]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/mm/init_64.c
955dbc8abf6abc4e6bc6c73599840d82f7ae4d92
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / mm / init_64.c
1 /*
2 * linux/arch/x86_64/mm/init.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
6 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7 */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/proc_fs.h>
25 #include <linux/pci.h>
26 #include <linux/pfn.h>
27 #include <linux/poison.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/module.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/nmi.h>
32
33 #include <asm/processor.h>
34 #include <asm/system.h>
35 #include <asm/uaccess.h>
36 #include <asm/pgtable.h>
37 #include <asm/pgalloc.h>
38 #include <asm/dma.h>
39 #include <asm/fixmap.h>
40 #include <asm/e820.h>
41 #include <asm/apic.h>
42 #include <asm/tlb.h>
43 #include <asm/mmu_context.h>
44 #include <asm/proto.h>
45 #include <asm/smp.h>
46 #include <asm/sections.h>
47 #include <asm/kdebug.h>
48 #include <asm/numa.h>
49 #include <asm/cacheflush.h>
50
51 /*
52 * PFN of last memory page.
53 */
54 unsigned long end_pfn;
55
56 /*
57 * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries.
58 * The direct mapping extends to max_pfn_mapped, so that we can directly access
59 * apertures, ACPI and other tables without having to play with fixmaps.
60 */
61 unsigned long max_pfn_mapped;
62
63 static unsigned long dma_reserve __initdata;
64
65 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
66
67 int direct_gbpages __meminitdata
68 #ifdef CONFIG_DIRECT_GBPAGES
69 = 1
70 #endif
71 ;
72
73 static int __init parse_direct_gbpages_off(char *arg)
74 {
75 direct_gbpages = 0;
76 return 0;
77 }
78 early_param("nogbpages", parse_direct_gbpages_off);
79
80 static int __init parse_direct_gbpages_on(char *arg)
81 {
82 direct_gbpages = 1;
83 return 0;
84 }
85 early_param("gbpages", parse_direct_gbpages_on);
86
87 /*
88 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
89 * physical space so we can cache the place of the first one and move
90 * around without checking the pgd every time.
91 */
92
93 void show_mem(void)
94 {
95 long i, total = 0, reserved = 0;
96 long shared = 0, cached = 0;
97 struct page *page;
98 pg_data_t *pgdat;
99
100 printk(KERN_INFO "Mem-info:\n");
101 show_free_areas();
102 for_each_online_pgdat(pgdat) {
103 for (i = 0; i < pgdat->node_spanned_pages; ++i) {
104 /*
105 * This loop can take a while with 256 GB and
106 * 4k pages so defer the NMI watchdog:
107 */
108 if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
109 touch_nmi_watchdog();
110
111 if (!pfn_valid(pgdat->node_start_pfn + i))
112 continue;
113
114 page = pfn_to_page(pgdat->node_start_pfn + i);
115 total++;
116 if (PageReserved(page))
117 reserved++;
118 else if (PageSwapCache(page))
119 cached++;
120 else if (page_count(page))
121 shared += page_count(page) - 1;
122 }
123 }
124 printk(KERN_INFO "%lu pages of RAM\n", total);
125 printk(KERN_INFO "%lu reserved pages\n", reserved);
126 printk(KERN_INFO "%lu pages shared\n", shared);
127 printk(KERN_INFO "%lu pages swap cached\n", cached);
128 }
129
130 int after_bootmem;
131
132 static __init void *spp_getpage(void)
133 {
134 void *ptr;
135
136 if (after_bootmem)
137 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
138 else
139 ptr = alloc_bootmem_pages(PAGE_SIZE);
140
141 if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
142 panic("set_pte_phys: cannot allocate page data %s\n",
143 after_bootmem ? "after bootmem" : "");
144 }
145
146 pr_debug("spp_getpage %p\n", ptr);
147
148 return ptr;
149 }
150
151 void
152 set_pte_vaddr(unsigned long vaddr, pte_t new_pte)
153 {
154 pgd_t *pgd;
155 pud_t *pud;
156 pmd_t *pmd;
157 pte_t *pte;
158
159 pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(new_pte));
160
161 pgd = pgd_offset_k(vaddr);
162 if (pgd_none(*pgd)) {
163 printk(KERN_ERR
164 "PGD FIXMAP MISSING, it should be setup in head.S!\n");
165 return;
166 }
167 pud = pud_offset(pgd, vaddr);
168 if (pud_none(*pud)) {
169 pmd = (pmd_t *) spp_getpage();
170 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | _PAGE_USER));
171 if (pmd != pmd_offset(pud, 0)) {
172 printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
173 pmd, pmd_offset(pud, 0));
174 return;
175 }
176 }
177 pmd = pmd_offset(pud, vaddr);
178 if (pmd_none(*pmd)) {
179 pte = (pte_t *) spp_getpage();
180 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE | _PAGE_USER));
181 if (pte != pte_offset_kernel(pmd, 0)) {
182 printk(KERN_ERR "PAGETABLE BUG #02!\n");
183 return;
184 }
185 }
186
187 pte = pte_offset_kernel(pmd, vaddr);
188 if (!pte_none(*pte) && pte_val(new_pte) &&
189 pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
190 pte_ERROR(*pte);
191 set_pte(pte, new_pte);
192
193 /*
194 * It's enough to flush this one mapping.
195 * (PGE mappings get flushed as well)
196 */
197 __flush_tlb_one(vaddr);
198 }
199
200 /*
201 * The head.S code sets up the kernel high mapping:
202 *
203 * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
204 *
205 * phys_addr holds the negative offset to the kernel, which is added
206 * to the compile time generated pmds. This results in invalid pmds up
207 * to the point where we hit the physaddr 0 mapping.
208 *
209 * We limit the mappings to the region from _text to _end. _end is
210 * rounded up to the 2MB boundary. This catches the invalid pmds as
211 * well, as they are located before _text:
212 */
213 void __init cleanup_highmap(void)
214 {
215 unsigned long vaddr = __START_KERNEL_map;
216 unsigned long end = round_up((unsigned long)_end, PMD_SIZE) - 1;
217 pmd_t *pmd = level2_kernel_pgt;
218 pmd_t *last_pmd = pmd + PTRS_PER_PMD;
219
220 for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
221 if (pmd_none(*pmd))
222 continue;
223 if (vaddr < (unsigned long) _text || vaddr > end)
224 set_pmd(pmd, __pmd(0));
225 }
226 }
227
228 static unsigned long __initdata table_start;
229 static unsigned long __meminitdata table_end;
230
231 static __meminit void *alloc_low_page(unsigned long *phys)
232 {
233 unsigned long pfn = table_end++;
234 void *adr;
235
236 if (after_bootmem) {
237 adr = (void *)get_zeroed_page(GFP_ATOMIC);
238 *phys = __pa(adr);
239
240 return adr;
241 }
242
243 if (pfn >= end_pfn)
244 panic("alloc_low_page: ran out of memory");
245
246 adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
247 memset(adr, 0, PAGE_SIZE);
248 *phys = pfn * PAGE_SIZE;
249 return adr;
250 }
251
252 static __meminit void unmap_low_page(void *adr)
253 {
254 if (after_bootmem)
255 return;
256
257 early_iounmap(adr, PAGE_SIZE);
258 }
259
260 /* Must run before zap_low_mappings */
261 __meminit void *early_ioremap(unsigned long addr, unsigned long size)
262 {
263 pmd_t *pmd, *last_pmd;
264 unsigned long vaddr;
265 int i, pmds;
266
267 pmds = ((addr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
268 vaddr = __START_KERNEL_map;
269 pmd = level2_kernel_pgt;
270 last_pmd = level2_kernel_pgt + PTRS_PER_PMD - 1;
271
272 for (; pmd <= last_pmd; pmd++, vaddr += PMD_SIZE) {
273 for (i = 0; i < pmds; i++) {
274 if (pmd_present(pmd[i]))
275 goto continue_outer_loop;
276 }
277 vaddr += addr & ~PMD_MASK;
278 addr &= PMD_MASK;
279
280 for (i = 0; i < pmds; i++, addr += PMD_SIZE)
281 set_pmd(pmd+i, __pmd(addr | __PAGE_KERNEL_LARGE_EXEC));
282 __flush_tlb_all();
283
284 return (void *)vaddr;
285 continue_outer_loop:
286 ;
287 }
288 printk(KERN_ERR "early_ioremap(0x%lx, %lu) failed\n", addr, size);
289
290 return NULL;
291 }
292
293 /*
294 * To avoid virtual aliases later:
295 */
296 __meminit void early_iounmap(void *addr, unsigned long size)
297 {
298 unsigned long vaddr;
299 pmd_t *pmd;
300 int i, pmds;
301
302 vaddr = (unsigned long)addr;
303 pmds = ((vaddr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
304 pmd = level2_kernel_pgt + pmd_index(vaddr);
305
306 for (i = 0; i < pmds; i++)
307 pmd_clear(pmd + i);
308
309 __flush_tlb_all();
310 }
311
312 static unsigned long __meminit
313 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end)
314 {
315 unsigned long pages = 0;
316
317 int i = pmd_index(address);
318
319 for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
320 pmd_t *pmd = pmd_page + pmd_index(address);
321
322 if (address >= end) {
323 if (!after_bootmem) {
324 for (; i < PTRS_PER_PMD; i++, pmd++)
325 set_pmd(pmd, __pmd(0));
326 }
327 break;
328 }
329
330 if (pmd_val(*pmd))
331 continue;
332
333 pages++;
334 set_pte((pte_t *)pmd,
335 pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
336 }
337 update_page_count(PG_LEVEL_2M, pages);
338 return address;
339 }
340
341 static unsigned long __meminit
342 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end)
343 {
344 pmd_t *pmd = pmd_offset(pud, 0);
345 unsigned long last_map_addr;
346
347 spin_lock(&init_mm.page_table_lock);
348 last_map_addr = phys_pmd_init(pmd, address, end);
349 spin_unlock(&init_mm.page_table_lock);
350 __flush_tlb_all();
351 return last_map_addr;
352 }
353
354 static unsigned long __meminit
355 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end)
356 {
357 unsigned long pages = 0;
358 unsigned long last_map_addr = end;
359 int i = pud_index(addr);
360
361 for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
362 unsigned long pmd_phys;
363 pud_t *pud = pud_page + pud_index(addr);
364 pmd_t *pmd;
365
366 if (addr >= end)
367 break;
368
369 if (!after_bootmem &&
370 !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
371 set_pud(pud, __pud(0));
372 continue;
373 }
374
375 if (pud_val(*pud)) {
376 if (!pud_large(*pud))
377 last_map_addr = phys_pmd_update(pud, addr, end);
378 continue;
379 }
380
381 if (direct_gbpages) {
382 pages++;
383 set_pte((pte_t *)pud,
384 pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
385 last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
386 continue;
387 }
388
389 pmd = alloc_low_page(&pmd_phys);
390
391 spin_lock(&init_mm.page_table_lock);
392 set_pud(pud, __pud(pmd_phys | _KERNPG_TABLE));
393 last_map_addr = phys_pmd_init(pmd, addr, end);
394 spin_unlock(&init_mm.page_table_lock);
395
396 unmap_low_page(pmd);
397 }
398 __flush_tlb_all();
399 update_page_count(PG_LEVEL_1G, pages);
400
401 return last_map_addr >> PAGE_SHIFT;
402 }
403
404 static void __init find_early_table_space(unsigned long end)
405 {
406 unsigned long puds, pmds, tables, start;
407
408 puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
409 tables = round_up(puds * sizeof(pud_t), PAGE_SIZE);
410 if (!direct_gbpages) {
411 pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
412 tables += round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
413 }
414
415 /*
416 * RED-PEN putting page tables only on node 0 could
417 * cause a hotspot and fill up ZONE_DMA. The page tables
418 * need roughly 0.5KB per GB.
419 */
420 start = 0x8000;
421 table_start = find_e820_area(start, end, tables, PAGE_SIZE);
422 if (table_start == -1UL)
423 panic("Cannot find space for the kernel page tables");
424
425 table_start >>= PAGE_SHIFT;
426 table_end = table_start;
427
428 early_printk("kernel direct mapping tables up to %lx @ %lx-%lx\n",
429 end, table_start << PAGE_SHIFT,
430 (table_start << PAGE_SHIFT) + tables);
431 }
432
433 static void __init init_gbpages(void)
434 {
435 if (direct_gbpages && cpu_has_gbpages)
436 printk(KERN_INFO "Using GB pages for direct mapping\n");
437 else
438 direct_gbpages = 0;
439 }
440
441 #ifdef CONFIG_MEMTEST
442
443 static void __init memtest(unsigned long start_phys, unsigned long size,
444 unsigned pattern)
445 {
446 unsigned long i;
447 unsigned long *start;
448 unsigned long start_bad;
449 unsigned long last_bad;
450 unsigned long val;
451 unsigned long start_phys_aligned;
452 unsigned long count;
453 unsigned long incr;
454
455 switch (pattern) {
456 case 0:
457 val = 0UL;
458 break;
459 case 1:
460 val = -1UL;
461 break;
462 case 2:
463 val = 0x5555555555555555UL;
464 break;
465 case 3:
466 val = 0xaaaaaaaaaaaaaaaaUL;
467 break;
468 default:
469 return;
470 }
471
472 incr = sizeof(unsigned long);
473 start_phys_aligned = ALIGN(start_phys, incr);
474 count = (size - (start_phys_aligned - start_phys))/incr;
475 start = __va(start_phys_aligned);
476 start_bad = 0;
477 last_bad = 0;
478
479 for (i = 0; i < count; i++)
480 start[i] = val;
481 for (i = 0; i < count; i++, start++, start_phys_aligned += incr) {
482 if (*start != val) {
483 if (start_phys_aligned == last_bad + incr) {
484 last_bad += incr;
485 } else {
486 if (start_bad) {
487 printk(KERN_CONT "\n %016lx bad mem addr %016lx - %016lx reserved",
488 val, start_bad, last_bad + incr);
489 reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
490 }
491 start_bad = last_bad = start_phys_aligned;
492 }
493 }
494 }
495 if (start_bad) {
496 printk(KERN_CONT "\n %016lx bad mem addr %016lx - %016lx reserved",
497 val, start_bad, last_bad + incr);
498 reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
499 }
500
501 }
502
503 /* default is disabled */
504 static int memtest_pattern __initdata;
505
506 static int __init parse_memtest(char *arg)
507 {
508 if (arg)
509 memtest_pattern = simple_strtoul(arg, NULL, 0);
510 return 0;
511 }
512
513 early_param("memtest", parse_memtest);
514
515 static void __init early_memtest(unsigned long start, unsigned long end)
516 {
517 u64 t_start, t_size;
518 unsigned pattern;
519
520 if (!memtest_pattern)
521 return;
522
523 printk(KERN_INFO "early_memtest: pattern num %d", memtest_pattern);
524 for (pattern = 0; pattern < memtest_pattern; pattern++) {
525 t_start = start;
526 t_size = 0;
527 while (t_start < end) {
528 t_start = find_e820_area_size(t_start, &t_size, 1);
529
530 /* done ? */
531 if (t_start >= end)
532 break;
533 if (t_start + t_size > end)
534 t_size = end - t_start;
535
536 printk(KERN_CONT "\n %016llx - %016llx pattern %d",
537 (unsigned long long)t_start,
538 (unsigned long long)t_start + t_size, pattern);
539
540 memtest(t_start, t_size, pattern);
541
542 t_start += t_size;
543 }
544 }
545 printk(KERN_CONT "\n");
546 }
547 #else
548 static void __init early_memtest(unsigned long start, unsigned long end)
549 {
550 }
551 #endif
552
553 /*
554 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
555 * This runs before bootmem is initialized and gets pages directly from
556 * the physical memory. To access them they are temporarily mapped.
557 */
558 unsigned long __init_refok init_memory_mapping(unsigned long start, unsigned long end)
559 {
560 unsigned long next, last_map_addr = end;
561 unsigned long start_phys = start, end_phys = end;
562
563 printk(KERN_INFO "init_memory_mapping\n");
564
565 /*
566 * Find space for the kernel direct mapping tables.
567 *
568 * Later we should allocate these tables in the local node of the
569 * memory mapped. Unfortunately this is done currently before the
570 * nodes are discovered.
571 */
572 if (!after_bootmem) {
573 init_gbpages();
574 find_early_table_space(end);
575 }
576
577 start = (unsigned long)__va(start);
578 end = (unsigned long)__va(end);
579
580 for (; start < end; start = next) {
581 pgd_t *pgd = pgd_offset_k(start);
582 unsigned long pud_phys;
583 pud_t *pud;
584
585 if (after_bootmem)
586 pud = pud_offset(pgd, start & PGDIR_MASK);
587 else
588 pud = alloc_low_page(&pud_phys);
589
590 next = start + PGDIR_SIZE;
591 if (next > end)
592 next = end;
593 last_map_addr = phys_pud_init(pud, __pa(start), __pa(next));
594 if (!after_bootmem)
595 set_pgd(pgd_offset_k(start), mk_kernel_pgd(pud_phys));
596 unmap_low_page(pud);
597 }
598
599 if (!after_bootmem)
600 mmu_cr4_features = read_cr4();
601 __flush_tlb_all();
602
603 if (!after_bootmem)
604 reserve_early(table_start << PAGE_SHIFT,
605 table_end << PAGE_SHIFT, "PGTABLE");
606
607 if (!after_bootmem)
608 early_memtest(start_phys, end_phys);
609
610 return last_map_addr;
611 }
612
613 #ifndef CONFIG_NUMA
614 void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn)
615 {
616 unsigned long bootmap_size, bootmap;
617
618 bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
619 bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
620 PAGE_SIZE);
621 if (bootmap == -1L)
622 panic("Cannot find bootmem map of size %ld\n", bootmap_size);
623 /* don't touch min_low_pfn */
624 bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
625 0, end_pfn);
626 e820_register_active_regions(0, start_pfn, end_pfn);
627 free_bootmem_with_active_regions(0, end_pfn);
628 early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT);
629 reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
630 }
631
632 void __init paging_init(void)
633 {
634 unsigned long max_zone_pfns[MAX_NR_ZONES];
635
636 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
637 max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
638 max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
639 max_zone_pfns[ZONE_NORMAL] = end_pfn;
640
641 memory_present(0, 0, end_pfn);
642 sparse_init();
643 free_area_init_nodes(max_zone_pfns);
644 }
645 #endif
646
647 /*
648 * Memory hotplug specific functions
649 */
650 #ifdef CONFIG_MEMORY_HOTPLUG
651 /*
652 * Memory is added always to NORMAL zone. This means you will never get
653 * additional DMA/DMA32 memory.
654 */
655 int arch_add_memory(int nid, u64 start, u64 size)
656 {
657 struct pglist_data *pgdat = NODE_DATA(nid);
658 struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
659 unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
660 unsigned long nr_pages = size >> PAGE_SHIFT;
661 int ret;
662
663 last_mapped_pfn = init_memory_mapping(start, start + size-1);
664 if (last_mapped_pfn > max_pfn_mapped)
665 max_pfn_mapped = last_mapped_pfn;
666
667 ret = __add_pages(zone, start_pfn, nr_pages);
668 WARN_ON(1);
669
670 return ret;
671 }
672 EXPORT_SYMBOL_GPL(arch_add_memory);
673
674 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
675 int memory_add_physaddr_to_nid(u64 start)
676 {
677 return 0;
678 }
679 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
680 #endif
681
682 #endif /* CONFIG_MEMORY_HOTPLUG */
683
684 /*
685 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
686 * is valid. The argument is a physical page number.
687 *
688 *
689 * On x86, access has to be given to the first megabyte of ram because that area
690 * contains bios code and data regions used by X and dosemu and similar apps.
691 * Access has to be given to non-kernel-ram areas as well, these contain the PCI
692 * mmio resources as well as potential bios/acpi data regions.
693 */
694 int devmem_is_allowed(unsigned long pagenr)
695 {
696 if (pagenr <= 256)
697 return 1;
698 if (!page_is_ram(pagenr))
699 return 1;
700 return 0;
701 }
702
703
704 static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
705 kcore_modules, kcore_vsyscall;
706
707 void __init mem_init(void)
708 {
709 long codesize, reservedpages, datasize, initsize;
710
711 pci_iommu_alloc();
712
713 /* clear_bss() already clear the empty_zero_page */
714
715 reservedpages = 0;
716
717 /* this will put all low memory onto the freelists */
718 #ifdef CONFIG_NUMA
719 totalram_pages = numa_free_all_bootmem();
720 #else
721 totalram_pages = free_all_bootmem();
722 #endif
723 reservedpages = end_pfn - totalram_pages -
724 absent_pages_in_range(0, end_pfn);
725 after_bootmem = 1;
726
727 codesize = (unsigned long) &_etext - (unsigned long) &_text;
728 datasize = (unsigned long) &_edata - (unsigned long) &_etext;
729 initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
730
731 /* Register memory areas for /proc/kcore */
732 kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
733 kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
734 VMALLOC_END-VMALLOC_START);
735 kclist_add(&kcore_kernel, &_stext, _end - _stext);
736 kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
737 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
738 VSYSCALL_END - VSYSCALL_START);
739
740 printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
741 "%ldk reserved, %ldk data, %ldk init)\n",
742 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
743 end_pfn << (PAGE_SHIFT-10),
744 codesize >> 10,
745 reservedpages << (PAGE_SHIFT-10),
746 datasize >> 10,
747 initsize >> 10);
748
749 cpa_init();
750 }
751
752 void free_init_pages(char *what, unsigned long begin, unsigned long end)
753 {
754 unsigned long addr = begin;
755
756 if (addr >= end)
757 return;
758
759 /*
760 * If debugging page accesses then do not free this memory but
761 * mark them not present - any buggy init-section access will
762 * create a kernel page fault:
763 */
764 #ifdef CONFIG_DEBUG_PAGEALLOC
765 printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
766 begin, PAGE_ALIGN(end));
767 set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
768 #else
769 printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
770
771 for (; addr < end; addr += PAGE_SIZE) {
772 ClearPageReserved(virt_to_page(addr));
773 init_page_count(virt_to_page(addr));
774 memset((void *)(addr & ~(PAGE_SIZE-1)),
775 POISON_FREE_INITMEM, PAGE_SIZE);
776 free_page(addr);
777 totalram_pages++;
778 }
779 #endif
780 }
781
782 void free_initmem(void)
783 {
784 free_init_pages("unused kernel memory",
785 (unsigned long)(&__init_begin),
786 (unsigned long)(&__init_end));
787 }
788
789 #ifdef CONFIG_DEBUG_RODATA
790 const int rodata_test_data = 0xC3;
791 EXPORT_SYMBOL_GPL(rodata_test_data);
792
793 void mark_rodata_ro(void)
794 {
795 unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
796
797 printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
798 (end - start) >> 10);
799 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
800
801 /*
802 * The rodata section (but not the kernel text!) should also be
803 * not-executable.
804 */
805 start = ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
806 set_memory_nx(start, (end - start) >> PAGE_SHIFT);
807
808 rodata_test();
809
810 #ifdef CONFIG_CPA_DEBUG
811 printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
812 set_memory_rw(start, (end-start) >> PAGE_SHIFT);
813
814 printk(KERN_INFO "Testing CPA: again\n");
815 set_memory_ro(start, (end-start) >> PAGE_SHIFT);
816 #endif
817 }
818
819 #endif
820
821 #ifdef CONFIG_BLK_DEV_INITRD
822 void free_initrd_mem(unsigned long start, unsigned long end)
823 {
824 free_init_pages("initrd memory", start, end);
825 }
826 #endif
827
828 int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
829 int flags)
830 {
831 #ifdef CONFIG_NUMA
832 int nid, next_nid;
833 #endif
834 unsigned long pfn = phys >> PAGE_SHIFT;
835 int ret;
836
837 if (pfn >= end_pfn) {
838 /*
839 * This can happen with kdump kernels when accessing
840 * firmware tables:
841 */
842 if (pfn < max_pfn_mapped)
843 return -EFAULT;
844
845 printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %u\n",
846 phys, len);
847 return -EFAULT;
848 }
849
850 /* Should check here against the e820 map to avoid double free */
851 #ifdef CONFIG_NUMA
852 nid = phys_to_nid(phys);
853 next_nid = phys_to_nid(phys + len - 1);
854 if (nid == next_nid)
855 ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
856 else
857 ret = reserve_bootmem(phys, len, flags);
858
859 if (ret != 0)
860 return ret;
861
862 #else
863 reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
864 #endif
865
866 if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
867 dma_reserve += len / PAGE_SIZE;
868 set_dma_reserve(dma_reserve);
869 }
870
871 return 0;
872 }
873
874 int kern_addr_valid(unsigned long addr)
875 {
876 unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
877 pgd_t *pgd;
878 pud_t *pud;
879 pmd_t *pmd;
880 pte_t *pte;
881
882 if (above != 0 && above != -1UL)
883 return 0;
884
885 pgd = pgd_offset_k(addr);
886 if (pgd_none(*pgd))
887 return 0;
888
889 pud = pud_offset(pgd, addr);
890 if (pud_none(*pud))
891 return 0;
892
893 pmd = pmd_offset(pud, addr);
894 if (pmd_none(*pmd))
895 return 0;
896
897 if (pmd_large(*pmd))
898 return pfn_valid(pmd_pfn(*pmd));
899
900 pte = pte_offset_kernel(pmd, addr);
901 if (pte_none(*pte))
902 return 0;
903
904 return pfn_valid(pte_pfn(*pte));
905 }
906
907 /*
908 * A pseudo VMA to allow ptrace access for the vsyscall page. This only
909 * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
910 * not need special handling anymore:
911 */
912 static struct vm_area_struct gate_vma = {
913 .vm_start = VSYSCALL_START,
914 .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
915 .vm_page_prot = PAGE_READONLY_EXEC,
916 .vm_flags = VM_READ | VM_EXEC
917 };
918
919 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
920 {
921 #ifdef CONFIG_IA32_EMULATION
922 if (test_tsk_thread_flag(tsk, TIF_IA32))
923 return NULL;
924 #endif
925 return &gate_vma;
926 }
927
928 int in_gate_area(struct task_struct *task, unsigned long addr)
929 {
930 struct vm_area_struct *vma = get_gate_vma(task);
931
932 if (!vma)
933 return 0;
934
935 return (addr >= vma->vm_start) && (addr < vma->vm_end);
936 }
937
938 /*
939 * Use this when you have no reliable task/vma, typically from interrupt
940 * context. It is less reliable than using the task's vma and may give
941 * false positives:
942 */
943 int in_gate_area_no_task(unsigned long addr)
944 {
945 return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
946 }
947
948 const char *arch_vma_name(struct vm_area_struct *vma)
949 {
950 if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
951 return "[vdso]";
952 if (vma == &gate_vma)
953 return "[vsyscall]";
954 return NULL;
955 }
956
957 #ifdef CONFIG_SPARSEMEM_VMEMMAP
958 /*
959 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
960 */
961 static long __meminitdata addr_start, addr_end;
962 static void __meminitdata *p_start, *p_end;
963 static int __meminitdata node_start;
964
965 int __meminit
966 vmemmap_populate(struct page *start_page, unsigned long size, int node)
967 {
968 unsigned long addr = (unsigned long)start_page;
969 unsigned long end = (unsigned long)(start_page + size);
970 unsigned long next;
971 pgd_t *pgd;
972 pud_t *pud;
973 pmd_t *pmd;
974
975 for (; addr < end; addr = next) {
976 next = pmd_addr_end(addr, end);
977
978 pgd = vmemmap_pgd_populate(addr, node);
979 if (!pgd)
980 return -ENOMEM;
981
982 pud = vmemmap_pud_populate(pgd, addr, node);
983 if (!pud)
984 return -ENOMEM;
985
986 pmd = pmd_offset(pud, addr);
987 if (pmd_none(*pmd)) {
988 pte_t entry;
989 void *p;
990
991 p = vmemmap_alloc_block(PMD_SIZE, node);
992 if (!p)
993 return -ENOMEM;
994
995 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
996 PAGE_KERNEL_LARGE);
997 set_pmd(pmd, __pmd(pte_val(entry)));
998
999 /* check to see if we have contiguous blocks */
1000 if (p_end != p || node_start != node) {
1001 if (p_start)
1002 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1003 addr_start, addr_end-1, p_start, p_end-1, node_start);
1004 addr_start = addr;
1005 node_start = node;
1006 p_start = p;
1007 }
1008 addr_end = addr + PMD_SIZE;
1009 p_end = p + PMD_SIZE;
1010 } else {
1011 vmemmap_verify((pte_t *)pmd, node, addr, next);
1012 }
1013 }
1014 return 0;
1015 }
1016
1017 void __meminit vmemmap_populate_print_last(void)
1018 {
1019 if (p_start) {
1020 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1021 addr_start, addr_end-1, p_start, p_end-1, node_start);
1022 p_start = NULL;
1023 p_end = NULL;
1024 node_start = 0;
1025 }
1026 }
1027 #endif