]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/mm/kaslr.c
641169d38184fe3a9bb77f71d74059a04f49c5b9
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / mm / kaslr.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * This file implements KASLR memory randomization for x86_64. It randomizes
4 * the virtual address space of kernel memory regions (physical memory
5 * mapping, vmalloc & vmemmap) for x86_64. This security feature mitigates
6 * exploits relying on predictable kernel addresses.
7 *
8 * Entropy is generated using the KASLR early boot functions now shared in
9 * the lib directory (originally written by Kees Cook). Randomization is
10 * done on PGD & P4D/PUD page table levels to increase possible addresses.
11 * The physical memory mapping code was adapted to support P4D/PUD level
12 * virtual addresses. This implementation on the best configuration provides
13 * 30,000 possible virtual addresses in average for each memory region.
14 * An additional low memory page is used to ensure each CPU can start with
15 * a PGD aligned virtual address (for realmode).
16 *
17 * The order of each memory region is not changed. The feature looks at
18 * the available space for the regions based on different configuration
19 * options and randomizes the base and space between each. The size of the
20 * physical memory mapping is the available physical memory.
21 */
22
23 #include <linux/kernel.h>
24 #include <linux/init.h>
25 #include <linux/random.h>
26
27 #include <asm/pgalloc.h>
28 #include <asm/pgtable.h>
29 #include <asm/setup.h>
30 #include <asm/kaslr.h>
31
32 #include "mm_internal.h"
33
34 #define TB_SHIFT 40
35
36 /*
37 * The end address could depend on more configuration options to make the
38 * highest amount of space for randomization available, but that's too hard
39 * to keep straight and caused issues already.
40 */
41 static const unsigned long vaddr_end = CPU_ENTRY_AREA_BASE;
42
43 /*
44 * Memory regions randomized by KASLR (except modules that use a separate logic
45 * earlier during boot). The list is ordered based on virtual addresses. This
46 * order is kept after randomization.
47 */
48 static __initdata struct kaslr_memory_region {
49 unsigned long *base;
50 unsigned long size_tb;
51 } kaslr_regions[] = {
52 { &page_offset_base, 0 },
53 { &vmalloc_base, 0 },
54 { &vmemmap_base, 1 },
55 };
56
57 /* Get size in bytes used by the memory region */
58 static inline unsigned long get_padding(struct kaslr_memory_region *region)
59 {
60 return (region->size_tb << TB_SHIFT);
61 }
62
63 /*
64 * Apply no randomization if KASLR was disabled at boot or if KASAN
65 * is enabled. KASAN shadow mappings rely on regions being PGD aligned.
66 */
67 static inline bool kaslr_memory_enabled(void)
68 {
69 return kaslr_enabled() && !IS_ENABLED(CONFIG_KASAN);
70 }
71
72 /* Initialize base and padding for each memory region randomized with KASLR */
73 void __init kernel_randomize_memory(void)
74 {
75 size_t i;
76 unsigned long vaddr_start, vaddr;
77 unsigned long rand, memory_tb;
78 struct rnd_state rand_state;
79 unsigned long remain_entropy;
80
81 vaddr_start = pgtable_l5_enabled ? __PAGE_OFFSET_BASE_L5 : __PAGE_OFFSET_BASE_L4;
82 vaddr = vaddr_start;
83
84 /*
85 * These BUILD_BUG_ON checks ensure the memory layout is consistent
86 * with the vaddr_start/vaddr_end variables. These checks are very
87 * limited....
88 */
89 BUILD_BUG_ON(vaddr_start >= vaddr_end);
90 BUILD_BUG_ON(vaddr_end != CPU_ENTRY_AREA_BASE);
91 BUILD_BUG_ON(vaddr_end > __START_KERNEL_map);
92
93 if (!kaslr_memory_enabled())
94 return;
95
96 kaslr_regions[0].size_tb = 1 << (__PHYSICAL_MASK_SHIFT - TB_SHIFT);
97 kaslr_regions[1].size_tb = VMALLOC_SIZE_TB;
98
99 /*
100 * Update Physical memory mapping to available and
101 * add padding if needed (especially for memory hotplug support).
102 */
103 BUG_ON(kaslr_regions[0].base != &page_offset_base);
104 memory_tb = DIV_ROUND_UP(max_pfn << PAGE_SHIFT, 1UL << TB_SHIFT) +
105 CONFIG_RANDOMIZE_MEMORY_PHYSICAL_PADDING;
106
107 /* Adapt phyiscal memory region size based on available memory */
108 if (memory_tb < kaslr_regions[0].size_tb)
109 kaslr_regions[0].size_tb = memory_tb;
110
111 /* Calculate entropy available between regions */
112 remain_entropy = vaddr_end - vaddr_start;
113 for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++)
114 remain_entropy -= get_padding(&kaslr_regions[i]);
115
116 prandom_seed_state(&rand_state, kaslr_get_random_long("Memory"));
117
118 for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++) {
119 unsigned long entropy;
120
121 /*
122 * Select a random virtual address using the extra entropy
123 * available.
124 */
125 entropy = remain_entropy / (ARRAY_SIZE(kaslr_regions) - i);
126 prandom_bytes_state(&rand_state, &rand, sizeof(rand));
127 if (IS_ENABLED(CONFIG_X86_5LEVEL))
128 entropy = (rand % (entropy + 1)) & P4D_MASK;
129 else
130 entropy = (rand % (entropy + 1)) & PUD_MASK;
131 vaddr += entropy;
132 *kaslr_regions[i].base = vaddr;
133
134 /*
135 * Jump the region and add a minimum padding based on
136 * randomization alignment.
137 */
138 vaddr += get_padding(&kaslr_regions[i]);
139 if (IS_ENABLED(CONFIG_X86_5LEVEL))
140 vaddr = round_up(vaddr + 1, P4D_SIZE);
141 else
142 vaddr = round_up(vaddr + 1, PUD_SIZE);
143 remain_entropy -= entropy;
144 }
145 }
146
147 static void __meminit init_trampoline_pud(void)
148 {
149 unsigned long paddr, paddr_next;
150 pgd_t *pgd;
151 pud_t *pud_page, *pud_page_tramp;
152 int i;
153
154 pud_page_tramp = alloc_low_page();
155
156 paddr = 0;
157 pgd = pgd_offset_k((unsigned long)__va(paddr));
158 pud_page = (pud_t *) pgd_page_vaddr(*pgd);
159
160 for (i = pud_index(paddr); i < PTRS_PER_PUD; i++, paddr = paddr_next) {
161 pud_t *pud, *pud_tramp;
162 unsigned long vaddr = (unsigned long)__va(paddr);
163
164 pud_tramp = pud_page_tramp + pud_index(paddr);
165 pud = pud_page + pud_index(vaddr);
166 paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
167
168 *pud_tramp = *pud;
169 }
170
171 set_pgd(&trampoline_pgd_entry,
172 __pgd(_KERNPG_TABLE | __pa(pud_page_tramp)));
173 }
174
175 static void __meminit init_trampoline_p4d(void)
176 {
177 unsigned long paddr, paddr_next;
178 pgd_t *pgd;
179 p4d_t *p4d_page, *p4d_page_tramp;
180 int i;
181
182 p4d_page_tramp = alloc_low_page();
183
184 paddr = 0;
185 pgd = pgd_offset_k((unsigned long)__va(paddr));
186 p4d_page = (p4d_t *) pgd_page_vaddr(*pgd);
187
188 for (i = p4d_index(paddr); i < PTRS_PER_P4D; i++, paddr = paddr_next) {
189 p4d_t *p4d, *p4d_tramp;
190 unsigned long vaddr = (unsigned long)__va(paddr);
191
192 p4d_tramp = p4d_page_tramp + p4d_index(paddr);
193 p4d = p4d_page + p4d_index(vaddr);
194 paddr_next = (paddr & P4D_MASK) + P4D_SIZE;
195
196 *p4d_tramp = *p4d;
197 }
198
199 set_pgd(&trampoline_pgd_entry,
200 __pgd(_KERNPG_TABLE | __pa(p4d_page_tramp)));
201 }
202
203 /*
204 * Create PGD aligned trampoline table to allow real mode initialization
205 * of additional CPUs. Consume only 1 low memory page.
206 */
207 void __meminit init_trampoline(void)
208 {
209
210 if (!kaslr_memory_enabled()) {
211 init_trampoline_default();
212 return;
213 }
214
215 if (IS_ENABLED(CONFIG_X86_5LEVEL))
216 init_trampoline_p4d();
217 else
218 init_trampoline_pud();
219 }