]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/mm/init.c
af5c1ed21d43ac651ecbe02e7a58dc7baa884168
[mirror_ubuntu-artful-kernel.git] / arch / x86 / mm / init.c
1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/bootmem.h> /* for max_low_pfn */
7
8 #include <asm/set_memory.h>
9 #include <asm/e820/api.h>
10 #include <asm/init.h>
11 #include <asm/page.h>
12 #include <asm/page_types.h>
13 #include <asm/sections.h>
14 #include <asm/setup.h>
15 #include <asm/tlbflush.h>
16 #include <asm/tlb.h>
17 #include <asm/proto.h>
18 #include <asm/dma.h> /* for MAX_DMA_PFN */
19 #include <asm/microcode.h>
20 #include <asm/kaslr.h>
21 #include <asm/hypervisor.h>
22 #include <asm/cpufeature.h>
23
24 /*
25 * We need to define the tracepoints somewhere, and tlb.c
26 * is only compied when SMP=y.
27 */
28 #define CREATE_TRACE_POINTS
29 #include <trace/events/tlb.h>
30
31 #include "mm_internal.h"
32
33 /*
34 * Tables translating between page_cache_type_t and pte encoding.
35 *
36 * The default values are defined statically as minimal supported mode;
37 * WC and WT fall back to UC-. pat_init() updates these values to support
38 * more cache modes, WC and WT, when it is safe to do so. See pat_init()
39 * for the details. Note, __early_ioremap() used during early boot-time
40 * takes pgprot_t (pte encoding) and does not use these tables.
41 *
42 * Index into __cachemode2pte_tbl[] is the cachemode.
43 *
44 * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
45 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
46 */
47 uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
48 [_PAGE_CACHE_MODE_WB ] = 0 | 0 ,
49 [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD,
50 [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD,
51 [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD,
52 [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD,
53 [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD,
54 };
55 EXPORT_SYMBOL(__cachemode2pte_tbl);
56
57 uint8_t __pte2cachemode_tbl[8] = {
58 [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB,
59 [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
60 [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
61 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC,
62 [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
63 [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
64 [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
65 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
66 };
67 EXPORT_SYMBOL(__pte2cachemode_tbl);
68
69 static unsigned long __initdata pgt_buf_start;
70 static unsigned long __initdata pgt_buf_end;
71 static unsigned long __initdata pgt_buf_top;
72
73 static unsigned long min_pfn_mapped;
74
75 static bool __initdata can_use_brk_pgt = true;
76
77 /*
78 * Pages returned are already directly mapped.
79 *
80 * Changing that is likely to break Xen, see commit:
81 *
82 * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
83 *
84 * for detailed information.
85 */
86 __ref void *alloc_low_pages(unsigned int num)
87 {
88 unsigned long pfn;
89 int i;
90
91 if (after_bootmem) {
92 unsigned int order;
93
94 order = get_order((unsigned long)num << PAGE_SHIFT);
95 return (void *)__get_free_pages(GFP_ATOMIC | __GFP_NOTRACK |
96 __GFP_ZERO, order);
97 }
98
99 if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
100 unsigned long ret;
101 if (min_pfn_mapped >= max_pfn_mapped)
102 panic("alloc_low_pages: ran out of memory");
103 ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
104 max_pfn_mapped << PAGE_SHIFT,
105 PAGE_SIZE * num , PAGE_SIZE);
106 if (!ret)
107 panic("alloc_low_pages: can not alloc memory");
108 memblock_reserve(ret, PAGE_SIZE * num);
109 pfn = ret >> PAGE_SHIFT;
110 } else {
111 pfn = pgt_buf_end;
112 pgt_buf_end += num;
113 printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
114 pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
115 }
116
117 for (i = 0; i < num; i++) {
118 void *adr;
119
120 adr = __va((pfn + i) << PAGE_SHIFT);
121 clear_page(adr);
122 }
123
124 return __va(pfn << PAGE_SHIFT);
125 }
126
127 /*
128 * By default need 3 4k for initial PMD_SIZE, 3 4k for 0-ISA_END_ADDRESS.
129 * With KASLR memory randomization, depending on the machine e820 memory
130 * and the PUD alignment. We may need twice more pages when KASLR memory
131 * randomization is enabled.
132 */
133 #ifndef CONFIG_RANDOMIZE_MEMORY
134 #define INIT_PGD_PAGE_COUNT 6
135 #else
136 #define INIT_PGD_PAGE_COUNT 12
137 #endif
138 #define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
139 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
140 void __init early_alloc_pgt_buf(void)
141 {
142 unsigned long tables = INIT_PGT_BUF_SIZE;
143 phys_addr_t base;
144
145 base = __pa(extend_brk(tables, PAGE_SIZE));
146
147 pgt_buf_start = base >> PAGE_SHIFT;
148 pgt_buf_end = pgt_buf_start;
149 pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
150 }
151
152 int after_bootmem;
153
154 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
155
156 struct map_range {
157 unsigned long start;
158 unsigned long end;
159 unsigned page_size_mask;
160 };
161
162 static int page_size_mask;
163
164 static void __init probe_page_size_mask(void)
165 {
166 /*
167 * For CONFIG_KMEMCHECK or pagealloc debugging, identity mapping will
168 * use small pages.
169 * This will simplify cpa(), which otherwise needs to support splitting
170 * large pages into small in interrupt context, etc.
171 */
172 if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled() && !IS_ENABLED(CONFIG_KMEMCHECK))
173 page_size_mask |= 1 << PG_LEVEL_2M;
174 else
175 direct_gbpages = 0;
176
177 /* Enable PSE if available */
178 if (boot_cpu_has(X86_FEATURE_PSE))
179 cr4_set_bits_and_update_boot(X86_CR4_PSE);
180
181 /* Enable PGE if available */
182 if (boot_cpu_has(X86_FEATURE_PGE)) {
183 cr4_set_bits_and_update_boot(X86_CR4_PGE);
184 __supported_pte_mask |= _PAGE_GLOBAL;
185 } else
186 __supported_pte_mask &= ~_PAGE_GLOBAL;
187
188 /* Enable 1 GB linear kernel mappings if available: */
189 if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
190 printk(KERN_INFO "Using GB pages for direct mapping\n");
191 page_size_mask |= 1 << PG_LEVEL_1G;
192 } else {
193 direct_gbpages = 0;
194 }
195 }
196
197 static void setup_pcid(void)
198 {
199 #ifdef CONFIG_X86_64
200 if (boot_cpu_has(X86_FEATURE_PCID)) {
201 if (boot_cpu_has(X86_FEATURE_PGE)) {
202 /*
203 * This can't be cr4_set_bits_and_update_boot() --
204 * the trampoline code can't handle CR4.PCIDE and
205 * it wouldn't do any good anyway. Despite the name,
206 * cr4_set_bits_and_update_boot() doesn't actually
207 * cause the bits in question to remain set all the
208 * way through the secondary boot asm.
209 *
210 * Instead, we brute-force it and set CR4.PCIDE
211 * manually in start_secondary().
212 */
213 cr4_set_bits(X86_CR4_PCIDE);
214 } else {
215 /*
216 * flush_tlb_all(), as currently implemented, won't
217 * work if PCID is on but PGE is not. Since that
218 * combination doesn't exist on real hardware, there's
219 * no reason to try to fully support it, but it's
220 * polite to avoid corrupting data if we're on
221 * an improperly configured VM.
222 */
223 setup_clear_cpu_cap(X86_FEATURE_PCID);
224 }
225 }
226 #endif
227 }
228
229 #ifdef CONFIG_X86_32
230 #define NR_RANGE_MR 3
231 #else /* CONFIG_X86_64 */
232 #define NR_RANGE_MR 5
233 #endif
234
235 static int __meminit save_mr(struct map_range *mr, int nr_range,
236 unsigned long start_pfn, unsigned long end_pfn,
237 unsigned long page_size_mask)
238 {
239 if (start_pfn < end_pfn) {
240 if (nr_range >= NR_RANGE_MR)
241 panic("run out of range for init_memory_mapping\n");
242 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
243 mr[nr_range].end = end_pfn<<PAGE_SHIFT;
244 mr[nr_range].page_size_mask = page_size_mask;
245 nr_range++;
246 }
247
248 return nr_range;
249 }
250
251 /*
252 * adjust the page_size_mask for small range to go with
253 * big page size instead small one if nearby are ram too.
254 */
255 static void __ref adjust_range_page_size_mask(struct map_range *mr,
256 int nr_range)
257 {
258 int i;
259
260 for (i = 0; i < nr_range; i++) {
261 if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
262 !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
263 unsigned long start = round_down(mr[i].start, PMD_SIZE);
264 unsigned long end = round_up(mr[i].end, PMD_SIZE);
265
266 #ifdef CONFIG_X86_32
267 if ((end >> PAGE_SHIFT) > max_low_pfn)
268 continue;
269 #endif
270
271 if (memblock_is_region_memory(start, end - start))
272 mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
273 }
274 if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
275 !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
276 unsigned long start = round_down(mr[i].start, PUD_SIZE);
277 unsigned long end = round_up(mr[i].end, PUD_SIZE);
278
279 if (memblock_is_region_memory(start, end - start))
280 mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
281 }
282 }
283 }
284
285 static const char *page_size_string(struct map_range *mr)
286 {
287 static const char str_1g[] = "1G";
288 static const char str_2m[] = "2M";
289 static const char str_4m[] = "4M";
290 static const char str_4k[] = "4k";
291
292 if (mr->page_size_mask & (1<<PG_LEVEL_1G))
293 return str_1g;
294 /*
295 * 32-bit without PAE has a 4M large page size.
296 * PG_LEVEL_2M is misnamed, but we can at least
297 * print out the right size in the string.
298 */
299 if (IS_ENABLED(CONFIG_X86_32) &&
300 !IS_ENABLED(CONFIG_X86_PAE) &&
301 mr->page_size_mask & (1<<PG_LEVEL_2M))
302 return str_4m;
303
304 if (mr->page_size_mask & (1<<PG_LEVEL_2M))
305 return str_2m;
306
307 return str_4k;
308 }
309
310 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
311 unsigned long start,
312 unsigned long end)
313 {
314 unsigned long start_pfn, end_pfn, limit_pfn;
315 unsigned long pfn;
316 int i;
317
318 limit_pfn = PFN_DOWN(end);
319
320 /* head if not big page alignment ? */
321 pfn = start_pfn = PFN_DOWN(start);
322 #ifdef CONFIG_X86_32
323 /*
324 * Don't use a large page for the first 2/4MB of memory
325 * because there are often fixed size MTRRs in there
326 * and overlapping MTRRs into large pages can cause
327 * slowdowns.
328 */
329 if (pfn == 0)
330 end_pfn = PFN_DOWN(PMD_SIZE);
331 else
332 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
333 #else /* CONFIG_X86_64 */
334 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
335 #endif
336 if (end_pfn > limit_pfn)
337 end_pfn = limit_pfn;
338 if (start_pfn < end_pfn) {
339 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
340 pfn = end_pfn;
341 }
342
343 /* big page (2M) range */
344 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
345 #ifdef CONFIG_X86_32
346 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
347 #else /* CONFIG_X86_64 */
348 end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
349 if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
350 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
351 #endif
352
353 if (start_pfn < end_pfn) {
354 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
355 page_size_mask & (1<<PG_LEVEL_2M));
356 pfn = end_pfn;
357 }
358
359 #ifdef CONFIG_X86_64
360 /* big page (1G) range */
361 start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
362 end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
363 if (start_pfn < end_pfn) {
364 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
365 page_size_mask &
366 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
367 pfn = end_pfn;
368 }
369
370 /* tail is not big page (1G) alignment */
371 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
372 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
373 if (start_pfn < end_pfn) {
374 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
375 page_size_mask & (1<<PG_LEVEL_2M));
376 pfn = end_pfn;
377 }
378 #endif
379
380 /* tail is not big page (2M) alignment */
381 start_pfn = pfn;
382 end_pfn = limit_pfn;
383 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
384
385 if (!after_bootmem)
386 adjust_range_page_size_mask(mr, nr_range);
387
388 /* try to merge same page size and continuous */
389 for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
390 unsigned long old_start;
391 if (mr[i].end != mr[i+1].start ||
392 mr[i].page_size_mask != mr[i+1].page_size_mask)
393 continue;
394 /* move it */
395 old_start = mr[i].start;
396 memmove(&mr[i], &mr[i+1],
397 (nr_range - 1 - i) * sizeof(struct map_range));
398 mr[i--].start = old_start;
399 nr_range--;
400 }
401
402 for (i = 0; i < nr_range; i++)
403 pr_debug(" [mem %#010lx-%#010lx] page %s\n",
404 mr[i].start, mr[i].end - 1,
405 page_size_string(&mr[i]));
406
407 return nr_range;
408 }
409
410 struct range pfn_mapped[E820_MAX_ENTRIES];
411 int nr_pfn_mapped;
412
413 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
414 {
415 nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
416 nr_pfn_mapped, start_pfn, end_pfn);
417 nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
418
419 max_pfn_mapped = max(max_pfn_mapped, end_pfn);
420
421 if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
422 max_low_pfn_mapped = max(max_low_pfn_mapped,
423 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
424 }
425
426 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
427 {
428 int i;
429
430 for (i = 0; i < nr_pfn_mapped; i++)
431 if ((start_pfn >= pfn_mapped[i].start) &&
432 (end_pfn <= pfn_mapped[i].end))
433 return true;
434
435 return false;
436 }
437
438 /*
439 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
440 * This runs before bootmem is initialized and gets pages directly from
441 * the physical memory. To access them they are temporarily mapped.
442 */
443 unsigned long __ref init_memory_mapping(unsigned long start,
444 unsigned long end)
445 {
446 struct map_range mr[NR_RANGE_MR];
447 unsigned long ret = 0;
448 int nr_range, i;
449
450 pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
451 start, end - 1);
452
453 memset(mr, 0, sizeof(mr));
454 nr_range = split_mem_range(mr, 0, start, end);
455
456 for (i = 0; i < nr_range; i++)
457 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
458 mr[i].page_size_mask);
459
460 add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
461
462 return ret >> PAGE_SHIFT;
463 }
464
465 /*
466 * We need to iterate through the E820 memory map and create direct mappings
467 * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
468 * create direct mappings for all pfns from [0 to max_low_pfn) and
469 * [4GB to max_pfn) because of possible memory holes in high addresses
470 * that cannot be marked as UC by fixed/variable range MTRRs.
471 * Depending on the alignment of E820 ranges, this may possibly result
472 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
473 *
474 * init_mem_mapping() calls init_range_memory_mapping() with big range.
475 * That range would have hole in the middle or ends, and only ram parts
476 * will be mapped in init_range_memory_mapping().
477 */
478 static unsigned long __init init_range_memory_mapping(
479 unsigned long r_start,
480 unsigned long r_end)
481 {
482 unsigned long start_pfn, end_pfn;
483 unsigned long mapped_ram_size = 0;
484 int i;
485
486 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
487 u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
488 u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
489 if (start >= end)
490 continue;
491
492 /*
493 * if it is overlapping with brk pgt, we need to
494 * alloc pgt buf from memblock instead.
495 */
496 can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
497 min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
498 init_memory_mapping(start, end);
499 mapped_ram_size += end - start;
500 can_use_brk_pgt = true;
501 }
502
503 return mapped_ram_size;
504 }
505
506 static unsigned long __init get_new_step_size(unsigned long step_size)
507 {
508 /*
509 * Initial mapped size is PMD_SIZE (2M).
510 * We can not set step_size to be PUD_SIZE (1G) yet.
511 * In worse case, when we cross the 1G boundary, and
512 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
513 * to map 1G range with PTE. Hence we use one less than the
514 * difference of page table level shifts.
515 *
516 * Don't need to worry about overflow in the top-down case, on 32bit,
517 * when step_size is 0, round_down() returns 0 for start, and that
518 * turns it into 0x100000000ULL.
519 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
520 * needs to be taken into consideration by the code below.
521 */
522 return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
523 }
524
525 /**
526 * memory_map_top_down - Map [map_start, map_end) top down
527 * @map_start: start address of the target memory range
528 * @map_end: end address of the target memory range
529 *
530 * This function will setup direct mapping for memory range
531 * [map_start, map_end) in top-down. That said, the page tables
532 * will be allocated at the end of the memory, and we map the
533 * memory in top-down.
534 */
535 static void __init memory_map_top_down(unsigned long map_start,
536 unsigned long map_end)
537 {
538 unsigned long real_end, start, last_start;
539 unsigned long step_size;
540 unsigned long addr;
541 unsigned long mapped_ram_size = 0;
542
543 /* xen has big range in reserved near end of ram, skip it at first.*/
544 addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
545 real_end = addr + PMD_SIZE;
546
547 /* step_size need to be small so pgt_buf from BRK could cover it */
548 step_size = PMD_SIZE;
549 max_pfn_mapped = 0; /* will get exact value next */
550 min_pfn_mapped = real_end >> PAGE_SHIFT;
551 last_start = start = real_end;
552
553 /*
554 * We start from the top (end of memory) and go to the bottom.
555 * The memblock_find_in_range() gets us a block of RAM from the
556 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
557 * for page table.
558 */
559 while (last_start > map_start) {
560 if (last_start > step_size) {
561 start = round_down(last_start - 1, step_size);
562 if (start < map_start)
563 start = map_start;
564 } else
565 start = map_start;
566 mapped_ram_size += init_range_memory_mapping(start,
567 last_start);
568 last_start = start;
569 min_pfn_mapped = last_start >> PAGE_SHIFT;
570 if (mapped_ram_size >= step_size)
571 step_size = get_new_step_size(step_size);
572 }
573
574 if (real_end < map_end)
575 init_range_memory_mapping(real_end, map_end);
576 }
577
578 /**
579 * memory_map_bottom_up - Map [map_start, map_end) bottom up
580 * @map_start: start address of the target memory range
581 * @map_end: end address of the target memory range
582 *
583 * This function will setup direct mapping for memory range
584 * [map_start, map_end) in bottom-up. Since we have limited the
585 * bottom-up allocation above the kernel, the page tables will
586 * be allocated just above the kernel and we map the memory
587 * in [map_start, map_end) in bottom-up.
588 */
589 static void __init memory_map_bottom_up(unsigned long map_start,
590 unsigned long map_end)
591 {
592 unsigned long next, start;
593 unsigned long mapped_ram_size = 0;
594 /* step_size need to be small so pgt_buf from BRK could cover it */
595 unsigned long step_size = PMD_SIZE;
596
597 start = map_start;
598 min_pfn_mapped = start >> PAGE_SHIFT;
599
600 /*
601 * We start from the bottom (@map_start) and go to the top (@map_end).
602 * The memblock_find_in_range() gets us a block of RAM from the
603 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
604 * for page table.
605 */
606 while (start < map_end) {
607 if (step_size && map_end - start > step_size) {
608 next = round_up(start + 1, step_size);
609 if (next > map_end)
610 next = map_end;
611 } else {
612 next = map_end;
613 }
614
615 mapped_ram_size += init_range_memory_mapping(start, next);
616 start = next;
617
618 if (mapped_ram_size >= step_size)
619 step_size = get_new_step_size(step_size);
620 }
621 }
622
623 void __init init_mem_mapping(void)
624 {
625 unsigned long end;
626
627 probe_page_size_mask();
628 setup_pcid();
629
630 #ifdef CONFIG_X86_64
631 end = max_pfn << PAGE_SHIFT;
632 #else
633 end = max_low_pfn << PAGE_SHIFT;
634 #endif
635
636 /* the ISA range is always mapped regardless of memory holes */
637 init_memory_mapping(0, ISA_END_ADDRESS);
638
639 /* Init the trampoline, possibly with KASLR memory offset */
640 init_trampoline();
641
642 /*
643 * If the allocation is in bottom-up direction, we setup direct mapping
644 * in bottom-up, otherwise we setup direct mapping in top-down.
645 */
646 if (memblock_bottom_up()) {
647 unsigned long kernel_end = __pa_symbol(_end);
648
649 /*
650 * we need two separate calls here. This is because we want to
651 * allocate page tables above the kernel. So we first map
652 * [kernel_end, end) to make memory above the kernel be mapped
653 * as soon as possible. And then use page tables allocated above
654 * the kernel to map [ISA_END_ADDRESS, kernel_end).
655 */
656 memory_map_bottom_up(kernel_end, end);
657 memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
658 } else {
659 memory_map_top_down(ISA_END_ADDRESS, end);
660 }
661
662 #ifdef CONFIG_X86_64
663 if (max_pfn > max_low_pfn) {
664 /* can we preseve max_low_pfn ?*/
665 max_low_pfn = max_pfn;
666 }
667 #else
668 early_ioremap_page_table_range_init();
669 #endif
670
671 load_cr3(swapper_pg_dir);
672 __flush_tlb_all();
673
674 hypervisor_init_mem_mapping();
675
676 early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
677 }
678
679 /*
680 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
681 * is valid. The argument is a physical page number.
682 *
683 * On x86, access has to be given to the first megabyte of RAM because that
684 * area traditionally contains BIOS code and data regions used by X, dosemu,
685 * and similar apps. Since they map the entire memory range, the whole range
686 * must be allowed (for mapping), but any areas that would otherwise be
687 * disallowed are flagged as being "zero filled" instead of rejected.
688 * Access has to be given to non-kernel-ram areas as well, these contain the
689 * PCI mmio resources as well as potential bios/acpi data regions.
690 */
691 int devmem_is_allowed(unsigned long pagenr)
692 {
693 if (page_is_ram(pagenr)) {
694 /*
695 * For disallowed memory regions in the low 1MB range,
696 * request that the page be shown as all zeros.
697 */
698 if (pagenr < 256)
699 return 2;
700
701 return 0;
702 }
703
704 /*
705 * This must follow RAM test, since System RAM is considered a
706 * restricted resource under CONFIG_STRICT_IOMEM.
707 */
708 if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
709 /* Low 1MB bypasses iomem restrictions. */
710 if (pagenr < 256)
711 return 1;
712
713 return 0;
714 }
715
716 return 1;
717 }
718
719 void free_init_pages(char *what, unsigned long begin, unsigned long end)
720 {
721 unsigned long begin_aligned, end_aligned;
722
723 /* Make sure boundaries are page aligned */
724 begin_aligned = PAGE_ALIGN(begin);
725 end_aligned = end & PAGE_MASK;
726
727 if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
728 begin = begin_aligned;
729 end = end_aligned;
730 }
731
732 if (begin >= end)
733 return;
734
735 /*
736 * If debugging page accesses then do not free this memory but
737 * mark them not present - any buggy init-section access will
738 * create a kernel page fault:
739 */
740 if (debug_pagealloc_enabled()) {
741 pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
742 begin, end - 1);
743 set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
744 } else {
745 /*
746 * We just marked the kernel text read only above, now that
747 * we are going to free part of that, we need to make that
748 * writeable and non-executable first.
749 */
750 set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
751 set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
752
753 free_reserved_area((void *)begin, (void *)end,
754 POISON_FREE_INITMEM, what);
755 }
756 }
757
758 void __ref free_initmem(void)
759 {
760 e820__reallocate_tables();
761
762 free_init_pages("unused kernel",
763 (unsigned long)(&__init_begin),
764 (unsigned long)(&__init_end));
765 }
766
767 #ifdef CONFIG_BLK_DEV_INITRD
768 void __init free_initrd_mem(unsigned long start, unsigned long end)
769 {
770 /*
771 * end could be not aligned, and We can not align that,
772 * decompresser could be confused by aligned initrd_end
773 * We already reserve the end partial page before in
774 * - i386_start_kernel()
775 * - x86_64_start_kernel()
776 * - relocate_initrd()
777 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
778 */
779 free_init_pages("initrd", start, PAGE_ALIGN(end));
780 }
781 #endif
782
783 /*
784 * Calculate the precise size of the DMA zone (first 16 MB of RAM),
785 * and pass it to the MM layer - to help it set zone watermarks more
786 * accurately.
787 *
788 * Done on 64-bit systems only for the time being, although 32-bit systems
789 * might benefit from this as well.
790 */
791 void __init memblock_find_dma_reserve(void)
792 {
793 #ifdef CONFIG_X86_64
794 u64 nr_pages = 0, nr_free_pages = 0;
795 unsigned long start_pfn, end_pfn;
796 phys_addr_t start_addr, end_addr;
797 int i;
798 u64 u;
799
800 /*
801 * Iterate over all memory ranges (free and reserved ones alike),
802 * to calculate the total number of pages in the first 16 MB of RAM:
803 */
804 nr_pages = 0;
805 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
806 start_pfn = min(start_pfn, MAX_DMA_PFN);
807 end_pfn = min(end_pfn, MAX_DMA_PFN);
808
809 nr_pages += end_pfn - start_pfn;
810 }
811
812 /*
813 * Iterate over free memory ranges to calculate the number of free
814 * pages in the DMA zone, while not counting potential partial
815 * pages at the beginning or the end of the range:
816 */
817 nr_free_pages = 0;
818 for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
819 start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
820 end_pfn = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
821
822 if (start_pfn < end_pfn)
823 nr_free_pages += end_pfn - start_pfn;
824 }
825
826 set_dma_reserve(nr_pages - nr_free_pages);
827 #endif
828 }
829
830 void __init zone_sizes_init(void)
831 {
832 unsigned long max_zone_pfns[MAX_NR_ZONES];
833
834 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
835
836 #ifdef CONFIG_ZONE_DMA
837 max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn);
838 #endif
839 #ifdef CONFIG_ZONE_DMA32
840 max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn);
841 #endif
842 max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
843 #ifdef CONFIG_HIGHMEM
844 max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
845 #endif
846
847 free_area_init_nodes(max_zone_pfns);
848 }
849
850 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
851 .loaded_mm = &init_mm,
852 .next_asid = 1,
853 .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */
854 };
855 EXPORT_SYMBOL_GPL(cpu_tlbstate);
856
857 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
858 {
859 /* entry 0 MUST be WB (hardwired to speed up translations) */
860 BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
861
862 __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
863 __pte2cachemode_tbl[entry] = cache;
864 }