]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/mm/init_64.c
x86: move debug related declarations to kdebug.h
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / mm / init_64.c
1 /*
2 * linux/arch/x86_64/mm/init.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
6 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7 */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/proc_fs.h>
24 #include <linux/pci.h>
25 #include <linux/pfn.h>
26 #include <linux/poison.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/module.h>
29 #include <linux/memory_hotplug.h>
30 #include <linux/nmi.h>
31
32 #include <asm/processor.h>
33 #include <asm/system.h>
34 #include <asm/uaccess.h>
35 #include <asm/pgtable.h>
36 #include <asm/pgalloc.h>
37 #include <asm/dma.h>
38 #include <asm/fixmap.h>
39 #include <asm/e820.h>
40 #include <asm/apic.h>
41 #include <asm/tlb.h>
42 #include <asm/mmu_context.h>
43 #include <asm/proto.h>
44 #include <asm/smp.h>
45 #include <asm/sections.h>
46 #include <asm/kdebug.h>
47
48 #ifndef Dprintk
49 #define Dprintk(x...)
50 #endif
51
52 const struct dma_mapping_ops* dma_ops;
53 EXPORT_SYMBOL(dma_ops);
54
55 static unsigned long dma_reserve __initdata;
56
57 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
58
59 /*
60 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
61 * physical space so we can cache the place of the first one and move
62 * around without checking the pgd every time.
63 */
64
65 void show_mem(void)
66 {
67 long i, total = 0, reserved = 0;
68 long shared = 0, cached = 0;
69 pg_data_t *pgdat;
70 struct page *page;
71
72 printk(KERN_INFO "Mem-info:\n");
73 show_free_areas();
74 printk(KERN_INFO "Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
75
76 for_each_online_pgdat(pgdat) {
77 for (i = 0; i < pgdat->node_spanned_pages; ++i) {
78 /* this loop can take a while with 256 GB and 4k pages
79 so update the NMI watchdog */
80 if (unlikely(i % MAX_ORDER_NR_PAGES == 0)) {
81 touch_nmi_watchdog();
82 }
83 if (!pfn_valid(pgdat->node_start_pfn + i))
84 continue;
85 page = pfn_to_page(pgdat->node_start_pfn + i);
86 total++;
87 if (PageReserved(page))
88 reserved++;
89 else if (PageSwapCache(page))
90 cached++;
91 else if (page_count(page))
92 shared += page_count(page) - 1;
93 }
94 }
95 printk(KERN_INFO "%lu pages of RAM\n", total);
96 printk(KERN_INFO "%lu reserved pages\n",reserved);
97 printk(KERN_INFO "%lu pages shared\n",shared);
98 printk(KERN_INFO "%lu pages swap cached\n",cached);
99 }
100
101 int after_bootmem;
102
103 static __init void *spp_getpage(void)
104 {
105 void *ptr;
106 if (after_bootmem)
107 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
108 else
109 ptr = alloc_bootmem_pages(PAGE_SIZE);
110 if (!ptr || ((unsigned long)ptr & ~PAGE_MASK))
111 panic("set_pte_phys: cannot allocate page data %s\n", after_bootmem?"after bootmem":"");
112
113 Dprintk("spp_getpage %p\n", ptr);
114 return ptr;
115 }
116
117 static __init void set_pte_phys(unsigned long vaddr,
118 unsigned long phys, pgprot_t prot)
119 {
120 pgd_t *pgd;
121 pud_t *pud;
122 pmd_t *pmd;
123 pte_t *pte, new_pte;
124
125 Dprintk("set_pte_phys %lx to %lx\n", vaddr, phys);
126
127 pgd = pgd_offset_k(vaddr);
128 if (pgd_none(*pgd)) {
129 printk("PGD FIXMAP MISSING, it should be setup in head.S!\n");
130 return;
131 }
132 pud = pud_offset(pgd, vaddr);
133 if (pud_none(*pud)) {
134 pmd = (pmd_t *) spp_getpage();
135 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | _PAGE_USER));
136 if (pmd != pmd_offset(pud, 0)) {
137 printk("PAGETABLE BUG #01! %p <-> %p\n", pmd, pmd_offset(pud,0));
138 return;
139 }
140 }
141 pmd = pmd_offset(pud, vaddr);
142 if (pmd_none(*pmd)) {
143 pte = (pte_t *) spp_getpage();
144 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE | _PAGE_USER));
145 if (pte != pte_offset_kernel(pmd, 0)) {
146 printk("PAGETABLE BUG #02!\n");
147 return;
148 }
149 }
150 new_pte = pfn_pte(phys >> PAGE_SHIFT, prot);
151
152 pte = pte_offset_kernel(pmd, vaddr);
153 if (!pte_none(*pte) &&
154 pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
155 pte_ERROR(*pte);
156 set_pte(pte, new_pte);
157
158 /*
159 * It's enough to flush this one mapping.
160 * (PGE mappings get flushed as well)
161 */
162 __flush_tlb_one(vaddr);
163 }
164
165 /* NOTE: this is meant to be run only at boot */
166 void __init
167 __set_fixmap (enum fixed_addresses idx, unsigned long phys, pgprot_t prot)
168 {
169 unsigned long address = __fix_to_virt(idx);
170
171 if (idx >= __end_of_fixed_addresses) {
172 printk("Invalid __set_fixmap\n");
173 return;
174 }
175 set_pte_phys(address, phys, prot);
176 }
177
178 unsigned long __meminitdata table_start, table_end;
179
180 static __meminit void *alloc_low_page(unsigned long *phys)
181 {
182 unsigned long pfn = table_end++;
183 void *adr;
184
185 if (after_bootmem) {
186 adr = (void *)get_zeroed_page(GFP_ATOMIC);
187 *phys = __pa(adr);
188 return adr;
189 }
190
191 if (pfn >= end_pfn)
192 panic("alloc_low_page: ran out of memory");
193
194 adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
195 memset(adr, 0, PAGE_SIZE);
196 *phys = pfn * PAGE_SIZE;
197 return adr;
198 }
199
200 static __meminit void unmap_low_page(void *adr)
201 {
202
203 if (after_bootmem)
204 return;
205
206 early_iounmap(adr, PAGE_SIZE);
207 }
208
209 /* Must run before zap_low_mappings */
210 __meminit void *early_ioremap(unsigned long addr, unsigned long size)
211 {
212 unsigned long vaddr;
213 pmd_t *pmd, *last_pmd;
214 int i, pmds;
215
216 pmds = ((addr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
217 vaddr = __START_KERNEL_map;
218 pmd = level2_kernel_pgt;
219 last_pmd = level2_kernel_pgt + PTRS_PER_PMD - 1;
220 for (; pmd <= last_pmd; pmd++, vaddr += PMD_SIZE) {
221 for (i = 0; i < pmds; i++) {
222 if (pmd_present(pmd[i]))
223 goto next;
224 }
225 vaddr += addr & ~PMD_MASK;
226 addr &= PMD_MASK;
227 for (i = 0; i < pmds; i++, addr += PMD_SIZE)
228 set_pmd(pmd + i,__pmd(addr | _KERNPG_TABLE | _PAGE_PSE));
229 __flush_tlb();
230 return (void *)vaddr;
231 next:
232 ;
233 }
234 printk("early_ioremap(0x%lx, %lu) failed\n", addr, size);
235 return NULL;
236 }
237
238 /* To avoid virtual aliases later */
239 __meminit void early_iounmap(void *addr, unsigned long size)
240 {
241 unsigned long vaddr;
242 pmd_t *pmd;
243 int i, pmds;
244
245 vaddr = (unsigned long)addr;
246 pmds = ((vaddr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
247 pmd = level2_kernel_pgt + pmd_index(vaddr);
248 for (i = 0; i < pmds; i++)
249 pmd_clear(pmd + i);
250 __flush_tlb();
251 }
252
253 static void __meminit
254 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end)
255 {
256 int i = pmd_index(address);
257
258 for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
259 unsigned long entry;
260 pmd_t *pmd = pmd_page + pmd_index(address);
261
262 if (address >= end) {
263 if (!after_bootmem)
264 for (; i < PTRS_PER_PMD; i++, pmd++)
265 set_pmd(pmd, __pmd(0));
266 break;
267 }
268
269 if (pmd_val(*pmd))
270 continue;
271
272 entry = _PAGE_NX|_PAGE_PSE|_KERNPG_TABLE|_PAGE_GLOBAL|address;
273 entry &= __supported_pte_mask;
274 set_pmd(pmd, __pmd(entry));
275 }
276 }
277
278 static void __meminit
279 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end)
280 {
281 pmd_t *pmd = pmd_offset(pud,0);
282 spin_lock(&init_mm.page_table_lock);
283 phys_pmd_init(pmd, address, end);
284 spin_unlock(&init_mm.page_table_lock);
285 __flush_tlb_all();
286 }
287
288 static void __meminit phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end)
289 {
290 int i = pud_index(addr);
291
292
293 for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE ) {
294 unsigned long pmd_phys;
295 pud_t *pud = pud_page + pud_index(addr);
296 pmd_t *pmd;
297
298 if (addr >= end)
299 break;
300
301 if (!after_bootmem && !e820_any_mapped(addr,addr+PUD_SIZE,0)) {
302 set_pud(pud, __pud(0));
303 continue;
304 }
305
306 if (pud_val(*pud)) {
307 phys_pmd_update(pud, addr, end);
308 continue;
309 }
310
311 pmd = alloc_low_page(&pmd_phys);
312 spin_lock(&init_mm.page_table_lock);
313 set_pud(pud, __pud(pmd_phys | _KERNPG_TABLE));
314 phys_pmd_init(pmd, addr, end);
315 spin_unlock(&init_mm.page_table_lock);
316 unmap_low_page(pmd);
317 }
318 __flush_tlb();
319 }
320
321 static void __init find_early_table_space(unsigned long end)
322 {
323 unsigned long puds, pmds, tables, start;
324
325 puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
326 pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
327 tables = round_up(puds * sizeof(pud_t), PAGE_SIZE) +
328 round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
329
330 /* RED-PEN putting page tables only on node 0 could
331 cause a hotspot and fill up ZONE_DMA. The page tables
332 need roughly 0.5KB per GB. */
333 start = 0x8000;
334 table_start = find_e820_area(start, end, tables);
335 if (table_start == -1UL)
336 panic("Cannot find space for the kernel page tables");
337
338 table_start >>= PAGE_SHIFT;
339 table_end = table_start;
340
341 early_printk("kernel direct mapping tables up to %lx @ %lx-%lx\n",
342 end, table_start << PAGE_SHIFT,
343 (table_start << PAGE_SHIFT) + tables);
344 }
345
346 /* Setup the direct mapping of the physical memory at PAGE_OFFSET.
347 This runs before bootmem is initialized and gets pages directly from the
348 physical memory. To access them they are temporarily mapped. */
349 void __init_refok init_memory_mapping(unsigned long start, unsigned long end)
350 {
351 unsigned long next;
352
353 Dprintk("init_memory_mapping\n");
354
355 /*
356 * Find space for the kernel direct mapping tables.
357 * Later we should allocate these tables in the local node of the memory
358 * mapped. Unfortunately this is done currently before the nodes are
359 * discovered.
360 */
361 if (!after_bootmem)
362 find_early_table_space(end);
363
364 start = (unsigned long)__va(start);
365 end = (unsigned long)__va(end);
366
367 for (; start < end; start = next) {
368 unsigned long pud_phys;
369 pgd_t *pgd = pgd_offset_k(start);
370 pud_t *pud;
371
372 if (after_bootmem)
373 pud = pud_offset(pgd, start & PGDIR_MASK);
374 else
375 pud = alloc_low_page(&pud_phys);
376
377 next = start + PGDIR_SIZE;
378 if (next > end)
379 next = end;
380 phys_pud_init(pud, __pa(start), __pa(next));
381 if (!after_bootmem)
382 set_pgd(pgd_offset_k(start), mk_kernel_pgd(pud_phys));
383 unmap_low_page(pud);
384 }
385
386 if (!after_bootmem)
387 mmu_cr4_features = read_cr4();
388 __flush_tlb_all();
389 }
390
391 #ifndef CONFIG_NUMA
392 void __init paging_init(void)
393 {
394 unsigned long max_zone_pfns[MAX_NR_ZONES];
395 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
396 max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
397 max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
398 max_zone_pfns[ZONE_NORMAL] = end_pfn;
399
400 memory_present(0, 0, end_pfn);
401 sparse_init();
402 free_area_init_nodes(max_zone_pfns);
403 }
404 #endif
405
406 /* Unmap a kernel mapping if it exists. This is useful to avoid prefetches
407 from the CPU leading to inconsistent cache lines. address and size
408 must be aligned to 2MB boundaries.
409 Does nothing when the mapping doesn't exist. */
410 void __init clear_kernel_mapping(unsigned long address, unsigned long size)
411 {
412 unsigned long end = address + size;
413
414 BUG_ON(address & ~LARGE_PAGE_MASK);
415 BUG_ON(size & ~LARGE_PAGE_MASK);
416
417 for (; address < end; address += LARGE_PAGE_SIZE) {
418 pgd_t *pgd = pgd_offset_k(address);
419 pud_t *pud;
420 pmd_t *pmd;
421 if (pgd_none(*pgd))
422 continue;
423 pud = pud_offset(pgd, address);
424 if (pud_none(*pud))
425 continue;
426 pmd = pmd_offset(pud, address);
427 if (!pmd || pmd_none(*pmd))
428 continue;
429 if (0 == (pmd_val(*pmd) & _PAGE_PSE)) {
430 /* Could handle this, but it should not happen currently. */
431 printk(KERN_ERR
432 "clear_kernel_mapping: mapping has been split. will leak memory\n");
433 pmd_ERROR(*pmd);
434 }
435 set_pmd(pmd, __pmd(0));
436 }
437 __flush_tlb_all();
438 }
439
440 /*
441 * Memory hotplug specific functions
442 */
443 void online_page(struct page *page)
444 {
445 ClearPageReserved(page);
446 init_page_count(page);
447 __free_page(page);
448 totalram_pages++;
449 num_physpages++;
450 }
451
452 #ifdef CONFIG_MEMORY_HOTPLUG
453 /*
454 * Memory is added always to NORMAL zone. This means you will never get
455 * additional DMA/DMA32 memory.
456 */
457 int arch_add_memory(int nid, u64 start, u64 size)
458 {
459 struct pglist_data *pgdat = NODE_DATA(nid);
460 struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
461 unsigned long start_pfn = start >> PAGE_SHIFT;
462 unsigned long nr_pages = size >> PAGE_SHIFT;
463 int ret;
464
465 init_memory_mapping(start, (start + size -1));
466
467 ret = __add_pages(zone, start_pfn, nr_pages);
468 if (ret)
469 goto error;
470
471 return ret;
472 error:
473 printk("%s: Problem encountered in __add_pages!\n", __func__);
474 return ret;
475 }
476 EXPORT_SYMBOL_GPL(arch_add_memory);
477
478 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
479 int memory_add_physaddr_to_nid(u64 start)
480 {
481 return 0;
482 }
483 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
484 #endif
485
486 #endif /* CONFIG_MEMORY_HOTPLUG */
487
488 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
489 /*
490 * Memory Hotadd without sparsemem. The mem_maps have been allocated in advance,
491 * just online the pages.
492 */
493 int __add_pages(struct zone *z, unsigned long start_pfn, unsigned long nr_pages)
494 {
495 int err = -EIO;
496 unsigned long pfn;
497 unsigned long total = 0, mem = 0;
498 for (pfn = start_pfn; pfn < start_pfn + nr_pages; pfn++) {
499 if (pfn_valid(pfn)) {
500 online_page(pfn_to_page(pfn));
501 err = 0;
502 mem++;
503 }
504 total++;
505 }
506 if (!err) {
507 z->spanned_pages += total;
508 z->present_pages += mem;
509 z->zone_pgdat->node_spanned_pages += total;
510 z->zone_pgdat->node_present_pages += mem;
511 }
512 return err;
513 }
514 #endif
515
516 static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel, kcore_modules,
517 kcore_vsyscall;
518
519 void __init mem_init(void)
520 {
521 long codesize, reservedpages, datasize, initsize;
522
523 pci_iommu_alloc();
524
525 /* clear the zero-page */
526 memset(empty_zero_page, 0, PAGE_SIZE);
527
528 reservedpages = 0;
529
530 /* this will put all low memory onto the freelists */
531 #ifdef CONFIG_NUMA
532 totalram_pages = numa_free_all_bootmem();
533 #else
534 totalram_pages = free_all_bootmem();
535 #endif
536 reservedpages = end_pfn - totalram_pages -
537 absent_pages_in_range(0, end_pfn);
538
539 after_bootmem = 1;
540
541 codesize = (unsigned long) &_etext - (unsigned long) &_text;
542 datasize = (unsigned long) &_edata - (unsigned long) &_etext;
543 initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
544
545 /* Register memory areas for /proc/kcore */
546 kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
547 kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
548 VMALLOC_END-VMALLOC_START);
549 kclist_add(&kcore_kernel, &_stext, _end - _stext);
550 kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
551 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
552 VSYSCALL_END - VSYSCALL_START);
553
554 printk("Memory: %luk/%luk available (%ldk kernel code, %ldk reserved, %ldk data, %ldk init)\n",
555 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
556 end_pfn << (PAGE_SHIFT-10),
557 codesize >> 10,
558 reservedpages << (PAGE_SHIFT-10),
559 datasize >> 10,
560 initsize >> 10);
561 }
562
563 void free_init_pages(char *what, unsigned long begin, unsigned long end)
564 {
565 unsigned long addr;
566
567 if (begin >= end)
568 return;
569
570 printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
571 for (addr = begin; addr < end; addr += PAGE_SIZE) {
572 ClearPageReserved(virt_to_page(addr));
573 init_page_count(virt_to_page(addr));
574 memset((void *)(addr & ~(PAGE_SIZE-1)),
575 POISON_FREE_INITMEM, PAGE_SIZE);
576 if (addr >= __START_KERNEL_map)
577 change_page_attr_addr(addr, 1, __pgprot(0));
578 free_page(addr);
579 totalram_pages++;
580 }
581 if (addr > __START_KERNEL_map)
582 global_flush_tlb();
583 }
584
585 void free_initmem(void)
586 {
587 free_init_pages("unused kernel memory",
588 (unsigned long)(&__init_begin),
589 (unsigned long)(&__init_end));
590 }
591
592 #ifdef CONFIG_DEBUG_RODATA
593
594 void mark_rodata_ro(void)
595 {
596 unsigned long start = (unsigned long)_stext, end;
597
598 #ifdef CONFIG_HOTPLUG_CPU
599 /* It must still be possible to apply SMP alternatives. */
600 if (num_possible_cpus() > 1)
601 start = (unsigned long)_etext;
602 #endif
603
604 #ifdef CONFIG_KPROBES
605 start = (unsigned long)__start_rodata;
606 #endif
607
608 end = (unsigned long)__end_rodata;
609 start = (start + PAGE_SIZE - 1) & PAGE_MASK;
610 end &= PAGE_MASK;
611 if (end <= start)
612 return;
613
614 change_page_attr_addr(start, (end - start) >> PAGE_SHIFT, PAGE_KERNEL_RO);
615
616 printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
617 (end - start) >> 10);
618
619 /*
620 * change_page_attr_addr() requires a global_flush_tlb() call after it.
621 * We do this after the printk so that if something went wrong in the
622 * change, the printk gets out at least to give a better debug hint
623 * of who is the culprit.
624 */
625 global_flush_tlb();
626 }
627 #endif
628
629 #ifdef CONFIG_BLK_DEV_INITRD
630 void free_initrd_mem(unsigned long start, unsigned long end)
631 {
632 free_init_pages("initrd memory", start, end);
633 }
634 #endif
635
636 void __init reserve_bootmem_generic(unsigned long phys, unsigned len)
637 {
638 #ifdef CONFIG_NUMA
639 int nid = phys_to_nid(phys);
640 #endif
641 unsigned long pfn = phys >> PAGE_SHIFT;
642 if (pfn >= end_pfn) {
643 /* This can happen with kdump kernels when accessing firmware
644 tables. */
645 if (pfn < end_pfn_map)
646 return;
647 printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %u\n",
648 phys, len);
649 return;
650 }
651
652 /* Should check here against the e820 map to avoid double free */
653 #ifdef CONFIG_NUMA
654 reserve_bootmem_node(NODE_DATA(nid), phys, len);
655 #else
656 reserve_bootmem(phys, len);
657 #endif
658 if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
659 dma_reserve += len / PAGE_SIZE;
660 set_dma_reserve(dma_reserve);
661 }
662 }
663
664 int kern_addr_valid(unsigned long addr)
665 {
666 unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
667 pgd_t *pgd;
668 pud_t *pud;
669 pmd_t *pmd;
670 pte_t *pte;
671
672 if (above != 0 && above != -1UL)
673 return 0;
674
675 pgd = pgd_offset_k(addr);
676 if (pgd_none(*pgd))
677 return 0;
678
679 pud = pud_offset(pgd, addr);
680 if (pud_none(*pud))
681 return 0;
682
683 pmd = pmd_offset(pud, addr);
684 if (pmd_none(*pmd))
685 return 0;
686 if (pmd_large(*pmd))
687 return pfn_valid(pmd_pfn(*pmd));
688
689 pte = pte_offset_kernel(pmd, addr);
690 if (pte_none(*pte))
691 return 0;
692 return pfn_valid(pte_pfn(*pte));
693 }
694
695 /* A pseudo VMA to allow ptrace access for the vsyscall page. This only
696 covers the 64bit vsyscall page now. 32bit has a real VMA now and does
697 not need special handling anymore. */
698
699 static struct vm_area_struct gate_vma = {
700 .vm_start = VSYSCALL_START,
701 .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES << PAGE_SHIFT),
702 .vm_page_prot = PAGE_READONLY_EXEC,
703 .vm_flags = VM_READ | VM_EXEC
704 };
705
706 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
707 {
708 #ifdef CONFIG_IA32_EMULATION
709 if (test_tsk_thread_flag(tsk, TIF_IA32))
710 return NULL;
711 #endif
712 return &gate_vma;
713 }
714
715 int in_gate_area(struct task_struct *task, unsigned long addr)
716 {
717 struct vm_area_struct *vma = get_gate_vma(task);
718 if (!vma)
719 return 0;
720 return (addr >= vma->vm_start) && (addr < vma->vm_end);
721 }
722
723 /* Use this when you have no reliable task/vma, typically from interrupt
724 * context. It is less reliable than using the task's vma and may give
725 * false positives.
726 */
727 int in_gate_area_no_task(unsigned long addr)
728 {
729 return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
730 }
731
732 const char *arch_vma_name(struct vm_area_struct *vma)
733 {
734 if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
735 return "[vdso]";
736 if (vma == &gate_vma)
737 return "[vsyscall]";
738 return NULL;
739 }
740
741 #ifdef CONFIG_SPARSEMEM_VMEMMAP
742 /*
743 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
744 */
745 int __meminit vmemmap_populate(struct page *start_page,
746 unsigned long size, int node)
747 {
748 unsigned long addr = (unsigned long)start_page;
749 unsigned long end = (unsigned long)(start_page + size);
750 unsigned long next;
751 pgd_t *pgd;
752 pud_t *pud;
753 pmd_t *pmd;
754
755 for (; addr < end; addr = next) {
756 next = pmd_addr_end(addr, end);
757
758 pgd = vmemmap_pgd_populate(addr, node);
759 if (!pgd)
760 return -ENOMEM;
761 pud = vmemmap_pud_populate(pgd, addr, node);
762 if (!pud)
763 return -ENOMEM;
764
765 pmd = pmd_offset(pud, addr);
766 if (pmd_none(*pmd)) {
767 pte_t entry;
768 void *p = vmemmap_alloc_block(PMD_SIZE, node);
769 if (!p)
770 return -ENOMEM;
771
772 entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
773 mk_pte_huge(entry);
774 set_pmd(pmd, __pmd(pte_val(entry)));
775
776 printk(KERN_DEBUG " [%lx-%lx] PMD ->%p on node %d\n",
777 addr, addr + PMD_SIZE - 1, p, node);
778 } else
779 vmemmap_verify((pte_t *)pmd, node, addr, next);
780 }
781
782 return 0;
783 }
784 #endif