]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/mm/init_64.c
mm: hugetlb: add a kernel parameter hugetlb_free_vmemmap
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / mm / init_64.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/arch/x86_64/mm/init.c
4 *
5 * Copyright (C) 1995 Linus Torvalds
6 * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz>
7 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
8 */
9
10 #include <linux/signal.h>
11 #include <linux/sched.h>
12 #include <linux/kernel.h>
13 #include <linux/errno.h>
14 #include <linux/string.h>
15 #include <linux/types.h>
16 #include <linux/ptrace.h>
17 #include <linux/mman.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/smp.h>
21 #include <linux/init.h>
22 #include <linux/initrd.h>
23 #include <linux/pagemap.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/memory.h>
31 #include <linux/memory_hotplug.h>
32 #include <linux/memremap.h>
33 #include <linux/nmi.h>
34 #include <linux/gfp.h>
35 #include <linux/kcore.h>
36 #include <linux/bootmem_info.h>
37 #include <linux/hugetlb.h>
38
39 #include <asm/processor.h>
40 #include <asm/bios_ebda.h>
41 #include <linux/uaccess.h>
42 #include <asm/pgalloc.h>
43 #include <asm/dma.h>
44 #include <asm/fixmap.h>
45 #include <asm/e820/api.h>
46 #include <asm/apic.h>
47 #include <asm/tlb.h>
48 #include <asm/mmu_context.h>
49 #include <asm/proto.h>
50 #include <asm/smp.h>
51 #include <asm/sections.h>
52 #include <asm/kdebug.h>
53 #include <asm/numa.h>
54 #include <asm/set_memory.h>
55 #include <asm/init.h>
56 #include <asm/uv/uv.h>
57 #include <asm/setup.h>
58 #include <asm/ftrace.h>
59
60 #include "mm_internal.h"
61
62 #include "ident_map.c"
63
64 #define DEFINE_POPULATE(fname, type1, type2, init) \
65 static inline void fname##_init(struct mm_struct *mm, \
66 type1##_t *arg1, type2##_t *arg2, bool init) \
67 { \
68 if (init) \
69 fname##_safe(mm, arg1, arg2); \
70 else \
71 fname(mm, arg1, arg2); \
72 }
73
74 DEFINE_POPULATE(p4d_populate, p4d, pud, init)
75 DEFINE_POPULATE(pgd_populate, pgd, p4d, init)
76 DEFINE_POPULATE(pud_populate, pud, pmd, init)
77 DEFINE_POPULATE(pmd_populate_kernel, pmd, pte, init)
78
79 #define DEFINE_ENTRY(type1, type2, init) \
80 static inline void set_##type1##_init(type1##_t *arg1, \
81 type2##_t arg2, bool init) \
82 { \
83 if (init) \
84 set_##type1##_safe(arg1, arg2); \
85 else \
86 set_##type1(arg1, arg2); \
87 }
88
89 DEFINE_ENTRY(p4d, p4d, init)
90 DEFINE_ENTRY(pud, pud, init)
91 DEFINE_ENTRY(pmd, pmd, init)
92 DEFINE_ENTRY(pte, pte, init)
93
94
95 /*
96 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
97 * physical space so we can cache the place of the first one and move
98 * around without checking the pgd every time.
99 */
100
101 /* Bits supported by the hardware: */
102 pteval_t __supported_pte_mask __read_mostly = ~0;
103 /* Bits allowed in normal kernel mappings: */
104 pteval_t __default_kernel_pte_mask __read_mostly = ~0;
105 EXPORT_SYMBOL_GPL(__supported_pte_mask);
106 /* Used in PAGE_KERNEL_* macros which are reasonably used out-of-tree: */
107 EXPORT_SYMBOL(__default_kernel_pte_mask);
108
109 int force_personality32;
110
111 /*
112 * noexec32=on|off
113 * Control non executable heap for 32bit processes.
114 * To control the stack too use noexec=off
115 *
116 * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
117 * off PROT_READ implies PROT_EXEC
118 */
119 static int __init nonx32_setup(char *str)
120 {
121 if (!strcmp(str, "on"))
122 force_personality32 &= ~READ_IMPLIES_EXEC;
123 else if (!strcmp(str, "off"))
124 force_personality32 |= READ_IMPLIES_EXEC;
125 return 1;
126 }
127 __setup("noexec32=", nonx32_setup);
128
129 static void sync_global_pgds_l5(unsigned long start, unsigned long end)
130 {
131 unsigned long addr;
132
133 for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
134 const pgd_t *pgd_ref = pgd_offset_k(addr);
135 struct page *page;
136
137 /* Check for overflow */
138 if (addr < start)
139 break;
140
141 if (pgd_none(*pgd_ref))
142 continue;
143
144 spin_lock(&pgd_lock);
145 list_for_each_entry(page, &pgd_list, lru) {
146 pgd_t *pgd;
147 spinlock_t *pgt_lock;
148
149 pgd = (pgd_t *)page_address(page) + pgd_index(addr);
150 /* the pgt_lock only for Xen */
151 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
152 spin_lock(pgt_lock);
153
154 if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
155 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
156
157 if (pgd_none(*pgd))
158 set_pgd(pgd, *pgd_ref);
159
160 spin_unlock(pgt_lock);
161 }
162 spin_unlock(&pgd_lock);
163 }
164 }
165
166 static void sync_global_pgds_l4(unsigned long start, unsigned long end)
167 {
168 unsigned long addr;
169
170 for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
171 pgd_t *pgd_ref = pgd_offset_k(addr);
172 const p4d_t *p4d_ref;
173 struct page *page;
174
175 /*
176 * With folded p4d, pgd_none() is always false, we need to
177 * handle synchronization on p4d level.
178 */
179 MAYBE_BUILD_BUG_ON(pgd_none(*pgd_ref));
180 p4d_ref = p4d_offset(pgd_ref, addr);
181
182 if (p4d_none(*p4d_ref))
183 continue;
184
185 spin_lock(&pgd_lock);
186 list_for_each_entry(page, &pgd_list, lru) {
187 pgd_t *pgd;
188 p4d_t *p4d;
189 spinlock_t *pgt_lock;
190
191 pgd = (pgd_t *)page_address(page) + pgd_index(addr);
192 p4d = p4d_offset(pgd, addr);
193 /* the pgt_lock only for Xen */
194 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
195 spin_lock(pgt_lock);
196
197 if (!p4d_none(*p4d_ref) && !p4d_none(*p4d))
198 BUG_ON(p4d_page_vaddr(*p4d)
199 != p4d_page_vaddr(*p4d_ref));
200
201 if (p4d_none(*p4d))
202 set_p4d(p4d, *p4d_ref);
203
204 spin_unlock(pgt_lock);
205 }
206 spin_unlock(&pgd_lock);
207 }
208 }
209
210 /*
211 * When memory was added make sure all the processes MM have
212 * suitable PGD entries in the local PGD level page.
213 */
214 static void sync_global_pgds(unsigned long start, unsigned long end)
215 {
216 if (pgtable_l5_enabled())
217 sync_global_pgds_l5(start, end);
218 else
219 sync_global_pgds_l4(start, end);
220 }
221
222 /*
223 * NOTE: This function is marked __ref because it calls __init function
224 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
225 */
226 static __ref void *spp_getpage(void)
227 {
228 void *ptr;
229
230 if (after_bootmem)
231 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
232 else
233 ptr = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
234
235 if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
236 panic("set_pte_phys: cannot allocate page data %s\n",
237 after_bootmem ? "after bootmem" : "");
238 }
239
240 pr_debug("spp_getpage %p\n", ptr);
241
242 return ptr;
243 }
244
245 static p4d_t *fill_p4d(pgd_t *pgd, unsigned long vaddr)
246 {
247 if (pgd_none(*pgd)) {
248 p4d_t *p4d = (p4d_t *)spp_getpage();
249 pgd_populate(&init_mm, pgd, p4d);
250 if (p4d != p4d_offset(pgd, 0))
251 printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
252 p4d, p4d_offset(pgd, 0));
253 }
254 return p4d_offset(pgd, vaddr);
255 }
256
257 static pud_t *fill_pud(p4d_t *p4d, unsigned long vaddr)
258 {
259 if (p4d_none(*p4d)) {
260 pud_t *pud = (pud_t *)spp_getpage();
261 p4d_populate(&init_mm, p4d, pud);
262 if (pud != pud_offset(p4d, 0))
263 printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
264 pud, pud_offset(p4d, 0));
265 }
266 return pud_offset(p4d, vaddr);
267 }
268
269 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
270 {
271 if (pud_none(*pud)) {
272 pmd_t *pmd = (pmd_t *) spp_getpage();
273 pud_populate(&init_mm, pud, pmd);
274 if (pmd != pmd_offset(pud, 0))
275 printk(KERN_ERR "PAGETABLE BUG #02! %p <-> %p\n",
276 pmd, pmd_offset(pud, 0));
277 }
278 return pmd_offset(pud, vaddr);
279 }
280
281 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
282 {
283 if (pmd_none(*pmd)) {
284 pte_t *pte = (pte_t *) spp_getpage();
285 pmd_populate_kernel(&init_mm, pmd, pte);
286 if (pte != pte_offset_kernel(pmd, 0))
287 printk(KERN_ERR "PAGETABLE BUG #03!\n");
288 }
289 return pte_offset_kernel(pmd, vaddr);
290 }
291
292 static void __set_pte_vaddr(pud_t *pud, unsigned long vaddr, pte_t new_pte)
293 {
294 pmd_t *pmd = fill_pmd(pud, vaddr);
295 pte_t *pte = fill_pte(pmd, vaddr);
296
297 set_pte(pte, new_pte);
298
299 /*
300 * It's enough to flush this one mapping.
301 * (PGE mappings get flushed as well)
302 */
303 flush_tlb_one_kernel(vaddr);
304 }
305
306 void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte)
307 {
308 p4d_t *p4d = p4d_page + p4d_index(vaddr);
309 pud_t *pud = fill_pud(p4d, vaddr);
310
311 __set_pte_vaddr(pud, vaddr, new_pte);
312 }
313
314 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
315 {
316 pud_t *pud = pud_page + pud_index(vaddr);
317
318 __set_pte_vaddr(pud, vaddr, new_pte);
319 }
320
321 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
322 {
323 pgd_t *pgd;
324 p4d_t *p4d_page;
325
326 pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
327
328 pgd = pgd_offset_k(vaddr);
329 if (pgd_none(*pgd)) {
330 printk(KERN_ERR
331 "PGD FIXMAP MISSING, it should be setup in head.S!\n");
332 return;
333 }
334
335 p4d_page = p4d_offset(pgd, 0);
336 set_pte_vaddr_p4d(p4d_page, vaddr, pteval);
337 }
338
339 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
340 {
341 pgd_t *pgd;
342 p4d_t *p4d;
343 pud_t *pud;
344
345 pgd = pgd_offset_k(vaddr);
346 p4d = fill_p4d(pgd, vaddr);
347 pud = fill_pud(p4d, vaddr);
348 return fill_pmd(pud, vaddr);
349 }
350
351 pte_t * __init populate_extra_pte(unsigned long vaddr)
352 {
353 pmd_t *pmd;
354
355 pmd = populate_extra_pmd(vaddr);
356 return fill_pte(pmd, vaddr);
357 }
358
359 /*
360 * Create large page table mappings for a range of physical addresses.
361 */
362 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
363 enum page_cache_mode cache)
364 {
365 pgd_t *pgd;
366 p4d_t *p4d;
367 pud_t *pud;
368 pmd_t *pmd;
369 pgprot_t prot;
370
371 pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
372 protval_4k_2_large(cachemode2protval(cache));
373 BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
374 for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
375 pgd = pgd_offset_k((unsigned long)__va(phys));
376 if (pgd_none(*pgd)) {
377 p4d = (p4d_t *) spp_getpage();
378 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE |
379 _PAGE_USER));
380 }
381 p4d = p4d_offset(pgd, (unsigned long)__va(phys));
382 if (p4d_none(*p4d)) {
383 pud = (pud_t *) spp_getpage();
384 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE |
385 _PAGE_USER));
386 }
387 pud = pud_offset(p4d, (unsigned long)__va(phys));
388 if (pud_none(*pud)) {
389 pmd = (pmd_t *) spp_getpage();
390 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
391 _PAGE_USER));
392 }
393 pmd = pmd_offset(pud, phys);
394 BUG_ON(!pmd_none(*pmd));
395 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
396 }
397 }
398
399 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
400 {
401 __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
402 }
403
404 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
405 {
406 __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
407 }
408
409 /*
410 * The head.S code sets up the kernel high mapping:
411 *
412 * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
413 *
414 * phys_base holds the negative offset to the kernel, which is added
415 * to the compile time generated pmds. This results in invalid pmds up
416 * to the point where we hit the physaddr 0 mapping.
417 *
418 * We limit the mappings to the region from _text to _brk_end. _brk_end
419 * is rounded up to the 2MB boundary. This catches the invalid pmds as
420 * well, as they are located before _text:
421 */
422 void __init cleanup_highmap(void)
423 {
424 unsigned long vaddr = __START_KERNEL_map;
425 unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
426 unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
427 pmd_t *pmd = level2_kernel_pgt;
428
429 /*
430 * Native path, max_pfn_mapped is not set yet.
431 * Xen has valid max_pfn_mapped set in
432 * arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
433 */
434 if (max_pfn_mapped)
435 vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
436
437 for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
438 if (pmd_none(*pmd))
439 continue;
440 if (vaddr < (unsigned long) _text || vaddr > end)
441 set_pmd(pmd, __pmd(0));
442 }
443 }
444
445 /*
446 * Create PTE level page table mapping for physical addresses.
447 * It returns the last physical address mapped.
448 */
449 static unsigned long __meminit
450 phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end,
451 pgprot_t prot, bool init)
452 {
453 unsigned long pages = 0, paddr_next;
454 unsigned long paddr_last = paddr_end;
455 pte_t *pte;
456 int i;
457
458 pte = pte_page + pte_index(paddr);
459 i = pte_index(paddr);
460
461 for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) {
462 paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE;
463 if (paddr >= paddr_end) {
464 if (!after_bootmem &&
465 !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
466 E820_TYPE_RAM) &&
467 !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
468 E820_TYPE_RESERVED_KERN))
469 set_pte_init(pte, __pte(0), init);
470 continue;
471 }
472
473 /*
474 * We will re-use the existing mapping.
475 * Xen for example has some special requirements, like mapping
476 * pagetable pages as RO. So assume someone who pre-setup
477 * these mappings are more intelligent.
478 */
479 if (!pte_none(*pte)) {
480 if (!after_bootmem)
481 pages++;
482 continue;
483 }
484
485 if (0)
486 pr_info(" pte=%p addr=%lx pte=%016lx\n", pte, paddr,
487 pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte);
488 pages++;
489 set_pte_init(pte, pfn_pte(paddr >> PAGE_SHIFT, prot), init);
490 paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE;
491 }
492
493 update_page_count(PG_LEVEL_4K, pages);
494
495 return paddr_last;
496 }
497
498 /*
499 * Create PMD level page table mapping for physical addresses. The virtual
500 * and physical address have to be aligned at this level.
501 * It returns the last physical address mapped.
502 */
503 static unsigned long __meminit
504 phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end,
505 unsigned long page_size_mask, pgprot_t prot, bool init)
506 {
507 unsigned long pages = 0, paddr_next;
508 unsigned long paddr_last = paddr_end;
509
510 int i = pmd_index(paddr);
511
512 for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) {
513 pmd_t *pmd = pmd_page + pmd_index(paddr);
514 pte_t *pte;
515 pgprot_t new_prot = prot;
516
517 paddr_next = (paddr & PMD_MASK) + PMD_SIZE;
518 if (paddr >= paddr_end) {
519 if (!after_bootmem &&
520 !e820__mapped_any(paddr & PMD_MASK, paddr_next,
521 E820_TYPE_RAM) &&
522 !e820__mapped_any(paddr & PMD_MASK, paddr_next,
523 E820_TYPE_RESERVED_KERN))
524 set_pmd_init(pmd, __pmd(0), init);
525 continue;
526 }
527
528 if (!pmd_none(*pmd)) {
529 if (!pmd_large(*pmd)) {
530 spin_lock(&init_mm.page_table_lock);
531 pte = (pte_t *)pmd_page_vaddr(*pmd);
532 paddr_last = phys_pte_init(pte, paddr,
533 paddr_end, prot,
534 init);
535 spin_unlock(&init_mm.page_table_lock);
536 continue;
537 }
538 /*
539 * If we are ok with PG_LEVEL_2M mapping, then we will
540 * use the existing mapping,
541 *
542 * Otherwise, we will split the large page mapping but
543 * use the same existing protection bits except for
544 * large page, so that we don't violate Intel's TLB
545 * Application note (317080) which says, while changing
546 * the page sizes, new and old translations should
547 * not differ with respect to page frame and
548 * attributes.
549 */
550 if (page_size_mask & (1 << PG_LEVEL_2M)) {
551 if (!after_bootmem)
552 pages++;
553 paddr_last = paddr_next;
554 continue;
555 }
556 new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
557 }
558
559 if (page_size_mask & (1<<PG_LEVEL_2M)) {
560 pages++;
561 spin_lock(&init_mm.page_table_lock);
562 set_pte_init((pte_t *)pmd,
563 pfn_pte((paddr & PMD_MASK) >> PAGE_SHIFT,
564 __pgprot(pgprot_val(prot) | _PAGE_PSE)),
565 init);
566 spin_unlock(&init_mm.page_table_lock);
567 paddr_last = paddr_next;
568 continue;
569 }
570
571 pte = alloc_low_page();
572 paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot, init);
573
574 spin_lock(&init_mm.page_table_lock);
575 pmd_populate_kernel_init(&init_mm, pmd, pte, init);
576 spin_unlock(&init_mm.page_table_lock);
577 }
578 update_page_count(PG_LEVEL_2M, pages);
579 return paddr_last;
580 }
581
582 /*
583 * Create PUD level page table mapping for physical addresses. The virtual
584 * and physical address do not have to be aligned at this level. KASLR can
585 * randomize virtual addresses up to this level.
586 * It returns the last physical address mapped.
587 */
588 static unsigned long __meminit
589 phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end,
590 unsigned long page_size_mask, pgprot_t _prot, bool init)
591 {
592 unsigned long pages = 0, paddr_next;
593 unsigned long paddr_last = paddr_end;
594 unsigned long vaddr = (unsigned long)__va(paddr);
595 int i = pud_index(vaddr);
596
597 for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) {
598 pud_t *pud;
599 pmd_t *pmd;
600 pgprot_t prot = _prot;
601
602 vaddr = (unsigned long)__va(paddr);
603 pud = pud_page + pud_index(vaddr);
604 paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
605
606 if (paddr >= paddr_end) {
607 if (!after_bootmem &&
608 !e820__mapped_any(paddr & PUD_MASK, paddr_next,
609 E820_TYPE_RAM) &&
610 !e820__mapped_any(paddr & PUD_MASK, paddr_next,
611 E820_TYPE_RESERVED_KERN))
612 set_pud_init(pud, __pud(0), init);
613 continue;
614 }
615
616 if (!pud_none(*pud)) {
617 if (!pud_large(*pud)) {
618 pmd = pmd_offset(pud, 0);
619 paddr_last = phys_pmd_init(pmd, paddr,
620 paddr_end,
621 page_size_mask,
622 prot, init);
623 continue;
624 }
625 /*
626 * If we are ok with PG_LEVEL_1G mapping, then we will
627 * use the existing mapping.
628 *
629 * Otherwise, we will split the gbpage mapping but use
630 * the same existing protection bits except for large
631 * page, so that we don't violate Intel's TLB
632 * Application note (317080) which says, while changing
633 * the page sizes, new and old translations should
634 * not differ with respect to page frame and
635 * attributes.
636 */
637 if (page_size_mask & (1 << PG_LEVEL_1G)) {
638 if (!after_bootmem)
639 pages++;
640 paddr_last = paddr_next;
641 continue;
642 }
643 prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
644 }
645
646 if (page_size_mask & (1<<PG_LEVEL_1G)) {
647 pages++;
648 spin_lock(&init_mm.page_table_lock);
649
650 prot = __pgprot(pgprot_val(prot) | __PAGE_KERNEL_LARGE);
651
652 set_pte_init((pte_t *)pud,
653 pfn_pte((paddr & PUD_MASK) >> PAGE_SHIFT,
654 prot),
655 init);
656 spin_unlock(&init_mm.page_table_lock);
657 paddr_last = paddr_next;
658 continue;
659 }
660
661 pmd = alloc_low_page();
662 paddr_last = phys_pmd_init(pmd, paddr, paddr_end,
663 page_size_mask, prot, init);
664
665 spin_lock(&init_mm.page_table_lock);
666 pud_populate_init(&init_mm, pud, pmd, init);
667 spin_unlock(&init_mm.page_table_lock);
668 }
669
670 update_page_count(PG_LEVEL_1G, pages);
671
672 return paddr_last;
673 }
674
675 static unsigned long __meminit
676 phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end,
677 unsigned long page_size_mask, pgprot_t prot, bool init)
678 {
679 unsigned long vaddr, vaddr_end, vaddr_next, paddr_next, paddr_last;
680
681 paddr_last = paddr_end;
682 vaddr = (unsigned long)__va(paddr);
683 vaddr_end = (unsigned long)__va(paddr_end);
684
685 if (!pgtable_l5_enabled())
686 return phys_pud_init((pud_t *) p4d_page, paddr, paddr_end,
687 page_size_mask, prot, init);
688
689 for (; vaddr < vaddr_end; vaddr = vaddr_next) {
690 p4d_t *p4d = p4d_page + p4d_index(vaddr);
691 pud_t *pud;
692
693 vaddr_next = (vaddr & P4D_MASK) + P4D_SIZE;
694 paddr = __pa(vaddr);
695
696 if (paddr >= paddr_end) {
697 paddr_next = __pa(vaddr_next);
698 if (!after_bootmem &&
699 !e820__mapped_any(paddr & P4D_MASK, paddr_next,
700 E820_TYPE_RAM) &&
701 !e820__mapped_any(paddr & P4D_MASK, paddr_next,
702 E820_TYPE_RESERVED_KERN))
703 set_p4d_init(p4d, __p4d(0), init);
704 continue;
705 }
706
707 if (!p4d_none(*p4d)) {
708 pud = pud_offset(p4d, 0);
709 paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
710 page_size_mask, prot, init);
711 continue;
712 }
713
714 pud = alloc_low_page();
715 paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
716 page_size_mask, prot, init);
717
718 spin_lock(&init_mm.page_table_lock);
719 p4d_populate_init(&init_mm, p4d, pud, init);
720 spin_unlock(&init_mm.page_table_lock);
721 }
722
723 return paddr_last;
724 }
725
726 static unsigned long __meminit
727 __kernel_physical_mapping_init(unsigned long paddr_start,
728 unsigned long paddr_end,
729 unsigned long page_size_mask,
730 pgprot_t prot, bool init)
731 {
732 bool pgd_changed = false;
733 unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last;
734
735 paddr_last = paddr_end;
736 vaddr = (unsigned long)__va(paddr_start);
737 vaddr_end = (unsigned long)__va(paddr_end);
738 vaddr_start = vaddr;
739
740 for (; vaddr < vaddr_end; vaddr = vaddr_next) {
741 pgd_t *pgd = pgd_offset_k(vaddr);
742 p4d_t *p4d;
743
744 vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE;
745
746 if (pgd_val(*pgd)) {
747 p4d = (p4d_t *)pgd_page_vaddr(*pgd);
748 paddr_last = phys_p4d_init(p4d, __pa(vaddr),
749 __pa(vaddr_end),
750 page_size_mask,
751 prot, init);
752 continue;
753 }
754
755 p4d = alloc_low_page();
756 paddr_last = phys_p4d_init(p4d, __pa(vaddr), __pa(vaddr_end),
757 page_size_mask, prot, init);
758
759 spin_lock(&init_mm.page_table_lock);
760 if (pgtable_l5_enabled())
761 pgd_populate_init(&init_mm, pgd, p4d, init);
762 else
763 p4d_populate_init(&init_mm, p4d_offset(pgd, vaddr),
764 (pud_t *) p4d, init);
765
766 spin_unlock(&init_mm.page_table_lock);
767 pgd_changed = true;
768 }
769
770 if (pgd_changed)
771 sync_global_pgds(vaddr_start, vaddr_end - 1);
772
773 return paddr_last;
774 }
775
776
777 /*
778 * Create page table mapping for the physical memory for specific physical
779 * addresses. Note that it can only be used to populate non-present entries.
780 * The virtual and physical addresses have to be aligned on PMD level
781 * down. It returns the last physical address mapped.
782 */
783 unsigned long __meminit
784 kernel_physical_mapping_init(unsigned long paddr_start,
785 unsigned long paddr_end,
786 unsigned long page_size_mask, pgprot_t prot)
787 {
788 return __kernel_physical_mapping_init(paddr_start, paddr_end,
789 page_size_mask, prot, true);
790 }
791
792 /*
793 * This function is similar to kernel_physical_mapping_init() above with the
794 * exception that it uses set_{pud,pmd}() instead of the set_{pud,pte}_safe()
795 * when updating the mapping. The caller is responsible to flush the TLBs after
796 * the function returns.
797 */
798 unsigned long __meminit
799 kernel_physical_mapping_change(unsigned long paddr_start,
800 unsigned long paddr_end,
801 unsigned long page_size_mask)
802 {
803 return __kernel_physical_mapping_init(paddr_start, paddr_end,
804 page_size_mask, PAGE_KERNEL,
805 false);
806 }
807
808 #ifndef CONFIG_NUMA
809 void __init initmem_init(void)
810 {
811 memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
812 }
813 #endif
814
815 void __init paging_init(void)
816 {
817 sparse_init();
818
819 /*
820 * clear the default setting with node 0
821 * note: don't use nodes_clear here, that is really clearing when
822 * numa support is not compiled in, and later node_set_state
823 * will not set it back.
824 */
825 node_clear_state(0, N_MEMORY);
826 node_clear_state(0, N_NORMAL_MEMORY);
827
828 zone_sizes_init();
829 }
830
831 #ifdef CONFIG_SPARSEMEM_VMEMMAP
832 #define PAGE_UNUSED 0xFD
833
834 /*
835 * The unused vmemmap range, which was not yet memset(PAGE_UNUSED), ranges
836 * from unused_pmd_start to next PMD_SIZE boundary.
837 */
838 static unsigned long unused_pmd_start __meminitdata;
839
840 static void __meminit vmemmap_flush_unused_pmd(void)
841 {
842 if (!unused_pmd_start)
843 return;
844 /*
845 * Clears (unused_pmd_start, PMD_END]
846 */
847 memset((void *)unused_pmd_start, PAGE_UNUSED,
848 ALIGN(unused_pmd_start, PMD_SIZE) - unused_pmd_start);
849 unused_pmd_start = 0;
850 }
851
852 #ifdef CONFIG_MEMORY_HOTPLUG
853 /* Returns true if the PMD is completely unused and thus it can be freed */
854 static bool __meminit vmemmap_pmd_is_unused(unsigned long addr, unsigned long end)
855 {
856 unsigned long start = ALIGN_DOWN(addr, PMD_SIZE);
857
858 /*
859 * Flush the unused range cache to ensure that memchr_inv() will work
860 * for the whole range.
861 */
862 vmemmap_flush_unused_pmd();
863 memset((void *)addr, PAGE_UNUSED, end - addr);
864
865 return !memchr_inv((void *)start, PAGE_UNUSED, PMD_SIZE);
866 }
867 #endif
868
869 static void __meminit __vmemmap_use_sub_pmd(unsigned long start)
870 {
871 /*
872 * As we expect to add in the same granularity as we remove, it's
873 * sufficient to mark only some piece used to block the memmap page from
874 * getting removed when removing some other adjacent memmap (just in
875 * case the first memmap never gets initialized e.g., because the memory
876 * block never gets onlined).
877 */
878 memset((void *)start, 0, sizeof(struct page));
879 }
880
881 static void __meminit vmemmap_use_sub_pmd(unsigned long start, unsigned long end)
882 {
883 /*
884 * We only optimize if the new used range directly follows the
885 * previously unused range (esp., when populating consecutive sections).
886 */
887 if (unused_pmd_start == start) {
888 if (likely(IS_ALIGNED(end, PMD_SIZE)))
889 unused_pmd_start = 0;
890 else
891 unused_pmd_start = end;
892 return;
893 }
894
895 /*
896 * If the range does not contiguously follows previous one, make sure
897 * to mark the unused range of the previous one so it can be removed.
898 */
899 vmemmap_flush_unused_pmd();
900 __vmemmap_use_sub_pmd(start);
901 }
902
903
904 static void __meminit vmemmap_use_new_sub_pmd(unsigned long start, unsigned long end)
905 {
906 vmemmap_flush_unused_pmd();
907
908 /*
909 * Could be our memmap page is filled with PAGE_UNUSED already from a
910 * previous remove. Make sure to reset it.
911 */
912 __vmemmap_use_sub_pmd(start);
913
914 /*
915 * Mark with PAGE_UNUSED the unused parts of the new memmap range
916 */
917 if (!IS_ALIGNED(start, PMD_SIZE))
918 memset((void *)start, PAGE_UNUSED,
919 start - ALIGN_DOWN(start, PMD_SIZE));
920
921 /*
922 * We want to avoid memset(PAGE_UNUSED) when populating the vmemmap of
923 * consecutive sections. Remember for the last added PMD where the
924 * unused range begins.
925 */
926 if (!IS_ALIGNED(end, PMD_SIZE))
927 unused_pmd_start = end;
928 }
929 #endif
930
931 /*
932 * Memory hotplug specific functions
933 */
934 #ifdef CONFIG_MEMORY_HOTPLUG
935 /*
936 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
937 * updating.
938 */
939 static void update_end_of_memory_vars(u64 start, u64 size)
940 {
941 unsigned long end_pfn = PFN_UP(start + size);
942
943 if (end_pfn > max_pfn) {
944 max_pfn = end_pfn;
945 max_low_pfn = end_pfn;
946 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
947 }
948 }
949
950 int add_pages(int nid, unsigned long start_pfn, unsigned long nr_pages,
951 struct mhp_params *params)
952 {
953 int ret;
954
955 ret = __add_pages(nid, start_pfn, nr_pages, params);
956 WARN_ON_ONCE(ret);
957
958 /* update max_pfn, max_low_pfn and high_memory */
959 update_end_of_memory_vars(start_pfn << PAGE_SHIFT,
960 nr_pages << PAGE_SHIFT);
961
962 return ret;
963 }
964
965 int arch_add_memory(int nid, u64 start, u64 size,
966 struct mhp_params *params)
967 {
968 unsigned long start_pfn = start >> PAGE_SHIFT;
969 unsigned long nr_pages = size >> PAGE_SHIFT;
970
971 init_memory_mapping(start, start + size, params->pgprot);
972
973 return add_pages(nid, start_pfn, nr_pages, params);
974 }
975
976 static void __meminit free_pagetable(struct page *page, int order)
977 {
978 unsigned long magic;
979 unsigned int nr_pages = 1 << order;
980
981 /* bootmem page has reserved flag */
982 if (PageReserved(page)) {
983 __ClearPageReserved(page);
984
985 magic = (unsigned long)page->freelist;
986 if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
987 while (nr_pages--)
988 put_page_bootmem(page++);
989 } else
990 while (nr_pages--)
991 free_reserved_page(page++);
992 } else
993 free_pages((unsigned long)page_address(page), order);
994 }
995
996 static void __meminit free_hugepage_table(struct page *page,
997 struct vmem_altmap *altmap)
998 {
999 if (altmap)
1000 vmem_altmap_free(altmap, PMD_SIZE / PAGE_SIZE);
1001 else
1002 free_pagetable(page, get_order(PMD_SIZE));
1003 }
1004
1005 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
1006 {
1007 pte_t *pte;
1008 int i;
1009
1010 for (i = 0; i < PTRS_PER_PTE; i++) {
1011 pte = pte_start + i;
1012 if (!pte_none(*pte))
1013 return;
1014 }
1015
1016 /* free a pte talbe */
1017 free_pagetable(pmd_page(*pmd), 0);
1018 spin_lock(&init_mm.page_table_lock);
1019 pmd_clear(pmd);
1020 spin_unlock(&init_mm.page_table_lock);
1021 }
1022
1023 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
1024 {
1025 pmd_t *pmd;
1026 int i;
1027
1028 for (i = 0; i < PTRS_PER_PMD; i++) {
1029 pmd = pmd_start + i;
1030 if (!pmd_none(*pmd))
1031 return;
1032 }
1033
1034 /* free a pmd talbe */
1035 free_pagetable(pud_page(*pud), 0);
1036 spin_lock(&init_mm.page_table_lock);
1037 pud_clear(pud);
1038 spin_unlock(&init_mm.page_table_lock);
1039 }
1040
1041 static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d)
1042 {
1043 pud_t *pud;
1044 int i;
1045
1046 for (i = 0; i < PTRS_PER_PUD; i++) {
1047 pud = pud_start + i;
1048 if (!pud_none(*pud))
1049 return;
1050 }
1051
1052 /* free a pud talbe */
1053 free_pagetable(p4d_page(*p4d), 0);
1054 spin_lock(&init_mm.page_table_lock);
1055 p4d_clear(p4d);
1056 spin_unlock(&init_mm.page_table_lock);
1057 }
1058
1059 static void __meminit
1060 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
1061 bool direct)
1062 {
1063 unsigned long next, pages = 0;
1064 pte_t *pte;
1065 phys_addr_t phys_addr;
1066
1067 pte = pte_start + pte_index(addr);
1068 for (; addr < end; addr = next, pte++) {
1069 next = (addr + PAGE_SIZE) & PAGE_MASK;
1070 if (next > end)
1071 next = end;
1072
1073 if (!pte_present(*pte))
1074 continue;
1075
1076 /*
1077 * We mapped [0,1G) memory as identity mapping when
1078 * initializing, in arch/x86/kernel/head_64.S. These
1079 * pagetables cannot be removed.
1080 */
1081 phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
1082 if (phys_addr < (phys_addr_t)0x40000000)
1083 return;
1084
1085 if (!direct)
1086 free_pagetable(pte_page(*pte), 0);
1087
1088 spin_lock(&init_mm.page_table_lock);
1089 pte_clear(&init_mm, addr, pte);
1090 spin_unlock(&init_mm.page_table_lock);
1091
1092 /* For non-direct mapping, pages means nothing. */
1093 pages++;
1094 }
1095
1096 /* Call free_pte_table() in remove_pmd_table(). */
1097 flush_tlb_all();
1098 if (direct)
1099 update_page_count(PG_LEVEL_4K, -pages);
1100 }
1101
1102 static void __meminit
1103 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
1104 bool direct, struct vmem_altmap *altmap)
1105 {
1106 unsigned long next, pages = 0;
1107 pte_t *pte_base;
1108 pmd_t *pmd;
1109
1110 pmd = pmd_start + pmd_index(addr);
1111 for (; addr < end; addr = next, pmd++) {
1112 next = pmd_addr_end(addr, end);
1113
1114 if (!pmd_present(*pmd))
1115 continue;
1116
1117 if (pmd_large(*pmd)) {
1118 if (IS_ALIGNED(addr, PMD_SIZE) &&
1119 IS_ALIGNED(next, PMD_SIZE)) {
1120 if (!direct)
1121 free_hugepage_table(pmd_page(*pmd),
1122 altmap);
1123
1124 spin_lock(&init_mm.page_table_lock);
1125 pmd_clear(pmd);
1126 spin_unlock(&init_mm.page_table_lock);
1127 pages++;
1128 }
1129 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1130 else if (vmemmap_pmd_is_unused(addr, next)) {
1131 free_hugepage_table(pmd_page(*pmd),
1132 altmap);
1133 spin_lock(&init_mm.page_table_lock);
1134 pmd_clear(pmd);
1135 spin_unlock(&init_mm.page_table_lock);
1136 }
1137 #endif
1138 continue;
1139 }
1140
1141 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
1142 remove_pte_table(pte_base, addr, next, direct);
1143 free_pte_table(pte_base, pmd);
1144 }
1145
1146 /* Call free_pmd_table() in remove_pud_table(). */
1147 if (direct)
1148 update_page_count(PG_LEVEL_2M, -pages);
1149 }
1150
1151 static void __meminit
1152 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
1153 struct vmem_altmap *altmap, bool direct)
1154 {
1155 unsigned long next, pages = 0;
1156 pmd_t *pmd_base;
1157 pud_t *pud;
1158
1159 pud = pud_start + pud_index(addr);
1160 for (; addr < end; addr = next, pud++) {
1161 next = pud_addr_end(addr, end);
1162
1163 if (!pud_present(*pud))
1164 continue;
1165
1166 if (pud_large(*pud) &&
1167 IS_ALIGNED(addr, PUD_SIZE) &&
1168 IS_ALIGNED(next, PUD_SIZE)) {
1169 spin_lock(&init_mm.page_table_lock);
1170 pud_clear(pud);
1171 spin_unlock(&init_mm.page_table_lock);
1172 pages++;
1173 continue;
1174 }
1175
1176 pmd_base = pmd_offset(pud, 0);
1177 remove_pmd_table(pmd_base, addr, next, direct, altmap);
1178 free_pmd_table(pmd_base, pud);
1179 }
1180
1181 if (direct)
1182 update_page_count(PG_LEVEL_1G, -pages);
1183 }
1184
1185 static void __meminit
1186 remove_p4d_table(p4d_t *p4d_start, unsigned long addr, unsigned long end,
1187 struct vmem_altmap *altmap, bool direct)
1188 {
1189 unsigned long next, pages = 0;
1190 pud_t *pud_base;
1191 p4d_t *p4d;
1192
1193 p4d = p4d_start + p4d_index(addr);
1194 for (; addr < end; addr = next, p4d++) {
1195 next = p4d_addr_end(addr, end);
1196
1197 if (!p4d_present(*p4d))
1198 continue;
1199
1200 BUILD_BUG_ON(p4d_large(*p4d));
1201
1202 pud_base = pud_offset(p4d, 0);
1203 remove_pud_table(pud_base, addr, next, altmap, direct);
1204 /*
1205 * For 4-level page tables we do not want to free PUDs, but in the
1206 * 5-level case we should free them. This code will have to change
1207 * to adapt for boot-time switching between 4 and 5 level page tables.
1208 */
1209 if (pgtable_l5_enabled())
1210 free_pud_table(pud_base, p4d);
1211 }
1212
1213 if (direct)
1214 update_page_count(PG_LEVEL_512G, -pages);
1215 }
1216
1217 /* start and end are both virtual address. */
1218 static void __meminit
1219 remove_pagetable(unsigned long start, unsigned long end, bool direct,
1220 struct vmem_altmap *altmap)
1221 {
1222 unsigned long next;
1223 unsigned long addr;
1224 pgd_t *pgd;
1225 p4d_t *p4d;
1226
1227 for (addr = start; addr < end; addr = next) {
1228 next = pgd_addr_end(addr, end);
1229
1230 pgd = pgd_offset_k(addr);
1231 if (!pgd_present(*pgd))
1232 continue;
1233
1234 p4d = p4d_offset(pgd, 0);
1235 remove_p4d_table(p4d, addr, next, altmap, direct);
1236 }
1237
1238 flush_tlb_all();
1239 }
1240
1241 void __ref vmemmap_free(unsigned long start, unsigned long end,
1242 struct vmem_altmap *altmap)
1243 {
1244 VM_BUG_ON(!IS_ALIGNED(start, PAGE_SIZE));
1245 VM_BUG_ON(!IS_ALIGNED(end, PAGE_SIZE));
1246
1247 remove_pagetable(start, end, false, altmap);
1248 }
1249
1250 static void __meminit
1251 kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1252 {
1253 start = (unsigned long)__va(start);
1254 end = (unsigned long)__va(end);
1255
1256 remove_pagetable(start, end, true, NULL);
1257 }
1258
1259 void __ref arch_remove_memory(int nid, u64 start, u64 size,
1260 struct vmem_altmap *altmap)
1261 {
1262 unsigned long start_pfn = start >> PAGE_SHIFT;
1263 unsigned long nr_pages = size >> PAGE_SHIFT;
1264
1265 __remove_pages(start_pfn, nr_pages, altmap);
1266 kernel_physical_mapping_remove(start, start + size);
1267 }
1268 #endif /* CONFIG_MEMORY_HOTPLUG */
1269
1270 static struct kcore_list kcore_vsyscall;
1271
1272 static void __init register_page_bootmem_info(void)
1273 {
1274 #if defined(CONFIG_NUMA) || defined(CONFIG_HUGETLB_PAGE_FREE_VMEMMAP)
1275 int i;
1276
1277 for_each_online_node(i)
1278 register_page_bootmem_info_node(NODE_DATA(i));
1279 #endif
1280 }
1281
1282 /*
1283 * Pre-allocates page-table pages for the vmalloc area in the kernel page-table.
1284 * Only the level which needs to be synchronized between all page-tables is
1285 * allocated because the synchronization can be expensive.
1286 */
1287 static void __init preallocate_vmalloc_pages(void)
1288 {
1289 unsigned long addr;
1290 const char *lvl;
1291
1292 for (addr = VMALLOC_START; addr <= VMALLOC_END; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
1293 pgd_t *pgd = pgd_offset_k(addr);
1294 p4d_t *p4d;
1295 pud_t *pud;
1296
1297 lvl = "p4d";
1298 p4d = p4d_alloc(&init_mm, pgd, addr);
1299 if (!p4d)
1300 goto failed;
1301
1302 if (pgtable_l5_enabled())
1303 continue;
1304
1305 /*
1306 * The goal here is to allocate all possibly required
1307 * hardware page tables pointed to by the top hardware
1308 * level.
1309 *
1310 * On 4-level systems, the P4D layer is folded away and
1311 * the above code does no preallocation. Below, go down
1312 * to the pud _software_ level to ensure the second
1313 * hardware level is allocated on 4-level systems too.
1314 */
1315 lvl = "pud";
1316 pud = pud_alloc(&init_mm, p4d, addr);
1317 if (!pud)
1318 goto failed;
1319 }
1320
1321 return;
1322
1323 failed:
1324
1325 /*
1326 * The pages have to be there now or they will be missing in
1327 * process page-tables later.
1328 */
1329 panic("Failed to pre-allocate %s pages for vmalloc area\n", lvl);
1330 }
1331
1332 void __init mem_init(void)
1333 {
1334 pci_iommu_alloc();
1335
1336 /* clear_bss() already clear the empty_zero_page */
1337
1338 /* this will put all memory onto the freelists */
1339 memblock_free_all();
1340 after_bootmem = 1;
1341 x86_init.hyper.init_after_bootmem();
1342
1343 /*
1344 * Must be done after boot memory is put on freelist, because here we
1345 * might set fields in deferred struct pages that have not yet been
1346 * initialized, and memblock_free_all() initializes all the reserved
1347 * deferred pages for us.
1348 */
1349 register_page_bootmem_info();
1350
1351 /* Register memory areas for /proc/kcore */
1352 if (get_gate_vma(&init_mm))
1353 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR, PAGE_SIZE, KCORE_USER);
1354
1355 preallocate_vmalloc_pages();
1356 }
1357
1358 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1359 int __init deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1360 {
1361 /*
1362 * More CPUs always led to greater speedups on tested systems, up to
1363 * all the nodes' CPUs. Use all since the system is otherwise idle
1364 * now.
1365 */
1366 return max_t(int, cpumask_weight(node_cpumask), 1);
1367 }
1368 #endif
1369
1370 int kernel_set_to_readonly;
1371
1372 void mark_rodata_ro(void)
1373 {
1374 unsigned long start = PFN_ALIGN(_text);
1375 unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1376 unsigned long end = (unsigned long)__end_rodata_hpage_align;
1377 unsigned long text_end = PFN_ALIGN(_etext);
1378 unsigned long rodata_end = PFN_ALIGN(__end_rodata);
1379 unsigned long all_end;
1380
1381 printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1382 (end - start) >> 10);
1383 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1384
1385 kernel_set_to_readonly = 1;
1386
1387 /*
1388 * The rodata/data/bss/brk section (but not the kernel text!)
1389 * should also be not-executable.
1390 *
1391 * We align all_end to PMD_SIZE because the existing mapping
1392 * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1393 * split the PMD and the reminder between _brk_end and the end
1394 * of the PMD will remain mapped executable.
1395 *
1396 * Any PMD which was setup after the one which covers _brk_end
1397 * has been zapped already via cleanup_highmem().
1398 */
1399 all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1400 set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
1401
1402 set_ftrace_ops_ro();
1403
1404 #ifdef CONFIG_CPA_DEBUG
1405 printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1406 set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1407
1408 printk(KERN_INFO "Testing CPA: again\n");
1409 set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1410 #endif
1411
1412 free_kernel_image_pages("unused kernel image (text/rodata gap)",
1413 (void *)text_end, (void *)rodata_start);
1414 free_kernel_image_pages("unused kernel image (rodata/data gap)",
1415 (void *)rodata_end, (void *)_sdata);
1416
1417 debug_checkwx();
1418 }
1419
1420 int kern_addr_valid(unsigned long addr)
1421 {
1422 unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1423 pgd_t *pgd;
1424 p4d_t *p4d;
1425 pud_t *pud;
1426 pmd_t *pmd;
1427 pte_t *pte;
1428
1429 if (above != 0 && above != -1UL)
1430 return 0;
1431
1432 pgd = pgd_offset_k(addr);
1433 if (pgd_none(*pgd))
1434 return 0;
1435
1436 p4d = p4d_offset(pgd, addr);
1437 if (p4d_none(*p4d))
1438 return 0;
1439
1440 pud = pud_offset(p4d, addr);
1441 if (pud_none(*pud))
1442 return 0;
1443
1444 if (pud_large(*pud))
1445 return pfn_valid(pud_pfn(*pud));
1446
1447 pmd = pmd_offset(pud, addr);
1448 if (pmd_none(*pmd))
1449 return 0;
1450
1451 if (pmd_large(*pmd))
1452 return pfn_valid(pmd_pfn(*pmd));
1453
1454 pte = pte_offset_kernel(pmd, addr);
1455 if (pte_none(*pte))
1456 return 0;
1457
1458 return pfn_valid(pte_pfn(*pte));
1459 }
1460
1461 /*
1462 * Block size is the minimum amount of memory which can be hotplugged or
1463 * hotremoved. It must be power of two and must be equal or larger than
1464 * MIN_MEMORY_BLOCK_SIZE.
1465 */
1466 #define MAX_BLOCK_SIZE (2UL << 30)
1467
1468 /* Amount of ram needed to start using large blocks */
1469 #define MEM_SIZE_FOR_LARGE_BLOCK (64UL << 30)
1470
1471 /* Adjustable memory block size */
1472 static unsigned long set_memory_block_size;
1473 int __init set_memory_block_size_order(unsigned int order)
1474 {
1475 unsigned long size = 1UL << order;
1476
1477 if (size > MEM_SIZE_FOR_LARGE_BLOCK || size < MIN_MEMORY_BLOCK_SIZE)
1478 return -EINVAL;
1479
1480 set_memory_block_size = size;
1481 return 0;
1482 }
1483
1484 static unsigned long probe_memory_block_size(void)
1485 {
1486 unsigned long boot_mem_end = max_pfn << PAGE_SHIFT;
1487 unsigned long bz;
1488
1489 /* If memory block size has been set, then use it */
1490 bz = set_memory_block_size;
1491 if (bz)
1492 goto done;
1493
1494 /* Use regular block if RAM is smaller than MEM_SIZE_FOR_LARGE_BLOCK */
1495 if (boot_mem_end < MEM_SIZE_FOR_LARGE_BLOCK) {
1496 bz = MIN_MEMORY_BLOCK_SIZE;
1497 goto done;
1498 }
1499
1500 /*
1501 * Use max block size to minimize overhead on bare metal, where
1502 * alignment for memory hotplug isn't a concern.
1503 */
1504 if (!boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
1505 bz = MAX_BLOCK_SIZE;
1506 goto done;
1507 }
1508
1509 /* Find the largest allowed block size that aligns to memory end */
1510 for (bz = MAX_BLOCK_SIZE; bz > MIN_MEMORY_BLOCK_SIZE; bz >>= 1) {
1511 if (IS_ALIGNED(boot_mem_end, bz))
1512 break;
1513 }
1514 done:
1515 pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20);
1516
1517 return bz;
1518 }
1519
1520 static unsigned long memory_block_size_probed;
1521 unsigned long memory_block_size_bytes(void)
1522 {
1523 if (!memory_block_size_probed)
1524 memory_block_size_probed = probe_memory_block_size();
1525
1526 return memory_block_size_probed;
1527 }
1528
1529 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1530 /*
1531 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1532 */
1533 static long __meminitdata addr_start, addr_end;
1534 static void __meminitdata *p_start, *p_end;
1535 static int __meminitdata node_start;
1536
1537 static int __meminit vmemmap_populate_hugepages(unsigned long start,
1538 unsigned long end, int node, struct vmem_altmap *altmap)
1539 {
1540 unsigned long addr;
1541 unsigned long next;
1542 pgd_t *pgd;
1543 p4d_t *p4d;
1544 pud_t *pud;
1545 pmd_t *pmd;
1546
1547 for (addr = start; addr < end; addr = next) {
1548 next = pmd_addr_end(addr, end);
1549
1550 pgd = vmemmap_pgd_populate(addr, node);
1551 if (!pgd)
1552 return -ENOMEM;
1553
1554 p4d = vmemmap_p4d_populate(pgd, addr, node);
1555 if (!p4d)
1556 return -ENOMEM;
1557
1558 pud = vmemmap_pud_populate(p4d, addr, node);
1559 if (!pud)
1560 return -ENOMEM;
1561
1562 pmd = pmd_offset(pud, addr);
1563 if (pmd_none(*pmd)) {
1564 void *p;
1565
1566 p = vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
1567 if (p) {
1568 pte_t entry;
1569
1570 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1571 PAGE_KERNEL_LARGE);
1572 set_pmd(pmd, __pmd(pte_val(entry)));
1573
1574 /* check to see if we have contiguous blocks */
1575 if (p_end != p || node_start != node) {
1576 if (p_start)
1577 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1578 addr_start, addr_end-1, p_start, p_end-1, node_start);
1579 addr_start = addr;
1580 node_start = node;
1581 p_start = p;
1582 }
1583
1584 addr_end = addr + PMD_SIZE;
1585 p_end = p + PMD_SIZE;
1586
1587 if (!IS_ALIGNED(addr, PMD_SIZE) ||
1588 !IS_ALIGNED(next, PMD_SIZE))
1589 vmemmap_use_new_sub_pmd(addr, next);
1590
1591 continue;
1592 } else if (altmap)
1593 return -ENOMEM; /* no fallback */
1594 } else if (pmd_large(*pmd)) {
1595 vmemmap_verify((pte_t *)pmd, node, addr, next);
1596 vmemmap_use_sub_pmd(addr, next);
1597 continue;
1598 }
1599 if (vmemmap_populate_basepages(addr, next, node, NULL))
1600 return -ENOMEM;
1601 }
1602 return 0;
1603 }
1604
1605 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1606 struct vmem_altmap *altmap)
1607 {
1608 int err;
1609
1610 VM_BUG_ON(!IS_ALIGNED(start, PAGE_SIZE));
1611 VM_BUG_ON(!IS_ALIGNED(end, PAGE_SIZE));
1612
1613 if ((is_hugetlb_free_vmemmap_enabled() && !altmap) ||
1614 end - start < PAGES_PER_SECTION * sizeof(struct page))
1615 err = vmemmap_populate_basepages(start, end, node, NULL);
1616 else if (boot_cpu_has(X86_FEATURE_PSE))
1617 err = vmemmap_populate_hugepages(start, end, node, altmap);
1618 else if (altmap) {
1619 pr_err_once("%s: no cpu support for altmap allocations\n",
1620 __func__);
1621 err = -ENOMEM;
1622 } else
1623 err = vmemmap_populate_basepages(start, end, node, NULL);
1624 if (!err)
1625 sync_global_pgds(start, end - 1);
1626 return err;
1627 }
1628
1629 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
1630 void register_page_bootmem_memmap(unsigned long section_nr,
1631 struct page *start_page, unsigned long nr_pages)
1632 {
1633 unsigned long addr = (unsigned long)start_page;
1634 unsigned long end = (unsigned long)(start_page + nr_pages);
1635 unsigned long next;
1636 pgd_t *pgd;
1637 p4d_t *p4d;
1638 pud_t *pud;
1639 pmd_t *pmd;
1640 unsigned int nr_pmd_pages;
1641 struct page *page;
1642 bool base_mapping = !boot_cpu_has(X86_FEATURE_PSE) ||
1643 is_hugetlb_free_vmemmap_enabled();
1644
1645 for (; addr < end; addr = next) {
1646 pte_t *pte = NULL;
1647
1648 pgd = pgd_offset_k(addr);
1649 if (pgd_none(*pgd)) {
1650 next = (addr + PAGE_SIZE) & PAGE_MASK;
1651 continue;
1652 }
1653 get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1654
1655 p4d = p4d_offset(pgd, addr);
1656 if (p4d_none(*p4d)) {
1657 next = (addr + PAGE_SIZE) & PAGE_MASK;
1658 continue;
1659 }
1660 get_page_bootmem(section_nr, p4d_page(*p4d), MIX_SECTION_INFO);
1661
1662 pud = pud_offset(p4d, addr);
1663 if (pud_none(*pud)) {
1664 next = (addr + PAGE_SIZE) & PAGE_MASK;
1665 continue;
1666 }
1667 get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1668
1669 if (base_mapping) {
1670 next = (addr + PAGE_SIZE) & PAGE_MASK;
1671 pmd = pmd_offset(pud, addr);
1672 if (pmd_none(*pmd))
1673 continue;
1674 get_page_bootmem(section_nr, pmd_page(*pmd),
1675 MIX_SECTION_INFO);
1676
1677 pte = pte_offset_kernel(pmd, addr);
1678 if (pte_none(*pte))
1679 continue;
1680 get_page_bootmem(section_nr, pte_page(*pte),
1681 SECTION_INFO);
1682 } else {
1683 next = pmd_addr_end(addr, end);
1684
1685 pmd = pmd_offset(pud, addr);
1686 if (pmd_none(*pmd))
1687 continue;
1688
1689 nr_pmd_pages = 1 << get_order(PMD_SIZE);
1690 page = pmd_page(*pmd);
1691 while (nr_pmd_pages--)
1692 get_page_bootmem(section_nr, page++,
1693 SECTION_INFO);
1694 }
1695 }
1696 }
1697 #endif
1698
1699 void __meminit vmemmap_populate_print_last(void)
1700 {
1701 if (p_start) {
1702 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1703 addr_start, addr_end-1, p_start, p_end-1, node_start);
1704 p_start = NULL;
1705 p_end = NULL;
1706 node_start = 0;
1707 }
1708 }
1709 #endif