]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/mm/init.c
x86/init: fix build with CONFIG_SWAP=n
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / mm / init.c
1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/bootmem.h> /* for max_low_pfn */
7 #include <linux/swapfile.h>
8 #include <linux/swapops.h>
9
10 #include <asm/set_memory.h>
11 #include <asm/e820/api.h>
12 #include <asm/init.h>
13 #include <asm/page.h>
14 #include <asm/page_types.h>
15 #include <asm/sections.h>
16 #include <asm/setup.h>
17 #include <asm/tlbflush.h>
18 #include <asm/tlb.h>
19 #include <asm/proto.h>
20 #include <asm/dma.h> /* for MAX_DMA_PFN */
21 #include <asm/microcode.h>
22 #include <asm/kaslr.h>
23 #include <asm/hypervisor.h>
24 #include <asm/cpufeature.h>
25 #include <asm/pti.h>
26
27 /*
28 * We need to define the tracepoints somewhere, and tlb.c
29 * is only compied when SMP=y.
30 */
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/tlb.h>
33
34 #include "mm_internal.h"
35
36 /*
37 * Tables translating between page_cache_type_t and pte encoding.
38 *
39 * The default values are defined statically as minimal supported mode;
40 * WC and WT fall back to UC-. pat_init() updates these values to support
41 * more cache modes, WC and WT, when it is safe to do so. See pat_init()
42 * for the details. Note, __early_ioremap() used during early boot-time
43 * takes pgprot_t (pte encoding) and does not use these tables.
44 *
45 * Index into __cachemode2pte_tbl[] is the cachemode.
46 *
47 * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
48 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
49 */
50 uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
51 [_PAGE_CACHE_MODE_WB ] = 0 | 0 ,
52 [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD,
53 [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD,
54 [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD,
55 [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD,
56 [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD,
57 };
58 EXPORT_SYMBOL(__cachemode2pte_tbl);
59
60 uint8_t __pte2cachemode_tbl[8] = {
61 [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB,
62 [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
63 [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
64 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC,
65 [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
66 [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
67 [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
68 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
69 };
70 EXPORT_SYMBOL(__pte2cachemode_tbl);
71
72 static unsigned long __initdata pgt_buf_start;
73 static unsigned long __initdata pgt_buf_end;
74 static unsigned long __initdata pgt_buf_top;
75
76 static unsigned long min_pfn_mapped;
77
78 static bool __initdata can_use_brk_pgt = true;
79
80 /*
81 * Pages returned are already directly mapped.
82 *
83 * Changing that is likely to break Xen, see commit:
84 *
85 * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
86 *
87 * for detailed information.
88 */
89 __ref void *alloc_low_pages(unsigned int num)
90 {
91 unsigned long pfn;
92 int i;
93
94 if (after_bootmem) {
95 unsigned int order;
96
97 order = get_order((unsigned long)num << PAGE_SHIFT);
98 return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
99 }
100
101 if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
102 unsigned long ret;
103 if (min_pfn_mapped >= max_pfn_mapped)
104 panic("alloc_low_pages: ran out of memory");
105 ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
106 max_pfn_mapped << PAGE_SHIFT,
107 PAGE_SIZE * num , PAGE_SIZE);
108 if (!ret)
109 panic("alloc_low_pages: can not alloc memory");
110 memblock_reserve(ret, PAGE_SIZE * num);
111 pfn = ret >> PAGE_SHIFT;
112 } else {
113 pfn = pgt_buf_end;
114 pgt_buf_end += num;
115 printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
116 pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
117 }
118
119 for (i = 0; i < num; i++) {
120 void *adr;
121
122 adr = __va((pfn + i) << PAGE_SHIFT);
123 clear_page(adr);
124 }
125
126 return __va(pfn << PAGE_SHIFT);
127 }
128
129 /*
130 * By default need 3 4k for initial PMD_SIZE, 3 4k for 0-ISA_END_ADDRESS.
131 * With KASLR memory randomization, depending on the machine e820 memory
132 * and the PUD alignment. We may need twice more pages when KASLR memory
133 * randomization is enabled.
134 */
135 #ifndef CONFIG_RANDOMIZE_MEMORY
136 #define INIT_PGD_PAGE_COUNT 6
137 #else
138 #define INIT_PGD_PAGE_COUNT 12
139 #endif
140 #define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
141 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
142 void __init early_alloc_pgt_buf(void)
143 {
144 unsigned long tables = INIT_PGT_BUF_SIZE;
145 phys_addr_t base;
146
147 base = __pa(extend_brk(tables, PAGE_SIZE));
148
149 pgt_buf_start = base >> PAGE_SHIFT;
150 pgt_buf_end = pgt_buf_start;
151 pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
152 }
153
154 int after_bootmem;
155
156 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
157
158 struct map_range {
159 unsigned long start;
160 unsigned long end;
161 unsigned page_size_mask;
162 };
163
164 static int page_size_mask;
165
166 static void __init probe_page_size_mask(void)
167 {
168 /*
169 * For pagealloc debugging, identity mapping will use small pages.
170 * This will simplify cpa(), which otherwise needs to support splitting
171 * large pages into small in interrupt context, etc.
172 */
173 if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
174 page_size_mask |= 1 << PG_LEVEL_2M;
175 else
176 direct_gbpages = 0;
177
178 /* Enable PSE if available */
179 if (boot_cpu_has(X86_FEATURE_PSE))
180 cr4_set_bits_and_update_boot(X86_CR4_PSE);
181
182 /* Enable PGE if available */
183 __supported_pte_mask &= ~_PAGE_GLOBAL;
184 if (boot_cpu_has(X86_FEATURE_PGE)) {
185 cr4_set_bits_and_update_boot(X86_CR4_PGE);
186 __supported_pte_mask |= _PAGE_GLOBAL;
187 }
188
189 /* By the default is everything supported: */
190 __default_kernel_pte_mask = __supported_pte_mask;
191 /* Except when with PTI where the kernel is mostly non-Global: */
192 if (cpu_feature_enabled(X86_FEATURE_PTI))
193 __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
194
195 /* Enable 1 GB linear kernel mappings if available: */
196 if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
197 printk(KERN_INFO "Using GB pages for direct mapping\n");
198 page_size_mask |= 1 << PG_LEVEL_1G;
199 } else {
200 direct_gbpages = 0;
201 }
202 }
203
204 static void setup_pcid(void)
205 {
206 if (!IS_ENABLED(CONFIG_X86_64))
207 return;
208
209 if (!boot_cpu_has(X86_FEATURE_PCID))
210 return;
211
212 if (boot_cpu_has(X86_FEATURE_PGE)) {
213 /*
214 * This can't be cr4_set_bits_and_update_boot() -- the
215 * trampoline code can't handle CR4.PCIDE and it wouldn't
216 * do any good anyway. Despite the name,
217 * cr4_set_bits_and_update_boot() doesn't actually cause
218 * the bits in question to remain set all the way through
219 * the secondary boot asm.
220 *
221 * Instead, we brute-force it and set CR4.PCIDE manually in
222 * start_secondary().
223 */
224 cr4_set_bits(X86_CR4_PCIDE);
225
226 /*
227 * INVPCID's single-context modes (2/3) only work if we set
228 * X86_CR4_PCIDE, *and* we INVPCID support. It's unusable
229 * on systems that have X86_CR4_PCIDE clear, or that have
230 * no INVPCID support at all.
231 */
232 if (boot_cpu_has(X86_FEATURE_INVPCID))
233 setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
234 } else {
235 /*
236 * flush_tlb_all(), as currently implemented, won't work if
237 * PCID is on but PGE is not. Since that combination
238 * doesn't exist on real hardware, there's no reason to try
239 * to fully support it, but it's polite to avoid corrupting
240 * data if we're on an improperly configured VM.
241 */
242 setup_clear_cpu_cap(X86_FEATURE_PCID);
243 }
244 }
245
246 #ifdef CONFIG_X86_32
247 #define NR_RANGE_MR 3
248 #else /* CONFIG_X86_64 */
249 #define NR_RANGE_MR 5
250 #endif
251
252 static int __meminit save_mr(struct map_range *mr, int nr_range,
253 unsigned long start_pfn, unsigned long end_pfn,
254 unsigned long page_size_mask)
255 {
256 if (start_pfn < end_pfn) {
257 if (nr_range >= NR_RANGE_MR)
258 panic("run out of range for init_memory_mapping\n");
259 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
260 mr[nr_range].end = end_pfn<<PAGE_SHIFT;
261 mr[nr_range].page_size_mask = page_size_mask;
262 nr_range++;
263 }
264
265 return nr_range;
266 }
267
268 /*
269 * adjust the page_size_mask for small range to go with
270 * big page size instead small one if nearby are ram too.
271 */
272 static void __ref adjust_range_page_size_mask(struct map_range *mr,
273 int nr_range)
274 {
275 int i;
276
277 for (i = 0; i < nr_range; i++) {
278 if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
279 !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
280 unsigned long start = round_down(mr[i].start, PMD_SIZE);
281 unsigned long end = round_up(mr[i].end, PMD_SIZE);
282
283 #ifdef CONFIG_X86_32
284 if ((end >> PAGE_SHIFT) > max_low_pfn)
285 continue;
286 #endif
287
288 if (memblock_is_region_memory(start, end - start))
289 mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
290 }
291 if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
292 !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
293 unsigned long start = round_down(mr[i].start, PUD_SIZE);
294 unsigned long end = round_up(mr[i].end, PUD_SIZE);
295
296 if (memblock_is_region_memory(start, end - start))
297 mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
298 }
299 }
300 }
301
302 static const char *page_size_string(struct map_range *mr)
303 {
304 static const char str_1g[] = "1G";
305 static const char str_2m[] = "2M";
306 static const char str_4m[] = "4M";
307 static const char str_4k[] = "4k";
308
309 if (mr->page_size_mask & (1<<PG_LEVEL_1G))
310 return str_1g;
311 /*
312 * 32-bit without PAE has a 4M large page size.
313 * PG_LEVEL_2M is misnamed, but we can at least
314 * print out the right size in the string.
315 */
316 if (IS_ENABLED(CONFIG_X86_32) &&
317 !IS_ENABLED(CONFIG_X86_PAE) &&
318 mr->page_size_mask & (1<<PG_LEVEL_2M))
319 return str_4m;
320
321 if (mr->page_size_mask & (1<<PG_LEVEL_2M))
322 return str_2m;
323
324 return str_4k;
325 }
326
327 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
328 unsigned long start,
329 unsigned long end)
330 {
331 unsigned long start_pfn, end_pfn, limit_pfn;
332 unsigned long pfn;
333 int i;
334
335 limit_pfn = PFN_DOWN(end);
336
337 /* head if not big page alignment ? */
338 pfn = start_pfn = PFN_DOWN(start);
339 #ifdef CONFIG_X86_32
340 /*
341 * Don't use a large page for the first 2/4MB of memory
342 * because there are often fixed size MTRRs in there
343 * and overlapping MTRRs into large pages can cause
344 * slowdowns.
345 */
346 if (pfn == 0)
347 end_pfn = PFN_DOWN(PMD_SIZE);
348 else
349 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
350 #else /* CONFIG_X86_64 */
351 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
352 #endif
353 if (end_pfn > limit_pfn)
354 end_pfn = limit_pfn;
355 if (start_pfn < end_pfn) {
356 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
357 pfn = end_pfn;
358 }
359
360 /* big page (2M) range */
361 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
362 #ifdef CONFIG_X86_32
363 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
364 #else /* CONFIG_X86_64 */
365 end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
366 if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
367 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
368 #endif
369
370 if (start_pfn < end_pfn) {
371 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
372 page_size_mask & (1<<PG_LEVEL_2M));
373 pfn = end_pfn;
374 }
375
376 #ifdef CONFIG_X86_64
377 /* big page (1G) range */
378 start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
379 end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
380 if (start_pfn < end_pfn) {
381 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
382 page_size_mask &
383 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
384 pfn = end_pfn;
385 }
386
387 /* tail is not big page (1G) alignment */
388 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
389 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
390 if (start_pfn < end_pfn) {
391 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
392 page_size_mask & (1<<PG_LEVEL_2M));
393 pfn = end_pfn;
394 }
395 #endif
396
397 /* tail is not big page (2M) alignment */
398 start_pfn = pfn;
399 end_pfn = limit_pfn;
400 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
401
402 if (!after_bootmem)
403 adjust_range_page_size_mask(mr, nr_range);
404
405 /* try to merge same page size and continuous */
406 for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
407 unsigned long old_start;
408 if (mr[i].end != mr[i+1].start ||
409 mr[i].page_size_mask != mr[i+1].page_size_mask)
410 continue;
411 /* move it */
412 old_start = mr[i].start;
413 memmove(&mr[i], &mr[i+1],
414 (nr_range - 1 - i) * sizeof(struct map_range));
415 mr[i--].start = old_start;
416 nr_range--;
417 }
418
419 for (i = 0; i < nr_range; i++)
420 pr_debug(" [mem %#010lx-%#010lx] page %s\n",
421 mr[i].start, mr[i].end - 1,
422 page_size_string(&mr[i]));
423
424 return nr_range;
425 }
426
427 struct range pfn_mapped[E820_MAX_ENTRIES];
428 int nr_pfn_mapped;
429
430 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
431 {
432 nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
433 nr_pfn_mapped, start_pfn, end_pfn);
434 nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
435
436 max_pfn_mapped = max(max_pfn_mapped, end_pfn);
437
438 if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
439 max_low_pfn_mapped = max(max_low_pfn_mapped,
440 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
441 }
442
443 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
444 {
445 int i;
446
447 for (i = 0; i < nr_pfn_mapped; i++)
448 if ((start_pfn >= pfn_mapped[i].start) &&
449 (end_pfn <= pfn_mapped[i].end))
450 return true;
451
452 return false;
453 }
454
455 /*
456 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
457 * This runs before bootmem is initialized and gets pages directly from
458 * the physical memory. To access them they are temporarily mapped.
459 */
460 unsigned long __ref init_memory_mapping(unsigned long start,
461 unsigned long end)
462 {
463 struct map_range mr[NR_RANGE_MR];
464 unsigned long ret = 0;
465 int nr_range, i;
466
467 pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
468 start, end - 1);
469
470 memset(mr, 0, sizeof(mr));
471 nr_range = split_mem_range(mr, 0, start, end);
472
473 for (i = 0; i < nr_range; i++)
474 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
475 mr[i].page_size_mask);
476
477 add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
478
479 return ret >> PAGE_SHIFT;
480 }
481
482 /*
483 * We need to iterate through the E820 memory map and create direct mappings
484 * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
485 * create direct mappings for all pfns from [0 to max_low_pfn) and
486 * [4GB to max_pfn) because of possible memory holes in high addresses
487 * that cannot be marked as UC by fixed/variable range MTRRs.
488 * Depending on the alignment of E820 ranges, this may possibly result
489 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
490 *
491 * init_mem_mapping() calls init_range_memory_mapping() with big range.
492 * That range would have hole in the middle or ends, and only ram parts
493 * will be mapped in init_range_memory_mapping().
494 */
495 static unsigned long __init init_range_memory_mapping(
496 unsigned long r_start,
497 unsigned long r_end)
498 {
499 unsigned long start_pfn, end_pfn;
500 unsigned long mapped_ram_size = 0;
501 int i;
502
503 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
504 u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
505 u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
506 if (start >= end)
507 continue;
508
509 /*
510 * if it is overlapping with brk pgt, we need to
511 * alloc pgt buf from memblock instead.
512 */
513 can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
514 min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
515 init_memory_mapping(start, end);
516 mapped_ram_size += end - start;
517 can_use_brk_pgt = true;
518 }
519
520 return mapped_ram_size;
521 }
522
523 static unsigned long __init get_new_step_size(unsigned long step_size)
524 {
525 /*
526 * Initial mapped size is PMD_SIZE (2M).
527 * We can not set step_size to be PUD_SIZE (1G) yet.
528 * In worse case, when we cross the 1G boundary, and
529 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
530 * to map 1G range with PTE. Hence we use one less than the
531 * difference of page table level shifts.
532 *
533 * Don't need to worry about overflow in the top-down case, on 32bit,
534 * when step_size is 0, round_down() returns 0 for start, and that
535 * turns it into 0x100000000ULL.
536 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
537 * needs to be taken into consideration by the code below.
538 */
539 return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
540 }
541
542 /**
543 * memory_map_top_down - Map [map_start, map_end) top down
544 * @map_start: start address of the target memory range
545 * @map_end: end address of the target memory range
546 *
547 * This function will setup direct mapping for memory range
548 * [map_start, map_end) in top-down. That said, the page tables
549 * will be allocated at the end of the memory, and we map the
550 * memory in top-down.
551 */
552 static void __init memory_map_top_down(unsigned long map_start,
553 unsigned long map_end)
554 {
555 unsigned long real_end, start, last_start;
556 unsigned long step_size;
557 unsigned long addr;
558 unsigned long mapped_ram_size = 0;
559
560 /* xen has big range in reserved near end of ram, skip it at first.*/
561 addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
562 real_end = addr + PMD_SIZE;
563
564 /* step_size need to be small so pgt_buf from BRK could cover it */
565 step_size = PMD_SIZE;
566 max_pfn_mapped = 0; /* will get exact value next */
567 min_pfn_mapped = real_end >> PAGE_SHIFT;
568 last_start = start = real_end;
569
570 /*
571 * We start from the top (end of memory) and go to the bottom.
572 * The memblock_find_in_range() gets us a block of RAM from the
573 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
574 * for page table.
575 */
576 while (last_start > map_start) {
577 if (last_start > step_size) {
578 start = round_down(last_start - 1, step_size);
579 if (start < map_start)
580 start = map_start;
581 } else
582 start = map_start;
583 mapped_ram_size += init_range_memory_mapping(start,
584 last_start);
585 last_start = start;
586 min_pfn_mapped = last_start >> PAGE_SHIFT;
587 if (mapped_ram_size >= step_size)
588 step_size = get_new_step_size(step_size);
589 }
590
591 if (real_end < map_end)
592 init_range_memory_mapping(real_end, map_end);
593 }
594
595 /**
596 * memory_map_bottom_up - Map [map_start, map_end) bottom up
597 * @map_start: start address of the target memory range
598 * @map_end: end address of the target memory range
599 *
600 * This function will setup direct mapping for memory range
601 * [map_start, map_end) in bottom-up. Since we have limited the
602 * bottom-up allocation above the kernel, the page tables will
603 * be allocated just above the kernel and we map the memory
604 * in [map_start, map_end) in bottom-up.
605 */
606 static void __init memory_map_bottom_up(unsigned long map_start,
607 unsigned long map_end)
608 {
609 unsigned long next, start;
610 unsigned long mapped_ram_size = 0;
611 /* step_size need to be small so pgt_buf from BRK could cover it */
612 unsigned long step_size = PMD_SIZE;
613
614 start = map_start;
615 min_pfn_mapped = start >> PAGE_SHIFT;
616
617 /*
618 * We start from the bottom (@map_start) and go to the top (@map_end).
619 * The memblock_find_in_range() gets us a block of RAM from the
620 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
621 * for page table.
622 */
623 while (start < map_end) {
624 if (step_size && map_end - start > step_size) {
625 next = round_up(start + 1, step_size);
626 if (next > map_end)
627 next = map_end;
628 } else {
629 next = map_end;
630 }
631
632 mapped_ram_size += init_range_memory_mapping(start, next);
633 start = next;
634
635 if (mapped_ram_size >= step_size)
636 step_size = get_new_step_size(step_size);
637 }
638 }
639
640 void __init init_mem_mapping(void)
641 {
642 unsigned long end;
643
644 pti_check_boottime_disable();
645 probe_page_size_mask();
646 setup_pcid();
647
648 #ifdef CONFIG_X86_64
649 end = max_pfn << PAGE_SHIFT;
650 #else
651 end = max_low_pfn << PAGE_SHIFT;
652 #endif
653
654 /* the ISA range is always mapped regardless of memory holes */
655 init_memory_mapping(0, ISA_END_ADDRESS);
656
657 /* Init the trampoline, possibly with KASLR memory offset */
658 init_trampoline();
659
660 /*
661 * If the allocation is in bottom-up direction, we setup direct mapping
662 * in bottom-up, otherwise we setup direct mapping in top-down.
663 */
664 if (memblock_bottom_up()) {
665 unsigned long kernel_end = __pa_symbol(_end);
666
667 /*
668 * we need two separate calls here. This is because we want to
669 * allocate page tables above the kernel. So we first map
670 * [kernel_end, end) to make memory above the kernel be mapped
671 * as soon as possible. And then use page tables allocated above
672 * the kernel to map [ISA_END_ADDRESS, kernel_end).
673 */
674 memory_map_bottom_up(kernel_end, end);
675 memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
676 } else {
677 memory_map_top_down(ISA_END_ADDRESS, end);
678 }
679
680 #ifdef CONFIG_X86_64
681 if (max_pfn > max_low_pfn) {
682 /* can we preseve max_low_pfn ?*/
683 max_low_pfn = max_pfn;
684 }
685 #else
686 early_ioremap_page_table_range_init();
687 #endif
688
689 load_cr3(swapper_pg_dir);
690 __flush_tlb_all();
691
692 x86_init.hyper.init_mem_mapping();
693
694 early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
695 }
696
697 /*
698 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
699 * is valid. The argument is a physical page number.
700 *
701 * On x86, access has to be given to the first megabyte of RAM because that
702 * area traditionally contains BIOS code and data regions used by X, dosemu,
703 * and similar apps. Since they map the entire memory range, the whole range
704 * must be allowed (for mapping), but any areas that would otherwise be
705 * disallowed are flagged as being "zero filled" instead of rejected.
706 * Access has to be given to non-kernel-ram areas as well, these contain the
707 * PCI mmio resources as well as potential bios/acpi data regions.
708 */
709 int devmem_is_allowed(unsigned long pagenr)
710 {
711 if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
712 IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
713 != REGION_DISJOINT) {
714 /*
715 * For disallowed memory regions in the low 1MB range,
716 * request that the page be shown as all zeros.
717 */
718 if (pagenr < 256)
719 return 2;
720
721 return 0;
722 }
723
724 /*
725 * This must follow RAM test, since System RAM is considered a
726 * restricted resource under CONFIG_STRICT_IOMEM.
727 */
728 if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
729 /* Low 1MB bypasses iomem restrictions. */
730 if (pagenr < 256)
731 return 1;
732
733 return 0;
734 }
735
736 return 1;
737 }
738
739 void free_init_pages(char *what, unsigned long begin, unsigned long end)
740 {
741 unsigned long begin_aligned, end_aligned;
742
743 /* Make sure boundaries are page aligned */
744 begin_aligned = PAGE_ALIGN(begin);
745 end_aligned = end & PAGE_MASK;
746
747 if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
748 begin = begin_aligned;
749 end = end_aligned;
750 }
751
752 if (begin >= end)
753 return;
754
755 /*
756 * If debugging page accesses then do not free this memory but
757 * mark them not present - any buggy init-section access will
758 * create a kernel page fault:
759 */
760 if (debug_pagealloc_enabled()) {
761 pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
762 begin, end - 1);
763 set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
764 } else {
765 /*
766 * We just marked the kernel text read only above, now that
767 * we are going to free part of that, we need to make that
768 * writeable and non-executable first.
769 */
770 set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
771 set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
772
773 free_reserved_area((void *)begin, (void *)end,
774 POISON_FREE_INITMEM, what);
775 }
776 }
777
778 /*
779 * begin/end can be in the direct map or the "high kernel mapping"
780 * used for the kernel image only. free_init_pages() will do the
781 * right thing for either kind of address.
782 */
783 void free_kernel_image_pages(void *begin, void *end)
784 {
785 unsigned long begin_ul = (unsigned long)begin;
786 unsigned long end_ul = (unsigned long)end;
787 unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
788
789
790 free_init_pages("unused kernel image", begin_ul, end_ul);
791
792 /*
793 * PTI maps some of the kernel into userspace. For performance,
794 * this includes some kernel areas that do not contain secrets.
795 * Those areas might be adjacent to the parts of the kernel image
796 * being freed, which may contain secrets. Remove the "high kernel
797 * image mapping" for these freed areas, ensuring they are not even
798 * potentially vulnerable to Meltdown regardless of the specific
799 * optimizations PTI is currently using.
800 *
801 * The "noalias" prevents unmapping the direct map alias which is
802 * needed to access the freed pages.
803 *
804 * This is only valid for 64bit kernels. 32bit has only one mapping
805 * which can't be treated in this way for obvious reasons.
806 */
807 if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
808 set_memory_np_noalias(begin_ul, len_pages);
809 }
810
811 void __ref free_initmem(void)
812 {
813 e820__reallocate_tables();
814
815 free_kernel_image_pages(&__init_begin, &__init_end);
816 }
817
818 #ifdef CONFIG_BLK_DEV_INITRD
819 void __init free_initrd_mem(unsigned long start, unsigned long end)
820 {
821 /*
822 * end could be not aligned, and We can not align that,
823 * decompresser could be confused by aligned initrd_end
824 * We already reserve the end partial page before in
825 * - i386_start_kernel()
826 * - x86_64_start_kernel()
827 * - relocate_initrd()
828 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
829 */
830 free_init_pages("initrd", start, PAGE_ALIGN(end));
831 }
832 #endif
833
834 /*
835 * Calculate the precise size of the DMA zone (first 16 MB of RAM),
836 * and pass it to the MM layer - to help it set zone watermarks more
837 * accurately.
838 *
839 * Done on 64-bit systems only for the time being, although 32-bit systems
840 * might benefit from this as well.
841 */
842 void __init memblock_find_dma_reserve(void)
843 {
844 #ifdef CONFIG_X86_64
845 u64 nr_pages = 0, nr_free_pages = 0;
846 unsigned long start_pfn, end_pfn;
847 phys_addr_t start_addr, end_addr;
848 int i;
849 u64 u;
850
851 /*
852 * Iterate over all memory ranges (free and reserved ones alike),
853 * to calculate the total number of pages in the first 16 MB of RAM:
854 */
855 nr_pages = 0;
856 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
857 start_pfn = min(start_pfn, MAX_DMA_PFN);
858 end_pfn = min(end_pfn, MAX_DMA_PFN);
859
860 nr_pages += end_pfn - start_pfn;
861 }
862
863 /*
864 * Iterate over free memory ranges to calculate the number of free
865 * pages in the DMA zone, while not counting potential partial
866 * pages at the beginning or the end of the range:
867 */
868 nr_free_pages = 0;
869 for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
870 start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
871 end_pfn = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
872
873 if (start_pfn < end_pfn)
874 nr_free_pages += end_pfn - start_pfn;
875 }
876
877 set_dma_reserve(nr_pages - nr_free_pages);
878 #endif
879 }
880
881 void __init zone_sizes_init(void)
882 {
883 unsigned long max_zone_pfns[MAX_NR_ZONES];
884
885 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
886
887 #ifdef CONFIG_ZONE_DMA
888 max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn);
889 #endif
890 #ifdef CONFIG_ZONE_DMA32
891 max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn);
892 #endif
893 max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
894 #ifdef CONFIG_HIGHMEM
895 max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
896 #endif
897
898 free_area_init_nodes(max_zone_pfns);
899 }
900
901 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
902 .loaded_mm = &init_mm,
903 .next_asid = 1,
904 .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */
905 };
906 EXPORT_PER_CPU_SYMBOL(cpu_tlbstate);
907
908 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
909 {
910 /* entry 0 MUST be WB (hardwired to speed up translations) */
911 BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
912
913 __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
914 __pte2cachemode_tbl[entry] = cache;
915 }
916
917 #ifdef CONFIG_SWAP
918 unsigned long max_swapfile_size(void)
919 {
920 unsigned long pages;
921
922 pages = generic_max_swapfile_size();
923
924 if (boot_cpu_has_bug(X86_BUG_L1TF)) {
925 /* Limit the swap file size to MAX_PA/2 for L1TF workaround */
926 unsigned long long l1tf_limit = l1tf_pfn_limit();
927 /*
928 * We encode swap offsets also with 3 bits below those for pfn
929 * which makes the usable limit higher.
930 */
931 #if CONFIG_PGTABLE_LEVELS > 2
932 l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
933 #endif
934 pages = min_t(unsigned long long, l1tf_limit, pages);
935 }
936 return pages;
937 }
938 #endif