]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/mm/ioremap.c
x86/mm: Do not auto-massage page protections
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / mm / ioremap.c
1 /*
2 * Re-map IO memory to kernel address space so that we can access it.
3 * This is needed for high PCI addresses that aren't mapped in the
4 * 640k-1MB IO memory area on PC's
5 *
6 * (C) Copyright 1995 1996 Linus Torvalds
7 */
8
9 #include <linux/bootmem.h>
10 #include <linux/init.h>
11 #include <linux/io.h>
12 #include <linux/ioport.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/mmiotrace.h>
16 #include <linux/mem_encrypt.h>
17 #include <linux/efi.h>
18
19 #include <asm/set_memory.h>
20 #include <asm/e820/api.h>
21 #include <asm/fixmap.h>
22 #include <asm/pgtable.h>
23 #include <asm/tlbflush.h>
24 #include <asm/pgalloc.h>
25 #include <asm/pat.h>
26 #include <asm/setup.h>
27
28 #include "physaddr.h"
29
30 struct ioremap_mem_flags {
31 bool system_ram;
32 bool desc_other;
33 };
34
35 /*
36 * Fix up the linear direct mapping of the kernel to avoid cache attribute
37 * conflicts.
38 */
39 int ioremap_change_attr(unsigned long vaddr, unsigned long size,
40 enum page_cache_mode pcm)
41 {
42 unsigned long nrpages = size >> PAGE_SHIFT;
43 int err;
44
45 switch (pcm) {
46 case _PAGE_CACHE_MODE_UC:
47 default:
48 err = _set_memory_uc(vaddr, nrpages);
49 break;
50 case _PAGE_CACHE_MODE_WC:
51 err = _set_memory_wc(vaddr, nrpages);
52 break;
53 case _PAGE_CACHE_MODE_WT:
54 err = _set_memory_wt(vaddr, nrpages);
55 break;
56 case _PAGE_CACHE_MODE_WB:
57 err = _set_memory_wb(vaddr, nrpages);
58 break;
59 }
60
61 return err;
62 }
63
64 static bool __ioremap_check_ram(struct resource *res)
65 {
66 unsigned long start_pfn, stop_pfn;
67 unsigned long i;
68
69 if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM)
70 return false;
71
72 start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT;
73 stop_pfn = (res->end + 1) >> PAGE_SHIFT;
74 if (stop_pfn > start_pfn) {
75 for (i = 0; i < (stop_pfn - start_pfn); ++i)
76 if (pfn_valid(start_pfn + i) &&
77 !PageReserved(pfn_to_page(start_pfn + i)))
78 return true;
79 }
80
81 return false;
82 }
83
84 static int __ioremap_check_desc_other(struct resource *res)
85 {
86 return (res->desc != IORES_DESC_NONE);
87 }
88
89 static int __ioremap_res_check(struct resource *res, void *arg)
90 {
91 struct ioremap_mem_flags *flags = arg;
92
93 if (!flags->system_ram)
94 flags->system_ram = __ioremap_check_ram(res);
95
96 if (!flags->desc_other)
97 flags->desc_other = __ioremap_check_desc_other(res);
98
99 return flags->system_ram && flags->desc_other;
100 }
101
102 /*
103 * To avoid multiple resource walks, this function walks resources marked as
104 * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a
105 * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES).
106 */
107 static void __ioremap_check_mem(resource_size_t addr, unsigned long size,
108 struct ioremap_mem_flags *flags)
109 {
110 u64 start, end;
111
112 start = (u64)addr;
113 end = start + size - 1;
114 memset(flags, 0, sizeof(*flags));
115
116 walk_mem_res(start, end, flags, __ioremap_res_check);
117 }
118
119 /*
120 * Remap an arbitrary physical address space into the kernel virtual
121 * address space. It transparently creates kernel huge I/O mapping when
122 * the physical address is aligned by a huge page size (1GB or 2MB) and
123 * the requested size is at least the huge page size.
124 *
125 * NOTE: MTRRs can override PAT memory types with a 4KB granularity.
126 * Therefore, the mapping code falls back to use a smaller page toward 4KB
127 * when a mapping range is covered by non-WB type of MTRRs.
128 *
129 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
130 * have to convert them into an offset in a page-aligned mapping, but the
131 * caller shouldn't need to know that small detail.
132 */
133 static void __iomem *__ioremap_caller(resource_size_t phys_addr,
134 unsigned long size, enum page_cache_mode pcm, void *caller)
135 {
136 unsigned long offset, vaddr;
137 resource_size_t last_addr;
138 const resource_size_t unaligned_phys_addr = phys_addr;
139 const unsigned long unaligned_size = size;
140 struct ioremap_mem_flags mem_flags;
141 struct vm_struct *area;
142 enum page_cache_mode new_pcm;
143 pgprot_t prot;
144 int retval;
145 void __iomem *ret_addr;
146
147 /* Don't allow wraparound or zero size */
148 last_addr = phys_addr + size - 1;
149 if (!size || last_addr < phys_addr)
150 return NULL;
151
152 if (!phys_addr_valid(phys_addr)) {
153 printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
154 (unsigned long long)phys_addr);
155 WARN_ON_ONCE(1);
156 return NULL;
157 }
158
159 __ioremap_check_mem(phys_addr, size, &mem_flags);
160
161 /*
162 * Don't allow anybody to remap normal RAM that we're using..
163 */
164 if (mem_flags.system_ram) {
165 WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n",
166 &phys_addr, &last_addr);
167 return NULL;
168 }
169
170 /*
171 * Mappings have to be page-aligned
172 */
173 offset = phys_addr & ~PAGE_MASK;
174 phys_addr &= PHYSICAL_PAGE_MASK;
175 size = PAGE_ALIGN(last_addr+1) - phys_addr;
176
177 retval = reserve_memtype(phys_addr, (u64)phys_addr + size,
178 pcm, &new_pcm);
179 if (retval) {
180 printk(KERN_ERR "ioremap reserve_memtype failed %d\n", retval);
181 return NULL;
182 }
183
184 if (pcm != new_pcm) {
185 if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) {
186 printk(KERN_ERR
187 "ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n",
188 (unsigned long long)phys_addr,
189 (unsigned long long)(phys_addr + size),
190 pcm, new_pcm);
191 goto err_free_memtype;
192 }
193 pcm = new_pcm;
194 }
195
196 /*
197 * If the page being mapped is in memory and SEV is active then
198 * make sure the memory encryption attribute is enabled in the
199 * resulting mapping.
200 */
201 prot = PAGE_KERNEL_IO;
202 if (sev_active() && mem_flags.desc_other)
203 prot = pgprot_encrypted(prot);
204
205 switch (pcm) {
206 case _PAGE_CACHE_MODE_UC:
207 default:
208 prot = __pgprot(pgprot_val(prot) |
209 cachemode2protval(_PAGE_CACHE_MODE_UC));
210 break;
211 case _PAGE_CACHE_MODE_UC_MINUS:
212 prot = __pgprot(pgprot_val(prot) |
213 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS));
214 break;
215 case _PAGE_CACHE_MODE_WC:
216 prot = __pgprot(pgprot_val(prot) |
217 cachemode2protval(_PAGE_CACHE_MODE_WC));
218 break;
219 case _PAGE_CACHE_MODE_WT:
220 prot = __pgprot(pgprot_val(prot) |
221 cachemode2protval(_PAGE_CACHE_MODE_WT));
222 break;
223 case _PAGE_CACHE_MODE_WB:
224 break;
225 }
226
227 /*
228 * Ok, go for it..
229 */
230 area = get_vm_area_caller(size, VM_IOREMAP, caller);
231 if (!area)
232 goto err_free_memtype;
233 area->phys_addr = phys_addr;
234 vaddr = (unsigned long) area->addr;
235
236 if (kernel_map_sync_memtype(phys_addr, size, pcm))
237 goto err_free_area;
238
239 if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
240 goto err_free_area;
241
242 ret_addr = (void __iomem *) (vaddr + offset);
243 mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
244
245 /*
246 * Check if the request spans more than any BAR in the iomem resource
247 * tree.
248 */
249 if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size))
250 pr_warn("caller %pS mapping multiple BARs\n", caller);
251
252 return ret_addr;
253 err_free_area:
254 free_vm_area(area);
255 err_free_memtype:
256 free_memtype(phys_addr, phys_addr + size);
257 return NULL;
258 }
259
260 /**
261 * ioremap_nocache - map bus memory into CPU space
262 * @phys_addr: bus address of the memory
263 * @size: size of the resource to map
264 *
265 * ioremap_nocache performs a platform specific sequence of operations to
266 * make bus memory CPU accessible via the readb/readw/readl/writeb/
267 * writew/writel functions and the other mmio helpers. The returned
268 * address is not guaranteed to be usable directly as a virtual
269 * address.
270 *
271 * This version of ioremap ensures that the memory is marked uncachable
272 * on the CPU as well as honouring existing caching rules from things like
273 * the PCI bus. Note that there are other caches and buffers on many
274 * busses. In particular driver authors should read up on PCI writes
275 *
276 * It's useful if some control registers are in such an area and
277 * write combining or read caching is not desirable:
278 *
279 * Must be freed with iounmap.
280 */
281 void __iomem *ioremap_nocache(resource_size_t phys_addr, unsigned long size)
282 {
283 /*
284 * Ideally, this should be:
285 * pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS;
286 *
287 * Till we fix all X drivers to use ioremap_wc(), we will use
288 * UC MINUS. Drivers that are certain they need or can already
289 * be converted over to strong UC can use ioremap_uc().
290 */
291 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS;
292
293 return __ioremap_caller(phys_addr, size, pcm,
294 __builtin_return_address(0));
295 }
296 EXPORT_SYMBOL(ioremap_nocache);
297
298 /**
299 * ioremap_uc - map bus memory into CPU space as strongly uncachable
300 * @phys_addr: bus address of the memory
301 * @size: size of the resource to map
302 *
303 * ioremap_uc performs a platform specific sequence of operations to
304 * make bus memory CPU accessible via the readb/readw/readl/writeb/
305 * writew/writel functions and the other mmio helpers. The returned
306 * address is not guaranteed to be usable directly as a virtual
307 * address.
308 *
309 * This version of ioremap ensures that the memory is marked with a strong
310 * preference as completely uncachable on the CPU when possible. For non-PAT
311 * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT
312 * systems this will set the PAT entry for the pages as strong UC. This call
313 * will honor existing caching rules from things like the PCI bus. Note that
314 * there are other caches and buffers on many busses. In particular driver
315 * authors should read up on PCI writes.
316 *
317 * It's useful if some control registers are in such an area and
318 * write combining or read caching is not desirable:
319 *
320 * Must be freed with iounmap.
321 */
322 void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size)
323 {
324 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC;
325
326 return __ioremap_caller(phys_addr, size, pcm,
327 __builtin_return_address(0));
328 }
329 EXPORT_SYMBOL_GPL(ioremap_uc);
330
331 /**
332 * ioremap_wc - map memory into CPU space write combined
333 * @phys_addr: bus address of the memory
334 * @size: size of the resource to map
335 *
336 * This version of ioremap ensures that the memory is marked write combining.
337 * Write combining allows faster writes to some hardware devices.
338 *
339 * Must be freed with iounmap.
340 */
341 void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
342 {
343 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC,
344 __builtin_return_address(0));
345 }
346 EXPORT_SYMBOL(ioremap_wc);
347
348 /**
349 * ioremap_wt - map memory into CPU space write through
350 * @phys_addr: bus address of the memory
351 * @size: size of the resource to map
352 *
353 * This version of ioremap ensures that the memory is marked write through.
354 * Write through stores data into memory while keeping the cache up-to-date.
355 *
356 * Must be freed with iounmap.
357 */
358 void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size)
359 {
360 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT,
361 __builtin_return_address(0));
362 }
363 EXPORT_SYMBOL(ioremap_wt);
364
365 void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
366 {
367 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
368 __builtin_return_address(0));
369 }
370 EXPORT_SYMBOL(ioremap_cache);
371
372 void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
373 unsigned long prot_val)
374 {
375 return __ioremap_caller(phys_addr, size,
376 pgprot2cachemode(__pgprot(prot_val)),
377 __builtin_return_address(0));
378 }
379 EXPORT_SYMBOL(ioremap_prot);
380
381 /**
382 * iounmap - Free a IO remapping
383 * @addr: virtual address from ioremap_*
384 *
385 * Caller must ensure there is only one unmapping for the same pointer.
386 */
387 void iounmap(volatile void __iomem *addr)
388 {
389 struct vm_struct *p, *o;
390
391 if ((void __force *)addr <= high_memory)
392 return;
393
394 /*
395 * The PCI/ISA range special-casing was removed from __ioremap()
396 * so this check, in theory, can be removed. However, there are
397 * cases where iounmap() is called for addresses not obtained via
398 * ioremap() (vga16fb for example). Add a warning so that these
399 * cases can be caught and fixed.
400 */
401 if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
402 (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) {
403 WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n");
404 return;
405 }
406
407 mmiotrace_iounmap(addr);
408
409 addr = (volatile void __iomem *)
410 (PAGE_MASK & (unsigned long __force)addr);
411
412 /* Use the vm area unlocked, assuming the caller
413 ensures there isn't another iounmap for the same address
414 in parallel. Reuse of the virtual address is prevented by
415 leaving it in the global lists until we're done with it.
416 cpa takes care of the direct mappings. */
417 p = find_vm_area((void __force *)addr);
418
419 if (!p) {
420 printk(KERN_ERR "iounmap: bad address %p\n", addr);
421 dump_stack();
422 return;
423 }
424
425 free_memtype(p->phys_addr, p->phys_addr + get_vm_area_size(p));
426
427 /* Finally remove it */
428 o = remove_vm_area((void __force *)addr);
429 BUG_ON(p != o || o == NULL);
430 kfree(p);
431 }
432 EXPORT_SYMBOL(iounmap);
433
434 int __init arch_ioremap_pud_supported(void)
435 {
436 #ifdef CONFIG_X86_64
437 return boot_cpu_has(X86_FEATURE_GBPAGES);
438 #else
439 return 0;
440 #endif
441 }
442
443 int __init arch_ioremap_pmd_supported(void)
444 {
445 return boot_cpu_has(X86_FEATURE_PSE);
446 }
447
448 /*
449 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
450 * access
451 */
452 void *xlate_dev_mem_ptr(phys_addr_t phys)
453 {
454 unsigned long start = phys & PAGE_MASK;
455 unsigned long offset = phys & ~PAGE_MASK;
456 void *vaddr;
457
458 /* memremap() maps if RAM, otherwise falls back to ioremap() */
459 vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB);
460
461 /* Only add the offset on success and return NULL if memremap() failed */
462 if (vaddr)
463 vaddr += offset;
464
465 return vaddr;
466 }
467
468 void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
469 {
470 memunmap((void *)((unsigned long)addr & PAGE_MASK));
471 }
472
473 /*
474 * Examine the physical address to determine if it is an area of memory
475 * that should be mapped decrypted. If the memory is not part of the
476 * kernel usable area it was accessed and created decrypted, so these
477 * areas should be mapped decrypted. And since the encryption key can
478 * change across reboots, persistent memory should also be mapped
479 * decrypted.
480 *
481 * If SEV is active, that implies that BIOS/UEFI also ran encrypted so
482 * only persistent memory should be mapped decrypted.
483 */
484 static bool memremap_should_map_decrypted(resource_size_t phys_addr,
485 unsigned long size)
486 {
487 int is_pmem;
488
489 /*
490 * Check if the address is part of a persistent memory region.
491 * This check covers areas added by E820, EFI and ACPI.
492 */
493 is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM,
494 IORES_DESC_PERSISTENT_MEMORY);
495 if (is_pmem != REGION_DISJOINT)
496 return true;
497
498 /*
499 * Check if the non-volatile attribute is set for an EFI
500 * reserved area.
501 */
502 if (efi_enabled(EFI_BOOT)) {
503 switch (efi_mem_type(phys_addr)) {
504 case EFI_RESERVED_TYPE:
505 if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV)
506 return true;
507 break;
508 default:
509 break;
510 }
511 }
512
513 /* Check if the address is outside kernel usable area */
514 switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) {
515 case E820_TYPE_RESERVED:
516 case E820_TYPE_ACPI:
517 case E820_TYPE_NVS:
518 case E820_TYPE_UNUSABLE:
519 /* For SEV, these areas are encrypted */
520 if (sev_active())
521 break;
522 /* Fallthrough */
523
524 case E820_TYPE_PRAM:
525 return true;
526 default:
527 break;
528 }
529
530 return false;
531 }
532
533 /*
534 * Examine the physical address to determine if it is EFI data. Check
535 * it against the boot params structure and EFI tables and memory types.
536 */
537 static bool memremap_is_efi_data(resource_size_t phys_addr,
538 unsigned long size)
539 {
540 u64 paddr;
541
542 /* Check if the address is part of EFI boot/runtime data */
543 if (!efi_enabled(EFI_BOOT))
544 return false;
545
546 paddr = boot_params.efi_info.efi_memmap_hi;
547 paddr <<= 32;
548 paddr |= boot_params.efi_info.efi_memmap;
549 if (phys_addr == paddr)
550 return true;
551
552 paddr = boot_params.efi_info.efi_systab_hi;
553 paddr <<= 32;
554 paddr |= boot_params.efi_info.efi_systab;
555 if (phys_addr == paddr)
556 return true;
557
558 if (efi_is_table_address(phys_addr))
559 return true;
560
561 switch (efi_mem_type(phys_addr)) {
562 case EFI_BOOT_SERVICES_DATA:
563 case EFI_RUNTIME_SERVICES_DATA:
564 return true;
565 default:
566 break;
567 }
568
569 return false;
570 }
571
572 /*
573 * Examine the physical address to determine if it is boot data by checking
574 * it against the boot params setup_data chain.
575 */
576 static bool memremap_is_setup_data(resource_size_t phys_addr,
577 unsigned long size)
578 {
579 struct setup_data *data;
580 u64 paddr, paddr_next;
581
582 paddr = boot_params.hdr.setup_data;
583 while (paddr) {
584 unsigned int len;
585
586 if (phys_addr == paddr)
587 return true;
588
589 data = memremap(paddr, sizeof(*data),
590 MEMREMAP_WB | MEMREMAP_DEC);
591
592 paddr_next = data->next;
593 len = data->len;
594
595 memunmap(data);
596
597 if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
598 return true;
599
600 paddr = paddr_next;
601 }
602
603 return false;
604 }
605
606 /*
607 * Examine the physical address to determine if it is boot data by checking
608 * it against the boot params setup_data chain (early boot version).
609 */
610 static bool __init early_memremap_is_setup_data(resource_size_t phys_addr,
611 unsigned long size)
612 {
613 struct setup_data *data;
614 u64 paddr, paddr_next;
615
616 paddr = boot_params.hdr.setup_data;
617 while (paddr) {
618 unsigned int len;
619
620 if (phys_addr == paddr)
621 return true;
622
623 data = early_memremap_decrypted(paddr, sizeof(*data));
624
625 paddr_next = data->next;
626 len = data->len;
627
628 early_memunmap(data, sizeof(*data));
629
630 if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
631 return true;
632
633 paddr = paddr_next;
634 }
635
636 return false;
637 }
638
639 /*
640 * Architecture function to determine if RAM remap is allowed. By default, a
641 * RAM remap will map the data as encrypted. Determine if a RAM remap should
642 * not be done so that the data will be mapped decrypted.
643 */
644 bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size,
645 unsigned long flags)
646 {
647 if (!mem_encrypt_active())
648 return true;
649
650 if (flags & MEMREMAP_ENC)
651 return true;
652
653 if (flags & MEMREMAP_DEC)
654 return false;
655
656 if (sme_active()) {
657 if (memremap_is_setup_data(phys_addr, size) ||
658 memremap_is_efi_data(phys_addr, size))
659 return false;
660 }
661
662 return !memremap_should_map_decrypted(phys_addr, size);
663 }
664
665 /*
666 * Architecture override of __weak function to adjust the protection attributes
667 * used when remapping memory. By default, early_memremap() will map the data
668 * as encrypted. Determine if an encrypted mapping should not be done and set
669 * the appropriate protection attributes.
670 */
671 pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
672 unsigned long size,
673 pgprot_t prot)
674 {
675 bool encrypted_prot;
676
677 if (!mem_encrypt_active())
678 return prot;
679
680 encrypted_prot = true;
681
682 if (sme_active()) {
683 if (early_memremap_is_setup_data(phys_addr, size) ||
684 memremap_is_efi_data(phys_addr, size))
685 encrypted_prot = false;
686 }
687
688 if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size))
689 encrypted_prot = false;
690
691 return encrypted_prot ? pgprot_encrypted(prot)
692 : pgprot_decrypted(prot);
693 }
694
695 bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size)
696 {
697 return arch_memremap_can_ram_remap(phys_addr, size, 0);
698 }
699
700 #ifdef CONFIG_ARCH_USE_MEMREMAP_PROT
701 /* Remap memory with encryption */
702 void __init *early_memremap_encrypted(resource_size_t phys_addr,
703 unsigned long size)
704 {
705 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC);
706 }
707
708 /*
709 * Remap memory with encryption and write-protected - cannot be called
710 * before pat_init() is called
711 */
712 void __init *early_memremap_encrypted_wp(resource_size_t phys_addr,
713 unsigned long size)
714 {
715 /* Be sure the write-protect PAT entry is set for write-protect */
716 if (__pte2cachemode_tbl[_PAGE_CACHE_MODE_WP] != _PAGE_CACHE_MODE_WP)
717 return NULL;
718
719 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP);
720 }
721
722 /* Remap memory without encryption */
723 void __init *early_memremap_decrypted(resource_size_t phys_addr,
724 unsigned long size)
725 {
726 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC);
727 }
728
729 /*
730 * Remap memory without encryption and write-protected - cannot be called
731 * before pat_init() is called
732 */
733 void __init *early_memremap_decrypted_wp(resource_size_t phys_addr,
734 unsigned long size)
735 {
736 /* Be sure the write-protect PAT entry is set for write-protect */
737 if (__pte2cachemode_tbl[_PAGE_CACHE_MODE_WP] != _PAGE_CACHE_MODE_WP)
738 return NULL;
739
740 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP);
741 }
742 #endif /* CONFIG_ARCH_USE_MEMREMAP_PROT */
743
744 static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
745
746 static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
747 {
748 /* Don't assume we're using swapper_pg_dir at this point */
749 pgd_t *base = __va(read_cr3_pa());
750 pgd_t *pgd = &base[pgd_index(addr)];
751 p4d_t *p4d = p4d_offset(pgd, addr);
752 pud_t *pud = pud_offset(p4d, addr);
753 pmd_t *pmd = pmd_offset(pud, addr);
754
755 return pmd;
756 }
757
758 static inline pte_t * __init early_ioremap_pte(unsigned long addr)
759 {
760 return &bm_pte[pte_index(addr)];
761 }
762
763 bool __init is_early_ioremap_ptep(pte_t *ptep)
764 {
765 return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)];
766 }
767
768 void __init early_ioremap_init(void)
769 {
770 pmd_t *pmd;
771
772 #ifdef CONFIG_X86_64
773 BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
774 #else
775 WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
776 #endif
777
778 early_ioremap_setup();
779
780 pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
781 memset(bm_pte, 0, sizeof(bm_pte));
782 pmd_populate_kernel(&init_mm, pmd, bm_pte);
783
784 /*
785 * The boot-ioremap range spans multiple pmds, for which
786 * we are not prepared:
787 */
788 #define __FIXADDR_TOP (-PAGE_SIZE)
789 BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
790 != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
791 #undef __FIXADDR_TOP
792 if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
793 WARN_ON(1);
794 printk(KERN_WARNING "pmd %p != %p\n",
795 pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
796 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
797 fix_to_virt(FIX_BTMAP_BEGIN));
798 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END): %08lx\n",
799 fix_to_virt(FIX_BTMAP_END));
800
801 printk(KERN_WARNING "FIX_BTMAP_END: %d\n", FIX_BTMAP_END);
802 printk(KERN_WARNING "FIX_BTMAP_BEGIN: %d\n",
803 FIX_BTMAP_BEGIN);
804 }
805 }
806
807 void __init __early_set_fixmap(enum fixed_addresses idx,
808 phys_addr_t phys, pgprot_t flags)
809 {
810 unsigned long addr = __fix_to_virt(idx);
811 pte_t *pte;
812
813 if (idx >= __end_of_fixed_addresses) {
814 BUG();
815 return;
816 }
817 pte = early_ioremap_pte(addr);
818
819 /* Sanitize 'prot' against any unsupported bits: */
820 pgprot_val(flags) &= __default_kernel_pte_mask;
821
822 if (pgprot_val(flags))
823 set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
824 else
825 pte_clear(&init_mm, addr, pte);
826 __flush_tlb_one_kernel(addr);
827 }