]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/mm/init.c
Merge tag 'arc-4.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / mm / init.c
1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/bootmem.h> /* for max_low_pfn */
7
8 #include <asm/set_memory.h>
9 #include <asm/e820/api.h>
10 #include <asm/init.h>
11 #include <asm/page.h>
12 #include <asm/page_types.h>
13 #include <asm/sections.h>
14 #include <asm/setup.h>
15 #include <asm/tlbflush.h>
16 #include <asm/tlb.h>
17 #include <asm/proto.h>
18 #include <asm/dma.h> /* for MAX_DMA_PFN */
19 #include <asm/microcode.h>
20 #include <asm/kaslr.h>
21 #include <asm/hypervisor.h>
22 #include <asm/cpufeature.h>
23
24 /*
25 * We need to define the tracepoints somewhere, and tlb.c
26 * is only compied when SMP=y.
27 */
28 #define CREATE_TRACE_POINTS
29 #include <trace/events/tlb.h>
30
31 #include "mm_internal.h"
32
33 /*
34 * Tables translating between page_cache_type_t and pte encoding.
35 *
36 * The default values are defined statically as minimal supported mode;
37 * WC and WT fall back to UC-. pat_init() updates these values to support
38 * more cache modes, WC and WT, when it is safe to do so. See pat_init()
39 * for the details. Note, __early_ioremap() used during early boot-time
40 * takes pgprot_t (pte encoding) and does not use these tables.
41 *
42 * Index into __cachemode2pte_tbl[] is the cachemode.
43 *
44 * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
45 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
46 */
47 uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
48 [_PAGE_CACHE_MODE_WB ] = 0 | 0 ,
49 [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD,
50 [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD,
51 [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD,
52 [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD,
53 [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD,
54 };
55 EXPORT_SYMBOL(__cachemode2pte_tbl);
56
57 uint8_t __pte2cachemode_tbl[8] = {
58 [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB,
59 [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
60 [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
61 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC,
62 [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
63 [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
64 [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
65 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
66 };
67 EXPORT_SYMBOL(__pte2cachemode_tbl);
68
69 static unsigned long __initdata pgt_buf_start;
70 static unsigned long __initdata pgt_buf_end;
71 static unsigned long __initdata pgt_buf_top;
72
73 static unsigned long min_pfn_mapped;
74
75 static bool __initdata can_use_brk_pgt = true;
76
77 /*
78 * Pages returned are already directly mapped.
79 *
80 * Changing that is likely to break Xen, see commit:
81 *
82 * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
83 *
84 * for detailed information.
85 */
86 __ref void *alloc_low_pages(unsigned int num)
87 {
88 unsigned long pfn;
89 int i;
90
91 if (after_bootmem) {
92 unsigned int order;
93
94 order = get_order((unsigned long)num << PAGE_SHIFT);
95 return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
96 }
97
98 if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
99 unsigned long ret;
100 if (min_pfn_mapped >= max_pfn_mapped)
101 panic("alloc_low_pages: ran out of memory");
102 ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
103 max_pfn_mapped << PAGE_SHIFT,
104 PAGE_SIZE * num , PAGE_SIZE);
105 if (!ret)
106 panic("alloc_low_pages: can not alloc memory");
107 memblock_reserve(ret, PAGE_SIZE * num);
108 pfn = ret >> PAGE_SHIFT;
109 } else {
110 pfn = pgt_buf_end;
111 pgt_buf_end += num;
112 printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
113 pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
114 }
115
116 for (i = 0; i < num; i++) {
117 void *adr;
118
119 adr = __va((pfn + i) << PAGE_SHIFT);
120 clear_page(adr);
121 }
122
123 return __va(pfn << PAGE_SHIFT);
124 }
125
126 /*
127 * By default need 3 4k for initial PMD_SIZE, 3 4k for 0-ISA_END_ADDRESS.
128 * With KASLR memory randomization, depending on the machine e820 memory
129 * and the PUD alignment. We may need twice more pages when KASLR memory
130 * randomization is enabled.
131 */
132 #ifndef CONFIG_RANDOMIZE_MEMORY
133 #define INIT_PGD_PAGE_COUNT 6
134 #else
135 #define INIT_PGD_PAGE_COUNT 12
136 #endif
137 #define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
138 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
139 void __init early_alloc_pgt_buf(void)
140 {
141 unsigned long tables = INIT_PGT_BUF_SIZE;
142 phys_addr_t base;
143
144 base = __pa(extend_brk(tables, PAGE_SIZE));
145
146 pgt_buf_start = base >> PAGE_SHIFT;
147 pgt_buf_end = pgt_buf_start;
148 pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
149 }
150
151 int after_bootmem;
152
153 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
154
155 struct map_range {
156 unsigned long start;
157 unsigned long end;
158 unsigned page_size_mask;
159 };
160
161 static int page_size_mask;
162
163 static void __init probe_page_size_mask(void)
164 {
165 /*
166 * For pagealloc debugging, identity mapping will use small pages.
167 * This will simplify cpa(), which otherwise needs to support splitting
168 * large pages into small in interrupt context, etc.
169 */
170 if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
171 page_size_mask |= 1 << PG_LEVEL_2M;
172 else
173 direct_gbpages = 0;
174
175 /* Enable PSE if available */
176 if (boot_cpu_has(X86_FEATURE_PSE))
177 cr4_set_bits_and_update_boot(X86_CR4_PSE);
178
179 /* Enable PGE if available */
180 if (boot_cpu_has(X86_FEATURE_PGE)) {
181 cr4_set_bits_and_update_boot(X86_CR4_PGE);
182 __supported_pte_mask |= _PAGE_GLOBAL;
183 } else
184 __supported_pte_mask &= ~_PAGE_GLOBAL;
185
186 /* Enable 1 GB linear kernel mappings if available: */
187 if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
188 printk(KERN_INFO "Using GB pages for direct mapping\n");
189 page_size_mask |= 1 << PG_LEVEL_1G;
190 } else {
191 direct_gbpages = 0;
192 }
193 }
194
195 static void setup_pcid(void)
196 {
197 #ifdef CONFIG_X86_64
198 if (boot_cpu_has(X86_FEATURE_PCID)) {
199 if (boot_cpu_has(X86_FEATURE_PGE)) {
200 /*
201 * This can't be cr4_set_bits_and_update_boot() --
202 * the trampoline code can't handle CR4.PCIDE and
203 * it wouldn't do any good anyway. Despite the name,
204 * cr4_set_bits_and_update_boot() doesn't actually
205 * cause the bits in question to remain set all the
206 * way through the secondary boot asm.
207 *
208 * Instead, we brute-force it and set CR4.PCIDE
209 * manually in start_secondary().
210 */
211 cr4_set_bits(X86_CR4_PCIDE);
212 } else {
213 /*
214 * flush_tlb_all(), as currently implemented, won't
215 * work if PCID is on but PGE is not. Since that
216 * combination doesn't exist on real hardware, there's
217 * no reason to try to fully support it, but it's
218 * polite to avoid corrupting data if we're on
219 * an improperly configured VM.
220 */
221 setup_clear_cpu_cap(X86_FEATURE_PCID);
222 }
223 }
224 #endif
225 }
226
227 #ifdef CONFIG_X86_32
228 #define NR_RANGE_MR 3
229 #else /* CONFIG_X86_64 */
230 #define NR_RANGE_MR 5
231 #endif
232
233 static int __meminit save_mr(struct map_range *mr, int nr_range,
234 unsigned long start_pfn, unsigned long end_pfn,
235 unsigned long page_size_mask)
236 {
237 if (start_pfn < end_pfn) {
238 if (nr_range >= NR_RANGE_MR)
239 panic("run out of range for init_memory_mapping\n");
240 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
241 mr[nr_range].end = end_pfn<<PAGE_SHIFT;
242 mr[nr_range].page_size_mask = page_size_mask;
243 nr_range++;
244 }
245
246 return nr_range;
247 }
248
249 /*
250 * adjust the page_size_mask for small range to go with
251 * big page size instead small one if nearby are ram too.
252 */
253 static void __ref adjust_range_page_size_mask(struct map_range *mr,
254 int nr_range)
255 {
256 int i;
257
258 for (i = 0; i < nr_range; i++) {
259 if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
260 !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
261 unsigned long start = round_down(mr[i].start, PMD_SIZE);
262 unsigned long end = round_up(mr[i].end, PMD_SIZE);
263
264 #ifdef CONFIG_X86_32
265 if ((end >> PAGE_SHIFT) > max_low_pfn)
266 continue;
267 #endif
268
269 if (memblock_is_region_memory(start, end - start))
270 mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
271 }
272 if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
273 !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
274 unsigned long start = round_down(mr[i].start, PUD_SIZE);
275 unsigned long end = round_up(mr[i].end, PUD_SIZE);
276
277 if (memblock_is_region_memory(start, end - start))
278 mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
279 }
280 }
281 }
282
283 static const char *page_size_string(struct map_range *mr)
284 {
285 static const char str_1g[] = "1G";
286 static const char str_2m[] = "2M";
287 static const char str_4m[] = "4M";
288 static const char str_4k[] = "4k";
289
290 if (mr->page_size_mask & (1<<PG_LEVEL_1G))
291 return str_1g;
292 /*
293 * 32-bit without PAE has a 4M large page size.
294 * PG_LEVEL_2M is misnamed, but we can at least
295 * print out the right size in the string.
296 */
297 if (IS_ENABLED(CONFIG_X86_32) &&
298 !IS_ENABLED(CONFIG_X86_PAE) &&
299 mr->page_size_mask & (1<<PG_LEVEL_2M))
300 return str_4m;
301
302 if (mr->page_size_mask & (1<<PG_LEVEL_2M))
303 return str_2m;
304
305 return str_4k;
306 }
307
308 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
309 unsigned long start,
310 unsigned long end)
311 {
312 unsigned long start_pfn, end_pfn, limit_pfn;
313 unsigned long pfn;
314 int i;
315
316 limit_pfn = PFN_DOWN(end);
317
318 /* head if not big page alignment ? */
319 pfn = start_pfn = PFN_DOWN(start);
320 #ifdef CONFIG_X86_32
321 /*
322 * Don't use a large page for the first 2/4MB of memory
323 * because there are often fixed size MTRRs in there
324 * and overlapping MTRRs into large pages can cause
325 * slowdowns.
326 */
327 if (pfn == 0)
328 end_pfn = PFN_DOWN(PMD_SIZE);
329 else
330 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
331 #else /* CONFIG_X86_64 */
332 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
333 #endif
334 if (end_pfn > limit_pfn)
335 end_pfn = limit_pfn;
336 if (start_pfn < end_pfn) {
337 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
338 pfn = end_pfn;
339 }
340
341 /* big page (2M) range */
342 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
343 #ifdef CONFIG_X86_32
344 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
345 #else /* CONFIG_X86_64 */
346 end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
347 if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
348 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
349 #endif
350
351 if (start_pfn < end_pfn) {
352 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
353 page_size_mask & (1<<PG_LEVEL_2M));
354 pfn = end_pfn;
355 }
356
357 #ifdef CONFIG_X86_64
358 /* big page (1G) range */
359 start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
360 end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
361 if (start_pfn < end_pfn) {
362 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
363 page_size_mask &
364 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
365 pfn = end_pfn;
366 }
367
368 /* tail is not big page (1G) alignment */
369 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
370 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
371 if (start_pfn < end_pfn) {
372 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
373 page_size_mask & (1<<PG_LEVEL_2M));
374 pfn = end_pfn;
375 }
376 #endif
377
378 /* tail is not big page (2M) alignment */
379 start_pfn = pfn;
380 end_pfn = limit_pfn;
381 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
382
383 if (!after_bootmem)
384 adjust_range_page_size_mask(mr, nr_range);
385
386 /* try to merge same page size and continuous */
387 for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
388 unsigned long old_start;
389 if (mr[i].end != mr[i+1].start ||
390 mr[i].page_size_mask != mr[i+1].page_size_mask)
391 continue;
392 /* move it */
393 old_start = mr[i].start;
394 memmove(&mr[i], &mr[i+1],
395 (nr_range - 1 - i) * sizeof(struct map_range));
396 mr[i--].start = old_start;
397 nr_range--;
398 }
399
400 for (i = 0; i < nr_range; i++)
401 pr_debug(" [mem %#010lx-%#010lx] page %s\n",
402 mr[i].start, mr[i].end - 1,
403 page_size_string(&mr[i]));
404
405 return nr_range;
406 }
407
408 struct range pfn_mapped[E820_MAX_ENTRIES];
409 int nr_pfn_mapped;
410
411 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
412 {
413 nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
414 nr_pfn_mapped, start_pfn, end_pfn);
415 nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
416
417 max_pfn_mapped = max(max_pfn_mapped, end_pfn);
418
419 if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
420 max_low_pfn_mapped = max(max_low_pfn_mapped,
421 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
422 }
423
424 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
425 {
426 int i;
427
428 for (i = 0; i < nr_pfn_mapped; i++)
429 if ((start_pfn >= pfn_mapped[i].start) &&
430 (end_pfn <= pfn_mapped[i].end))
431 return true;
432
433 return false;
434 }
435
436 /*
437 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
438 * This runs before bootmem is initialized and gets pages directly from
439 * the physical memory. To access them they are temporarily mapped.
440 */
441 unsigned long __ref init_memory_mapping(unsigned long start,
442 unsigned long end)
443 {
444 struct map_range mr[NR_RANGE_MR];
445 unsigned long ret = 0;
446 int nr_range, i;
447
448 pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
449 start, end - 1);
450
451 memset(mr, 0, sizeof(mr));
452 nr_range = split_mem_range(mr, 0, start, end);
453
454 for (i = 0; i < nr_range; i++)
455 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
456 mr[i].page_size_mask);
457
458 add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
459
460 return ret >> PAGE_SHIFT;
461 }
462
463 /*
464 * We need to iterate through the E820 memory map and create direct mappings
465 * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
466 * create direct mappings for all pfns from [0 to max_low_pfn) and
467 * [4GB to max_pfn) because of possible memory holes in high addresses
468 * that cannot be marked as UC by fixed/variable range MTRRs.
469 * Depending on the alignment of E820 ranges, this may possibly result
470 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
471 *
472 * init_mem_mapping() calls init_range_memory_mapping() with big range.
473 * That range would have hole in the middle or ends, and only ram parts
474 * will be mapped in init_range_memory_mapping().
475 */
476 static unsigned long __init init_range_memory_mapping(
477 unsigned long r_start,
478 unsigned long r_end)
479 {
480 unsigned long start_pfn, end_pfn;
481 unsigned long mapped_ram_size = 0;
482 int i;
483
484 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
485 u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
486 u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
487 if (start >= end)
488 continue;
489
490 /*
491 * if it is overlapping with brk pgt, we need to
492 * alloc pgt buf from memblock instead.
493 */
494 can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
495 min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
496 init_memory_mapping(start, end);
497 mapped_ram_size += end - start;
498 can_use_brk_pgt = true;
499 }
500
501 return mapped_ram_size;
502 }
503
504 static unsigned long __init get_new_step_size(unsigned long step_size)
505 {
506 /*
507 * Initial mapped size is PMD_SIZE (2M).
508 * We can not set step_size to be PUD_SIZE (1G) yet.
509 * In worse case, when we cross the 1G boundary, and
510 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
511 * to map 1G range with PTE. Hence we use one less than the
512 * difference of page table level shifts.
513 *
514 * Don't need to worry about overflow in the top-down case, on 32bit,
515 * when step_size is 0, round_down() returns 0 for start, and that
516 * turns it into 0x100000000ULL.
517 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
518 * needs to be taken into consideration by the code below.
519 */
520 return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
521 }
522
523 /**
524 * memory_map_top_down - Map [map_start, map_end) top down
525 * @map_start: start address of the target memory range
526 * @map_end: end address of the target memory range
527 *
528 * This function will setup direct mapping for memory range
529 * [map_start, map_end) in top-down. That said, the page tables
530 * will be allocated at the end of the memory, and we map the
531 * memory in top-down.
532 */
533 static void __init memory_map_top_down(unsigned long map_start,
534 unsigned long map_end)
535 {
536 unsigned long real_end, start, last_start;
537 unsigned long step_size;
538 unsigned long addr;
539 unsigned long mapped_ram_size = 0;
540
541 /* xen has big range in reserved near end of ram, skip it at first.*/
542 addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
543 real_end = addr + PMD_SIZE;
544
545 /* step_size need to be small so pgt_buf from BRK could cover it */
546 step_size = PMD_SIZE;
547 max_pfn_mapped = 0; /* will get exact value next */
548 min_pfn_mapped = real_end >> PAGE_SHIFT;
549 last_start = start = real_end;
550
551 /*
552 * We start from the top (end of memory) and go to the bottom.
553 * The memblock_find_in_range() gets us a block of RAM from the
554 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
555 * for page table.
556 */
557 while (last_start > map_start) {
558 if (last_start > step_size) {
559 start = round_down(last_start - 1, step_size);
560 if (start < map_start)
561 start = map_start;
562 } else
563 start = map_start;
564 mapped_ram_size += init_range_memory_mapping(start,
565 last_start);
566 last_start = start;
567 min_pfn_mapped = last_start >> PAGE_SHIFT;
568 if (mapped_ram_size >= step_size)
569 step_size = get_new_step_size(step_size);
570 }
571
572 if (real_end < map_end)
573 init_range_memory_mapping(real_end, map_end);
574 }
575
576 /**
577 * memory_map_bottom_up - Map [map_start, map_end) bottom up
578 * @map_start: start address of the target memory range
579 * @map_end: end address of the target memory range
580 *
581 * This function will setup direct mapping for memory range
582 * [map_start, map_end) in bottom-up. Since we have limited the
583 * bottom-up allocation above the kernel, the page tables will
584 * be allocated just above the kernel and we map the memory
585 * in [map_start, map_end) in bottom-up.
586 */
587 static void __init memory_map_bottom_up(unsigned long map_start,
588 unsigned long map_end)
589 {
590 unsigned long next, start;
591 unsigned long mapped_ram_size = 0;
592 /* step_size need to be small so pgt_buf from BRK could cover it */
593 unsigned long step_size = PMD_SIZE;
594
595 start = map_start;
596 min_pfn_mapped = start >> PAGE_SHIFT;
597
598 /*
599 * We start from the bottom (@map_start) and go to the top (@map_end).
600 * The memblock_find_in_range() gets us a block of RAM from the
601 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
602 * for page table.
603 */
604 while (start < map_end) {
605 if (step_size && map_end - start > step_size) {
606 next = round_up(start + 1, step_size);
607 if (next > map_end)
608 next = map_end;
609 } else {
610 next = map_end;
611 }
612
613 mapped_ram_size += init_range_memory_mapping(start, next);
614 start = next;
615
616 if (mapped_ram_size >= step_size)
617 step_size = get_new_step_size(step_size);
618 }
619 }
620
621 void __init init_mem_mapping(void)
622 {
623 unsigned long end;
624
625 probe_page_size_mask();
626 setup_pcid();
627
628 #ifdef CONFIG_X86_64
629 end = max_pfn << PAGE_SHIFT;
630 #else
631 end = max_low_pfn << PAGE_SHIFT;
632 #endif
633
634 /* the ISA range is always mapped regardless of memory holes */
635 init_memory_mapping(0, ISA_END_ADDRESS);
636
637 /* Init the trampoline, possibly with KASLR memory offset */
638 init_trampoline();
639
640 /*
641 * If the allocation is in bottom-up direction, we setup direct mapping
642 * in bottom-up, otherwise we setup direct mapping in top-down.
643 */
644 if (memblock_bottom_up()) {
645 unsigned long kernel_end = __pa_symbol(_end);
646
647 /*
648 * we need two separate calls here. This is because we want to
649 * allocate page tables above the kernel. So we first map
650 * [kernel_end, end) to make memory above the kernel be mapped
651 * as soon as possible. And then use page tables allocated above
652 * the kernel to map [ISA_END_ADDRESS, kernel_end).
653 */
654 memory_map_bottom_up(kernel_end, end);
655 memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
656 } else {
657 memory_map_top_down(ISA_END_ADDRESS, end);
658 }
659
660 #ifdef CONFIG_X86_64
661 if (max_pfn > max_low_pfn) {
662 /* can we preseve max_low_pfn ?*/
663 max_low_pfn = max_pfn;
664 }
665 #else
666 early_ioremap_page_table_range_init();
667 #endif
668
669 load_cr3(swapper_pg_dir);
670 __flush_tlb_all();
671
672 x86_init.hyper.init_mem_mapping();
673
674 early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
675 }
676
677 /*
678 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
679 * is valid. The argument is a physical page number.
680 *
681 * On x86, access has to be given to the first megabyte of RAM because that
682 * area traditionally contains BIOS code and data regions used by X, dosemu,
683 * and similar apps. Since they map the entire memory range, the whole range
684 * must be allowed (for mapping), but any areas that would otherwise be
685 * disallowed are flagged as being "zero filled" instead of rejected.
686 * Access has to be given to non-kernel-ram areas as well, these contain the
687 * PCI mmio resources as well as potential bios/acpi data regions.
688 */
689 int devmem_is_allowed(unsigned long pagenr)
690 {
691 if (page_is_ram(pagenr)) {
692 /*
693 * For disallowed memory regions in the low 1MB range,
694 * request that the page be shown as all zeros.
695 */
696 if (pagenr < 256)
697 return 2;
698
699 return 0;
700 }
701
702 /*
703 * This must follow RAM test, since System RAM is considered a
704 * restricted resource under CONFIG_STRICT_IOMEM.
705 */
706 if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
707 /* Low 1MB bypasses iomem restrictions. */
708 if (pagenr < 256)
709 return 1;
710
711 return 0;
712 }
713
714 return 1;
715 }
716
717 void free_init_pages(char *what, unsigned long begin, unsigned long end)
718 {
719 unsigned long begin_aligned, end_aligned;
720
721 /* Make sure boundaries are page aligned */
722 begin_aligned = PAGE_ALIGN(begin);
723 end_aligned = end & PAGE_MASK;
724
725 if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
726 begin = begin_aligned;
727 end = end_aligned;
728 }
729
730 if (begin >= end)
731 return;
732
733 /*
734 * If debugging page accesses then do not free this memory but
735 * mark them not present - any buggy init-section access will
736 * create a kernel page fault:
737 */
738 if (debug_pagealloc_enabled()) {
739 pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
740 begin, end - 1);
741 set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
742 } else {
743 /*
744 * We just marked the kernel text read only above, now that
745 * we are going to free part of that, we need to make that
746 * writeable and non-executable first.
747 */
748 set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
749 set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
750
751 free_reserved_area((void *)begin, (void *)end,
752 POISON_FREE_INITMEM, what);
753 }
754 }
755
756 void __ref free_initmem(void)
757 {
758 e820__reallocate_tables();
759
760 free_init_pages("unused kernel",
761 (unsigned long)(&__init_begin),
762 (unsigned long)(&__init_end));
763 }
764
765 #ifdef CONFIG_BLK_DEV_INITRD
766 void __init free_initrd_mem(unsigned long start, unsigned long end)
767 {
768 /*
769 * end could be not aligned, and We can not align that,
770 * decompresser could be confused by aligned initrd_end
771 * We already reserve the end partial page before in
772 * - i386_start_kernel()
773 * - x86_64_start_kernel()
774 * - relocate_initrd()
775 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
776 */
777 free_init_pages("initrd", start, PAGE_ALIGN(end));
778 }
779 #endif
780
781 /*
782 * Calculate the precise size of the DMA zone (first 16 MB of RAM),
783 * and pass it to the MM layer - to help it set zone watermarks more
784 * accurately.
785 *
786 * Done on 64-bit systems only for the time being, although 32-bit systems
787 * might benefit from this as well.
788 */
789 void __init memblock_find_dma_reserve(void)
790 {
791 #ifdef CONFIG_X86_64
792 u64 nr_pages = 0, nr_free_pages = 0;
793 unsigned long start_pfn, end_pfn;
794 phys_addr_t start_addr, end_addr;
795 int i;
796 u64 u;
797
798 /*
799 * Iterate over all memory ranges (free and reserved ones alike),
800 * to calculate the total number of pages in the first 16 MB of RAM:
801 */
802 nr_pages = 0;
803 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
804 start_pfn = min(start_pfn, MAX_DMA_PFN);
805 end_pfn = min(end_pfn, MAX_DMA_PFN);
806
807 nr_pages += end_pfn - start_pfn;
808 }
809
810 /*
811 * Iterate over free memory ranges to calculate the number of free
812 * pages in the DMA zone, while not counting potential partial
813 * pages at the beginning or the end of the range:
814 */
815 nr_free_pages = 0;
816 for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
817 start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
818 end_pfn = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
819
820 if (start_pfn < end_pfn)
821 nr_free_pages += end_pfn - start_pfn;
822 }
823
824 set_dma_reserve(nr_pages - nr_free_pages);
825 #endif
826 }
827
828 void __init zone_sizes_init(void)
829 {
830 unsigned long max_zone_pfns[MAX_NR_ZONES];
831
832 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
833
834 #ifdef CONFIG_ZONE_DMA
835 max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn);
836 #endif
837 #ifdef CONFIG_ZONE_DMA32
838 max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn);
839 #endif
840 max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
841 #ifdef CONFIG_HIGHMEM
842 max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
843 #endif
844
845 free_area_init_nodes(max_zone_pfns);
846 }
847
848 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
849 .loaded_mm = &init_mm,
850 .next_asid = 1,
851 .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */
852 };
853 EXPORT_SYMBOL_GPL(cpu_tlbstate);
854
855 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
856 {
857 /* entry 0 MUST be WB (hardwired to speed up translations) */
858 BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
859
860 __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
861 __pte2cachemode_tbl[entry] = cache;
862 }