)
1497 {
1498 if (user_mode(regs))
1499 trace_page_fault_user(address, regs, error_code);
1500 else
1501 trace_page_fault_kernel(address, regs, error_code);
1502 }
1503
1504 /*
1505 * We must have this function blacklisted from kprobes, tagged with notrace
1506 * and call read_cr2() before calling anything else. To avoid calling any
1507 * kind of tracing machinery before we've observed the CR2 value.
1508 *
1509 * exception_{enter,exit}() contains all sorts of tracepoints.
1510 */
1511 dotraplinkage void notrace
1512 do_page_fault(struct pt_regs *regs, unsigned long error_code)
1513 {
1514 unsigned long address = read_cr2(); /* Get the faulting address */
1515 enum ctx_state prev_state;
1516
1517 prev_state = exception_enter();
1518 if (trace_pagefault_enabled())
1519 trace_page_fault_entries(address, regs, error_code);
1520
1521 __do_page_fault(regs, error_code, address);
1522 exception_exit(prev_state);
1523 }
1524 NOKPROBE_SYMBOL(do_page_fault);