]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/mm/fault.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound-2.6
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / mm / fault.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
5 */
6 #include <linux/magic.h> /* STACK_END_MAGIC */
7 #include <linux/sched.h> /* test_thread_flag(), ... */
8 #include <linux/kdebug.h> /* oops_begin/end, ... */
9 #include <linux/module.h> /* search_exception_table */
10 #include <linux/bootmem.h> /* max_low_pfn */
11 #include <linux/kprobes.h> /* __kprobes, ... */
12 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
13 #include <linux/perf_counter.h> /* perf_swcounter_event */
14
15 #include <asm/traps.h> /* dotraplinkage, ... */
16 #include <asm/pgalloc.h> /* pgd_*(), ... */
17
18 /*
19 * Page fault error code bits:
20 *
21 * bit 0 == 0: no page found 1: protection fault
22 * bit 1 == 0: read access 1: write access
23 * bit 2 == 0: kernel-mode access 1: user-mode access
24 * bit 3 == 1: use of reserved bit detected
25 * bit 4 == 1: fault was an instruction fetch
26 */
27 enum x86_pf_error_code {
28
29 PF_PROT = 1 << 0,
30 PF_WRITE = 1 << 1,
31 PF_USER = 1 << 2,
32 PF_RSVD = 1 << 3,
33 PF_INSTR = 1 << 4,
34 };
35
36 /*
37 * Returns 0 if mmiotrace is disabled, or if the fault is not
38 * handled by mmiotrace:
39 */
40 static inline int kmmio_fault(struct pt_regs *regs, unsigned long addr)
41 {
42 if (unlikely(is_kmmio_active()))
43 if (kmmio_handler(regs, addr) == 1)
44 return -1;
45 return 0;
46 }
47
48 static inline int notify_page_fault(struct pt_regs *regs)
49 {
50 int ret = 0;
51
52 /* kprobe_running() needs smp_processor_id() */
53 if (kprobes_built_in() && !user_mode_vm(regs)) {
54 preempt_disable();
55 if (kprobe_running() && kprobe_fault_handler(regs, 14))
56 ret = 1;
57 preempt_enable();
58 }
59
60 return ret;
61 }
62
63 /*
64 * Prefetch quirks:
65 *
66 * 32-bit mode:
67 *
68 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
69 * Check that here and ignore it.
70 *
71 * 64-bit mode:
72 *
73 * Sometimes the CPU reports invalid exceptions on prefetch.
74 * Check that here and ignore it.
75 *
76 * Opcode checker based on code by Richard Brunner.
77 */
78 static inline int
79 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
80 unsigned char opcode, int *prefetch)
81 {
82 unsigned char instr_hi = opcode & 0xf0;
83 unsigned char instr_lo = opcode & 0x0f;
84
85 switch (instr_hi) {
86 case 0x20:
87 case 0x30:
88 /*
89 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
90 * In X86_64 long mode, the CPU will signal invalid
91 * opcode if some of these prefixes are present so
92 * X86_64 will never get here anyway
93 */
94 return ((instr_lo & 7) == 0x6);
95 #ifdef CONFIG_X86_64
96 case 0x40:
97 /*
98 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
99 * Need to figure out under what instruction mode the
100 * instruction was issued. Could check the LDT for lm,
101 * but for now it's good enough to assume that long
102 * mode only uses well known segments or kernel.
103 */
104 return (!user_mode(regs)) || (regs->cs == __USER_CS);
105 #endif
106 case 0x60:
107 /* 0x64 thru 0x67 are valid prefixes in all modes. */
108 return (instr_lo & 0xC) == 0x4;
109 case 0xF0:
110 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
111 return !instr_lo || (instr_lo>>1) == 1;
112 case 0x00:
113 /* Prefetch instruction is 0x0F0D or 0x0F18 */
114 if (probe_kernel_address(instr, opcode))
115 return 0;
116
117 *prefetch = (instr_lo == 0xF) &&
118 (opcode == 0x0D || opcode == 0x18);
119 return 0;
120 default:
121 return 0;
122 }
123 }
124
125 static int
126 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
127 {
128 unsigned char *max_instr;
129 unsigned char *instr;
130 int prefetch = 0;
131
132 /*
133 * If it was a exec (instruction fetch) fault on NX page, then
134 * do not ignore the fault:
135 */
136 if (error_code & PF_INSTR)
137 return 0;
138
139 instr = (void *)convert_ip_to_linear(current, regs);
140 max_instr = instr + 15;
141
142 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
143 return 0;
144
145 while (instr < max_instr) {
146 unsigned char opcode;
147
148 if (probe_kernel_address(instr, opcode))
149 break;
150
151 instr++;
152
153 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
154 break;
155 }
156 return prefetch;
157 }
158
159 static void
160 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
161 struct task_struct *tsk)
162 {
163 siginfo_t info;
164
165 info.si_signo = si_signo;
166 info.si_errno = 0;
167 info.si_code = si_code;
168 info.si_addr = (void __user *)address;
169
170 force_sig_info(si_signo, &info, tsk);
171 }
172
173 DEFINE_SPINLOCK(pgd_lock);
174 LIST_HEAD(pgd_list);
175
176 #ifdef CONFIG_X86_32
177 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
178 {
179 unsigned index = pgd_index(address);
180 pgd_t *pgd_k;
181 pud_t *pud, *pud_k;
182 pmd_t *pmd, *pmd_k;
183
184 pgd += index;
185 pgd_k = init_mm.pgd + index;
186
187 if (!pgd_present(*pgd_k))
188 return NULL;
189
190 /*
191 * set_pgd(pgd, *pgd_k); here would be useless on PAE
192 * and redundant with the set_pmd() on non-PAE. As would
193 * set_pud.
194 */
195 pud = pud_offset(pgd, address);
196 pud_k = pud_offset(pgd_k, address);
197 if (!pud_present(*pud_k))
198 return NULL;
199
200 pmd = pmd_offset(pud, address);
201 pmd_k = pmd_offset(pud_k, address);
202 if (!pmd_present(*pmd_k))
203 return NULL;
204
205 if (!pmd_present(*pmd))
206 set_pmd(pmd, *pmd_k);
207 else
208 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
209
210 return pmd_k;
211 }
212
213 void vmalloc_sync_all(void)
214 {
215 unsigned long address;
216
217 if (SHARED_KERNEL_PMD)
218 return;
219
220 for (address = VMALLOC_START & PMD_MASK;
221 address >= TASK_SIZE && address < FIXADDR_TOP;
222 address += PMD_SIZE) {
223
224 unsigned long flags;
225 struct page *page;
226
227 spin_lock_irqsave(&pgd_lock, flags);
228 list_for_each_entry(page, &pgd_list, lru) {
229 if (!vmalloc_sync_one(page_address(page), address))
230 break;
231 }
232 spin_unlock_irqrestore(&pgd_lock, flags);
233 }
234 }
235
236 /*
237 * 32-bit:
238 *
239 * Handle a fault on the vmalloc or module mapping area
240 */
241 static noinline int vmalloc_fault(unsigned long address)
242 {
243 unsigned long pgd_paddr;
244 pmd_t *pmd_k;
245 pte_t *pte_k;
246
247 /* Make sure we are in vmalloc area: */
248 if (!(address >= VMALLOC_START && address < VMALLOC_END))
249 return -1;
250
251 /*
252 * Synchronize this task's top level page-table
253 * with the 'reference' page table.
254 *
255 * Do _not_ use "current" here. We might be inside
256 * an interrupt in the middle of a task switch..
257 */
258 pgd_paddr = read_cr3();
259 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
260 if (!pmd_k)
261 return -1;
262
263 pte_k = pte_offset_kernel(pmd_k, address);
264 if (!pte_present(*pte_k))
265 return -1;
266
267 return 0;
268 }
269
270 /*
271 * Did it hit the DOS screen memory VA from vm86 mode?
272 */
273 static inline void
274 check_v8086_mode(struct pt_regs *regs, unsigned long address,
275 struct task_struct *tsk)
276 {
277 unsigned long bit;
278
279 if (!v8086_mode(regs))
280 return;
281
282 bit = (address - 0xA0000) >> PAGE_SHIFT;
283 if (bit < 32)
284 tsk->thread.screen_bitmap |= 1 << bit;
285 }
286
287 static void dump_pagetable(unsigned long address)
288 {
289 __typeof__(pte_val(__pte(0))) page;
290
291 page = read_cr3();
292 page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT];
293
294 #ifdef CONFIG_X86_PAE
295 printk("*pdpt = %016Lx ", page);
296 if ((page >> PAGE_SHIFT) < max_low_pfn
297 && page & _PAGE_PRESENT) {
298 page &= PAGE_MASK;
299 page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT)
300 & (PTRS_PER_PMD - 1)];
301 printk(KERN_CONT "*pde = %016Lx ", page);
302 page &= ~_PAGE_NX;
303 }
304 #else
305 printk("*pde = %08lx ", page);
306 #endif
307
308 /*
309 * We must not directly access the pte in the highpte
310 * case if the page table is located in highmem.
311 * And let's rather not kmap-atomic the pte, just in case
312 * it's allocated already:
313 */
314 if ((page >> PAGE_SHIFT) < max_low_pfn
315 && (page & _PAGE_PRESENT)
316 && !(page & _PAGE_PSE)) {
317
318 page &= PAGE_MASK;
319 page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT)
320 & (PTRS_PER_PTE - 1)];
321 printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page);
322 }
323
324 printk("\n");
325 }
326
327 #else /* CONFIG_X86_64: */
328
329 void vmalloc_sync_all(void)
330 {
331 unsigned long address;
332
333 for (address = VMALLOC_START & PGDIR_MASK; address <= VMALLOC_END;
334 address += PGDIR_SIZE) {
335
336 const pgd_t *pgd_ref = pgd_offset_k(address);
337 unsigned long flags;
338 struct page *page;
339
340 if (pgd_none(*pgd_ref))
341 continue;
342
343 spin_lock_irqsave(&pgd_lock, flags);
344 list_for_each_entry(page, &pgd_list, lru) {
345 pgd_t *pgd;
346 pgd = (pgd_t *)page_address(page) + pgd_index(address);
347 if (pgd_none(*pgd))
348 set_pgd(pgd, *pgd_ref);
349 else
350 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
351 }
352 spin_unlock_irqrestore(&pgd_lock, flags);
353 }
354 }
355
356 /*
357 * 64-bit:
358 *
359 * Handle a fault on the vmalloc area
360 *
361 * This assumes no large pages in there.
362 */
363 static noinline int vmalloc_fault(unsigned long address)
364 {
365 pgd_t *pgd, *pgd_ref;
366 pud_t *pud, *pud_ref;
367 pmd_t *pmd, *pmd_ref;
368 pte_t *pte, *pte_ref;
369
370 /* Make sure we are in vmalloc area: */
371 if (!(address >= VMALLOC_START && address < VMALLOC_END))
372 return -1;
373
374 /*
375 * Copy kernel mappings over when needed. This can also
376 * happen within a race in page table update. In the later
377 * case just flush:
378 */
379 pgd = pgd_offset(current->active_mm, address);
380 pgd_ref = pgd_offset_k(address);
381 if (pgd_none(*pgd_ref))
382 return -1;
383
384 if (pgd_none(*pgd))
385 set_pgd(pgd, *pgd_ref);
386 else
387 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
388
389 /*
390 * Below here mismatches are bugs because these lower tables
391 * are shared:
392 */
393
394 pud = pud_offset(pgd, address);
395 pud_ref = pud_offset(pgd_ref, address);
396 if (pud_none(*pud_ref))
397 return -1;
398
399 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
400 BUG();
401
402 pmd = pmd_offset(pud, address);
403 pmd_ref = pmd_offset(pud_ref, address);
404 if (pmd_none(*pmd_ref))
405 return -1;
406
407 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
408 BUG();
409
410 pte_ref = pte_offset_kernel(pmd_ref, address);
411 if (!pte_present(*pte_ref))
412 return -1;
413
414 pte = pte_offset_kernel(pmd, address);
415
416 /*
417 * Don't use pte_page here, because the mappings can point
418 * outside mem_map, and the NUMA hash lookup cannot handle
419 * that:
420 */
421 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
422 BUG();
423
424 return 0;
425 }
426
427 static const char errata93_warning[] =
428 KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
429 KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
430 KERN_ERR "******* Please consider a BIOS update.\n"
431 KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
432
433 /*
434 * No vm86 mode in 64-bit mode:
435 */
436 static inline void
437 check_v8086_mode(struct pt_regs *regs, unsigned long address,
438 struct task_struct *tsk)
439 {
440 }
441
442 static int bad_address(void *p)
443 {
444 unsigned long dummy;
445
446 return probe_kernel_address((unsigned long *)p, dummy);
447 }
448
449 static void dump_pagetable(unsigned long address)
450 {
451 pgd_t *pgd;
452 pud_t *pud;
453 pmd_t *pmd;
454 pte_t *pte;
455
456 pgd = (pgd_t *)read_cr3();
457
458 pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);
459
460 pgd += pgd_index(address);
461 if (bad_address(pgd))
462 goto bad;
463
464 printk("PGD %lx ", pgd_val(*pgd));
465
466 if (!pgd_present(*pgd))
467 goto out;
468
469 pud = pud_offset(pgd, address);
470 if (bad_address(pud))
471 goto bad;
472
473 printk("PUD %lx ", pud_val(*pud));
474 if (!pud_present(*pud) || pud_large(*pud))
475 goto out;
476
477 pmd = pmd_offset(pud, address);
478 if (bad_address(pmd))
479 goto bad;
480
481 printk("PMD %lx ", pmd_val(*pmd));
482 if (!pmd_present(*pmd) || pmd_large(*pmd))
483 goto out;
484
485 pte = pte_offset_kernel(pmd, address);
486 if (bad_address(pte))
487 goto bad;
488
489 printk("PTE %lx", pte_val(*pte));
490 out:
491 printk("\n");
492 return;
493 bad:
494 printk("BAD\n");
495 }
496
497 #endif /* CONFIG_X86_64 */
498
499 /*
500 * Workaround for K8 erratum #93 & buggy BIOS.
501 *
502 * BIOS SMM functions are required to use a specific workaround
503 * to avoid corruption of the 64bit RIP register on C stepping K8.
504 *
505 * A lot of BIOS that didn't get tested properly miss this.
506 *
507 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
508 * Try to work around it here.
509 *
510 * Note we only handle faults in kernel here.
511 * Does nothing on 32-bit.
512 */
513 static int is_errata93(struct pt_regs *regs, unsigned long address)
514 {
515 #ifdef CONFIG_X86_64
516 if (address != regs->ip)
517 return 0;
518
519 if ((address >> 32) != 0)
520 return 0;
521
522 address |= 0xffffffffUL << 32;
523 if ((address >= (u64)_stext && address <= (u64)_etext) ||
524 (address >= MODULES_VADDR && address <= MODULES_END)) {
525 printk_once(errata93_warning);
526 regs->ip = address;
527 return 1;
528 }
529 #endif
530 return 0;
531 }
532
533 /*
534 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
535 * to illegal addresses >4GB.
536 *
537 * We catch this in the page fault handler because these addresses
538 * are not reachable. Just detect this case and return. Any code
539 * segment in LDT is compatibility mode.
540 */
541 static int is_errata100(struct pt_regs *regs, unsigned long address)
542 {
543 #ifdef CONFIG_X86_64
544 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
545 return 1;
546 #endif
547 return 0;
548 }
549
550 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
551 {
552 #ifdef CONFIG_X86_F00F_BUG
553 unsigned long nr;
554
555 /*
556 * Pentium F0 0F C7 C8 bug workaround:
557 */
558 if (boot_cpu_data.f00f_bug) {
559 nr = (address - idt_descr.address) >> 3;
560
561 if (nr == 6) {
562 do_invalid_op(regs, 0);
563 return 1;
564 }
565 }
566 #endif
567 return 0;
568 }
569
570 static const char nx_warning[] = KERN_CRIT
571 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
572
573 static void
574 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
575 unsigned long address)
576 {
577 if (!oops_may_print())
578 return;
579
580 if (error_code & PF_INSTR) {
581 unsigned int level;
582
583 pte_t *pte = lookup_address(address, &level);
584
585 if (pte && pte_present(*pte) && !pte_exec(*pte))
586 printk(nx_warning, current_uid());
587 }
588
589 printk(KERN_ALERT "BUG: unable to handle kernel ");
590 if (address < PAGE_SIZE)
591 printk(KERN_CONT "NULL pointer dereference");
592 else
593 printk(KERN_CONT "paging request");
594
595 printk(KERN_CONT " at %p\n", (void *) address);
596 printk(KERN_ALERT "IP:");
597 printk_address(regs->ip, 1);
598
599 dump_pagetable(address);
600 }
601
602 static noinline void
603 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
604 unsigned long address)
605 {
606 struct task_struct *tsk;
607 unsigned long flags;
608 int sig;
609
610 flags = oops_begin();
611 tsk = current;
612 sig = SIGKILL;
613
614 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
615 tsk->comm, address);
616 dump_pagetable(address);
617
618 tsk->thread.cr2 = address;
619 tsk->thread.trap_no = 14;
620 tsk->thread.error_code = error_code;
621
622 if (__die("Bad pagetable", regs, error_code))
623 sig = 0;
624
625 oops_end(flags, regs, sig);
626 }
627
628 static noinline void
629 no_context(struct pt_regs *regs, unsigned long error_code,
630 unsigned long address)
631 {
632 struct task_struct *tsk = current;
633 unsigned long *stackend;
634 unsigned long flags;
635 int sig;
636
637 /* Are we prepared to handle this kernel fault? */
638 if (fixup_exception(regs))
639 return;
640
641 /*
642 * 32-bit:
643 *
644 * Valid to do another page fault here, because if this fault
645 * had been triggered by is_prefetch fixup_exception would have
646 * handled it.
647 *
648 * 64-bit:
649 *
650 * Hall of shame of CPU/BIOS bugs.
651 */
652 if (is_prefetch(regs, error_code, address))
653 return;
654
655 if (is_errata93(regs, address))
656 return;
657
658 /*
659 * Oops. The kernel tried to access some bad page. We'll have to
660 * terminate things with extreme prejudice:
661 */
662 flags = oops_begin();
663
664 show_fault_oops(regs, error_code, address);
665
666 stackend = end_of_stack(tsk);
667 if (*stackend != STACK_END_MAGIC)
668 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
669
670 tsk->thread.cr2 = address;
671 tsk->thread.trap_no = 14;
672 tsk->thread.error_code = error_code;
673
674 sig = SIGKILL;
675 if (__die("Oops", regs, error_code))
676 sig = 0;
677
678 /* Executive summary in case the body of the oops scrolled away */
679 printk(KERN_EMERG "CR2: %016lx\n", address);
680
681 oops_end(flags, regs, sig);
682 }
683
684 /*
685 * Print out info about fatal segfaults, if the show_unhandled_signals
686 * sysctl is set:
687 */
688 static inline void
689 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
690 unsigned long address, struct task_struct *tsk)
691 {
692 if (!unhandled_signal(tsk, SIGSEGV))
693 return;
694
695 if (!printk_ratelimit())
696 return;
697
698 printk(KERN_CONT "%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
699 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
700 tsk->comm, task_pid_nr(tsk), address,
701 (void *)regs->ip, (void *)regs->sp, error_code);
702
703 print_vma_addr(KERN_CONT " in ", regs->ip);
704
705 printk(KERN_CONT "\n");
706 }
707
708 static void
709 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
710 unsigned long address, int si_code)
711 {
712 struct task_struct *tsk = current;
713
714 /* User mode accesses just cause a SIGSEGV */
715 if (error_code & PF_USER) {
716 /*
717 * It's possible to have interrupts off here:
718 */
719 local_irq_enable();
720
721 /*
722 * Valid to do another page fault here because this one came
723 * from user space:
724 */
725 if (is_prefetch(regs, error_code, address))
726 return;
727
728 if (is_errata100(regs, address))
729 return;
730
731 if (unlikely(show_unhandled_signals))
732 show_signal_msg(regs, error_code, address, tsk);
733
734 /* Kernel addresses are always protection faults: */
735 tsk->thread.cr2 = address;
736 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
737 tsk->thread.trap_no = 14;
738
739 force_sig_info_fault(SIGSEGV, si_code, address, tsk);
740
741 return;
742 }
743
744 if (is_f00f_bug(regs, address))
745 return;
746
747 no_context(regs, error_code, address);
748 }
749
750 static noinline void
751 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
752 unsigned long address)
753 {
754 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
755 }
756
757 static void
758 __bad_area(struct pt_regs *regs, unsigned long error_code,
759 unsigned long address, int si_code)
760 {
761 struct mm_struct *mm = current->mm;
762
763 /*
764 * Something tried to access memory that isn't in our memory map..
765 * Fix it, but check if it's kernel or user first..
766 */
767 up_read(&mm->mmap_sem);
768
769 __bad_area_nosemaphore(regs, error_code, address, si_code);
770 }
771
772 static noinline void
773 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
774 {
775 __bad_area(regs, error_code, address, SEGV_MAPERR);
776 }
777
778 static noinline void
779 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
780 unsigned long address)
781 {
782 __bad_area(regs, error_code, address, SEGV_ACCERR);
783 }
784
785 /* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
786 static void
787 out_of_memory(struct pt_regs *regs, unsigned long error_code,
788 unsigned long address)
789 {
790 /*
791 * We ran out of memory, call the OOM killer, and return the userspace
792 * (which will retry the fault, or kill us if we got oom-killed):
793 */
794 up_read(&current->mm->mmap_sem);
795
796 pagefault_out_of_memory();
797 }
798
799 static void
800 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address)
801 {
802 struct task_struct *tsk = current;
803 struct mm_struct *mm = tsk->mm;
804
805 up_read(&mm->mmap_sem);
806
807 /* Kernel mode? Handle exceptions or die: */
808 if (!(error_code & PF_USER))
809 no_context(regs, error_code, address);
810
811 /* User-space => ok to do another page fault: */
812 if (is_prefetch(regs, error_code, address))
813 return;
814
815 tsk->thread.cr2 = address;
816 tsk->thread.error_code = error_code;
817 tsk->thread.trap_no = 14;
818
819 force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
820 }
821
822 static noinline void
823 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
824 unsigned long address, unsigned int fault)
825 {
826 if (fault & VM_FAULT_OOM) {
827 out_of_memory(regs, error_code, address);
828 } else {
829 if (fault & VM_FAULT_SIGBUS)
830 do_sigbus(regs, error_code, address);
831 else
832 BUG();
833 }
834 }
835
836 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
837 {
838 if ((error_code & PF_WRITE) && !pte_write(*pte))
839 return 0;
840
841 if ((error_code & PF_INSTR) && !pte_exec(*pte))
842 return 0;
843
844 return 1;
845 }
846
847 /*
848 * Handle a spurious fault caused by a stale TLB entry.
849 *
850 * This allows us to lazily refresh the TLB when increasing the
851 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
852 * eagerly is very expensive since that implies doing a full
853 * cross-processor TLB flush, even if no stale TLB entries exist
854 * on other processors.
855 *
856 * There are no security implications to leaving a stale TLB when
857 * increasing the permissions on a page.
858 */
859 static noinline int
860 spurious_fault(unsigned long error_code, unsigned long address)
861 {
862 pgd_t *pgd;
863 pud_t *pud;
864 pmd_t *pmd;
865 pte_t *pte;
866 int ret;
867
868 /* Reserved-bit violation or user access to kernel space? */
869 if (error_code & (PF_USER | PF_RSVD))
870 return 0;
871
872 pgd = init_mm.pgd + pgd_index(address);
873 if (!pgd_present(*pgd))
874 return 0;
875
876 pud = pud_offset(pgd, address);
877 if (!pud_present(*pud))
878 return 0;
879
880 if (pud_large(*pud))
881 return spurious_fault_check(error_code, (pte_t *) pud);
882
883 pmd = pmd_offset(pud, address);
884 if (!pmd_present(*pmd))
885 return 0;
886
887 if (pmd_large(*pmd))
888 return spurious_fault_check(error_code, (pte_t *) pmd);
889
890 pte = pte_offset_kernel(pmd, address);
891 if (!pte_present(*pte))
892 return 0;
893
894 ret = spurious_fault_check(error_code, pte);
895 if (!ret)
896 return 0;
897
898 /*
899 * Make sure we have permissions in PMD.
900 * If not, then there's a bug in the page tables:
901 */
902 ret = spurious_fault_check(error_code, (pte_t *) pmd);
903 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
904
905 return ret;
906 }
907
908 int show_unhandled_signals = 1;
909
910 static inline int
911 access_error(unsigned long error_code, int write, struct vm_area_struct *vma)
912 {
913 if (write) {
914 /* write, present and write, not present: */
915 if (unlikely(!(vma->vm_flags & VM_WRITE)))
916 return 1;
917 return 0;
918 }
919
920 /* read, present: */
921 if (unlikely(error_code & PF_PROT))
922 return 1;
923
924 /* read, not present: */
925 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
926 return 1;
927
928 return 0;
929 }
930
931 static int fault_in_kernel_space(unsigned long address)
932 {
933 return address >= TASK_SIZE_MAX;
934 }
935
936 /*
937 * This routine handles page faults. It determines the address,
938 * and the problem, and then passes it off to one of the appropriate
939 * routines.
940 */
941 dotraplinkage void __kprobes
942 do_page_fault(struct pt_regs *regs, unsigned long error_code)
943 {
944 struct vm_area_struct *vma;
945 struct task_struct *tsk;
946 unsigned long address;
947 struct mm_struct *mm;
948 int write;
949 int fault;
950
951 tsk = current;
952 mm = tsk->mm;
953
954 prefetchw(&mm->mmap_sem);
955
956 /* Get the faulting address: */
957 address = read_cr2();
958
959 if (unlikely(kmmio_fault(regs, address)))
960 return;
961
962 /*
963 * We fault-in kernel-space virtual memory on-demand. The
964 * 'reference' page table is init_mm.pgd.
965 *
966 * NOTE! We MUST NOT take any locks for this case. We may
967 * be in an interrupt or a critical region, and should
968 * only copy the information from the master page table,
969 * nothing more.
970 *
971 * This verifies that the fault happens in kernel space
972 * (error_code & 4) == 0, and that the fault was not a
973 * protection error (error_code & 9) == 0.
974 */
975 if (unlikely(fault_in_kernel_space(address))) {
976 if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) &&
977 vmalloc_fault(address) >= 0)
978 return;
979
980 /* Can handle a stale RO->RW TLB: */
981 if (spurious_fault(error_code, address))
982 return;
983
984 /* kprobes don't want to hook the spurious faults: */
985 if (notify_page_fault(regs))
986 return;
987 /*
988 * Don't take the mm semaphore here. If we fixup a prefetch
989 * fault we could otherwise deadlock:
990 */
991 bad_area_nosemaphore(regs, error_code, address);
992
993 return;
994 }
995
996 /* kprobes don't want to hook the spurious faults: */
997 if (unlikely(notify_page_fault(regs)))
998 return;
999 /*
1000 * It's safe to allow irq's after cr2 has been saved and the
1001 * vmalloc fault has been handled.
1002 *
1003 * User-mode registers count as a user access even for any
1004 * potential system fault or CPU buglet:
1005 */
1006 if (user_mode_vm(regs)) {
1007 local_irq_enable();
1008 error_code |= PF_USER;
1009 } else {
1010 if (regs->flags & X86_EFLAGS_IF)
1011 local_irq_enable();
1012 }
1013
1014 if (unlikely(error_code & PF_RSVD))
1015 pgtable_bad(regs, error_code, address);
1016
1017 perf_swcounter_event(PERF_COUNT_SW_PAGE_FAULTS, 1, 0, regs, address);
1018
1019 /*
1020 * If we're in an interrupt, have no user context or are running
1021 * in an atomic region then we must not take the fault:
1022 */
1023 if (unlikely(in_atomic() || !mm)) {
1024 bad_area_nosemaphore(regs, error_code, address);
1025 return;
1026 }
1027
1028 /*
1029 * When running in the kernel we expect faults to occur only to
1030 * addresses in user space. All other faults represent errors in
1031 * the kernel and should generate an OOPS. Unfortunately, in the
1032 * case of an erroneous fault occurring in a code path which already
1033 * holds mmap_sem we will deadlock attempting to validate the fault
1034 * against the address space. Luckily the kernel only validly
1035 * references user space from well defined areas of code, which are
1036 * listed in the exceptions table.
1037 *
1038 * As the vast majority of faults will be valid we will only perform
1039 * the source reference check when there is a possibility of a
1040 * deadlock. Attempt to lock the address space, if we cannot we then
1041 * validate the source. If this is invalid we can skip the address
1042 * space check, thus avoiding the deadlock:
1043 */
1044 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1045 if ((error_code & PF_USER) == 0 &&
1046 !search_exception_tables(regs->ip)) {
1047 bad_area_nosemaphore(regs, error_code, address);
1048 return;
1049 }
1050 down_read(&mm->mmap_sem);
1051 } else {
1052 /*
1053 * The above down_read_trylock() might have succeeded in
1054 * which case we'll have missed the might_sleep() from
1055 * down_read():
1056 */
1057 might_sleep();
1058 }
1059
1060 vma = find_vma(mm, address);
1061 if (unlikely(!vma)) {
1062 bad_area(regs, error_code, address);
1063 return;
1064 }
1065 if (likely(vma->vm_start <= address))
1066 goto good_area;
1067 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1068 bad_area(regs, error_code, address);
1069 return;
1070 }
1071 if (error_code & PF_USER) {
1072 /*
1073 * Accessing the stack below %sp is always a bug.
1074 * The large cushion allows instructions like enter
1075 * and pusha to work. ("enter $65535, $31" pushes
1076 * 32 pointers and then decrements %sp by 65535.)
1077 */
1078 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1079 bad_area(regs, error_code, address);
1080 return;
1081 }
1082 }
1083 if (unlikely(expand_stack(vma, address))) {
1084 bad_area(regs, error_code, address);
1085 return;
1086 }
1087
1088 /*
1089 * Ok, we have a good vm_area for this memory access, so
1090 * we can handle it..
1091 */
1092 good_area:
1093 write = error_code & PF_WRITE;
1094
1095 if (unlikely(access_error(error_code, write, vma))) {
1096 bad_area_access_error(regs, error_code, address);
1097 return;
1098 }
1099
1100 /*
1101 * If for any reason at all we couldn't handle the fault,
1102 * make sure we exit gracefully rather than endlessly redo
1103 * the fault:
1104 */
1105 fault = handle_mm_fault(mm, vma, address, write);
1106
1107 if (unlikely(fault & VM_FAULT_ERROR)) {
1108 mm_fault_error(regs, error_code, address, fault);
1109 return;
1110 }
1111
1112 if (fault & VM_FAULT_MAJOR) {
1113 tsk->maj_flt++;
1114 perf_swcounter_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 0,
1115 regs, address);
1116 } else {
1117 tsk->min_flt++;
1118 perf_swcounter_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 0,
1119 regs, address);
1120 }
1121
1122 check_v8086_mode(regs, address, tsk);
1123
1124 up_read(&mm->mmap_sem);
1125 }