]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/mm/init_64.c
Merge git://git.linux-nfs.org/pub/linux/nfs-2.6
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / mm / init_64.c
1 /*
2 * linux/arch/x86_64/mm/init.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
6 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7 */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/proc_fs.h>
24 #include <linux/pci.h>
25 #include <linux/pfn.h>
26 #include <linux/poison.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/module.h>
29 #include <linux/memory_hotplug.h>
30 #include <linux/nmi.h>
31
32 #include <asm/processor.h>
33 #include <asm/system.h>
34 #include <asm/uaccess.h>
35 #include <asm/pgtable.h>
36 #include <asm/pgalloc.h>
37 #include <asm/dma.h>
38 #include <asm/fixmap.h>
39 #include <asm/e820.h>
40 #include <asm/apic.h>
41 #include <asm/tlb.h>
42 #include <asm/mmu_context.h>
43 #include <asm/proto.h>
44 #include <asm/smp.h>
45 #include <asm/sections.h>
46
47 #ifndef Dprintk
48 #define Dprintk(x...)
49 #endif
50
51 const struct dma_mapping_ops* dma_ops;
52 EXPORT_SYMBOL(dma_ops);
53
54 static unsigned long dma_reserve __initdata;
55
56 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
57
58 /*
59 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
60 * physical space so we can cache the place of the first one and move
61 * around without checking the pgd every time.
62 */
63
64 void show_mem(void)
65 {
66 long i, total = 0, reserved = 0;
67 long shared = 0, cached = 0;
68 pg_data_t *pgdat;
69 struct page *page;
70
71 printk(KERN_INFO "Mem-info:\n");
72 show_free_areas();
73 printk(KERN_INFO "Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
74
75 for_each_online_pgdat(pgdat) {
76 for (i = 0; i < pgdat->node_spanned_pages; ++i) {
77 /* this loop can take a while with 256 GB and 4k pages
78 so update the NMI watchdog */
79 if (unlikely(i % MAX_ORDER_NR_PAGES == 0)) {
80 touch_nmi_watchdog();
81 }
82 if (!pfn_valid(pgdat->node_start_pfn + i))
83 continue;
84 page = pfn_to_page(pgdat->node_start_pfn + i);
85 total++;
86 if (PageReserved(page))
87 reserved++;
88 else if (PageSwapCache(page))
89 cached++;
90 else if (page_count(page))
91 shared += page_count(page) - 1;
92 }
93 }
94 printk(KERN_INFO "%lu pages of RAM\n", total);
95 printk(KERN_INFO "%lu reserved pages\n",reserved);
96 printk(KERN_INFO "%lu pages shared\n",shared);
97 printk(KERN_INFO "%lu pages swap cached\n",cached);
98 }
99
100 int after_bootmem;
101
102 static __init void *spp_getpage(void)
103 {
104 void *ptr;
105 if (after_bootmem)
106 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
107 else
108 ptr = alloc_bootmem_pages(PAGE_SIZE);
109 if (!ptr || ((unsigned long)ptr & ~PAGE_MASK))
110 panic("set_pte_phys: cannot allocate page data %s\n", after_bootmem?"after bootmem":"");
111
112 Dprintk("spp_getpage %p\n", ptr);
113 return ptr;
114 }
115
116 static __init void set_pte_phys(unsigned long vaddr,
117 unsigned long phys, pgprot_t prot)
118 {
119 pgd_t *pgd;
120 pud_t *pud;
121 pmd_t *pmd;
122 pte_t *pte, new_pte;
123
124 Dprintk("set_pte_phys %lx to %lx\n", vaddr, phys);
125
126 pgd = pgd_offset_k(vaddr);
127 if (pgd_none(*pgd)) {
128 printk("PGD FIXMAP MISSING, it should be setup in head.S!\n");
129 return;
130 }
131 pud = pud_offset(pgd, vaddr);
132 if (pud_none(*pud)) {
133 pmd = (pmd_t *) spp_getpage();
134 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | _PAGE_USER));
135 if (pmd != pmd_offset(pud, 0)) {
136 printk("PAGETABLE BUG #01! %p <-> %p\n", pmd, pmd_offset(pud,0));
137 return;
138 }
139 }
140 pmd = pmd_offset(pud, vaddr);
141 if (pmd_none(*pmd)) {
142 pte = (pte_t *) spp_getpage();
143 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE | _PAGE_USER));
144 if (pte != pte_offset_kernel(pmd, 0)) {
145 printk("PAGETABLE BUG #02!\n");
146 return;
147 }
148 }
149 new_pte = pfn_pte(phys >> PAGE_SHIFT, prot);
150
151 pte = pte_offset_kernel(pmd, vaddr);
152 if (!pte_none(*pte) &&
153 pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
154 pte_ERROR(*pte);
155 set_pte(pte, new_pte);
156
157 /*
158 * It's enough to flush this one mapping.
159 * (PGE mappings get flushed as well)
160 */
161 __flush_tlb_one(vaddr);
162 }
163
164 /* NOTE: this is meant to be run only at boot */
165 void __init
166 __set_fixmap (enum fixed_addresses idx, unsigned long phys, pgprot_t prot)
167 {
168 unsigned long address = __fix_to_virt(idx);
169
170 if (idx >= __end_of_fixed_addresses) {
171 printk("Invalid __set_fixmap\n");
172 return;
173 }
174 set_pte_phys(address, phys, prot);
175 }
176
177 unsigned long __meminitdata table_start, table_end;
178
179 static __meminit void *alloc_low_page(unsigned long *phys)
180 {
181 unsigned long pfn = table_end++;
182 void *adr;
183
184 if (after_bootmem) {
185 adr = (void *)get_zeroed_page(GFP_ATOMIC);
186 *phys = __pa(adr);
187 return adr;
188 }
189
190 if (pfn >= end_pfn)
191 panic("alloc_low_page: ran out of memory");
192
193 adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
194 memset(adr, 0, PAGE_SIZE);
195 *phys = pfn * PAGE_SIZE;
196 return adr;
197 }
198
199 static __meminit void unmap_low_page(void *adr)
200 {
201
202 if (after_bootmem)
203 return;
204
205 early_iounmap(adr, PAGE_SIZE);
206 }
207
208 /* Must run before zap_low_mappings */
209 __meminit void *early_ioremap(unsigned long addr, unsigned long size)
210 {
211 unsigned long vaddr;
212 pmd_t *pmd, *last_pmd;
213 int i, pmds;
214
215 pmds = ((addr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
216 vaddr = __START_KERNEL_map;
217 pmd = level2_kernel_pgt;
218 last_pmd = level2_kernel_pgt + PTRS_PER_PMD - 1;
219 for (; pmd <= last_pmd; pmd++, vaddr += PMD_SIZE) {
220 for (i = 0; i < pmds; i++) {
221 if (pmd_present(pmd[i]))
222 goto next;
223 }
224 vaddr += addr & ~PMD_MASK;
225 addr &= PMD_MASK;
226 for (i = 0; i < pmds; i++, addr += PMD_SIZE)
227 set_pmd(pmd + i,__pmd(addr | _KERNPG_TABLE | _PAGE_PSE));
228 __flush_tlb();
229 return (void *)vaddr;
230 next:
231 ;
232 }
233 printk("early_ioremap(0x%lx, %lu) failed\n", addr, size);
234 return NULL;
235 }
236
237 /* To avoid virtual aliases later */
238 __meminit void early_iounmap(void *addr, unsigned long size)
239 {
240 unsigned long vaddr;
241 pmd_t *pmd;
242 int i, pmds;
243
244 vaddr = (unsigned long)addr;
245 pmds = ((vaddr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
246 pmd = level2_kernel_pgt + pmd_index(vaddr);
247 for (i = 0; i < pmds; i++)
248 pmd_clear(pmd + i);
249 __flush_tlb();
250 }
251
252 static void __meminit
253 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end)
254 {
255 int i = pmd_index(address);
256
257 for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
258 unsigned long entry;
259 pmd_t *pmd = pmd_page + pmd_index(address);
260
261 if (address >= end) {
262 if (!after_bootmem)
263 for (; i < PTRS_PER_PMD; i++, pmd++)
264 set_pmd(pmd, __pmd(0));
265 break;
266 }
267
268 if (pmd_val(*pmd))
269 continue;
270
271 entry = _PAGE_NX|_PAGE_PSE|_KERNPG_TABLE|_PAGE_GLOBAL|address;
272 entry &= __supported_pte_mask;
273 set_pmd(pmd, __pmd(entry));
274 }
275 }
276
277 static void __meminit
278 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end)
279 {
280 pmd_t *pmd = pmd_offset(pud,0);
281 spin_lock(&init_mm.page_table_lock);
282 phys_pmd_init(pmd, address, end);
283 spin_unlock(&init_mm.page_table_lock);
284 __flush_tlb_all();
285 }
286
287 static void __meminit phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end)
288 {
289 int i = pud_index(addr);
290
291
292 for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE ) {
293 unsigned long pmd_phys;
294 pud_t *pud = pud_page + pud_index(addr);
295 pmd_t *pmd;
296
297 if (addr >= end)
298 break;
299
300 if (!after_bootmem && !e820_any_mapped(addr,addr+PUD_SIZE,0)) {
301 set_pud(pud, __pud(0));
302 continue;
303 }
304
305 if (pud_val(*pud)) {
306 phys_pmd_update(pud, addr, end);
307 continue;
308 }
309
310 pmd = alloc_low_page(&pmd_phys);
311 spin_lock(&init_mm.page_table_lock);
312 set_pud(pud, __pud(pmd_phys | _KERNPG_TABLE));
313 phys_pmd_init(pmd, addr, end);
314 spin_unlock(&init_mm.page_table_lock);
315 unmap_low_page(pmd);
316 }
317 __flush_tlb();
318 }
319
320 static void __init find_early_table_space(unsigned long end)
321 {
322 unsigned long puds, pmds, tables, start;
323
324 puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
325 pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
326 tables = round_up(puds * sizeof(pud_t), PAGE_SIZE) +
327 round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
328
329 /* RED-PEN putting page tables only on node 0 could
330 cause a hotspot and fill up ZONE_DMA. The page tables
331 need roughly 0.5KB per GB. */
332 start = 0x8000;
333 table_start = find_e820_area(start, end, tables);
334 if (table_start == -1UL)
335 panic("Cannot find space for the kernel page tables");
336
337 table_start >>= PAGE_SHIFT;
338 table_end = table_start;
339
340 early_printk("kernel direct mapping tables up to %lx @ %lx-%lx\n",
341 end, table_start << PAGE_SHIFT,
342 (table_start << PAGE_SHIFT) + tables);
343 }
344
345 /* Setup the direct mapping of the physical memory at PAGE_OFFSET.
346 This runs before bootmem is initialized and gets pages directly from the
347 physical memory. To access them they are temporarily mapped. */
348 void __meminit init_memory_mapping(unsigned long start, unsigned long end)
349 {
350 unsigned long next;
351
352 Dprintk("init_memory_mapping\n");
353
354 /*
355 * Find space for the kernel direct mapping tables.
356 * Later we should allocate these tables in the local node of the memory
357 * mapped. Unfortunately this is done currently before the nodes are
358 * discovered.
359 */
360 if (!after_bootmem)
361 find_early_table_space(end);
362
363 start = (unsigned long)__va(start);
364 end = (unsigned long)__va(end);
365
366 for (; start < end; start = next) {
367 unsigned long pud_phys;
368 pgd_t *pgd = pgd_offset_k(start);
369 pud_t *pud;
370
371 if (after_bootmem)
372 pud = pud_offset(pgd, start & PGDIR_MASK);
373 else
374 pud = alloc_low_page(&pud_phys);
375
376 next = start + PGDIR_SIZE;
377 if (next > end)
378 next = end;
379 phys_pud_init(pud, __pa(start), __pa(next));
380 if (!after_bootmem)
381 set_pgd(pgd_offset_k(start), mk_kernel_pgd(pud_phys));
382 unmap_low_page(pud);
383 }
384
385 if (!after_bootmem)
386 mmu_cr4_features = read_cr4();
387 __flush_tlb_all();
388 }
389
390 #ifndef CONFIG_NUMA
391 void __init paging_init(void)
392 {
393 unsigned long max_zone_pfns[MAX_NR_ZONES];
394 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
395 max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
396 max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
397 max_zone_pfns[ZONE_NORMAL] = end_pfn;
398
399 memory_present(0, 0, end_pfn);
400 sparse_init();
401 free_area_init_nodes(max_zone_pfns);
402 }
403 #endif
404
405 /* Unmap a kernel mapping if it exists. This is useful to avoid prefetches
406 from the CPU leading to inconsistent cache lines. address and size
407 must be aligned to 2MB boundaries.
408 Does nothing when the mapping doesn't exist. */
409 void __init clear_kernel_mapping(unsigned long address, unsigned long size)
410 {
411 unsigned long end = address + size;
412
413 BUG_ON(address & ~LARGE_PAGE_MASK);
414 BUG_ON(size & ~LARGE_PAGE_MASK);
415
416 for (; address < end; address += LARGE_PAGE_SIZE) {
417 pgd_t *pgd = pgd_offset_k(address);
418 pud_t *pud;
419 pmd_t *pmd;
420 if (pgd_none(*pgd))
421 continue;
422 pud = pud_offset(pgd, address);
423 if (pud_none(*pud))
424 continue;
425 pmd = pmd_offset(pud, address);
426 if (!pmd || pmd_none(*pmd))
427 continue;
428 if (0 == (pmd_val(*pmd) & _PAGE_PSE)) {
429 /* Could handle this, but it should not happen currently. */
430 printk(KERN_ERR
431 "clear_kernel_mapping: mapping has been split. will leak memory\n");
432 pmd_ERROR(*pmd);
433 }
434 set_pmd(pmd, __pmd(0));
435 }
436 __flush_tlb_all();
437 }
438
439 /*
440 * Memory hotplug specific functions
441 */
442 void online_page(struct page *page)
443 {
444 ClearPageReserved(page);
445 init_page_count(page);
446 __free_page(page);
447 totalram_pages++;
448 num_physpages++;
449 }
450
451 #ifdef CONFIG_MEMORY_HOTPLUG
452 /*
453 * Memory is added always to NORMAL zone. This means you will never get
454 * additional DMA/DMA32 memory.
455 */
456 int arch_add_memory(int nid, u64 start, u64 size)
457 {
458 struct pglist_data *pgdat = NODE_DATA(nid);
459 struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
460 unsigned long start_pfn = start >> PAGE_SHIFT;
461 unsigned long nr_pages = size >> PAGE_SHIFT;
462 int ret;
463
464 init_memory_mapping(start, (start + size -1));
465
466 ret = __add_pages(zone, start_pfn, nr_pages);
467 if (ret)
468 goto error;
469
470 return ret;
471 error:
472 printk("%s: Problem encountered in __add_pages!\n", __func__);
473 return ret;
474 }
475 EXPORT_SYMBOL_GPL(arch_add_memory);
476
477 int remove_memory(u64 start, u64 size)
478 {
479 return -EINVAL;
480 }
481 EXPORT_SYMBOL_GPL(remove_memory);
482
483 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
484 int memory_add_physaddr_to_nid(u64 start)
485 {
486 return 0;
487 }
488 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
489 #endif
490
491 #endif /* CONFIG_MEMORY_HOTPLUG */
492
493 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
494 /*
495 * Memory Hotadd without sparsemem. The mem_maps have been allocated in advance,
496 * just online the pages.
497 */
498 int __add_pages(struct zone *z, unsigned long start_pfn, unsigned long nr_pages)
499 {
500 int err = -EIO;
501 unsigned long pfn;
502 unsigned long total = 0, mem = 0;
503 for (pfn = start_pfn; pfn < start_pfn + nr_pages; pfn++) {
504 if (pfn_valid(pfn)) {
505 online_page(pfn_to_page(pfn));
506 err = 0;
507 mem++;
508 }
509 total++;
510 }
511 if (!err) {
512 z->spanned_pages += total;
513 z->present_pages += mem;
514 z->zone_pgdat->node_spanned_pages += total;
515 z->zone_pgdat->node_present_pages += mem;
516 }
517 return err;
518 }
519 #endif
520
521 static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel, kcore_modules,
522 kcore_vsyscall;
523
524 void __init mem_init(void)
525 {
526 long codesize, reservedpages, datasize, initsize;
527
528 pci_iommu_alloc();
529
530 /* clear the zero-page */
531 memset(empty_zero_page, 0, PAGE_SIZE);
532
533 reservedpages = 0;
534
535 /* this will put all low memory onto the freelists */
536 #ifdef CONFIG_NUMA
537 totalram_pages = numa_free_all_bootmem();
538 #else
539 totalram_pages = free_all_bootmem();
540 #endif
541 reservedpages = end_pfn - totalram_pages -
542 absent_pages_in_range(0, end_pfn);
543
544 after_bootmem = 1;
545
546 codesize = (unsigned long) &_etext - (unsigned long) &_text;
547 datasize = (unsigned long) &_edata - (unsigned long) &_etext;
548 initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
549
550 /* Register memory areas for /proc/kcore */
551 kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
552 kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
553 VMALLOC_END-VMALLOC_START);
554 kclist_add(&kcore_kernel, &_stext, _end - _stext);
555 kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
556 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
557 VSYSCALL_END - VSYSCALL_START);
558
559 printk("Memory: %luk/%luk available (%ldk kernel code, %ldk reserved, %ldk data, %ldk init)\n",
560 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
561 end_pfn << (PAGE_SHIFT-10),
562 codesize >> 10,
563 reservedpages << (PAGE_SHIFT-10),
564 datasize >> 10,
565 initsize >> 10);
566 }
567
568 void free_init_pages(char *what, unsigned long begin, unsigned long end)
569 {
570 unsigned long addr;
571
572 if (begin >= end)
573 return;
574
575 printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
576 for (addr = begin; addr < end; addr += PAGE_SIZE) {
577 ClearPageReserved(virt_to_page(addr));
578 init_page_count(virt_to_page(addr));
579 memset((void *)(addr & ~(PAGE_SIZE-1)),
580 POISON_FREE_INITMEM, PAGE_SIZE);
581 if (addr >= __START_KERNEL_map)
582 change_page_attr_addr(addr, 1, __pgprot(0));
583 free_page(addr);
584 totalram_pages++;
585 }
586 if (addr > __START_KERNEL_map)
587 global_flush_tlb();
588 }
589
590 void free_initmem(void)
591 {
592 free_init_pages("unused kernel memory",
593 (unsigned long)(&__init_begin),
594 (unsigned long)(&__init_end));
595 }
596
597 #ifdef CONFIG_DEBUG_RODATA
598
599 void mark_rodata_ro(void)
600 {
601 unsigned long start = (unsigned long)_stext, end;
602
603 #ifdef CONFIG_HOTPLUG_CPU
604 /* It must still be possible to apply SMP alternatives. */
605 if (num_possible_cpus() > 1)
606 start = (unsigned long)_etext;
607 #endif
608
609 #ifdef CONFIG_KPROBES
610 start = (unsigned long)__start_rodata;
611 #endif
612
613 end = (unsigned long)__end_rodata;
614 start = (start + PAGE_SIZE - 1) & PAGE_MASK;
615 end &= PAGE_MASK;
616 if (end <= start)
617 return;
618
619 change_page_attr_addr(start, (end - start) >> PAGE_SHIFT, PAGE_KERNEL_RO);
620
621 printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
622 (end - start) >> 10);
623
624 /*
625 * change_page_attr_addr() requires a global_flush_tlb() call after it.
626 * We do this after the printk so that if something went wrong in the
627 * change, the printk gets out at least to give a better debug hint
628 * of who is the culprit.
629 */
630 global_flush_tlb();
631 }
632 #endif
633
634 #ifdef CONFIG_BLK_DEV_INITRD
635 void free_initrd_mem(unsigned long start, unsigned long end)
636 {
637 free_init_pages("initrd memory", start, end);
638 }
639 #endif
640
641 void __init reserve_bootmem_generic(unsigned long phys, unsigned len)
642 {
643 #ifdef CONFIG_NUMA
644 int nid = phys_to_nid(phys);
645 #endif
646 unsigned long pfn = phys >> PAGE_SHIFT;
647 if (pfn >= end_pfn) {
648 /* This can happen with kdump kernels when accessing firmware
649 tables. */
650 if (pfn < end_pfn_map)
651 return;
652 printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %u\n",
653 phys, len);
654 return;
655 }
656
657 /* Should check here against the e820 map to avoid double free */
658 #ifdef CONFIG_NUMA
659 reserve_bootmem_node(NODE_DATA(nid), phys, len);
660 #else
661 reserve_bootmem(phys, len);
662 #endif
663 if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
664 dma_reserve += len / PAGE_SIZE;
665 set_dma_reserve(dma_reserve);
666 }
667 }
668
669 int kern_addr_valid(unsigned long addr)
670 {
671 unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
672 pgd_t *pgd;
673 pud_t *pud;
674 pmd_t *pmd;
675 pte_t *pte;
676
677 if (above != 0 && above != -1UL)
678 return 0;
679
680 pgd = pgd_offset_k(addr);
681 if (pgd_none(*pgd))
682 return 0;
683
684 pud = pud_offset(pgd, addr);
685 if (pud_none(*pud))
686 return 0;
687
688 pmd = pmd_offset(pud, addr);
689 if (pmd_none(*pmd))
690 return 0;
691 if (pmd_large(*pmd))
692 return pfn_valid(pmd_pfn(*pmd));
693
694 pte = pte_offset_kernel(pmd, addr);
695 if (pte_none(*pte))
696 return 0;
697 return pfn_valid(pte_pfn(*pte));
698 }
699
700 /* A pseudo VMA to allow ptrace access for the vsyscall page. This only
701 covers the 64bit vsyscall page now. 32bit has a real VMA now and does
702 not need special handling anymore. */
703
704 static struct vm_area_struct gate_vma = {
705 .vm_start = VSYSCALL_START,
706 .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES << PAGE_SHIFT),
707 .vm_page_prot = PAGE_READONLY_EXEC,
708 .vm_flags = VM_READ | VM_EXEC
709 };
710
711 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
712 {
713 #ifdef CONFIG_IA32_EMULATION
714 if (test_tsk_thread_flag(tsk, TIF_IA32))
715 return NULL;
716 #endif
717 return &gate_vma;
718 }
719
720 int in_gate_area(struct task_struct *task, unsigned long addr)
721 {
722 struct vm_area_struct *vma = get_gate_vma(task);
723 if (!vma)
724 return 0;
725 return (addr >= vma->vm_start) && (addr < vma->vm_end);
726 }
727
728 /* Use this when you have no reliable task/vma, typically from interrupt
729 * context. It is less reliable than using the task's vma and may give
730 * false positives.
731 */
732 int in_gate_area_no_task(unsigned long addr)
733 {
734 return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
735 }
736
737 void * __init alloc_bootmem_high_node(pg_data_t *pgdat, unsigned long size)
738 {
739 return __alloc_bootmem_core(pgdat->bdata, size,
740 SMP_CACHE_BYTES, (4UL*1024*1024*1024), 0);
741 }
742
743 const char *arch_vma_name(struct vm_area_struct *vma)
744 {
745 if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
746 return "[vdso]";
747 if (vma == &gate_vma)
748 return "[vsyscall]";
749 return NULL;
750 }