]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/mm/init.c
x86, mm: Change find_early_table_space() paramters
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / mm / init.c
1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/bootmem.h> /* for max_low_pfn */
7
8 #include <asm/cacheflush.h>
9 #include <asm/e820.h>
10 #include <asm/init.h>
11 #include <asm/page.h>
12 #include <asm/page_types.h>
13 #include <asm/sections.h>
14 #include <asm/setup.h>
15 #include <asm/tlbflush.h>
16 #include <asm/tlb.h>
17 #include <asm/proto.h>
18 #include <asm/dma.h> /* for MAX_DMA_PFN */
19
20 unsigned long __initdata pgt_buf_start;
21 unsigned long __meminitdata pgt_buf_end;
22 unsigned long __meminitdata pgt_buf_top;
23
24 int after_bootmem;
25
26 int direct_gbpages
27 #ifdef CONFIG_DIRECT_GBPAGES
28 = 1
29 #endif
30 ;
31
32 struct map_range {
33 unsigned long start;
34 unsigned long end;
35 unsigned page_size_mask;
36 };
37
38 static int page_size_mask;
39
40 static void __init probe_page_size_mask(void)
41 {
42 #if !defined(CONFIG_DEBUG_PAGEALLOC) && !defined(CONFIG_KMEMCHECK)
43 /*
44 * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
45 * This will simplify cpa(), which otherwise needs to support splitting
46 * large pages into small in interrupt context, etc.
47 */
48 if (direct_gbpages)
49 page_size_mask |= 1 << PG_LEVEL_1G;
50 if (cpu_has_pse)
51 page_size_mask |= 1 << PG_LEVEL_2M;
52 #endif
53
54 /* Enable PSE if available */
55 if (cpu_has_pse)
56 set_in_cr4(X86_CR4_PSE);
57
58 /* Enable PGE if available */
59 if (cpu_has_pge) {
60 set_in_cr4(X86_CR4_PGE);
61 __supported_pte_mask |= _PAGE_GLOBAL;
62 }
63 }
64 void __init native_pagetable_reserve(u64 start, u64 end)
65 {
66 memblock_reserve(start, end - start);
67 }
68
69 #ifdef CONFIG_X86_32
70 #define NR_RANGE_MR 3
71 #else /* CONFIG_X86_64 */
72 #define NR_RANGE_MR 5
73 #endif
74
75 static int __meminit save_mr(struct map_range *mr, int nr_range,
76 unsigned long start_pfn, unsigned long end_pfn,
77 unsigned long page_size_mask)
78 {
79 if (start_pfn < end_pfn) {
80 if (nr_range >= NR_RANGE_MR)
81 panic("run out of range for init_memory_mapping\n");
82 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
83 mr[nr_range].end = end_pfn<<PAGE_SHIFT;
84 mr[nr_range].page_size_mask = page_size_mask;
85 nr_range++;
86 }
87
88 return nr_range;
89 }
90
91 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
92 unsigned long start,
93 unsigned long end)
94 {
95 unsigned long start_pfn, end_pfn;
96 unsigned long pos;
97 int i;
98
99 /* head if not big page alignment ? */
100 start_pfn = start >> PAGE_SHIFT;
101 pos = start_pfn << PAGE_SHIFT;
102 #ifdef CONFIG_X86_32
103 /*
104 * Don't use a large page for the first 2/4MB of memory
105 * because there are often fixed size MTRRs in there
106 * and overlapping MTRRs into large pages can cause
107 * slowdowns.
108 */
109 if (pos == 0)
110 end_pfn = 1<<(PMD_SHIFT - PAGE_SHIFT);
111 else
112 end_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
113 << (PMD_SHIFT - PAGE_SHIFT);
114 #else /* CONFIG_X86_64 */
115 end_pfn = ((pos + (PMD_SIZE - 1)) >> PMD_SHIFT)
116 << (PMD_SHIFT - PAGE_SHIFT);
117 #endif
118 if (end_pfn > (end >> PAGE_SHIFT))
119 end_pfn = end >> PAGE_SHIFT;
120 if (start_pfn < end_pfn) {
121 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
122 pos = end_pfn << PAGE_SHIFT;
123 }
124
125 /* big page (2M) range */
126 start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
127 << (PMD_SHIFT - PAGE_SHIFT);
128 #ifdef CONFIG_X86_32
129 end_pfn = (end>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
130 #else /* CONFIG_X86_64 */
131 end_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT)
132 << (PUD_SHIFT - PAGE_SHIFT);
133 if (end_pfn > ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT)))
134 end_pfn = ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT));
135 #endif
136
137 if (start_pfn < end_pfn) {
138 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
139 page_size_mask & (1<<PG_LEVEL_2M));
140 pos = end_pfn << PAGE_SHIFT;
141 }
142
143 #ifdef CONFIG_X86_64
144 /* big page (1G) range */
145 start_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT)
146 << (PUD_SHIFT - PAGE_SHIFT);
147 end_pfn = (end >> PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT);
148 if (start_pfn < end_pfn) {
149 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
150 page_size_mask &
151 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
152 pos = end_pfn << PAGE_SHIFT;
153 }
154
155 /* tail is not big page (1G) alignment */
156 start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
157 << (PMD_SHIFT - PAGE_SHIFT);
158 end_pfn = (end >> PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
159 if (start_pfn < end_pfn) {
160 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
161 page_size_mask & (1<<PG_LEVEL_2M));
162 pos = end_pfn << PAGE_SHIFT;
163 }
164 #endif
165
166 /* tail is not big page (2M) alignment */
167 start_pfn = pos>>PAGE_SHIFT;
168 end_pfn = end>>PAGE_SHIFT;
169 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
170
171 /* try to merge same page size and continuous */
172 for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
173 unsigned long old_start;
174 if (mr[i].end != mr[i+1].start ||
175 mr[i].page_size_mask != mr[i+1].page_size_mask)
176 continue;
177 /* move it */
178 old_start = mr[i].start;
179 memmove(&mr[i], &mr[i+1],
180 (nr_range - 1 - i) * sizeof(struct map_range));
181 mr[i--].start = old_start;
182 nr_range--;
183 }
184
185 for (i = 0; i < nr_range; i++)
186 printk(KERN_DEBUG " [mem %#010lx-%#010lx] page %s\n",
187 mr[i].start, mr[i].end - 1,
188 (mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
189 (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
190
191 return nr_range;
192 }
193
194 /*
195 * First calculate space needed for kernel direct mapping page tables to cover
196 * mr[0].start to mr[nr_range - 1].end, while accounting for possible 2M and 1GB
197 * pages. Then find enough contiguous space for those page tables.
198 */
199 static void __init find_early_table_space(unsigned long start, unsigned long end)
200 {
201 int i;
202 unsigned long puds = 0, pmds = 0, ptes = 0, tables;
203 unsigned long good_end;
204 phys_addr_t base;
205 struct map_range mr[NR_RANGE_MR];
206 int nr_range;
207
208 memset(mr, 0, sizeof(mr));
209 nr_range = 0;
210 nr_range = split_mem_range(mr, nr_range, start, end);
211
212 for (i = 0; i < nr_range; i++) {
213 unsigned long range, extra;
214
215 range = mr[i].end - mr[i].start;
216 puds += (range + PUD_SIZE - 1) >> PUD_SHIFT;
217
218 if (mr[i].page_size_mask & (1 << PG_LEVEL_1G)) {
219 extra = range - ((range >> PUD_SHIFT) << PUD_SHIFT);
220 pmds += (extra + PMD_SIZE - 1) >> PMD_SHIFT;
221 } else {
222 pmds += (range + PMD_SIZE - 1) >> PMD_SHIFT;
223 }
224
225 if (mr[i].page_size_mask & (1 << PG_LEVEL_2M)) {
226 extra = range - ((range >> PMD_SHIFT) << PMD_SHIFT);
227 #ifdef CONFIG_X86_32
228 extra += PMD_SIZE;
229 #endif
230 ptes += (extra + PAGE_SIZE - 1) >> PAGE_SHIFT;
231 } else {
232 ptes += (range + PAGE_SIZE - 1) >> PAGE_SHIFT;
233 }
234 }
235
236 tables = roundup(puds * sizeof(pud_t), PAGE_SIZE);
237 tables += roundup(pmds * sizeof(pmd_t), PAGE_SIZE);
238 tables += roundup(ptes * sizeof(pte_t), PAGE_SIZE);
239
240 #ifdef CONFIG_X86_32
241 /* for fixmap */
242 tables += roundup(__end_of_fixed_addresses * sizeof(pte_t), PAGE_SIZE);
243 good_end = max_pfn_mapped << PAGE_SHIFT;
244 #endif
245
246 base = memblock_find_in_range(start, good_end, tables, PAGE_SIZE);
247 if (!base)
248 panic("Cannot find space for the kernel page tables");
249
250 pgt_buf_start = base >> PAGE_SHIFT;
251 pgt_buf_end = pgt_buf_start;
252 pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
253
254 printk(KERN_DEBUG "kernel direct mapping tables up to %#lx @ [mem %#010lx-%#010lx]\n",
255 mr[nr_range - 1].end - 1, pgt_buf_start << PAGE_SHIFT,
256 (pgt_buf_top << PAGE_SHIFT) - 1);
257 }
258
259 /*
260 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
261 * This runs before bootmem is initialized and gets pages directly from
262 * the physical memory. To access them they are temporarily mapped.
263 */
264 unsigned long __init_refok init_memory_mapping(unsigned long start,
265 unsigned long end)
266 {
267 struct map_range mr[NR_RANGE_MR];
268 unsigned long ret = 0;
269 int nr_range, i;
270
271 pr_info("init_memory_mapping: [mem %#010lx-%#010lx]\n",
272 start, end - 1);
273
274 memset(mr, 0, sizeof(mr));
275 nr_range = split_mem_range(mr, 0, start, end);
276
277 /*
278 * Find space for the kernel direct mapping tables.
279 *
280 * Later we should allocate these tables in the local node of the
281 * memory mapped. Unfortunately this is done currently before the
282 * nodes are discovered.
283 */
284 if (!after_bootmem)
285 find_early_table_space(start, end);
286
287 for (i = 0; i < nr_range; i++)
288 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
289 mr[i].page_size_mask);
290
291 #ifdef CONFIG_X86_32
292 early_ioremap_page_table_range_init();
293
294 load_cr3(swapper_pg_dir);
295 #endif
296
297 __flush_tlb_all();
298
299 /*
300 * Reserve the kernel pagetable pages we used (pgt_buf_start -
301 * pgt_buf_end) and free the other ones (pgt_buf_end - pgt_buf_top)
302 * so that they can be reused for other purposes.
303 *
304 * On native it just means calling memblock_reserve, on Xen it also
305 * means marking RW the pagetable pages that we allocated before
306 * but that haven't been used.
307 *
308 * In fact on xen we mark RO the whole range pgt_buf_start -
309 * pgt_buf_top, because we have to make sure that when
310 * init_memory_mapping reaches the pagetable pages area, it maps
311 * RO all the pagetable pages, including the ones that are beyond
312 * pgt_buf_end at that time.
313 */
314 if (!after_bootmem && pgt_buf_end > pgt_buf_start)
315 x86_init.mapping.pagetable_reserve(PFN_PHYS(pgt_buf_start),
316 PFN_PHYS(pgt_buf_end));
317
318 if (!after_bootmem)
319 early_memtest(start, end);
320
321 return ret >> PAGE_SHIFT;
322 }
323
324 void __init init_mem_mapping(void)
325 {
326 probe_page_size_mask();
327
328 /* max_pfn_mapped is updated here */
329 max_low_pfn_mapped = init_memory_mapping(0, max_low_pfn<<PAGE_SHIFT);
330 max_pfn_mapped = max_low_pfn_mapped;
331
332 #ifdef CONFIG_X86_64
333 if (max_pfn > max_low_pfn) {
334 max_pfn_mapped = init_memory_mapping(1UL<<32,
335 max_pfn<<PAGE_SHIFT);
336 /* can we preseve max_low_pfn ?*/
337 max_low_pfn = max_pfn;
338 }
339 #endif
340 }
341
342 /*
343 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
344 * is valid. The argument is a physical page number.
345 *
346 *
347 * On x86, access has to be given to the first megabyte of ram because that area
348 * contains bios code and data regions used by X and dosemu and similar apps.
349 * Access has to be given to non-kernel-ram areas as well, these contain the PCI
350 * mmio resources as well as potential bios/acpi data regions.
351 */
352 int devmem_is_allowed(unsigned long pagenr)
353 {
354 if (pagenr < 256)
355 return 1;
356 if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
357 return 0;
358 if (!page_is_ram(pagenr))
359 return 1;
360 return 0;
361 }
362
363 void free_init_pages(char *what, unsigned long begin, unsigned long end)
364 {
365 unsigned long addr;
366 unsigned long begin_aligned, end_aligned;
367
368 /* Make sure boundaries are page aligned */
369 begin_aligned = PAGE_ALIGN(begin);
370 end_aligned = end & PAGE_MASK;
371
372 if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
373 begin = begin_aligned;
374 end = end_aligned;
375 }
376
377 if (begin >= end)
378 return;
379
380 addr = begin;
381
382 /*
383 * If debugging page accesses then do not free this memory but
384 * mark them not present - any buggy init-section access will
385 * create a kernel page fault:
386 */
387 #ifdef CONFIG_DEBUG_PAGEALLOC
388 printk(KERN_INFO "debug: unmapping init [mem %#010lx-%#010lx]\n",
389 begin, end - 1);
390 set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
391 #else
392 /*
393 * We just marked the kernel text read only above, now that
394 * we are going to free part of that, we need to make that
395 * writeable and non-executable first.
396 */
397 set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
398 set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
399
400 printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
401
402 for (; addr < end; addr += PAGE_SIZE) {
403 ClearPageReserved(virt_to_page(addr));
404 init_page_count(virt_to_page(addr));
405 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
406 free_page(addr);
407 totalram_pages++;
408 }
409 #endif
410 }
411
412 void free_initmem(void)
413 {
414 free_init_pages("unused kernel memory",
415 (unsigned long)(&__init_begin),
416 (unsigned long)(&__init_end));
417 }
418
419 #ifdef CONFIG_BLK_DEV_INITRD
420 void __init free_initrd_mem(unsigned long start, unsigned long end)
421 {
422 /*
423 * end could be not aligned, and We can not align that,
424 * decompresser could be confused by aligned initrd_end
425 * We already reserve the end partial page before in
426 * - i386_start_kernel()
427 * - x86_64_start_kernel()
428 * - relocate_initrd()
429 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
430 */
431 free_init_pages("initrd memory", start, PAGE_ALIGN(end));
432 }
433 #endif
434
435 void __init zone_sizes_init(void)
436 {
437 unsigned long max_zone_pfns[MAX_NR_ZONES];
438
439 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
440
441 #ifdef CONFIG_ZONE_DMA
442 max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
443 #endif
444 #ifdef CONFIG_ZONE_DMA32
445 max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
446 #endif
447 max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
448 #ifdef CONFIG_HIGHMEM
449 max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
450 #endif
451
452 free_area_init_nodes(max_zone_pfns);
453 }
454