]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/x86/mm/fault.c
Merge tag 'renesas-fixes-for-v4.14' of https://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-focal-kernel.git] / arch / x86 / mm / fault.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
5 */
6 #include <linux/sched.h> /* test_thread_flag(), ... */
7 #include <linux/sched/task_stack.h> /* task_stack_*(), ... */
8 #include <linux/kdebug.h> /* oops_begin/end, ... */
9 #include <linux/extable.h> /* search_exception_tables */
10 #include <linux/bootmem.h> /* max_low_pfn */
11 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
12 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
13 #include <linux/perf_event.h> /* perf_sw_event */
14 #include <linux/hugetlb.h> /* hstate_index_to_shift */
15 #include <linux/prefetch.h> /* prefetchw */
16 #include <linux/context_tracking.h> /* exception_enter(), ... */
17 #include <linux/uaccess.h> /* faulthandler_disabled() */
18
19 #include <asm/cpufeature.h> /* boot_cpu_has, ... */
20 #include <asm/traps.h> /* dotraplinkage, ... */
21 #include <asm/pgalloc.h> /* pgd_*(), ... */
22 #include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
23 #include <asm/fixmap.h> /* VSYSCALL_ADDR */
24 #include <asm/vsyscall.h> /* emulate_vsyscall */
25 #include <asm/vm86.h> /* struct vm86 */
26 #include <asm/mmu_context.h> /* vma_pkey() */
27
28 #define CREATE_TRACE_POINTS
29 #include <asm/trace/exceptions.h>
30
31 /*
32 * Page fault error code bits:
33 *
34 * bit 0 == 0: no page found 1: protection fault
35 * bit 1 == 0: read access 1: write access
36 * bit 2 == 0: kernel-mode access 1: user-mode access
37 * bit 3 == 1: use of reserved bit detected
38 * bit 4 == 1: fault was an instruction fetch
39 * bit 5 == 1: protection keys block access
40 */
41 enum x86_pf_error_code {
42
43 PF_PROT = 1 << 0,
44 PF_WRITE = 1 << 1,
45 PF_USER = 1 << 2,
46 PF_RSVD = 1 << 3,
47 PF_INSTR = 1 << 4,
48 PF_PK = 1 << 5,
49 };
50
51 /*
52 * Returns 0 if mmiotrace is disabled, or if the fault is not
53 * handled by mmiotrace:
54 */
55 static nokprobe_inline int
56 kmmio_fault(struct pt_regs *regs, unsigned long addr)
57 {
58 if (unlikely(is_kmmio_active()))
59 if (kmmio_handler(regs, addr) == 1)
60 return -1;
61 return 0;
62 }
63
64 static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
65 {
66 int ret = 0;
67
68 /* kprobe_running() needs smp_processor_id() */
69 if (kprobes_built_in() && !user_mode(regs)) {
70 preempt_disable();
71 if (kprobe_running() && kprobe_fault_handler(regs, 14))
72 ret = 1;
73 preempt_enable();
74 }
75
76 return ret;
77 }
78
79 /*
80 * Prefetch quirks:
81 *
82 * 32-bit mode:
83 *
84 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
85 * Check that here and ignore it.
86 *
87 * 64-bit mode:
88 *
89 * Sometimes the CPU reports invalid exceptions on prefetch.
90 * Check that here and ignore it.
91 *
92 * Opcode checker based on code by Richard Brunner.
93 */
94 static inline int
95 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
96 unsigned char opcode, int *prefetch)
97 {
98 unsigned char instr_hi = opcode & 0xf0;
99 unsigned char instr_lo = opcode & 0x0f;
100
101 switch (instr_hi) {
102 case 0x20:
103 case 0x30:
104 /*
105 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
106 * In X86_64 long mode, the CPU will signal invalid
107 * opcode if some of these prefixes are present so
108 * X86_64 will never get here anyway
109 */
110 return ((instr_lo & 7) == 0x6);
111 #ifdef CONFIG_X86_64
112 case 0x40:
113 /*
114 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
115 * Need to figure out under what instruction mode the
116 * instruction was issued. Could check the LDT for lm,
117 * but for now it's good enough to assume that long
118 * mode only uses well known segments or kernel.
119 */
120 return (!user_mode(regs) || user_64bit_mode(regs));
121 #endif
122 case 0x60:
123 /* 0x64 thru 0x67 are valid prefixes in all modes. */
124 return (instr_lo & 0xC) == 0x4;
125 case 0xF0:
126 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
127 return !instr_lo || (instr_lo>>1) == 1;
128 case 0x00:
129 /* Prefetch instruction is 0x0F0D or 0x0F18 */
130 if (probe_kernel_address(instr, opcode))
131 return 0;
132
133 *prefetch = (instr_lo == 0xF) &&
134 (opcode == 0x0D || opcode == 0x18);
135 return 0;
136 default:
137 return 0;
138 }
139 }
140
141 static int
142 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
143 {
144 unsigned char *max_instr;
145 unsigned char *instr;
146 int prefetch = 0;
147
148 /*
149 * If it was a exec (instruction fetch) fault on NX page, then
150 * do not ignore the fault:
151 */
152 if (error_code & PF_INSTR)
153 return 0;
154
155 instr = (void *)convert_ip_to_linear(current, regs);
156 max_instr = instr + 15;
157
158 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
159 return 0;
160
161 while (instr < max_instr) {
162 unsigned char opcode;
163
164 if (probe_kernel_address(instr, opcode))
165 break;
166
167 instr++;
168
169 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
170 break;
171 }
172 return prefetch;
173 }
174
175 /*
176 * A protection key fault means that the PKRU value did not allow
177 * access to some PTE. Userspace can figure out what PKRU was
178 * from the XSAVE state, and this function fills out a field in
179 * siginfo so userspace can discover which protection key was set
180 * on the PTE.
181 *
182 * If we get here, we know that the hardware signaled a PF_PK
183 * fault and that there was a VMA once we got in the fault
184 * handler. It does *not* guarantee that the VMA we find here
185 * was the one that we faulted on.
186 *
187 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
188 * 2. T1 : set PKRU to deny access to pkey=4, touches page
189 * 3. T1 : faults...
190 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
191 * 5. T1 : enters fault handler, takes mmap_sem, etc...
192 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
193 * faulted on a pte with its pkey=4.
194 */
195 static void fill_sig_info_pkey(int si_code, siginfo_t *info, u32 *pkey)
196 {
197 /* This is effectively an #ifdef */
198 if (!boot_cpu_has(X86_FEATURE_OSPKE))
199 return;
200
201 /* Fault not from Protection Keys: nothing to do */
202 if (si_code != SEGV_PKUERR)
203 return;
204 /*
205 * force_sig_info_fault() is called from a number of
206 * contexts, some of which have a VMA and some of which
207 * do not. The PF_PK handing happens after we have a
208 * valid VMA, so we should never reach this without a
209 * valid VMA.
210 */
211 if (!pkey) {
212 WARN_ONCE(1, "PKU fault with no VMA passed in");
213 info->si_pkey = 0;
214 return;
215 }
216 /*
217 * si_pkey should be thought of as a strong hint, but not
218 * absolutely guranteed to be 100% accurate because of
219 * the race explained above.
220 */
221 info->si_pkey = *pkey;
222 }
223
224 static void
225 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
226 struct task_struct *tsk, u32 *pkey, int fault)
227 {
228 unsigned lsb = 0;
229 siginfo_t info;
230
231 info.si_signo = si_signo;
232 info.si_errno = 0;
233 info.si_code = si_code;
234 info.si_addr = (void __user *)address;
235 if (fault & VM_FAULT_HWPOISON_LARGE)
236 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
237 if (fault & VM_FAULT_HWPOISON)
238 lsb = PAGE_SHIFT;
239 info.si_addr_lsb = lsb;
240
241 fill_sig_info_pkey(si_code, &info, pkey);
242
243 force_sig_info(si_signo, &info, tsk);
244 }
245
246 DEFINE_SPINLOCK(pgd_lock);
247 LIST_HEAD(pgd_list);
248
249 #ifdef CONFIG_X86_32
250 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
251 {
252 unsigned index = pgd_index(address);
253 pgd_t *pgd_k;
254 p4d_t *p4d, *p4d_k;
255 pud_t *pud, *pud_k;
256 pmd_t *pmd, *pmd_k;
257
258 pgd += index;
259 pgd_k = init_mm.pgd + index;
260
261 if (!pgd_present(*pgd_k))
262 return NULL;
263
264 /*
265 * set_pgd(pgd, *pgd_k); here would be useless on PAE
266 * and redundant with the set_pmd() on non-PAE. As would
267 * set_p4d/set_pud.
268 */
269 p4d = p4d_offset(pgd, address);
270 p4d_k = p4d_offset(pgd_k, address);
271 if (!p4d_present(*p4d_k))
272 return NULL;
273
274 pud = pud_offset(p4d, address);
275 pud_k = pud_offset(p4d_k, address);
276 if (!pud_present(*pud_k))
277 return NULL;
278
279 pmd = pmd_offset(pud, address);
280 pmd_k = pmd_offset(pud_k, address);
281 if (!pmd_present(*pmd_k))
282 return NULL;
283
284 if (!pmd_present(*pmd))
285 set_pmd(pmd, *pmd_k);
286 else
287 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
288
289 return pmd_k;
290 }
291
292 void vmalloc_sync_all(void)
293 {
294 unsigned long address;
295
296 if (SHARED_KERNEL_PMD)
297 return;
298
299 for (address = VMALLOC_START & PMD_MASK;
300 address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
301 address += PMD_SIZE) {
302 struct page *page;
303
304 spin_lock(&pgd_lock);
305 list_for_each_entry(page, &pgd_list, lru) {
306 spinlock_t *pgt_lock;
307 pmd_t *ret;
308
309 /* the pgt_lock only for Xen */
310 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
311
312 spin_lock(pgt_lock);
313 ret = vmalloc_sync_one(page_address(page), address);
314 spin_unlock(pgt_lock);
315
316 if (!ret)
317 break;
318 }
319 spin_unlock(&pgd_lock);
320 }
321 }
322
323 /*
324 * 32-bit:
325 *
326 * Handle a fault on the vmalloc or module mapping area
327 */
328 static noinline int vmalloc_fault(unsigned long address)
329 {
330 unsigned long pgd_paddr;
331 pmd_t *pmd_k;
332 pte_t *pte_k;
333
334 /* Make sure we are in vmalloc area: */
335 if (!(address >= VMALLOC_START && address < VMALLOC_END))
336 return -1;
337
338 WARN_ON_ONCE(in_nmi());
339
340 /*
341 * Synchronize this task's top level page-table
342 * with the 'reference' page table.
343 *
344 * Do _not_ use "current" here. We might be inside
345 * an interrupt in the middle of a task switch..
346 */
347 pgd_paddr = read_cr3_pa();
348 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
349 if (!pmd_k)
350 return -1;
351
352 if (pmd_huge(*pmd_k))
353 return 0;
354
355 pte_k = pte_offset_kernel(pmd_k, address);
356 if (!pte_present(*pte_k))
357 return -1;
358
359 return 0;
360 }
361 NOKPROBE_SYMBOL(vmalloc_fault);
362
363 /*
364 * Did it hit the DOS screen memory VA from vm86 mode?
365 */
366 static inline void
367 check_v8086_mode(struct pt_regs *regs, unsigned long address,
368 struct task_struct *tsk)
369 {
370 #ifdef CONFIG_VM86
371 unsigned long bit;
372
373 if (!v8086_mode(regs) || !tsk->thread.vm86)
374 return;
375
376 bit = (address - 0xA0000) >> PAGE_SHIFT;
377 if (bit < 32)
378 tsk->thread.vm86->screen_bitmap |= 1 << bit;
379 #endif
380 }
381
382 static bool low_pfn(unsigned long pfn)
383 {
384 return pfn < max_low_pfn;
385 }
386
387 static void dump_pagetable(unsigned long address)
388 {
389 pgd_t *base = __va(read_cr3_pa());
390 pgd_t *pgd = &base[pgd_index(address)];
391 p4d_t *p4d;
392 pud_t *pud;
393 pmd_t *pmd;
394 pte_t *pte;
395
396 #ifdef CONFIG_X86_PAE
397 pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
398 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
399 goto out;
400 #define pr_pde pr_cont
401 #else
402 #define pr_pde pr_info
403 #endif
404 p4d = p4d_offset(pgd, address);
405 pud = pud_offset(p4d, address);
406 pmd = pmd_offset(pud, address);
407 pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
408 #undef pr_pde
409
410 /*
411 * We must not directly access the pte in the highpte
412 * case if the page table is located in highmem.
413 * And let's rather not kmap-atomic the pte, just in case
414 * it's allocated already:
415 */
416 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
417 goto out;
418
419 pte = pte_offset_kernel(pmd, address);
420 pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
421 out:
422 pr_cont("\n");
423 }
424
425 #else /* CONFIG_X86_64: */
426
427 void vmalloc_sync_all(void)
428 {
429 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
430 }
431
432 /*
433 * 64-bit:
434 *
435 * Handle a fault on the vmalloc area
436 */
437 static noinline int vmalloc_fault(unsigned long address)
438 {
439 pgd_t *pgd, *pgd_ref;
440 p4d_t *p4d, *p4d_ref;
441 pud_t *pud, *pud_ref;
442 pmd_t *pmd, *pmd_ref;
443 pte_t *pte, *pte_ref;
444
445 /* Make sure we are in vmalloc area: */
446 if (!(address >= VMALLOC_START && address < VMALLOC_END))
447 return -1;
448
449 WARN_ON_ONCE(in_nmi());
450
451 /*
452 * Copy kernel mappings over when needed. This can also
453 * happen within a race in page table update. In the later
454 * case just flush:
455 */
456 pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address);
457 pgd_ref = pgd_offset_k(address);
458 if (pgd_none(*pgd_ref))
459 return -1;
460
461 if (pgd_none(*pgd)) {
462 set_pgd(pgd, *pgd_ref);
463 arch_flush_lazy_mmu_mode();
464 } else if (CONFIG_PGTABLE_LEVELS > 4) {
465 /*
466 * With folded p4d, pgd_none() is always false, so the pgd may
467 * point to an empty page table entry and pgd_page_vaddr()
468 * will return garbage.
469 *
470 * We will do the correct sanity check on the p4d level.
471 */
472 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
473 }
474
475 /* With 4-level paging, copying happens on the p4d level. */
476 p4d = p4d_offset(pgd, address);
477 p4d_ref = p4d_offset(pgd_ref, address);
478 if (p4d_none(*p4d_ref))
479 return -1;
480
481 if (p4d_none(*p4d)) {
482 set_p4d(p4d, *p4d_ref);
483 arch_flush_lazy_mmu_mode();
484 } else {
485 BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_ref));
486 }
487
488 /*
489 * Below here mismatches are bugs because these lower tables
490 * are shared:
491 */
492
493 pud = pud_offset(p4d, address);
494 pud_ref = pud_offset(p4d_ref, address);
495 if (pud_none(*pud_ref))
496 return -1;
497
498 if (pud_none(*pud) || pud_pfn(*pud) != pud_pfn(*pud_ref))
499 BUG();
500
501 if (pud_huge(*pud))
502 return 0;
503
504 pmd = pmd_offset(pud, address);
505 pmd_ref = pmd_offset(pud_ref, address);
506 if (pmd_none(*pmd_ref))
507 return -1;
508
509 if (pmd_none(*pmd) || pmd_pfn(*pmd) != pmd_pfn(*pmd_ref))
510 BUG();
511
512 if (pmd_huge(*pmd))
513 return 0;
514
515 pte_ref = pte_offset_kernel(pmd_ref, address);
516 if (!pte_present(*pte_ref))
517 return -1;
518
519 pte = pte_offset_kernel(pmd, address);
520
521 /*
522 * Don't use pte_page here, because the mappings can point
523 * outside mem_map, and the NUMA hash lookup cannot handle
524 * that:
525 */
526 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
527 BUG();
528
529 return 0;
530 }
531 NOKPROBE_SYMBOL(vmalloc_fault);
532
533 #ifdef CONFIG_CPU_SUP_AMD
534 static const char errata93_warning[] =
535 KERN_ERR
536 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
537 "******* Working around it, but it may cause SEGVs or burn power.\n"
538 "******* Please consider a BIOS update.\n"
539 "******* Disabling USB legacy in the BIOS may also help.\n";
540 #endif
541
542 /*
543 * No vm86 mode in 64-bit mode:
544 */
545 static inline void
546 check_v8086_mode(struct pt_regs *regs, unsigned long address,
547 struct task_struct *tsk)
548 {
549 }
550
551 static int bad_address(void *p)
552 {
553 unsigned long dummy;
554
555 return probe_kernel_address((unsigned long *)p, dummy);
556 }
557
558 static void dump_pagetable(unsigned long address)
559 {
560 pgd_t *base = __va(read_cr3_pa());
561 pgd_t *pgd = base + pgd_index(address);
562 p4d_t *p4d;
563 pud_t *pud;
564 pmd_t *pmd;
565 pte_t *pte;
566
567 if (bad_address(pgd))
568 goto bad;
569
570 pr_info("PGD %lx ", pgd_val(*pgd));
571
572 if (!pgd_present(*pgd))
573 goto out;
574
575 p4d = p4d_offset(pgd, address);
576 if (bad_address(p4d))
577 goto bad;
578
579 pr_cont("P4D %lx ", p4d_val(*p4d));
580 if (!p4d_present(*p4d) || p4d_large(*p4d))
581 goto out;
582
583 pud = pud_offset(p4d, address);
584 if (bad_address(pud))
585 goto bad;
586
587 pr_cont("PUD %lx ", pud_val(*pud));
588 if (!pud_present(*pud) || pud_large(*pud))
589 goto out;
590
591 pmd = pmd_offset(pud, address);
592 if (bad_address(pmd))
593 goto bad;
594
595 pr_cont("PMD %lx ", pmd_val(*pmd));
596 if (!pmd_present(*pmd) || pmd_large(*pmd))
597 goto out;
598
599 pte = pte_offset_kernel(pmd, address);
600 if (bad_address(pte))
601 goto bad;
602
603 pr_cont("PTE %lx", pte_val(*pte));
604 out:
605 pr_cont("\n");
606 return;
607 bad:
608 pr_info("BAD\n");
609 }
610
611 #endif /* CONFIG_X86_64 */
612
613 /*
614 * Workaround for K8 erratum #93 & buggy BIOS.
615 *
616 * BIOS SMM functions are required to use a specific workaround
617 * to avoid corruption of the 64bit RIP register on C stepping K8.
618 *
619 * A lot of BIOS that didn't get tested properly miss this.
620 *
621 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
622 * Try to work around it here.
623 *
624 * Note we only handle faults in kernel here.
625 * Does nothing on 32-bit.
626 */
627 static int is_errata93(struct pt_regs *regs, unsigned long address)
628 {
629 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
630 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
631 || boot_cpu_data.x86 != 0xf)
632 return 0;
633
634 if (address != regs->ip)
635 return 0;
636
637 if ((address >> 32) != 0)
638 return 0;
639
640 address |= 0xffffffffUL << 32;
641 if ((address >= (u64)_stext && address <= (u64)_etext) ||
642 (address >= MODULES_VADDR && address <= MODULES_END)) {
643 printk_once(errata93_warning);
644 regs->ip = address;
645 return 1;
646 }
647 #endif
648 return 0;
649 }
650
651 /*
652 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
653 * to illegal addresses >4GB.
654 *
655 * We catch this in the page fault handler because these addresses
656 * are not reachable. Just detect this case and return. Any code
657 * segment in LDT is compatibility mode.
658 */
659 static int is_errata100(struct pt_regs *regs, unsigned long address)
660 {
661 #ifdef CONFIG_X86_64
662 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
663 return 1;
664 #endif
665 return 0;
666 }
667
668 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
669 {
670 #ifdef CONFIG_X86_F00F_BUG
671 unsigned long nr;
672
673 /*
674 * Pentium F0 0F C7 C8 bug workaround:
675 */
676 if (boot_cpu_has_bug(X86_BUG_F00F)) {
677 nr = (address - idt_descr.address) >> 3;
678
679 if (nr == 6) {
680 do_invalid_op(regs, 0);
681 return 1;
682 }
683 }
684 #endif
685 return 0;
686 }
687
688 static const char nx_warning[] = KERN_CRIT
689 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
690 static const char smep_warning[] = KERN_CRIT
691 "unable to execute userspace code (SMEP?) (uid: %d)\n";
692
693 static void
694 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
695 unsigned long address)
696 {
697 if (!oops_may_print())
698 return;
699
700 if (error_code & PF_INSTR) {
701 unsigned int level;
702 pgd_t *pgd;
703 pte_t *pte;
704
705 pgd = __va(read_cr3_pa());
706 pgd += pgd_index(address);
707
708 pte = lookup_address_in_pgd(pgd, address, &level);
709
710 if (pte && pte_present(*pte) && !pte_exec(*pte))
711 printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
712 if (pte && pte_present(*pte) && pte_exec(*pte) &&
713 (pgd_flags(*pgd) & _PAGE_USER) &&
714 (__read_cr4() & X86_CR4_SMEP))
715 printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
716 }
717
718 printk(KERN_ALERT "BUG: unable to handle kernel ");
719 if (address < PAGE_SIZE)
720 printk(KERN_CONT "NULL pointer dereference");
721 else
722 printk(KERN_CONT "paging request");
723
724 printk(KERN_CONT " at %p\n", (void *) address);
725 printk(KERN_ALERT "IP: %pS\n", (void *)regs->ip);
726
727 dump_pagetable(address);
728 }
729
730 static noinline void
731 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
732 unsigned long address)
733 {
734 struct task_struct *tsk;
735 unsigned long flags;
736 int sig;
737
738 flags = oops_begin();
739 tsk = current;
740 sig = SIGKILL;
741
742 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
743 tsk->comm, address);
744 dump_pagetable(address);
745
746 tsk->thread.cr2 = address;
747 tsk->thread.trap_nr = X86_TRAP_PF;
748 tsk->thread.error_code = error_code;
749
750 if (__die("Bad pagetable", regs, error_code))
751 sig = 0;
752
753 oops_end(flags, regs, sig);
754 }
755
756 static noinline void
757 no_context(struct pt_regs *regs, unsigned long error_code,
758 unsigned long address, int signal, int si_code)
759 {
760 struct task_struct *tsk = current;
761 unsigned long flags;
762 int sig;
763
764 /* Are we prepared to handle this kernel fault? */
765 if (fixup_exception(regs, X86_TRAP_PF)) {
766 /*
767 * Any interrupt that takes a fault gets the fixup. This makes
768 * the below recursive fault logic only apply to a faults from
769 * task context.
770 */
771 if (in_interrupt())
772 return;
773
774 /*
775 * Per the above we're !in_interrupt(), aka. task context.
776 *
777 * In this case we need to make sure we're not recursively
778 * faulting through the emulate_vsyscall() logic.
779 */
780 if (current->thread.sig_on_uaccess_err && signal) {
781 tsk->thread.trap_nr = X86_TRAP_PF;
782 tsk->thread.error_code = error_code | PF_USER;
783 tsk->thread.cr2 = address;
784
785 /* XXX: hwpoison faults will set the wrong code. */
786 force_sig_info_fault(signal, si_code, address,
787 tsk, NULL, 0);
788 }
789
790 /*
791 * Barring that, we can do the fixup and be happy.
792 */
793 return;
794 }
795
796 #ifdef CONFIG_VMAP_STACK
797 /*
798 * Stack overflow? During boot, we can fault near the initial
799 * stack in the direct map, but that's not an overflow -- check
800 * that we're in vmalloc space to avoid this.
801 */
802 if (is_vmalloc_addr((void *)address) &&
803 (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
804 address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
805 unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *);
806 /*
807 * We're likely to be running with very little stack space
808 * left. It's plausible that we'd hit this condition but
809 * double-fault even before we get this far, in which case
810 * we're fine: the double-fault handler will deal with it.
811 *
812 * We don't want to make it all the way into the oops code
813 * and then double-fault, though, because we're likely to
814 * break the console driver and lose most of the stack dump.
815 */
816 asm volatile ("movq %[stack], %%rsp\n\t"
817 "call handle_stack_overflow\n\t"
818 "1: jmp 1b"
819 : ASM_CALL_CONSTRAINT
820 : "D" ("kernel stack overflow (page fault)"),
821 "S" (regs), "d" (address),
822 [stack] "rm" (stack));
823 unreachable();
824 }
825 #endif
826
827 /*
828 * 32-bit:
829 *
830 * Valid to do another page fault here, because if this fault
831 * had been triggered by is_prefetch fixup_exception would have
832 * handled it.
833 *
834 * 64-bit:
835 *
836 * Hall of shame of CPU/BIOS bugs.
837 */
838 if (is_prefetch(regs, error_code, address))
839 return;
840
841 if (is_errata93(regs, address))
842 return;
843
844 /*
845 * Oops. The kernel tried to access some bad page. We'll have to
846 * terminate things with extreme prejudice:
847 */
848 flags = oops_begin();
849
850 show_fault_oops(regs, error_code, address);
851
852 if (task_stack_end_corrupted(tsk))
853 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
854
855 tsk->thread.cr2 = address;
856 tsk->thread.trap_nr = X86_TRAP_PF;
857 tsk->thread.error_code = error_code;
858
859 sig = SIGKILL;
860 if (__die("Oops", regs, error_code))
861 sig = 0;
862
863 /* Executive summary in case the body of the oops scrolled away */
864 printk(KERN_DEFAULT "CR2: %016lx\n", address);
865
866 oops_end(flags, regs, sig);
867 }
868
869 /*
870 * Print out info about fatal segfaults, if the show_unhandled_signals
871 * sysctl is set:
872 */
873 static inline void
874 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
875 unsigned long address, struct task_struct *tsk)
876 {
877 if (!unhandled_signal(tsk, SIGSEGV))
878 return;
879
880 if (!printk_ratelimit())
881 return;
882
883 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
884 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
885 tsk->comm, task_pid_nr(tsk), address,
886 (void *)regs->ip, (void *)regs->sp, error_code);
887
888 print_vma_addr(KERN_CONT " in ", regs->ip);
889
890 printk(KERN_CONT "\n");
891 }
892
893 static void
894 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
895 unsigned long address, u32 *pkey, int si_code)
896 {
897 struct task_struct *tsk = current;
898
899 /* User mode accesses just cause a SIGSEGV */
900 if (error_code & PF_USER) {
901 /*
902 * It's possible to have interrupts off here:
903 */
904 local_irq_enable();
905
906 /*
907 * Valid to do another page fault here because this one came
908 * from user space:
909 */
910 if (is_prefetch(regs, error_code, address))
911 return;
912
913 if (is_errata100(regs, address))
914 return;
915
916 #ifdef CONFIG_X86_64
917 /*
918 * Instruction fetch faults in the vsyscall page might need
919 * emulation.
920 */
921 if (unlikely((error_code & PF_INSTR) &&
922 ((address & ~0xfff) == VSYSCALL_ADDR))) {
923 if (emulate_vsyscall(regs, address))
924 return;
925 }
926 #endif
927
928 /*
929 * To avoid leaking information about the kernel page table
930 * layout, pretend that user-mode accesses to kernel addresses
931 * are always protection faults.
932 */
933 if (address >= TASK_SIZE_MAX)
934 error_code |= PF_PROT;
935
936 if (likely(show_unhandled_signals))
937 show_signal_msg(regs, error_code, address, tsk);
938
939 tsk->thread.cr2 = address;
940 tsk->thread.error_code = error_code;
941 tsk->thread.trap_nr = X86_TRAP_PF;
942
943 force_sig_info_fault(SIGSEGV, si_code, address, tsk, pkey, 0);
944
945 return;
946 }
947
948 if (is_f00f_bug(regs, address))
949 return;
950
951 no_context(regs, error_code, address, SIGSEGV, si_code);
952 }
953
954 static noinline void
955 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
956 unsigned long address, u32 *pkey)
957 {
958 __bad_area_nosemaphore(regs, error_code, address, pkey, SEGV_MAPERR);
959 }
960
961 static void
962 __bad_area(struct pt_regs *regs, unsigned long error_code,
963 unsigned long address, struct vm_area_struct *vma, int si_code)
964 {
965 struct mm_struct *mm = current->mm;
966 u32 pkey;
967
968 if (vma)
969 pkey = vma_pkey(vma);
970
971 /*
972 * Something tried to access memory that isn't in our memory map..
973 * Fix it, but check if it's kernel or user first..
974 */
975 up_read(&mm->mmap_sem);
976
977 __bad_area_nosemaphore(regs, error_code, address,
978 (vma) ? &pkey : NULL, si_code);
979 }
980
981 static noinline void
982 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
983 {
984 __bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
985 }
986
987 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
988 struct vm_area_struct *vma)
989 {
990 /* This code is always called on the current mm */
991 bool foreign = false;
992
993 if (!boot_cpu_has(X86_FEATURE_OSPKE))
994 return false;
995 if (error_code & PF_PK)
996 return true;
997 /* this checks permission keys on the VMA: */
998 if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
999 (error_code & PF_INSTR), foreign))
1000 return true;
1001 return false;
1002 }
1003
1004 static noinline void
1005 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
1006 unsigned long address, struct vm_area_struct *vma)
1007 {
1008 /*
1009 * This OSPKE check is not strictly necessary at runtime.
1010 * But, doing it this way allows compiler optimizations
1011 * if pkeys are compiled out.
1012 */
1013 if (bad_area_access_from_pkeys(error_code, vma))
1014 __bad_area(regs, error_code, address, vma, SEGV_PKUERR);
1015 else
1016 __bad_area(regs, error_code, address, vma, SEGV_ACCERR);
1017 }
1018
1019 static void
1020 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
1021 u32 *pkey, unsigned int fault)
1022 {
1023 struct task_struct *tsk = current;
1024 int code = BUS_ADRERR;
1025
1026 /* Kernel mode? Handle exceptions or die: */
1027 if (!(error_code & PF_USER)) {
1028 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1029 return;
1030 }
1031
1032 /* User-space => ok to do another page fault: */
1033 if (is_prefetch(regs, error_code, address))
1034 return;
1035
1036 tsk->thread.cr2 = address;
1037 tsk->thread.error_code = error_code;
1038 tsk->thread.trap_nr = X86_TRAP_PF;
1039
1040 #ifdef CONFIG_MEMORY_FAILURE
1041 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
1042 printk(KERN_ERR
1043 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
1044 tsk->comm, tsk->pid, address);
1045 code = BUS_MCEERR_AR;
1046 }
1047 #endif
1048 force_sig_info_fault(SIGBUS, code, address, tsk, pkey, fault);
1049 }
1050
1051 static noinline void
1052 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
1053 unsigned long address, u32 *pkey, unsigned int fault)
1054 {
1055 if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
1056 no_context(regs, error_code, address, 0, 0);
1057 return;
1058 }
1059
1060 if (fault & VM_FAULT_OOM) {
1061 /* Kernel mode? Handle exceptions or die: */
1062 if (!(error_code & PF_USER)) {
1063 no_context(regs, error_code, address,
1064 SIGSEGV, SEGV_MAPERR);
1065 return;
1066 }
1067
1068 /*
1069 * We ran out of memory, call the OOM killer, and return the
1070 * userspace (which will retry the fault, or kill us if we got
1071 * oom-killed):
1072 */
1073 pagefault_out_of_memory();
1074 } else {
1075 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1076 VM_FAULT_HWPOISON_LARGE))
1077 do_sigbus(regs, error_code, address, pkey, fault);
1078 else if (fault & VM_FAULT_SIGSEGV)
1079 bad_area_nosemaphore(regs, error_code, address, pkey);
1080 else
1081 BUG();
1082 }
1083 }
1084
1085 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
1086 {
1087 if ((error_code & PF_WRITE) && !pte_write(*pte))
1088 return 0;
1089
1090 if ((error_code & PF_INSTR) && !pte_exec(*pte))
1091 return 0;
1092 /*
1093 * Note: We do not do lazy flushing on protection key
1094 * changes, so no spurious fault will ever set PF_PK.
1095 */
1096 if ((error_code & PF_PK))
1097 return 1;
1098
1099 return 1;
1100 }
1101
1102 /*
1103 * Handle a spurious fault caused by a stale TLB entry.
1104 *
1105 * This allows us to lazily refresh the TLB when increasing the
1106 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
1107 * eagerly is very expensive since that implies doing a full
1108 * cross-processor TLB flush, even if no stale TLB entries exist
1109 * on other processors.
1110 *
1111 * Spurious faults may only occur if the TLB contains an entry with
1112 * fewer permission than the page table entry. Non-present (P = 0)
1113 * and reserved bit (R = 1) faults are never spurious.
1114 *
1115 * There are no security implications to leaving a stale TLB when
1116 * increasing the permissions on a page.
1117 *
1118 * Returns non-zero if a spurious fault was handled, zero otherwise.
1119 *
1120 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1121 * (Optional Invalidation).
1122 */
1123 static noinline int
1124 spurious_fault(unsigned long error_code, unsigned long address)
1125 {
1126 pgd_t *pgd;
1127 p4d_t *p4d;
1128 pud_t *pud;
1129 pmd_t *pmd;
1130 pte_t *pte;
1131 int ret;
1132
1133 /*
1134 * Only writes to RO or instruction fetches from NX may cause
1135 * spurious faults.
1136 *
1137 * These could be from user or supervisor accesses but the TLB
1138 * is only lazily flushed after a kernel mapping protection
1139 * change, so user accesses are not expected to cause spurious
1140 * faults.
1141 */
1142 if (error_code != (PF_WRITE | PF_PROT)
1143 && error_code != (PF_INSTR | PF_PROT))
1144 return 0;
1145
1146 pgd = init_mm.pgd + pgd_index(address);
1147 if (!pgd_present(*pgd))
1148 return 0;
1149
1150 p4d = p4d_offset(pgd, address);
1151 if (!p4d_present(*p4d))
1152 return 0;
1153
1154 if (p4d_large(*p4d))
1155 return spurious_fault_check(error_code, (pte_t *) p4d);
1156
1157 pud = pud_offset(p4d, address);
1158 if (!pud_present(*pud))
1159 return 0;
1160
1161 if (pud_large(*pud))
1162 return spurious_fault_check(error_code, (pte_t *) pud);
1163
1164 pmd = pmd_offset(pud, address);
1165 if (!pmd_present(*pmd))
1166 return 0;
1167
1168 if (pmd_large(*pmd))
1169 return spurious_fault_check(error_code, (pte_t *) pmd);
1170
1171 pte = pte_offset_kernel(pmd, address);
1172 if (!pte_present(*pte))
1173 return 0;
1174
1175 ret = spurious_fault_check(error_code, pte);
1176 if (!ret)
1177 return 0;
1178
1179 /*
1180 * Make sure we have permissions in PMD.
1181 * If not, then there's a bug in the page tables:
1182 */
1183 ret = spurious_fault_check(error_code, (pte_t *) pmd);
1184 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1185
1186 return ret;
1187 }
1188 NOKPROBE_SYMBOL(spurious_fault);
1189
1190 int show_unhandled_signals = 1;
1191
1192 static inline int
1193 access_error(unsigned long error_code, struct vm_area_struct *vma)
1194 {
1195 /* This is only called for the current mm, so: */
1196 bool foreign = false;
1197
1198 /*
1199 * Read or write was blocked by protection keys. This is
1200 * always an unconditional error and can never result in
1201 * a follow-up action to resolve the fault, like a COW.
1202 */
1203 if (error_code & PF_PK)
1204 return 1;
1205
1206 /*
1207 * Make sure to check the VMA so that we do not perform
1208 * faults just to hit a PF_PK as soon as we fill in a
1209 * page.
1210 */
1211 if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
1212 (error_code & PF_INSTR), foreign))
1213 return 1;
1214
1215 if (error_code & PF_WRITE) {
1216 /* write, present and write, not present: */
1217 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1218 return 1;
1219 return 0;
1220 }
1221
1222 /* read, present: */
1223 if (unlikely(error_code & PF_PROT))
1224 return 1;
1225
1226 /* read, not present: */
1227 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1228 return 1;
1229
1230 return 0;
1231 }
1232
1233 static int fault_in_kernel_space(unsigned long address)
1234 {
1235 return address >= TASK_SIZE_MAX;
1236 }
1237
1238 static inline bool smap_violation(int error_code, struct pt_regs *regs)
1239 {
1240 if (!IS_ENABLED(CONFIG_X86_SMAP))
1241 return false;
1242
1243 if (!static_cpu_has(X86_FEATURE_SMAP))
1244 return false;
1245
1246 if (error_code & PF_USER)
1247 return false;
1248
1249 if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
1250 return false;
1251
1252 return true;
1253 }
1254
1255 /*
1256 * This routine handles page faults. It determines the address,
1257 * and the problem, and then passes it off to one of the appropriate
1258 * routines.
1259 */
1260 static noinline void
1261 __do_page_fault(struct pt_regs *regs, unsigned long error_code,
1262 unsigned long address)
1263 {
1264 struct vm_area_struct *vma;
1265 struct task_struct *tsk;
1266 struct mm_struct *mm;
1267 int fault, major = 0;
1268 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1269 u32 pkey;
1270
1271 tsk = current;
1272 mm = tsk->mm;
1273
1274 /*
1275 * Detect and handle instructions that would cause a page fault for
1276 * both a tracked kernel page and a userspace page.
1277 */
1278 if (kmemcheck_active(regs))
1279 kmemcheck_hide(regs);
1280 prefetchw(&mm->mmap_sem);
1281
1282 if (unlikely(kmmio_fault(regs, address)))
1283 return;
1284
1285 /*
1286 * We fault-in kernel-space virtual memory on-demand. The
1287 * 'reference' page table is init_mm.pgd.
1288 *
1289 * NOTE! We MUST NOT take any locks for this case. We may
1290 * be in an interrupt or a critical region, and should
1291 * only copy the information from the master page table,
1292 * nothing more.
1293 *
1294 * This verifies that the fault happens in kernel space
1295 * (error_code & 4) == 0, and that the fault was not a
1296 * protection error (error_code & 9) == 0.
1297 */
1298 if (unlikely(fault_in_kernel_space(address))) {
1299 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1300 if (vmalloc_fault(address) >= 0)
1301 return;
1302
1303 if (kmemcheck_fault(regs, address, error_code))
1304 return;
1305 }
1306
1307 /* Can handle a stale RO->RW TLB: */
1308 if (spurious_fault(error_code, address))
1309 return;
1310
1311 /* kprobes don't want to hook the spurious faults: */
1312 if (kprobes_fault(regs))
1313 return;
1314 /*
1315 * Don't take the mm semaphore here. If we fixup a prefetch
1316 * fault we could otherwise deadlock:
1317 */
1318 bad_area_nosemaphore(regs, error_code, address, NULL);
1319
1320 return;
1321 }
1322
1323 /* kprobes don't want to hook the spurious faults: */
1324 if (unlikely(kprobes_fault(regs)))
1325 return;
1326
1327 if (unlikely(error_code & PF_RSVD))
1328 pgtable_bad(regs, error_code, address);
1329
1330 if (unlikely(smap_violation(error_code, regs))) {
1331 bad_area_nosemaphore(regs, error_code, address, NULL);
1332 return;
1333 }
1334
1335 /*
1336 * If we're in an interrupt, have no user context or are running
1337 * in a region with pagefaults disabled then we must not take the fault
1338 */
1339 if (unlikely(faulthandler_disabled() || !mm)) {
1340 bad_area_nosemaphore(regs, error_code, address, NULL);
1341 return;
1342 }
1343
1344 /*
1345 * It's safe to allow irq's after cr2 has been saved and the
1346 * vmalloc fault has been handled.
1347 *
1348 * User-mode registers count as a user access even for any
1349 * potential system fault or CPU buglet:
1350 */
1351 if (user_mode(regs)) {
1352 local_irq_enable();
1353 error_code |= PF_USER;
1354 flags |= FAULT_FLAG_USER;
1355 } else {
1356 if (regs->flags & X86_EFLAGS_IF)
1357 local_irq_enable();
1358 }
1359
1360 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1361
1362 if (error_code & PF_WRITE)
1363 flags |= FAULT_FLAG_WRITE;
1364 if (error_code & PF_INSTR)
1365 flags |= FAULT_FLAG_INSTRUCTION;
1366
1367 /*
1368 * When running in the kernel we expect faults to occur only to
1369 * addresses in user space. All other faults represent errors in
1370 * the kernel and should generate an OOPS. Unfortunately, in the
1371 * case of an erroneous fault occurring in a code path which already
1372 * holds mmap_sem we will deadlock attempting to validate the fault
1373 * against the address space. Luckily the kernel only validly
1374 * references user space from well defined areas of code, which are
1375 * listed in the exceptions table.
1376 *
1377 * As the vast majority of faults will be valid we will only perform
1378 * the source reference check when there is a possibility of a
1379 * deadlock. Attempt to lock the address space, if we cannot we then
1380 * validate the source. If this is invalid we can skip the address
1381 * space check, thus avoiding the deadlock:
1382 */
1383 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1384 if ((error_code & PF_USER) == 0 &&
1385 !search_exception_tables(regs->ip)) {
1386 bad_area_nosemaphore(regs, error_code, address, NULL);
1387 return;
1388 }
1389 retry:
1390 down_read(&mm->mmap_sem);
1391 } else {
1392 /*
1393 * The above down_read_trylock() might have succeeded in
1394 * which case we'll have missed the might_sleep() from
1395 * down_read():
1396 */
1397 might_sleep();
1398 }
1399
1400 vma = find_vma(mm, address);
1401 if (unlikely(!vma)) {
1402 bad_area(regs, error_code, address);
1403 return;
1404 }
1405 if (likely(vma->vm_start <= address))
1406 goto good_area;
1407 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1408 bad_area(regs, error_code, address);
1409 return;
1410 }
1411 if (error_code & PF_USER) {
1412 /*
1413 * Accessing the stack below %sp is always a bug.
1414 * The large cushion allows instructions like enter
1415 * and pusha to work. ("enter $65535, $31" pushes
1416 * 32 pointers and then decrements %sp by 65535.)
1417 */
1418 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1419 bad_area(regs, error_code, address);
1420 return;
1421 }
1422 }
1423 if (unlikely(expand_stack(vma, address))) {
1424 bad_area(regs, error_code, address);
1425 return;
1426 }
1427
1428 /*
1429 * Ok, we have a good vm_area for this memory access, so
1430 * we can handle it..
1431 */
1432 good_area:
1433 if (unlikely(access_error(error_code, vma))) {
1434 bad_area_access_error(regs, error_code, address, vma);
1435 return;
1436 }
1437
1438 /*
1439 * If for any reason at all we couldn't handle the fault,
1440 * make sure we exit gracefully rather than endlessly redo
1441 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1442 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1443 */
1444 fault = handle_mm_fault(vma, address, flags);
1445 major |= fault & VM_FAULT_MAJOR;
1446
1447 /*
1448 * If we need to retry the mmap_sem has already been released,
1449 * and if there is a fatal signal pending there is no guarantee
1450 * that we made any progress. Handle this case first.
1451 */
1452 if (unlikely(fault & VM_FAULT_RETRY)) {
1453 /* Retry at most once */
1454 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1455 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1456 flags |= FAULT_FLAG_TRIED;
1457 if (!fatal_signal_pending(tsk))
1458 goto retry;
1459 }
1460
1461 /* User mode? Just return to handle the fatal exception */
1462 if (flags & FAULT_FLAG_USER)
1463 return;
1464
1465 /* Not returning to user mode? Handle exceptions or die: */
1466 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1467 return;
1468 }
1469
1470 pkey = vma_pkey(vma);
1471 up_read(&mm->mmap_sem);
1472 if (unlikely(fault & VM_FAULT_ERROR)) {
1473 mm_fault_error(regs, error_code, address, &pkey, fault);
1474 return;
1475 }
1476
1477 /*
1478 * Major/minor page fault accounting. If any of the events
1479 * returned VM_FAULT_MAJOR, we account it as a major fault.
1480 */
1481 if (major) {
1482 tsk->maj_flt++;
1483 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1484 } else {
1485 tsk->min_flt++;
1486 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1487 }
1488
1489 check_v8086_mode(regs, address, tsk);
1490 }
1491 NOKPROBE_SYMBOL(__do_page_fault);
1492
1493 static nokprobe_inline void
1494 trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1495 unsigned long error_code)
1496 {
1497 if (user_mode(regs))
1498 trace_page_fault_user(address, regs, error_code);
1499 else
1500 trace_page_fault_kernel(address, regs, error_code);
1501 }
1502
1503 /*
1504 * We must have this function blacklisted from kprobes, tagged with notrace
1505 * and call read_cr2() before calling anything else. To avoid calling any
1506 * kind of tracing machinery before we've observed the CR2 value.
1507 *
1508 * exception_{enter,exit}() contains all sorts of tracepoints.
1509 */
1510 dotraplinkage void notrace
1511 do_page_fault(struct pt_regs *regs, unsigned long error_code)
1512 {
1513 unsigned long address = read_cr2(); /* Get the faulting address */
1514 enum ctx_state prev_state;
1515
1516 prev_state = exception_enter();
1517 if (trace_pagefault_enabled())
1518 trace_page_fault_entries(address, regs, error_code);
1519
1520 __do_page_fault(regs, error_code, address);
1521 exception_exit(prev_state);
1522 }
1523 NOKPROBE_SYMBOL(do_page_fault);