]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/mm/fault.c
Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/davej/cpufreq
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / mm / fault.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
5 */
6 #include <linux/magic.h> /* STACK_END_MAGIC */
7 #include <linux/sched.h> /* test_thread_flag(), ... */
8 #include <linux/kdebug.h> /* oops_begin/end, ... */
9 #include <linux/module.h> /* search_exception_table */
10 #include <linux/bootmem.h> /* max_low_pfn */
11 #include <linux/kprobes.h> /* __kprobes, ... */
12 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
13 #include <linux/perf_counter.h> /* perf_swcounter_event */
14
15 #include <asm/traps.h> /* dotraplinkage, ... */
16 #include <asm/pgalloc.h> /* pgd_*(), ... */
17 #include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
18
19 /*
20 * Page fault error code bits:
21 *
22 * bit 0 == 0: no page found 1: protection fault
23 * bit 1 == 0: read access 1: write access
24 * bit 2 == 0: kernel-mode access 1: user-mode access
25 * bit 3 == 1: use of reserved bit detected
26 * bit 4 == 1: fault was an instruction fetch
27 */
28 enum x86_pf_error_code {
29
30 PF_PROT = 1 << 0,
31 PF_WRITE = 1 << 1,
32 PF_USER = 1 << 2,
33 PF_RSVD = 1 << 3,
34 PF_INSTR = 1 << 4,
35 };
36
37 /*
38 * Returns 0 if mmiotrace is disabled, or if the fault is not
39 * handled by mmiotrace:
40 */
41 static inline int kmmio_fault(struct pt_regs *regs, unsigned long addr)
42 {
43 if (unlikely(is_kmmio_active()))
44 if (kmmio_handler(regs, addr) == 1)
45 return -1;
46 return 0;
47 }
48
49 static inline int notify_page_fault(struct pt_regs *regs)
50 {
51 int ret = 0;
52
53 /* kprobe_running() needs smp_processor_id() */
54 if (kprobes_built_in() && !user_mode_vm(regs)) {
55 preempt_disable();
56 if (kprobe_running() && kprobe_fault_handler(regs, 14))
57 ret = 1;
58 preempt_enable();
59 }
60
61 return ret;
62 }
63
64 /*
65 * Prefetch quirks:
66 *
67 * 32-bit mode:
68 *
69 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
70 * Check that here and ignore it.
71 *
72 * 64-bit mode:
73 *
74 * Sometimes the CPU reports invalid exceptions on prefetch.
75 * Check that here and ignore it.
76 *
77 * Opcode checker based on code by Richard Brunner.
78 */
79 static inline int
80 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
81 unsigned char opcode, int *prefetch)
82 {
83 unsigned char instr_hi = opcode & 0xf0;
84 unsigned char instr_lo = opcode & 0x0f;
85
86 switch (instr_hi) {
87 case 0x20:
88 case 0x30:
89 /*
90 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
91 * In X86_64 long mode, the CPU will signal invalid
92 * opcode if some of these prefixes are present so
93 * X86_64 will never get here anyway
94 */
95 return ((instr_lo & 7) == 0x6);
96 #ifdef CONFIG_X86_64
97 case 0x40:
98 /*
99 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
100 * Need to figure out under what instruction mode the
101 * instruction was issued. Could check the LDT for lm,
102 * but for now it's good enough to assume that long
103 * mode only uses well known segments or kernel.
104 */
105 return (!user_mode(regs)) || (regs->cs == __USER_CS);
106 #endif
107 case 0x60:
108 /* 0x64 thru 0x67 are valid prefixes in all modes. */
109 return (instr_lo & 0xC) == 0x4;
110 case 0xF0:
111 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
112 return !instr_lo || (instr_lo>>1) == 1;
113 case 0x00:
114 /* Prefetch instruction is 0x0F0D or 0x0F18 */
115 if (probe_kernel_address(instr, opcode))
116 return 0;
117
118 *prefetch = (instr_lo == 0xF) &&
119 (opcode == 0x0D || opcode == 0x18);
120 return 0;
121 default:
122 return 0;
123 }
124 }
125
126 static int
127 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
128 {
129 unsigned char *max_instr;
130 unsigned char *instr;
131 int prefetch = 0;
132
133 /*
134 * If it was a exec (instruction fetch) fault on NX page, then
135 * do not ignore the fault:
136 */
137 if (error_code & PF_INSTR)
138 return 0;
139
140 instr = (void *)convert_ip_to_linear(current, regs);
141 max_instr = instr + 15;
142
143 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
144 return 0;
145
146 while (instr < max_instr) {
147 unsigned char opcode;
148
149 if (probe_kernel_address(instr, opcode))
150 break;
151
152 instr++;
153
154 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
155 break;
156 }
157 return prefetch;
158 }
159
160 static void
161 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
162 struct task_struct *tsk)
163 {
164 siginfo_t info;
165
166 info.si_signo = si_signo;
167 info.si_errno = 0;
168 info.si_code = si_code;
169 info.si_addr = (void __user *)address;
170
171 force_sig_info(si_signo, &info, tsk);
172 }
173
174 DEFINE_SPINLOCK(pgd_lock);
175 LIST_HEAD(pgd_list);
176
177 #ifdef CONFIG_X86_32
178 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
179 {
180 unsigned index = pgd_index(address);
181 pgd_t *pgd_k;
182 pud_t *pud, *pud_k;
183 pmd_t *pmd, *pmd_k;
184
185 pgd += index;
186 pgd_k = init_mm.pgd + index;
187
188 if (!pgd_present(*pgd_k))
189 return NULL;
190
191 /*
192 * set_pgd(pgd, *pgd_k); here would be useless on PAE
193 * and redundant with the set_pmd() on non-PAE. As would
194 * set_pud.
195 */
196 pud = pud_offset(pgd, address);
197 pud_k = pud_offset(pgd_k, address);
198 if (!pud_present(*pud_k))
199 return NULL;
200
201 pmd = pmd_offset(pud, address);
202 pmd_k = pmd_offset(pud_k, address);
203 if (!pmd_present(*pmd_k))
204 return NULL;
205
206 if (!pmd_present(*pmd))
207 set_pmd(pmd, *pmd_k);
208 else
209 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
210
211 return pmd_k;
212 }
213
214 void vmalloc_sync_all(void)
215 {
216 unsigned long address;
217
218 if (SHARED_KERNEL_PMD)
219 return;
220
221 for (address = VMALLOC_START & PMD_MASK;
222 address >= TASK_SIZE && address < FIXADDR_TOP;
223 address += PMD_SIZE) {
224
225 unsigned long flags;
226 struct page *page;
227
228 spin_lock_irqsave(&pgd_lock, flags);
229 list_for_each_entry(page, &pgd_list, lru) {
230 if (!vmalloc_sync_one(page_address(page), address))
231 break;
232 }
233 spin_unlock_irqrestore(&pgd_lock, flags);
234 }
235 }
236
237 /*
238 * 32-bit:
239 *
240 * Handle a fault on the vmalloc or module mapping area
241 */
242 static noinline int vmalloc_fault(unsigned long address)
243 {
244 unsigned long pgd_paddr;
245 pmd_t *pmd_k;
246 pte_t *pte_k;
247
248 /* Make sure we are in vmalloc area: */
249 if (!(address >= VMALLOC_START && address < VMALLOC_END))
250 return -1;
251
252 /*
253 * Synchronize this task's top level page-table
254 * with the 'reference' page table.
255 *
256 * Do _not_ use "current" here. We might be inside
257 * an interrupt in the middle of a task switch..
258 */
259 pgd_paddr = read_cr3();
260 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
261 if (!pmd_k)
262 return -1;
263
264 pte_k = pte_offset_kernel(pmd_k, address);
265 if (!pte_present(*pte_k))
266 return -1;
267
268 return 0;
269 }
270
271 /*
272 * Did it hit the DOS screen memory VA from vm86 mode?
273 */
274 static inline void
275 check_v8086_mode(struct pt_regs *regs, unsigned long address,
276 struct task_struct *tsk)
277 {
278 unsigned long bit;
279
280 if (!v8086_mode(regs))
281 return;
282
283 bit = (address - 0xA0000) >> PAGE_SHIFT;
284 if (bit < 32)
285 tsk->thread.screen_bitmap |= 1 << bit;
286 }
287
288 static void dump_pagetable(unsigned long address)
289 {
290 __typeof__(pte_val(__pte(0))) page;
291
292 page = read_cr3();
293 page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT];
294
295 #ifdef CONFIG_X86_PAE
296 printk("*pdpt = %016Lx ", page);
297 if ((page >> PAGE_SHIFT) < max_low_pfn
298 && page & _PAGE_PRESENT) {
299 page &= PAGE_MASK;
300 page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT)
301 & (PTRS_PER_PMD - 1)];
302 printk(KERN_CONT "*pde = %016Lx ", page);
303 page &= ~_PAGE_NX;
304 }
305 #else
306 printk("*pde = %08lx ", page);
307 #endif
308
309 /*
310 * We must not directly access the pte in the highpte
311 * case if the page table is located in highmem.
312 * And let's rather not kmap-atomic the pte, just in case
313 * it's allocated already:
314 */
315 if ((page >> PAGE_SHIFT) < max_low_pfn
316 && (page & _PAGE_PRESENT)
317 && !(page & _PAGE_PSE)) {
318
319 page &= PAGE_MASK;
320 page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT)
321 & (PTRS_PER_PTE - 1)];
322 printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page);
323 }
324
325 printk("\n");
326 }
327
328 #else /* CONFIG_X86_64: */
329
330 void vmalloc_sync_all(void)
331 {
332 unsigned long address;
333
334 for (address = VMALLOC_START & PGDIR_MASK; address <= VMALLOC_END;
335 address += PGDIR_SIZE) {
336
337 const pgd_t *pgd_ref = pgd_offset_k(address);
338 unsigned long flags;
339 struct page *page;
340
341 if (pgd_none(*pgd_ref))
342 continue;
343
344 spin_lock_irqsave(&pgd_lock, flags);
345 list_for_each_entry(page, &pgd_list, lru) {
346 pgd_t *pgd;
347 pgd = (pgd_t *)page_address(page) + pgd_index(address);
348 if (pgd_none(*pgd))
349 set_pgd(pgd, *pgd_ref);
350 else
351 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
352 }
353 spin_unlock_irqrestore(&pgd_lock, flags);
354 }
355 }
356
357 /*
358 * 64-bit:
359 *
360 * Handle a fault on the vmalloc area
361 *
362 * This assumes no large pages in there.
363 */
364 static noinline int vmalloc_fault(unsigned long address)
365 {
366 pgd_t *pgd, *pgd_ref;
367 pud_t *pud, *pud_ref;
368 pmd_t *pmd, *pmd_ref;
369 pte_t *pte, *pte_ref;
370
371 /* Make sure we are in vmalloc area: */
372 if (!(address >= VMALLOC_START && address < VMALLOC_END))
373 return -1;
374
375 /*
376 * Copy kernel mappings over when needed. This can also
377 * happen within a race in page table update. In the later
378 * case just flush:
379 */
380 pgd = pgd_offset(current->active_mm, address);
381 pgd_ref = pgd_offset_k(address);
382 if (pgd_none(*pgd_ref))
383 return -1;
384
385 if (pgd_none(*pgd))
386 set_pgd(pgd, *pgd_ref);
387 else
388 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
389
390 /*
391 * Below here mismatches are bugs because these lower tables
392 * are shared:
393 */
394
395 pud = pud_offset(pgd, address);
396 pud_ref = pud_offset(pgd_ref, address);
397 if (pud_none(*pud_ref))
398 return -1;
399
400 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
401 BUG();
402
403 pmd = pmd_offset(pud, address);
404 pmd_ref = pmd_offset(pud_ref, address);
405 if (pmd_none(*pmd_ref))
406 return -1;
407
408 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
409 BUG();
410
411 pte_ref = pte_offset_kernel(pmd_ref, address);
412 if (!pte_present(*pte_ref))
413 return -1;
414
415 pte = pte_offset_kernel(pmd, address);
416
417 /*
418 * Don't use pte_page here, because the mappings can point
419 * outside mem_map, and the NUMA hash lookup cannot handle
420 * that:
421 */
422 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
423 BUG();
424
425 return 0;
426 }
427
428 static const char errata93_warning[] =
429 KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
430 KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
431 KERN_ERR "******* Please consider a BIOS update.\n"
432 KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
433
434 /*
435 * No vm86 mode in 64-bit mode:
436 */
437 static inline void
438 check_v8086_mode(struct pt_regs *regs, unsigned long address,
439 struct task_struct *tsk)
440 {
441 }
442
443 static int bad_address(void *p)
444 {
445 unsigned long dummy;
446
447 return probe_kernel_address((unsigned long *)p, dummy);
448 }
449
450 static void dump_pagetable(unsigned long address)
451 {
452 pgd_t *pgd;
453 pud_t *pud;
454 pmd_t *pmd;
455 pte_t *pte;
456
457 pgd = (pgd_t *)read_cr3();
458
459 pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);
460
461 pgd += pgd_index(address);
462 if (bad_address(pgd))
463 goto bad;
464
465 printk("PGD %lx ", pgd_val(*pgd));
466
467 if (!pgd_present(*pgd))
468 goto out;
469
470 pud = pud_offset(pgd, address);
471 if (bad_address(pud))
472 goto bad;
473
474 printk("PUD %lx ", pud_val(*pud));
475 if (!pud_present(*pud) || pud_large(*pud))
476 goto out;
477
478 pmd = pmd_offset(pud, address);
479 if (bad_address(pmd))
480 goto bad;
481
482 printk("PMD %lx ", pmd_val(*pmd));
483 if (!pmd_present(*pmd) || pmd_large(*pmd))
484 goto out;
485
486 pte = pte_offset_kernel(pmd, address);
487 if (bad_address(pte))
488 goto bad;
489
490 printk("PTE %lx", pte_val(*pte));
491 out:
492 printk("\n");
493 return;
494 bad:
495 printk("BAD\n");
496 }
497
498 #endif /* CONFIG_X86_64 */
499
500 /*
501 * Workaround for K8 erratum #93 & buggy BIOS.
502 *
503 * BIOS SMM functions are required to use a specific workaround
504 * to avoid corruption of the 64bit RIP register on C stepping K8.
505 *
506 * A lot of BIOS that didn't get tested properly miss this.
507 *
508 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
509 * Try to work around it here.
510 *
511 * Note we only handle faults in kernel here.
512 * Does nothing on 32-bit.
513 */
514 static int is_errata93(struct pt_regs *regs, unsigned long address)
515 {
516 #ifdef CONFIG_X86_64
517 if (address != regs->ip)
518 return 0;
519
520 if ((address >> 32) != 0)
521 return 0;
522
523 address |= 0xffffffffUL << 32;
524 if ((address >= (u64)_stext && address <= (u64)_etext) ||
525 (address >= MODULES_VADDR && address <= MODULES_END)) {
526 printk_once(errata93_warning);
527 regs->ip = address;
528 return 1;
529 }
530 #endif
531 return 0;
532 }
533
534 /*
535 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
536 * to illegal addresses >4GB.
537 *
538 * We catch this in the page fault handler because these addresses
539 * are not reachable. Just detect this case and return. Any code
540 * segment in LDT is compatibility mode.
541 */
542 static int is_errata100(struct pt_regs *regs, unsigned long address)
543 {
544 #ifdef CONFIG_X86_64
545 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
546 return 1;
547 #endif
548 return 0;
549 }
550
551 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
552 {
553 #ifdef CONFIG_X86_F00F_BUG
554 unsigned long nr;
555
556 /*
557 * Pentium F0 0F C7 C8 bug workaround:
558 */
559 if (boot_cpu_data.f00f_bug) {
560 nr = (address - idt_descr.address) >> 3;
561
562 if (nr == 6) {
563 do_invalid_op(regs, 0);
564 return 1;
565 }
566 }
567 #endif
568 return 0;
569 }
570
571 static const char nx_warning[] = KERN_CRIT
572 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
573
574 static void
575 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
576 unsigned long address)
577 {
578 if (!oops_may_print())
579 return;
580
581 if (error_code & PF_INSTR) {
582 unsigned int level;
583
584 pte_t *pte = lookup_address(address, &level);
585
586 if (pte && pte_present(*pte) && !pte_exec(*pte))
587 printk(nx_warning, current_uid());
588 }
589
590 printk(KERN_ALERT "BUG: unable to handle kernel ");
591 if (address < PAGE_SIZE)
592 printk(KERN_CONT "NULL pointer dereference");
593 else
594 printk(KERN_CONT "paging request");
595
596 printk(KERN_CONT " at %p\n", (void *) address);
597 printk(KERN_ALERT "IP:");
598 printk_address(regs->ip, 1);
599
600 dump_pagetable(address);
601 }
602
603 static noinline void
604 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
605 unsigned long address)
606 {
607 struct task_struct *tsk;
608 unsigned long flags;
609 int sig;
610
611 flags = oops_begin();
612 tsk = current;
613 sig = SIGKILL;
614
615 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
616 tsk->comm, address);
617 dump_pagetable(address);
618
619 tsk->thread.cr2 = address;
620 tsk->thread.trap_no = 14;
621 tsk->thread.error_code = error_code;
622
623 if (__die("Bad pagetable", regs, error_code))
624 sig = 0;
625
626 oops_end(flags, regs, sig);
627 }
628
629 static noinline void
630 no_context(struct pt_regs *regs, unsigned long error_code,
631 unsigned long address)
632 {
633 struct task_struct *tsk = current;
634 unsigned long *stackend;
635 unsigned long flags;
636 int sig;
637
638 /* Are we prepared to handle this kernel fault? */
639 if (fixup_exception(regs))
640 return;
641
642 /*
643 * 32-bit:
644 *
645 * Valid to do another page fault here, because if this fault
646 * had been triggered by is_prefetch fixup_exception would have
647 * handled it.
648 *
649 * 64-bit:
650 *
651 * Hall of shame of CPU/BIOS bugs.
652 */
653 if (is_prefetch(regs, error_code, address))
654 return;
655
656 if (is_errata93(regs, address))
657 return;
658
659 /*
660 * Oops. The kernel tried to access some bad page. We'll have to
661 * terminate things with extreme prejudice:
662 */
663 flags = oops_begin();
664
665 show_fault_oops(regs, error_code, address);
666
667 stackend = end_of_stack(tsk);
668 if (*stackend != STACK_END_MAGIC)
669 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
670
671 tsk->thread.cr2 = address;
672 tsk->thread.trap_no = 14;
673 tsk->thread.error_code = error_code;
674
675 sig = SIGKILL;
676 if (__die("Oops", regs, error_code))
677 sig = 0;
678
679 /* Executive summary in case the body of the oops scrolled away */
680 printk(KERN_EMERG "CR2: %016lx\n", address);
681
682 oops_end(flags, regs, sig);
683 }
684
685 /*
686 * Print out info about fatal segfaults, if the show_unhandled_signals
687 * sysctl is set:
688 */
689 static inline void
690 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
691 unsigned long address, struct task_struct *tsk)
692 {
693 if (!unhandled_signal(tsk, SIGSEGV))
694 return;
695
696 if (!printk_ratelimit())
697 return;
698
699 printk(KERN_CONT "%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
700 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
701 tsk->comm, task_pid_nr(tsk), address,
702 (void *)regs->ip, (void *)regs->sp, error_code);
703
704 print_vma_addr(KERN_CONT " in ", regs->ip);
705
706 printk(KERN_CONT "\n");
707 }
708
709 static void
710 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
711 unsigned long address, int si_code)
712 {
713 struct task_struct *tsk = current;
714
715 /* User mode accesses just cause a SIGSEGV */
716 if (error_code & PF_USER) {
717 /*
718 * It's possible to have interrupts off here:
719 */
720 local_irq_enable();
721
722 /*
723 * Valid to do another page fault here because this one came
724 * from user space:
725 */
726 if (is_prefetch(regs, error_code, address))
727 return;
728
729 if (is_errata100(regs, address))
730 return;
731
732 if (unlikely(show_unhandled_signals))
733 show_signal_msg(regs, error_code, address, tsk);
734
735 /* Kernel addresses are always protection faults: */
736 tsk->thread.cr2 = address;
737 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
738 tsk->thread.trap_no = 14;
739
740 force_sig_info_fault(SIGSEGV, si_code, address, tsk);
741
742 return;
743 }
744
745 if (is_f00f_bug(regs, address))
746 return;
747
748 no_context(regs, error_code, address);
749 }
750
751 static noinline void
752 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
753 unsigned long address)
754 {
755 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
756 }
757
758 static void
759 __bad_area(struct pt_regs *regs, unsigned long error_code,
760 unsigned long address, int si_code)
761 {
762 struct mm_struct *mm = current->mm;
763
764 /*
765 * Something tried to access memory that isn't in our memory map..
766 * Fix it, but check if it's kernel or user first..
767 */
768 up_read(&mm->mmap_sem);
769
770 __bad_area_nosemaphore(regs, error_code, address, si_code);
771 }
772
773 static noinline void
774 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
775 {
776 __bad_area(regs, error_code, address, SEGV_MAPERR);
777 }
778
779 static noinline void
780 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
781 unsigned long address)
782 {
783 __bad_area(regs, error_code, address, SEGV_ACCERR);
784 }
785
786 /* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
787 static void
788 out_of_memory(struct pt_regs *regs, unsigned long error_code,
789 unsigned long address)
790 {
791 /*
792 * We ran out of memory, call the OOM killer, and return the userspace
793 * (which will retry the fault, or kill us if we got oom-killed):
794 */
795 up_read(&current->mm->mmap_sem);
796
797 pagefault_out_of_memory();
798 }
799
800 static void
801 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address)
802 {
803 struct task_struct *tsk = current;
804 struct mm_struct *mm = tsk->mm;
805
806 up_read(&mm->mmap_sem);
807
808 /* Kernel mode? Handle exceptions or die: */
809 if (!(error_code & PF_USER))
810 no_context(regs, error_code, address);
811
812 /* User-space => ok to do another page fault: */
813 if (is_prefetch(regs, error_code, address))
814 return;
815
816 tsk->thread.cr2 = address;
817 tsk->thread.error_code = error_code;
818 tsk->thread.trap_no = 14;
819
820 force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
821 }
822
823 static noinline void
824 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
825 unsigned long address, unsigned int fault)
826 {
827 if (fault & VM_FAULT_OOM) {
828 out_of_memory(regs, error_code, address);
829 } else {
830 if (fault & VM_FAULT_SIGBUS)
831 do_sigbus(regs, error_code, address);
832 else
833 BUG();
834 }
835 }
836
837 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
838 {
839 if ((error_code & PF_WRITE) && !pte_write(*pte))
840 return 0;
841
842 if ((error_code & PF_INSTR) && !pte_exec(*pte))
843 return 0;
844
845 return 1;
846 }
847
848 /*
849 * Handle a spurious fault caused by a stale TLB entry.
850 *
851 * This allows us to lazily refresh the TLB when increasing the
852 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
853 * eagerly is very expensive since that implies doing a full
854 * cross-processor TLB flush, even if no stale TLB entries exist
855 * on other processors.
856 *
857 * There are no security implications to leaving a stale TLB when
858 * increasing the permissions on a page.
859 */
860 static noinline int
861 spurious_fault(unsigned long error_code, unsigned long address)
862 {
863 pgd_t *pgd;
864 pud_t *pud;
865 pmd_t *pmd;
866 pte_t *pte;
867 int ret;
868
869 /* Reserved-bit violation or user access to kernel space? */
870 if (error_code & (PF_USER | PF_RSVD))
871 return 0;
872
873 pgd = init_mm.pgd + pgd_index(address);
874 if (!pgd_present(*pgd))
875 return 0;
876
877 pud = pud_offset(pgd, address);
878 if (!pud_present(*pud))
879 return 0;
880
881 if (pud_large(*pud))
882 return spurious_fault_check(error_code, (pte_t *) pud);
883
884 pmd = pmd_offset(pud, address);
885 if (!pmd_present(*pmd))
886 return 0;
887
888 if (pmd_large(*pmd))
889 return spurious_fault_check(error_code, (pte_t *) pmd);
890
891 pte = pte_offset_kernel(pmd, address);
892 if (!pte_present(*pte))
893 return 0;
894
895 ret = spurious_fault_check(error_code, pte);
896 if (!ret)
897 return 0;
898
899 /*
900 * Make sure we have permissions in PMD.
901 * If not, then there's a bug in the page tables:
902 */
903 ret = spurious_fault_check(error_code, (pte_t *) pmd);
904 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
905
906 return ret;
907 }
908
909 int show_unhandled_signals = 1;
910
911 static inline int
912 access_error(unsigned long error_code, int write, struct vm_area_struct *vma)
913 {
914 if (write) {
915 /* write, present and write, not present: */
916 if (unlikely(!(vma->vm_flags & VM_WRITE)))
917 return 1;
918 return 0;
919 }
920
921 /* read, present: */
922 if (unlikely(error_code & PF_PROT))
923 return 1;
924
925 /* read, not present: */
926 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
927 return 1;
928
929 return 0;
930 }
931
932 static int fault_in_kernel_space(unsigned long address)
933 {
934 return address >= TASK_SIZE_MAX;
935 }
936
937 /*
938 * This routine handles page faults. It determines the address,
939 * and the problem, and then passes it off to one of the appropriate
940 * routines.
941 */
942 dotraplinkage void __kprobes
943 do_page_fault(struct pt_regs *regs, unsigned long error_code)
944 {
945 struct vm_area_struct *vma;
946 struct task_struct *tsk;
947 unsigned long address;
948 struct mm_struct *mm;
949 int write;
950 int fault;
951
952 tsk = current;
953 mm = tsk->mm;
954
955 prefetchw(&mm->mmap_sem);
956
957 /* Get the faulting address: */
958 address = read_cr2();
959
960 /*
961 * Detect and handle instructions that would cause a page fault for
962 * both a tracked kernel page and a userspace page.
963 */
964 if (kmemcheck_active(regs))
965 kmemcheck_hide(regs);
966
967 if (unlikely(kmmio_fault(regs, address)))
968 return;
969
970 /*
971 * We fault-in kernel-space virtual memory on-demand. The
972 * 'reference' page table is init_mm.pgd.
973 *
974 * NOTE! We MUST NOT take any locks for this case. We may
975 * be in an interrupt or a critical region, and should
976 * only copy the information from the master page table,
977 * nothing more.
978 *
979 * This verifies that the fault happens in kernel space
980 * (error_code & 4) == 0, and that the fault was not a
981 * protection error (error_code & 9) == 0.
982 */
983 if (unlikely(fault_in_kernel_space(address))) {
984 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
985 if (vmalloc_fault(address) >= 0)
986 return;
987
988 if (kmemcheck_fault(regs, address, error_code))
989 return;
990 }
991
992 /* Can handle a stale RO->RW TLB: */
993 if (spurious_fault(error_code, address))
994 return;
995
996 /* kprobes don't want to hook the spurious faults: */
997 if (notify_page_fault(regs))
998 return;
999 /*
1000 * Don't take the mm semaphore here. If we fixup a prefetch
1001 * fault we could otherwise deadlock:
1002 */
1003 bad_area_nosemaphore(regs, error_code, address);
1004
1005 return;
1006 }
1007
1008 /* kprobes don't want to hook the spurious faults: */
1009 if (unlikely(notify_page_fault(regs)))
1010 return;
1011 /*
1012 * It's safe to allow irq's after cr2 has been saved and the
1013 * vmalloc fault has been handled.
1014 *
1015 * User-mode registers count as a user access even for any
1016 * potential system fault or CPU buglet:
1017 */
1018 if (user_mode_vm(regs)) {
1019 local_irq_enable();
1020 error_code |= PF_USER;
1021 } else {
1022 if (regs->flags & X86_EFLAGS_IF)
1023 local_irq_enable();
1024 }
1025
1026 if (unlikely(error_code & PF_RSVD))
1027 pgtable_bad(regs, error_code, address);
1028
1029 perf_swcounter_event(PERF_COUNT_SW_PAGE_FAULTS, 1, 0, regs, address);
1030
1031 /*
1032 * If we're in an interrupt, have no user context or are running
1033 * in an atomic region then we must not take the fault:
1034 */
1035 if (unlikely(in_atomic() || !mm)) {
1036 bad_area_nosemaphore(regs, error_code, address);
1037 return;
1038 }
1039
1040 /*
1041 * When running in the kernel we expect faults to occur only to
1042 * addresses in user space. All other faults represent errors in
1043 * the kernel and should generate an OOPS. Unfortunately, in the
1044 * case of an erroneous fault occurring in a code path which already
1045 * holds mmap_sem we will deadlock attempting to validate the fault
1046 * against the address space. Luckily the kernel only validly
1047 * references user space from well defined areas of code, which are
1048 * listed in the exceptions table.
1049 *
1050 * As the vast majority of faults will be valid we will only perform
1051 * the source reference check when there is a possibility of a
1052 * deadlock. Attempt to lock the address space, if we cannot we then
1053 * validate the source. If this is invalid we can skip the address
1054 * space check, thus avoiding the deadlock:
1055 */
1056 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1057 if ((error_code & PF_USER) == 0 &&
1058 !search_exception_tables(regs->ip)) {
1059 bad_area_nosemaphore(regs, error_code, address);
1060 return;
1061 }
1062 down_read(&mm->mmap_sem);
1063 } else {
1064 /*
1065 * The above down_read_trylock() might have succeeded in
1066 * which case we'll have missed the might_sleep() from
1067 * down_read():
1068 */
1069 might_sleep();
1070 }
1071
1072 vma = find_vma(mm, address);
1073 if (unlikely(!vma)) {
1074 bad_area(regs, error_code, address);
1075 return;
1076 }
1077 if (likely(vma->vm_start <= address))
1078 goto good_area;
1079 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1080 bad_area(regs, error_code, address);
1081 return;
1082 }
1083 if (error_code & PF_USER) {
1084 /*
1085 * Accessing the stack below %sp is always a bug.
1086 * The large cushion allows instructions like enter
1087 * and pusha to work. ("enter $65535, $31" pushes
1088 * 32 pointers and then decrements %sp by 65535.)
1089 */
1090 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1091 bad_area(regs, error_code, address);
1092 return;
1093 }
1094 }
1095 if (unlikely(expand_stack(vma, address))) {
1096 bad_area(regs, error_code, address);
1097 return;
1098 }
1099
1100 /*
1101 * Ok, we have a good vm_area for this memory access, so
1102 * we can handle it..
1103 */
1104 good_area:
1105 write = error_code & PF_WRITE;
1106
1107 if (unlikely(access_error(error_code, write, vma))) {
1108 bad_area_access_error(regs, error_code, address);
1109 return;
1110 }
1111
1112 /*
1113 * If for any reason at all we couldn't handle the fault,
1114 * make sure we exit gracefully rather than endlessly redo
1115 * the fault:
1116 */
1117 fault = handle_mm_fault(mm, vma, address, write);
1118
1119 if (unlikely(fault & VM_FAULT_ERROR)) {
1120 mm_fault_error(regs, error_code, address, fault);
1121 return;
1122 }
1123
1124 if (fault & VM_FAULT_MAJOR) {
1125 tsk->maj_flt++;
1126 perf_swcounter_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 0,
1127 regs, address);
1128 } else {
1129 tsk->min_flt++;
1130 perf_swcounter_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 0,
1131 regs, address);
1132 }
1133
1134 check_v8086_mode(regs, address, tsk);
1135
1136 up_read(&mm->mmap_sem);
1137 }