]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/x86/mm/kaslr.c
Merge tag 'imx-drm-fixes-2017-07-18' of git://git.pengutronix.de/git/pza/linux into...
[mirror_ubuntu-focal-kernel.git] / arch / x86 / mm / kaslr.c
1 /*
2 * This file implements KASLR memory randomization for x86_64. It randomizes
3 * the virtual address space of kernel memory regions (physical memory
4 * mapping, vmalloc & vmemmap) for x86_64. This security feature mitigates
5 * exploits relying on predictable kernel addresses.
6 *
7 * Entropy is generated using the KASLR early boot functions now shared in
8 * the lib directory (originally written by Kees Cook). Randomization is
9 * done on PGD & P4D/PUD page table levels to increase possible addresses.
10 * The physical memory mapping code was adapted to support P4D/PUD level
11 * virtual addresses. This implementation on the best configuration provides
12 * 30,000 possible virtual addresses in average for each memory region.
13 * An additional low memory page is used to ensure each CPU can start with
14 * a PGD aligned virtual address (for realmode).
15 *
16 * The order of each memory region is not changed. The feature looks at
17 * the available space for the regions based on different configuration
18 * options and randomizes the base and space between each. The size of the
19 * physical memory mapping is the available physical memory.
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/init.h>
24 #include <linux/random.h>
25
26 #include <asm/pgalloc.h>
27 #include <asm/pgtable.h>
28 #include <asm/setup.h>
29 #include <asm/kaslr.h>
30
31 #include "mm_internal.h"
32
33 #define TB_SHIFT 40
34
35 /*
36 * Virtual address start and end range for randomization. The end changes base
37 * on configuration to have the highest amount of space for randomization.
38 * It increases the possible random position for each randomized region.
39 *
40 * You need to add an if/def entry if you introduce a new memory region
41 * compatible with KASLR. Your entry must be in logical order with memory
42 * layout. For example, ESPFIX is before EFI because its virtual address is
43 * before. You also need to add a BUILD_BUG_ON() in kernel_randomize_memory() to
44 * ensure that this order is correct and won't be changed.
45 */
46 static const unsigned long vaddr_start = __PAGE_OFFSET_BASE;
47
48 #if defined(CONFIG_X86_ESPFIX64)
49 static const unsigned long vaddr_end = ESPFIX_BASE_ADDR;
50 #elif defined(CONFIG_EFI)
51 static const unsigned long vaddr_end = EFI_VA_END;
52 #else
53 static const unsigned long vaddr_end = __START_KERNEL_map;
54 #endif
55
56 /* Default values */
57 unsigned long page_offset_base = __PAGE_OFFSET_BASE;
58 EXPORT_SYMBOL(page_offset_base);
59 unsigned long vmalloc_base = __VMALLOC_BASE;
60 EXPORT_SYMBOL(vmalloc_base);
61 unsigned long vmemmap_base = __VMEMMAP_BASE;
62 EXPORT_SYMBOL(vmemmap_base);
63
64 /*
65 * Memory regions randomized by KASLR (except modules that use a separate logic
66 * earlier during boot). The list is ordered based on virtual addresses. This
67 * order is kept after randomization.
68 */
69 static __initdata struct kaslr_memory_region {
70 unsigned long *base;
71 unsigned long size_tb;
72 } kaslr_regions[] = {
73 { &page_offset_base, 1 << (__PHYSICAL_MASK_SHIFT - TB_SHIFT) /* Maximum */ },
74 { &vmalloc_base, VMALLOC_SIZE_TB },
75 { &vmemmap_base, 1 },
76 };
77
78 /* Get size in bytes used by the memory region */
79 static inline unsigned long get_padding(struct kaslr_memory_region *region)
80 {
81 return (region->size_tb << TB_SHIFT);
82 }
83
84 /*
85 * Apply no randomization if KASLR was disabled at boot or if KASAN
86 * is enabled. KASAN shadow mappings rely on regions being PGD aligned.
87 */
88 static inline bool kaslr_memory_enabled(void)
89 {
90 return kaslr_enabled() && !IS_ENABLED(CONFIG_KASAN);
91 }
92
93 /* Initialize base and padding for each memory region randomized with KASLR */
94 void __init kernel_randomize_memory(void)
95 {
96 size_t i;
97 unsigned long vaddr = vaddr_start;
98 unsigned long rand, memory_tb;
99 struct rnd_state rand_state;
100 unsigned long remain_entropy;
101
102 /*
103 * All these BUILD_BUG_ON checks ensures the memory layout is
104 * consistent with the vaddr_start/vaddr_end variables.
105 */
106 BUILD_BUG_ON(vaddr_start >= vaddr_end);
107 BUILD_BUG_ON(IS_ENABLED(CONFIG_X86_ESPFIX64) &&
108 vaddr_end >= EFI_VA_END);
109 BUILD_BUG_ON((IS_ENABLED(CONFIG_X86_ESPFIX64) ||
110 IS_ENABLED(CONFIG_EFI)) &&
111 vaddr_end >= __START_KERNEL_map);
112 BUILD_BUG_ON(vaddr_end > __START_KERNEL_map);
113
114 if (!kaslr_memory_enabled())
115 return;
116
117 /*
118 * Update Physical memory mapping to available and
119 * add padding if needed (especially for memory hotplug support).
120 */
121 BUG_ON(kaslr_regions[0].base != &page_offset_base);
122 memory_tb = DIV_ROUND_UP(max_pfn << PAGE_SHIFT, 1UL << TB_SHIFT) +
123 CONFIG_RANDOMIZE_MEMORY_PHYSICAL_PADDING;
124
125 /* Adapt phyiscal memory region size based on available memory */
126 if (memory_tb < kaslr_regions[0].size_tb)
127 kaslr_regions[0].size_tb = memory_tb;
128
129 /* Calculate entropy available between regions */
130 remain_entropy = vaddr_end - vaddr_start;
131 for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++)
132 remain_entropy -= get_padding(&kaslr_regions[i]);
133
134 prandom_seed_state(&rand_state, kaslr_get_random_long("Memory"));
135
136 for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++) {
137 unsigned long entropy;
138
139 /*
140 * Select a random virtual address using the extra entropy
141 * available.
142 */
143 entropy = remain_entropy / (ARRAY_SIZE(kaslr_regions) - i);
144 prandom_bytes_state(&rand_state, &rand, sizeof(rand));
145 if (IS_ENABLED(CONFIG_X86_5LEVEL))
146 entropy = (rand % (entropy + 1)) & P4D_MASK;
147 else
148 entropy = (rand % (entropy + 1)) & PUD_MASK;
149 vaddr += entropy;
150 *kaslr_regions[i].base = vaddr;
151
152 /*
153 * Jump the region and add a minimum padding based on
154 * randomization alignment.
155 */
156 vaddr += get_padding(&kaslr_regions[i]);
157 if (IS_ENABLED(CONFIG_X86_5LEVEL))
158 vaddr = round_up(vaddr + 1, P4D_SIZE);
159 else
160 vaddr = round_up(vaddr + 1, PUD_SIZE);
161 remain_entropy -= entropy;
162 }
163 }
164
165 static void __meminit init_trampoline_pud(void)
166 {
167 unsigned long paddr, paddr_next;
168 pgd_t *pgd;
169 pud_t *pud_page, *pud_page_tramp;
170 int i;
171
172 pud_page_tramp = alloc_low_page();
173
174 paddr = 0;
175 pgd = pgd_offset_k((unsigned long)__va(paddr));
176 pud_page = (pud_t *) pgd_page_vaddr(*pgd);
177
178 for (i = pud_index(paddr); i < PTRS_PER_PUD; i++, paddr = paddr_next) {
179 pud_t *pud, *pud_tramp;
180 unsigned long vaddr = (unsigned long)__va(paddr);
181
182 pud_tramp = pud_page_tramp + pud_index(paddr);
183 pud = pud_page + pud_index(vaddr);
184 paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
185
186 *pud_tramp = *pud;
187 }
188
189 set_pgd(&trampoline_pgd_entry,
190 __pgd(_KERNPG_TABLE | __pa(pud_page_tramp)));
191 }
192
193 static void __meminit init_trampoline_p4d(void)
194 {
195 unsigned long paddr, paddr_next;
196 pgd_t *pgd;
197 p4d_t *p4d_page, *p4d_page_tramp;
198 int i;
199
200 p4d_page_tramp = alloc_low_page();
201
202 paddr = 0;
203 pgd = pgd_offset_k((unsigned long)__va(paddr));
204 p4d_page = (p4d_t *) pgd_page_vaddr(*pgd);
205
206 for (i = p4d_index(paddr); i < PTRS_PER_P4D; i++, paddr = paddr_next) {
207 p4d_t *p4d, *p4d_tramp;
208 unsigned long vaddr = (unsigned long)__va(paddr);
209
210 p4d_tramp = p4d_page_tramp + p4d_index(paddr);
211 p4d = p4d_page + p4d_index(vaddr);
212 paddr_next = (paddr & P4D_MASK) + P4D_SIZE;
213
214 *p4d_tramp = *p4d;
215 }
216
217 set_pgd(&trampoline_pgd_entry,
218 __pgd(_KERNPG_TABLE | __pa(p4d_page_tramp)));
219 }
220
221 /*
222 * Create PGD aligned trampoline table to allow real mode initialization
223 * of additional CPUs. Consume only 1 low memory page.
224 */
225 void __meminit init_trampoline(void)
226 {
227
228 if (!kaslr_memory_enabled()) {
229 init_trampoline_default();
230 return;
231 }
232
233 if (IS_ENABLED(CONFIG_X86_5LEVEL))
234 init_trampoline_p4d();
235 else
236 init_trampoline_pud();
237 }