]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/mm/init_64.c
Merge branch 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-artful-kernel.git] / arch / x86 / mm / init_64.c
1 /*
2 * linux/arch/x86_64/mm/init.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz>
6 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7 */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/module.h>
31 #include <linux/memory.h>
32 #include <linux/memory_hotplug.h>
33 #include <linux/nmi.h>
34 #include <linux/gfp.h>
35
36 #include <asm/processor.h>
37 #include <asm/bios_ebda.h>
38 #include <asm/uaccess.h>
39 #include <asm/pgtable.h>
40 #include <asm/pgalloc.h>
41 #include <asm/dma.h>
42 #include <asm/fixmap.h>
43 #include <asm/e820.h>
44 #include <asm/apic.h>
45 #include <asm/tlb.h>
46 #include <asm/mmu_context.h>
47 #include <asm/proto.h>
48 #include <asm/smp.h>
49 #include <asm/sections.h>
50 #include <asm/kdebug.h>
51 #include <asm/numa.h>
52 #include <asm/cacheflush.h>
53 #include <asm/init.h>
54 #include <asm/uv/uv.h>
55 #include <asm/setup.h>
56
57 #include "mm_internal.h"
58
59 static void ident_pmd_init(unsigned long pmd_flag, pmd_t *pmd_page,
60 unsigned long addr, unsigned long end)
61 {
62 addr &= PMD_MASK;
63 for (; addr < end; addr += PMD_SIZE) {
64 pmd_t *pmd = pmd_page + pmd_index(addr);
65
66 if (!pmd_present(*pmd))
67 set_pmd(pmd, __pmd(addr | pmd_flag));
68 }
69 }
70 static int ident_pud_init(struct x86_mapping_info *info, pud_t *pud_page,
71 unsigned long addr, unsigned long end)
72 {
73 unsigned long next;
74
75 for (; addr < end; addr = next) {
76 pud_t *pud = pud_page + pud_index(addr);
77 pmd_t *pmd;
78
79 next = (addr & PUD_MASK) + PUD_SIZE;
80 if (next > end)
81 next = end;
82
83 if (pud_present(*pud)) {
84 pmd = pmd_offset(pud, 0);
85 ident_pmd_init(info->pmd_flag, pmd, addr, next);
86 continue;
87 }
88 pmd = (pmd_t *)info->alloc_pgt_page(info->context);
89 if (!pmd)
90 return -ENOMEM;
91 ident_pmd_init(info->pmd_flag, pmd, addr, next);
92 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
93 }
94
95 return 0;
96 }
97
98 int kernel_ident_mapping_init(struct x86_mapping_info *info, pgd_t *pgd_page,
99 unsigned long addr, unsigned long end)
100 {
101 unsigned long next;
102 int result;
103 int off = info->kernel_mapping ? pgd_index(__PAGE_OFFSET) : 0;
104
105 for (; addr < end; addr = next) {
106 pgd_t *pgd = pgd_page + pgd_index(addr) + off;
107 pud_t *pud;
108
109 next = (addr & PGDIR_MASK) + PGDIR_SIZE;
110 if (next > end)
111 next = end;
112
113 if (pgd_present(*pgd)) {
114 pud = pud_offset(pgd, 0);
115 result = ident_pud_init(info, pud, addr, next);
116 if (result)
117 return result;
118 continue;
119 }
120
121 pud = (pud_t *)info->alloc_pgt_page(info->context);
122 if (!pud)
123 return -ENOMEM;
124 result = ident_pud_init(info, pud, addr, next);
125 if (result)
126 return result;
127 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
128 }
129
130 return 0;
131 }
132
133 static int __init parse_direct_gbpages_off(char *arg)
134 {
135 direct_gbpages = 0;
136 return 0;
137 }
138 early_param("nogbpages", parse_direct_gbpages_off);
139
140 static int __init parse_direct_gbpages_on(char *arg)
141 {
142 direct_gbpages = 1;
143 return 0;
144 }
145 early_param("gbpages", parse_direct_gbpages_on);
146
147 /*
148 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
149 * physical space so we can cache the place of the first one and move
150 * around without checking the pgd every time.
151 */
152
153 pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
154 EXPORT_SYMBOL_GPL(__supported_pte_mask);
155
156 int force_personality32;
157
158 /*
159 * noexec32=on|off
160 * Control non executable heap for 32bit processes.
161 * To control the stack too use noexec=off
162 *
163 * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
164 * off PROT_READ implies PROT_EXEC
165 */
166 static int __init nonx32_setup(char *str)
167 {
168 if (!strcmp(str, "on"))
169 force_personality32 &= ~READ_IMPLIES_EXEC;
170 else if (!strcmp(str, "off"))
171 force_personality32 |= READ_IMPLIES_EXEC;
172 return 1;
173 }
174 __setup("noexec32=", nonx32_setup);
175
176 /*
177 * When memory was added/removed make sure all the processes MM have
178 * suitable PGD entries in the local PGD level page.
179 */
180 void sync_global_pgds(unsigned long start, unsigned long end)
181 {
182 unsigned long address;
183
184 for (address = start; address <= end; address += PGDIR_SIZE) {
185 const pgd_t *pgd_ref = pgd_offset_k(address);
186 struct page *page;
187
188 if (pgd_none(*pgd_ref))
189 continue;
190
191 spin_lock(&pgd_lock);
192 list_for_each_entry(page, &pgd_list, lru) {
193 pgd_t *pgd;
194 spinlock_t *pgt_lock;
195
196 pgd = (pgd_t *)page_address(page) + pgd_index(address);
197 /* the pgt_lock only for Xen */
198 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
199 spin_lock(pgt_lock);
200
201 if (pgd_none(*pgd))
202 set_pgd(pgd, *pgd_ref);
203 else
204 BUG_ON(pgd_page_vaddr(*pgd)
205 != pgd_page_vaddr(*pgd_ref));
206
207 spin_unlock(pgt_lock);
208 }
209 spin_unlock(&pgd_lock);
210 }
211 }
212
213 /*
214 * NOTE: This function is marked __ref because it calls __init function
215 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
216 */
217 static __ref void *spp_getpage(void)
218 {
219 void *ptr;
220
221 if (after_bootmem)
222 ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
223 else
224 ptr = alloc_bootmem_pages(PAGE_SIZE);
225
226 if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
227 panic("set_pte_phys: cannot allocate page data %s\n",
228 after_bootmem ? "after bootmem" : "");
229 }
230
231 pr_debug("spp_getpage %p\n", ptr);
232
233 return ptr;
234 }
235
236 static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
237 {
238 if (pgd_none(*pgd)) {
239 pud_t *pud = (pud_t *)spp_getpage();
240 pgd_populate(&init_mm, pgd, pud);
241 if (pud != pud_offset(pgd, 0))
242 printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
243 pud, pud_offset(pgd, 0));
244 }
245 return pud_offset(pgd, vaddr);
246 }
247
248 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
249 {
250 if (pud_none(*pud)) {
251 pmd_t *pmd = (pmd_t *) spp_getpage();
252 pud_populate(&init_mm, pud, pmd);
253 if (pmd != pmd_offset(pud, 0))
254 printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
255 pmd, pmd_offset(pud, 0));
256 }
257 return pmd_offset(pud, vaddr);
258 }
259
260 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
261 {
262 if (pmd_none(*pmd)) {
263 pte_t *pte = (pte_t *) spp_getpage();
264 pmd_populate_kernel(&init_mm, pmd, pte);
265 if (pte != pte_offset_kernel(pmd, 0))
266 printk(KERN_ERR "PAGETABLE BUG #02!\n");
267 }
268 return pte_offset_kernel(pmd, vaddr);
269 }
270
271 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
272 {
273 pud_t *pud;
274 pmd_t *pmd;
275 pte_t *pte;
276
277 pud = pud_page + pud_index(vaddr);
278 pmd = fill_pmd(pud, vaddr);
279 pte = fill_pte(pmd, vaddr);
280
281 set_pte(pte, new_pte);
282
283 /*
284 * It's enough to flush this one mapping.
285 * (PGE mappings get flushed as well)
286 */
287 __flush_tlb_one(vaddr);
288 }
289
290 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
291 {
292 pgd_t *pgd;
293 pud_t *pud_page;
294
295 pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
296
297 pgd = pgd_offset_k(vaddr);
298 if (pgd_none(*pgd)) {
299 printk(KERN_ERR
300 "PGD FIXMAP MISSING, it should be setup in head.S!\n");
301 return;
302 }
303 pud_page = (pud_t*)pgd_page_vaddr(*pgd);
304 set_pte_vaddr_pud(pud_page, vaddr, pteval);
305 }
306
307 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
308 {
309 pgd_t *pgd;
310 pud_t *pud;
311
312 pgd = pgd_offset_k(vaddr);
313 pud = fill_pud(pgd, vaddr);
314 return fill_pmd(pud, vaddr);
315 }
316
317 pte_t * __init populate_extra_pte(unsigned long vaddr)
318 {
319 pmd_t *pmd;
320
321 pmd = populate_extra_pmd(vaddr);
322 return fill_pte(pmd, vaddr);
323 }
324
325 /*
326 * Create large page table mappings for a range of physical addresses.
327 */
328 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
329 pgprot_t prot)
330 {
331 pgd_t *pgd;
332 pud_t *pud;
333 pmd_t *pmd;
334
335 BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
336 for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
337 pgd = pgd_offset_k((unsigned long)__va(phys));
338 if (pgd_none(*pgd)) {
339 pud = (pud_t *) spp_getpage();
340 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
341 _PAGE_USER));
342 }
343 pud = pud_offset(pgd, (unsigned long)__va(phys));
344 if (pud_none(*pud)) {
345 pmd = (pmd_t *) spp_getpage();
346 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
347 _PAGE_USER));
348 }
349 pmd = pmd_offset(pud, phys);
350 BUG_ON(!pmd_none(*pmd));
351 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
352 }
353 }
354
355 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
356 {
357 __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
358 }
359
360 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
361 {
362 __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
363 }
364
365 /*
366 * The head.S code sets up the kernel high mapping:
367 *
368 * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
369 *
370 * phys_addr holds the negative offset to the kernel, which is added
371 * to the compile time generated pmds. This results in invalid pmds up
372 * to the point where we hit the physaddr 0 mapping.
373 *
374 * We limit the mappings to the region from _text to _brk_end. _brk_end
375 * is rounded up to the 2MB boundary. This catches the invalid pmds as
376 * well, as they are located before _text:
377 */
378 void __init cleanup_highmap(void)
379 {
380 unsigned long vaddr = __START_KERNEL_map;
381 unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
382 unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
383 pmd_t *pmd = level2_kernel_pgt;
384
385 /*
386 * Native path, max_pfn_mapped is not set yet.
387 * Xen has valid max_pfn_mapped set in
388 * arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
389 */
390 if (max_pfn_mapped)
391 vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
392
393 for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
394 if (pmd_none(*pmd))
395 continue;
396 if (vaddr < (unsigned long) _text || vaddr > end)
397 set_pmd(pmd, __pmd(0));
398 }
399 }
400
401 static unsigned long __meminit
402 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
403 pgprot_t prot)
404 {
405 unsigned long pages = 0, next;
406 unsigned long last_map_addr = end;
407 int i;
408
409 pte_t *pte = pte_page + pte_index(addr);
410
411 for (i = pte_index(addr); i < PTRS_PER_PTE; i++, addr = next, pte++) {
412 next = (addr & PAGE_MASK) + PAGE_SIZE;
413 if (addr >= end) {
414 if (!after_bootmem &&
415 !e820_any_mapped(addr & PAGE_MASK, next, E820_RAM) &&
416 !e820_any_mapped(addr & PAGE_MASK, next, E820_RESERVED_KERN))
417 set_pte(pte, __pte(0));
418 continue;
419 }
420
421 /*
422 * We will re-use the existing mapping.
423 * Xen for example has some special requirements, like mapping
424 * pagetable pages as RO. So assume someone who pre-setup
425 * these mappings are more intelligent.
426 */
427 if (pte_val(*pte)) {
428 if (!after_bootmem)
429 pages++;
430 continue;
431 }
432
433 if (0)
434 printk(" pte=%p addr=%lx pte=%016lx\n",
435 pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
436 pages++;
437 set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
438 last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
439 }
440
441 update_page_count(PG_LEVEL_4K, pages);
442
443 return last_map_addr;
444 }
445
446 static unsigned long __meminit
447 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
448 unsigned long page_size_mask, pgprot_t prot)
449 {
450 unsigned long pages = 0, next;
451 unsigned long last_map_addr = end;
452
453 int i = pmd_index(address);
454
455 for (; i < PTRS_PER_PMD; i++, address = next) {
456 pmd_t *pmd = pmd_page + pmd_index(address);
457 pte_t *pte;
458 pgprot_t new_prot = prot;
459
460 next = (address & PMD_MASK) + PMD_SIZE;
461 if (address >= end) {
462 if (!after_bootmem &&
463 !e820_any_mapped(address & PMD_MASK, next, E820_RAM) &&
464 !e820_any_mapped(address & PMD_MASK, next, E820_RESERVED_KERN))
465 set_pmd(pmd, __pmd(0));
466 continue;
467 }
468
469 if (pmd_val(*pmd)) {
470 if (!pmd_large(*pmd)) {
471 spin_lock(&init_mm.page_table_lock);
472 pte = (pte_t *)pmd_page_vaddr(*pmd);
473 last_map_addr = phys_pte_init(pte, address,
474 end, prot);
475 spin_unlock(&init_mm.page_table_lock);
476 continue;
477 }
478 /*
479 * If we are ok with PG_LEVEL_2M mapping, then we will
480 * use the existing mapping,
481 *
482 * Otherwise, we will split the large page mapping but
483 * use the same existing protection bits except for
484 * large page, so that we don't violate Intel's TLB
485 * Application note (317080) which says, while changing
486 * the page sizes, new and old translations should
487 * not differ with respect to page frame and
488 * attributes.
489 */
490 if (page_size_mask & (1 << PG_LEVEL_2M)) {
491 if (!after_bootmem)
492 pages++;
493 last_map_addr = next;
494 continue;
495 }
496 new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
497 }
498
499 if (page_size_mask & (1<<PG_LEVEL_2M)) {
500 pages++;
501 spin_lock(&init_mm.page_table_lock);
502 set_pte((pte_t *)pmd,
503 pfn_pte((address & PMD_MASK) >> PAGE_SHIFT,
504 __pgprot(pgprot_val(prot) | _PAGE_PSE)));
505 spin_unlock(&init_mm.page_table_lock);
506 last_map_addr = next;
507 continue;
508 }
509
510 pte = alloc_low_page();
511 last_map_addr = phys_pte_init(pte, address, end, new_prot);
512
513 spin_lock(&init_mm.page_table_lock);
514 pmd_populate_kernel(&init_mm, pmd, pte);
515 spin_unlock(&init_mm.page_table_lock);
516 }
517 update_page_count(PG_LEVEL_2M, pages);
518 return last_map_addr;
519 }
520
521 static unsigned long __meminit
522 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
523 unsigned long page_size_mask)
524 {
525 unsigned long pages = 0, next;
526 unsigned long last_map_addr = end;
527 int i = pud_index(addr);
528
529 for (; i < PTRS_PER_PUD; i++, addr = next) {
530 pud_t *pud = pud_page + pud_index(addr);
531 pmd_t *pmd;
532 pgprot_t prot = PAGE_KERNEL;
533
534 next = (addr & PUD_MASK) + PUD_SIZE;
535 if (addr >= end) {
536 if (!after_bootmem &&
537 !e820_any_mapped(addr & PUD_MASK, next, E820_RAM) &&
538 !e820_any_mapped(addr & PUD_MASK, next, E820_RESERVED_KERN))
539 set_pud(pud, __pud(0));
540 continue;
541 }
542
543 if (pud_val(*pud)) {
544 if (!pud_large(*pud)) {
545 pmd = pmd_offset(pud, 0);
546 last_map_addr = phys_pmd_init(pmd, addr, end,
547 page_size_mask, prot);
548 __flush_tlb_all();
549 continue;
550 }
551 /*
552 * If we are ok with PG_LEVEL_1G mapping, then we will
553 * use the existing mapping.
554 *
555 * Otherwise, we will split the gbpage mapping but use
556 * the same existing protection bits except for large
557 * page, so that we don't violate Intel's TLB
558 * Application note (317080) which says, while changing
559 * the page sizes, new and old translations should
560 * not differ with respect to page frame and
561 * attributes.
562 */
563 if (page_size_mask & (1 << PG_LEVEL_1G)) {
564 if (!after_bootmem)
565 pages++;
566 last_map_addr = next;
567 continue;
568 }
569 prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
570 }
571
572 if (page_size_mask & (1<<PG_LEVEL_1G)) {
573 pages++;
574 spin_lock(&init_mm.page_table_lock);
575 set_pte((pte_t *)pud,
576 pfn_pte((addr & PUD_MASK) >> PAGE_SHIFT,
577 PAGE_KERNEL_LARGE));
578 spin_unlock(&init_mm.page_table_lock);
579 last_map_addr = next;
580 continue;
581 }
582
583 pmd = alloc_low_page();
584 last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
585 prot);
586
587 spin_lock(&init_mm.page_table_lock);
588 pud_populate(&init_mm, pud, pmd);
589 spin_unlock(&init_mm.page_table_lock);
590 }
591 __flush_tlb_all();
592
593 update_page_count(PG_LEVEL_1G, pages);
594
595 return last_map_addr;
596 }
597
598 unsigned long __meminit
599 kernel_physical_mapping_init(unsigned long start,
600 unsigned long end,
601 unsigned long page_size_mask)
602 {
603 bool pgd_changed = false;
604 unsigned long next, last_map_addr = end;
605 unsigned long addr;
606
607 start = (unsigned long)__va(start);
608 end = (unsigned long)__va(end);
609 addr = start;
610
611 for (; start < end; start = next) {
612 pgd_t *pgd = pgd_offset_k(start);
613 pud_t *pud;
614
615 next = (start & PGDIR_MASK) + PGDIR_SIZE;
616
617 if (pgd_val(*pgd)) {
618 pud = (pud_t *)pgd_page_vaddr(*pgd);
619 last_map_addr = phys_pud_init(pud, __pa(start),
620 __pa(end), page_size_mask);
621 continue;
622 }
623
624 pud = alloc_low_page();
625 last_map_addr = phys_pud_init(pud, __pa(start), __pa(end),
626 page_size_mask);
627
628 spin_lock(&init_mm.page_table_lock);
629 pgd_populate(&init_mm, pgd, pud);
630 spin_unlock(&init_mm.page_table_lock);
631 pgd_changed = true;
632 }
633
634 if (pgd_changed)
635 sync_global_pgds(addr, end - 1);
636
637 __flush_tlb_all();
638
639 return last_map_addr;
640 }
641
642 #ifndef CONFIG_NUMA
643 void __init initmem_init(void)
644 {
645 memblock_set_node(0, (phys_addr_t)ULLONG_MAX, 0);
646 }
647 #endif
648
649 void __init paging_init(void)
650 {
651 sparse_memory_present_with_active_regions(MAX_NUMNODES);
652 sparse_init();
653
654 /*
655 * clear the default setting with node 0
656 * note: don't use nodes_clear here, that is really clearing when
657 * numa support is not compiled in, and later node_set_state
658 * will not set it back.
659 */
660 node_clear_state(0, N_MEMORY);
661 if (N_MEMORY != N_NORMAL_MEMORY)
662 node_clear_state(0, N_NORMAL_MEMORY);
663
664 zone_sizes_init();
665 }
666
667 /*
668 * Memory hotplug specific functions
669 */
670 #ifdef CONFIG_MEMORY_HOTPLUG
671 /*
672 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
673 * updating.
674 */
675 static void update_end_of_memory_vars(u64 start, u64 size)
676 {
677 unsigned long end_pfn = PFN_UP(start + size);
678
679 if (end_pfn > max_pfn) {
680 max_pfn = end_pfn;
681 max_low_pfn = end_pfn;
682 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
683 }
684 }
685
686 /*
687 * Memory is added always to NORMAL zone. This means you will never get
688 * additional DMA/DMA32 memory.
689 */
690 int arch_add_memory(int nid, u64 start, u64 size)
691 {
692 struct pglist_data *pgdat = NODE_DATA(nid);
693 struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
694 unsigned long start_pfn = start >> PAGE_SHIFT;
695 unsigned long nr_pages = size >> PAGE_SHIFT;
696 int ret;
697
698 init_memory_mapping(start, start + size);
699
700 ret = __add_pages(nid, zone, start_pfn, nr_pages);
701 WARN_ON_ONCE(ret);
702
703 /* update max_pfn, max_low_pfn and high_memory */
704 update_end_of_memory_vars(start, size);
705
706 return ret;
707 }
708 EXPORT_SYMBOL_GPL(arch_add_memory);
709
710 #define PAGE_INUSE 0xFD
711
712 static void __meminit free_pagetable(struct page *page, int order)
713 {
714 struct zone *zone;
715 bool bootmem = false;
716 unsigned long magic;
717 unsigned int nr_pages = 1 << order;
718
719 /* bootmem page has reserved flag */
720 if (PageReserved(page)) {
721 __ClearPageReserved(page);
722 bootmem = true;
723
724 magic = (unsigned long)page->lru.next;
725 if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
726 while (nr_pages--)
727 put_page_bootmem(page++);
728 } else
729 __free_pages_bootmem(page, order);
730 } else
731 free_pages((unsigned long)page_address(page), order);
732
733 /*
734 * SECTION_INFO pages and MIX_SECTION_INFO pages
735 * are all allocated by bootmem.
736 */
737 if (bootmem) {
738 zone = page_zone(page);
739 zone_span_writelock(zone);
740 zone->present_pages += nr_pages;
741 zone_span_writeunlock(zone);
742 totalram_pages += nr_pages;
743 }
744 }
745
746 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
747 {
748 pte_t *pte;
749 int i;
750
751 for (i = 0; i < PTRS_PER_PTE; i++) {
752 pte = pte_start + i;
753 if (pte_val(*pte))
754 return;
755 }
756
757 /* free a pte talbe */
758 free_pagetable(pmd_page(*pmd), 0);
759 spin_lock(&init_mm.page_table_lock);
760 pmd_clear(pmd);
761 spin_unlock(&init_mm.page_table_lock);
762 }
763
764 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
765 {
766 pmd_t *pmd;
767 int i;
768
769 for (i = 0; i < PTRS_PER_PMD; i++) {
770 pmd = pmd_start + i;
771 if (pmd_val(*pmd))
772 return;
773 }
774
775 /* free a pmd talbe */
776 free_pagetable(pud_page(*pud), 0);
777 spin_lock(&init_mm.page_table_lock);
778 pud_clear(pud);
779 spin_unlock(&init_mm.page_table_lock);
780 }
781
782 /* Return true if pgd is changed, otherwise return false. */
783 static bool __meminit free_pud_table(pud_t *pud_start, pgd_t *pgd)
784 {
785 pud_t *pud;
786 int i;
787
788 for (i = 0; i < PTRS_PER_PUD; i++) {
789 pud = pud_start + i;
790 if (pud_val(*pud))
791 return false;
792 }
793
794 /* free a pud table */
795 free_pagetable(pgd_page(*pgd), 0);
796 spin_lock(&init_mm.page_table_lock);
797 pgd_clear(pgd);
798 spin_unlock(&init_mm.page_table_lock);
799
800 return true;
801 }
802
803 static void __meminit
804 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
805 bool direct)
806 {
807 unsigned long next, pages = 0;
808 pte_t *pte;
809 void *page_addr;
810 phys_addr_t phys_addr;
811
812 pte = pte_start + pte_index(addr);
813 for (; addr < end; addr = next, pte++) {
814 next = (addr + PAGE_SIZE) & PAGE_MASK;
815 if (next > end)
816 next = end;
817
818 if (!pte_present(*pte))
819 continue;
820
821 /*
822 * We mapped [0,1G) memory as identity mapping when
823 * initializing, in arch/x86/kernel/head_64.S. These
824 * pagetables cannot be removed.
825 */
826 phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
827 if (phys_addr < (phys_addr_t)0x40000000)
828 return;
829
830 if (IS_ALIGNED(addr, PAGE_SIZE) &&
831 IS_ALIGNED(next, PAGE_SIZE)) {
832 /*
833 * Do not free direct mapping pages since they were
834 * freed when offlining, or simplely not in use.
835 */
836 if (!direct)
837 free_pagetable(pte_page(*pte), 0);
838
839 spin_lock(&init_mm.page_table_lock);
840 pte_clear(&init_mm, addr, pte);
841 spin_unlock(&init_mm.page_table_lock);
842
843 /* For non-direct mapping, pages means nothing. */
844 pages++;
845 } else {
846 /*
847 * If we are here, we are freeing vmemmap pages since
848 * direct mapped memory ranges to be freed are aligned.
849 *
850 * If we are not removing the whole page, it means
851 * other page structs in this page are being used and
852 * we canot remove them. So fill the unused page_structs
853 * with 0xFD, and remove the page when it is wholly
854 * filled with 0xFD.
855 */
856 memset((void *)addr, PAGE_INUSE, next - addr);
857
858 page_addr = page_address(pte_page(*pte));
859 if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
860 free_pagetable(pte_page(*pte), 0);
861
862 spin_lock(&init_mm.page_table_lock);
863 pte_clear(&init_mm, addr, pte);
864 spin_unlock(&init_mm.page_table_lock);
865 }
866 }
867 }
868
869 /* Call free_pte_table() in remove_pmd_table(). */
870 flush_tlb_all();
871 if (direct)
872 update_page_count(PG_LEVEL_4K, -pages);
873 }
874
875 static void __meminit
876 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
877 bool direct)
878 {
879 unsigned long next, pages = 0;
880 pte_t *pte_base;
881 pmd_t *pmd;
882 void *page_addr;
883
884 pmd = pmd_start + pmd_index(addr);
885 for (; addr < end; addr = next, pmd++) {
886 next = pmd_addr_end(addr, end);
887
888 if (!pmd_present(*pmd))
889 continue;
890
891 if (pmd_large(*pmd)) {
892 if (IS_ALIGNED(addr, PMD_SIZE) &&
893 IS_ALIGNED(next, PMD_SIZE)) {
894 if (!direct)
895 free_pagetable(pmd_page(*pmd),
896 get_order(PMD_SIZE));
897
898 spin_lock(&init_mm.page_table_lock);
899 pmd_clear(pmd);
900 spin_unlock(&init_mm.page_table_lock);
901 pages++;
902 } else {
903 /* If here, we are freeing vmemmap pages. */
904 memset((void *)addr, PAGE_INUSE, next - addr);
905
906 page_addr = page_address(pmd_page(*pmd));
907 if (!memchr_inv(page_addr, PAGE_INUSE,
908 PMD_SIZE)) {
909 free_pagetable(pmd_page(*pmd),
910 get_order(PMD_SIZE));
911
912 spin_lock(&init_mm.page_table_lock);
913 pmd_clear(pmd);
914 spin_unlock(&init_mm.page_table_lock);
915 }
916 }
917
918 continue;
919 }
920
921 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
922 remove_pte_table(pte_base, addr, next, direct);
923 free_pte_table(pte_base, pmd);
924 }
925
926 /* Call free_pmd_table() in remove_pud_table(). */
927 if (direct)
928 update_page_count(PG_LEVEL_2M, -pages);
929 }
930
931 static void __meminit
932 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
933 bool direct)
934 {
935 unsigned long next, pages = 0;
936 pmd_t *pmd_base;
937 pud_t *pud;
938 void *page_addr;
939
940 pud = pud_start + pud_index(addr);
941 for (; addr < end; addr = next, pud++) {
942 next = pud_addr_end(addr, end);
943
944 if (!pud_present(*pud))
945 continue;
946
947 if (pud_large(*pud)) {
948 if (IS_ALIGNED(addr, PUD_SIZE) &&
949 IS_ALIGNED(next, PUD_SIZE)) {
950 if (!direct)
951 free_pagetable(pud_page(*pud),
952 get_order(PUD_SIZE));
953
954 spin_lock(&init_mm.page_table_lock);
955 pud_clear(pud);
956 spin_unlock(&init_mm.page_table_lock);
957 pages++;
958 } else {
959 /* If here, we are freeing vmemmap pages. */
960 memset((void *)addr, PAGE_INUSE, next - addr);
961
962 page_addr = page_address(pud_page(*pud));
963 if (!memchr_inv(page_addr, PAGE_INUSE,
964 PUD_SIZE)) {
965 free_pagetable(pud_page(*pud),
966 get_order(PUD_SIZE));
967
968 spin_lock(&init_mm.page_table_lock);
969 pud_clear(pud);
970 spin_unlock(&init_mm.page_table_lock);
971 }
972 }
973
974 continue;
975 }
976
977 pmd_base = (pmd_t *)pud_page_vaddr(*pud);
978 remove_pmd_table(pmd_base, addr, next, direct);
979 free_pmd_table(pmd_base, pud);
980 }
981
982 if (direct)
983 update_page_count(PG_LEVEL_1G, -pages);
984 }
985
986 /* start and end are both virtual address. */
987 static void __meminit
988 remove_pagetable(unsigned long start, unsigned long end, bool direct)
989 {
990 unsigned long next;
991 pgd_t *pgd;
992 pud_t *pud;
993 bool pgd_changed = false;
994
995 for (; start < end; start = next) {
996 next = pgd_addr_end(start, end);
997
998 pgd = pgd_offset_k(start);
999 if (!pgd_present(*pgd))
1000 continue;
1001
1002 pud = (pud_t *)pgd_page_vaddr(*pgd);
1003 remove_pud_table(pud, start, next, direct);
1004 if (free_pud_table(pud, pgd))
1005 pgd_changed = true;
1006 }
1007
1008 if (pgd_changed)
1009 sync_global_pgds(start, end - 1);
1010
1011 flush_tlb_all();
1012 }
1013
1014 void __ref vmemmap_free(unsigned long start, unsigned long end)
1015 {
1016 remove_pagetable(start, end, false);
1017 }
1018
1019 #ifdef CONFIG_MEMORY_HOTREMOVE
1020 static void __meminit
1021 kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1022 {
1023 start = (unsigned long)__va(start);
1024 end = (unsigned long)__va(end);
1025
1026 remove_pagetable(start, end, true);
1027 }
1028
1029 int __ref arch_remove_memory(u64 start, u64 size)
1030 {
1031 unsigned long start_pfn = start >> PAGE_SHIFT;
1032 unsigned long nr_pages = size >> PAGE_SHIFT;
1033 struct zone *zone;
1034 int ret;
1035
1036 zone = page_zone(pfn_to_page(start_pfn));
1037 kernel_physical_mapping_remove(start, start + size);
1038 ret = __remove_pages(zone, start_pfn, nr_pages);
1039 WARN_ON_ONCE(ret);
1040
1041 return ret;
1042 }
1043 #endif
1044 #endif /* CONFIG_MEMORY_HOTPLUG */
1045
1046 static struct kcore_list kcore_vsyscall;
1047
1048 static void __init register_page_bootmem_info(void)
1049 {
1050 #ifdef CONFIG_NUMA
1051 int i;
1052
1053 for_each_online_node(i)
1054 register_page_bootmem_info_node(NODE_DATA(i));
1055 #endif
1056 }
1057
1058 void __init mem_init(void)
1059 {
1060 long codesize, reservedpages, datasize, initsize;
1061 unsigned long absent_pages;
1062
1063 pci_iommu_alloc();
1064
1065 /* clear_bss() already clear the empty_zero_page */
1066
1067 register_page_bootmem_info();
1068
1069 /* this will put all memory onto the freelists */
1070 totalram_pages = free_all_bootmem();
1071
1072 absent_pages = absent_pages_in_range(0, max_pfn);
1073 reservedpages = max_pfn - totalram_pages - absent_pages;
1074 after_bootmem = 1;
1075
1076 codesize = (unsigned long) &_etext - (unsigned long) &_text;
1077 datasize = (unsigned long) &_edata - (unsigned long) &_etext;
1078 initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
1079
1080 /* Register memory areas for /proc/kcore */
1081 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
1082 VSYSCALL_END - VSYSCALL_START, KCORE_OTHER);
1083
1084 printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
1085 "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
1086 nr_free_pages() << (PAGE_SHIFT-10),
1087 max_pfn << (PAGE_SHIFT-10),
1088 codesize >> 10,
1089 absent_pages << (PAGE_SHIFT-10),
1090 reservedpages << (PAGE_SHIFT-10),
1091 datasize >> 10,
1092 initsize >> 10);
1093 }
1094
1095 #ifdef CONFIG_DEBUG_RODATA
1096 const int rodata_test_data = 0xC3;
1097 EXPORT_SYMBOL_GPL(rodata_test_data);
1098
1099 int kernel_set_to_readonly;
1100
1101 void set_kernel_text_rw(void)
1102 {
1103 unsigned long start = PFN_ALIGN(_text);
1104 unsigned long end = PFN_ALIGN(__stop___ex_table);
1105
1106 if (!kernel_set_to_readonly)
1107 return;
1108
1109 pr_debug("Set kernel text: %lx - %lx for read write\n",
1110 start, end);
1111
1112 /*
1113 * Make the kernel identity mapping for text RW. Kernel text
1114 * mapping will always be RO. Refer to the comment in
1115 * static_protections() in pageattr.c
1116 */
1117 set_memory_rw(start, (end - start) >> PAGE_SHIFT);
1118 }
1119
1120 void set_kernel_text_ro(void)
1121 {
1122 unsigned long start = PFN_ALIGN(_text);
1123 unsigned long end = PFN_ALIGN(__stop___ex_table);
1124
1125 if (!kernel_set_to_readonly)
1126 return;
1127
1128 pr_debug("Set kernel text: %lx - %lx for read only\n",
1129 start, end);
1130
1131 /*
1132 * Set the kernel identity mapping for text RO.
1133 */
1134 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1135 }
1136
1137 void mark_rodata_ro(void)
1138 {
1139 unsigned long start = PFN_ALIGN(_text);
1140 unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1141 unsigned long end = (unsigned long) &__end_rodata_hpage_align;
1142 unsigned long text_end = PFN_ALIGN(&__stop___ex_table);
1143 unsigned long rodata_end = PFN_ALIGN(&__end_rodata);
1144 unsigned long all_end = PFN_ALIGN(&_end);
1145
1146 printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1147 (end - start) >> 10);
1148 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1149
1150 kernel_set_to_readonly = 1;
1151
1152 /*
1153 * The rodata/data/bss/brk section (but not the kernel text!)
1154 * should also be not-executable.
1155 */
1156 set_memory_nx(rodata_start, (all_end - rodata_start) >> PAGE_SHIFT);
1157
1158 rodata_test();
1159
1160 #ifdef CONFIG_CPA_DEBUG
1161 printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1162 set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1163
1164 printk(KERN_INFO "Testing CPA: again\n");
1165 set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1166 #endif
1167
1168 free_init_pages("unused kernel memory",
1169 (unsigned long) __va(__pa_symbol(text_end)),
1170 (unsigned long) __va(__pa_symbol(rodata_start)));
1171
1172 free_init_pages("unused kernel memory",
1173 (unsigned long) __va(__pa_symbol(rodata_end)),
1174 (unsigned long) __va(__pa_symbol(_sdata)));
1175 }
1176
1177 #endif
1178
1179 int kern_addr_valid(unsigned long addr)
1180 {
1181 unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1182 pgd_t *pgd;
1183 pud_t *pud;
1184 pmd_t *pmd;
1185 pte_t *pte;
1186
1187 if (above != 0 && above != -1UL)
1188 return 0;
1189
1190 pgd = pgd_offset_k(addr);
1191 if (pgd_none(*pgd))
1192 return 0;
1193
1194 pud = pud_offset(pgd, addr);
1195 if (pud_none(*pud))
1196 return 0;
1197
1198 if (pud_large(*pud))
1199 return pfn_valid(pud_pfn(*pud));
1200
1201 pmd = pmd_offset(pud, addr);
1202 if (pmd_none(*pmd))
1203 return 0;
1204
1205 if (pmd_large(*pmd))
1206 return pfn_valid(pmd_pfn(*pmd));
1207
1208 pte = pte_offset_kernel(pmd, addr);
1209 if (pte_none(*pte))
1210 return 0;
1211
1212 return pfn_valid(pte_pfn(*pte));
1213 }
1214
1215 /*
1216 * A pseudo VMA to allow ptrace access for the vsyscall page. This only
1217 * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
1218 * not need special handling anymore:
1219 */
1220 static struct vm_area_struct gate_vma = {
1221 .vm_start = VSYSCALL_START,
1222 .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
1223 .vm_page_prot = PAGE_READONLY_EXEC,
1224 .vm_flags = VM_READ | VM_EXEC
1225 };
1226
1227 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
1228 {
1229 #ifdef CONFIG_IA32_EMULATION
1230 if (!mm || mm->context.ia32_compat)
1231 return NULL;
1232 #endif
1233 return &gate_vma;
1234 }
1235
1236 int in_gate_area(struct mm_struct *mm, unsigned long addr)
1237 {
1238 struct vm_area_struct *vma = get_gate_vma(mm);
1239
1240 if (!vma)
1241 return 0;
1242
1243 return (addr >= vma->vm_start) && (addr < vma->vm_end);
1244 }
1245
1246 /*
1247 * Use this when you have no reliable mm, typically from interrupt
1248 * context. It is less reliable than using a task's mm and may give
1249 * false positives.
1250 */
1251 int in_gate_area_no_mm(unsigned long addr)
1252 {
1253 return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
1254 }
1255
1256 const char *arch_vma_name(struct vm_area_struct *vma)
1257 {
1258 if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
1259 return "[vdso]";
1260 if (vma == &gate_vma)
1261 return "[vsyscall]";
1262 return NULL;
1263 }
1264
1265 #ifdef CONFIG_X86_UV
1266 unsigned long memory_block_size_bytes(void)
1267 {
1268 if (is_uv_system()) {
1269 printk(KERN_INFO "UV: memory block size 2GB\n");
1270 return 2UL * 1024 * 1024 * 1024;
1271 }
1272 return MIN_MEMORY_BLOCK_SIZE;
1273 }
1274 #endif
1275
1276 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1277 /*
1278 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1279 */
1280 static long __meminitdata addr_start, addr_end;
1281 static void __meminitdata *p_start, *p_end;
1282 static int __meminitdata node_start;
1283
1284 static int __meminit vmemmap_populate_hugepages(unsigned long start,
1285 unsigned long end, int node)
1286 {
1287 unsigned long addr;
1288 unsigned long next;
1289 pgd_t *pgd;
1290 pud_t *pud;
1291 pmd_t *pmd;
1292
1293 for (addr = start; addr < end; addr = next) {
1294 next = pmd_addr_end(addr, end);
1295
1296 pgd = vmemmap_pgd_populate(addr, node);
1297 if (!pgd)
1298 return -ENOMEM;
1299
1300 pud = vmemmap_pud_populate(pgd, addr, node);
1301 if (!pud)
1302 return -ENOMEM;
1303
1304 pmd = pmd_offset(pud, addr);
1305 if (pmd_none(*pmd)) {
1306 void *p;
1307
1308 p = vmemmap_alloc_block_buf(PMD_SIZE, node);
1309 if (p) {
1310 pte_t entry;
1311
1312 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1313 PAGE_KERNEL_LARGE);
1314 set_pmd(pmd, __pmd(pte_val(entry)));
1315
1316 /* check to see if we have contiguous blocks */
1317 if (p_end != p || node_start != node) {
1318 if (p_start)
1319 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1320 addr_start, addr_end-1, p_start, p_end-1, node_start);
1321 addr_start = addr;
1322 node_start = node;
1323 p_start = p;
1324 }
1325
1326 addr_end = addr + PMD_SIZE;
1327 p_end = p + PMD_SIZE;
1328 continue;
1329 }
1330 } else if (pmd_large(*pmd)) {
1331 vmemmap_verify((pte_t *)pmd, node, addr, next);
1332 continue;
1333 }
1334 pr_warn_once("vmemmap: falling back to regular page backing\n");
1335 if (vmemmap_populate_basepages(addr, next, node))
1336 return -ENOMEM;
1337 }
1338 return 0;
1339 }
1340
1341 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
1342 {
1343 int err;
1344
1345 if (cpu_has_pse)
1346 err = vmemmap_populate_hugepages(start, end, node);
1347 else
1348 err = vmemmap_populate_basepages(start, end, node);
1349 if (!err)
1350 sync_global_pgds(start, end - 1);
1351 return err;
1352 }
1353
1354 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
1355 void register_page_bootmem_memmap(unsigned long section_nr,
1356 struct page *start_page, unsigned long size)
1357 {
1358 unsigned long addr = (unsigned long)start_page;
1359 unsigned long end = (unsigned long)(start_page + size);
1360 unsigned long next;
1361 pgd_t *pgd;
1362 pud_t *pud;
1363 pmd_t *pmd;
1364 unsigned int nr_pages;
1365 struct page *page;
1366
1367 for (; addr < end; addr = next) {
1368 pte_t *pte = NULL;
1369
1370 pgd = pgd_offset_k(addr);
1371 if (pgd_none(*pgd)) {
1372 next = (addr + PAGE_SIZE) & PAGE_MASK;
1373 continue;
1374 }
1375 get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1376
1377 pud = pud_offset(pgd, addr);
1378 if (pud_none(*pud)) {
1379 next = (addr + PAGE_SIZE) & PAGE_MASK;
1380 continue;
1381 }
1382 get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1383
1384 if (!cpu_has_pse) {
1385 next = (addr + PAGE_SIZE) & PAGE_MASK;
1386 pmd = pmd_offset(pud, addr);
1387 if (pmd_none(*pmd))
1388 continue;
1389 get_page_bootmem(section_nr, pmd_page(*pmd),
1390 MIX_SECTION_INFO);
1391
1392 pte = pte_offset_kernel(pmd, addr);
1393 if (pte_none(*pte))
1394 continue;
1395 get_page_bootmem(section_nr, pte_page(*pte),
1396 SECTION_INFO);
1397 } else {
1398 next = pmd_addr_end(addr, end);
1399
1400 pmd = pmd_offset(pud, addr);
1401 if (pmd_none(*pmd))
1402 continue;
1403
1404 nr_pages = 1 << (get_order(PMD_SIZE));
1405 page = pmd_page(*pmd);
1406 while (nr_pages--)
1407 get_page_bootmem(section_nr, page++,
1408 SECTION_INFO);
1409 }
1410 }
1411 }
1412 #endif
1413
1414 void __meminit vmemmap_populate_print_last(void)
1415 {
1416 if (p_start) {
1417 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1418 addr_start, addr_end-1, p_start, p_end-1, node_start);
1419 p_start = NULL;
1420 p_end = NULL;
1421 node_start = 0;
1422 }
1423 }
1424 #endif