]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/mm/kmmio.c
Merge branch 'acpi-ec' into acpi
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / mm / kmmio.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Support for MMIO probes.
3 * Benfit many code from kprobes
4 * (C) 2002 Louis Zhuang <louis.zhuang@intel.com>.
5 * 2007 Alexander Eichner
6 * 2008 Pekka Paalanen <pq@iki.fi>
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/list.h>
12 #include <linux/rculist.h>
13 #include <linux/spinlock.h>
14 #include <linux/hash.h>
15 #include <linux/export.h>
16 #include <linux/kernel.h>
17 #include <linux/uaccess.h>
18 #include <linux/ptrace.h>
19 #include <linux/preempt.h>
20 #include <linux/percpu.h>
21 #include <linux/kdebug.h>
22 #include <linux/mutex.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <asm/cacheflush.h>
26 #include <asm/tlbflush.h>
27 #include <linux/errno.h>
28 #include <asm/debugreg.h>
29 #include <linux/mmiotrace.h>
30
31 #define KMMIO_PAGE_HASH_BITS 4
32 #define KMMIO_PAGE_TABLE_SIZE (1 << KMMIO_PAGE_HASH_BITS)
33
34 struct kmmio_fault_page {
35 struct list_head list;
36 struct kmmio_fault_page *release_next;
37 unsigned long addr; /* the requested address */
38 pteval_t old_presence; /* page presence prior to arming */
39 bool armed;
40
41 /*
42 * Number of times this page has been registered as a part
43 * of a probe. If zero, page is disarmed and this may be freed.
44 * Used only by writers (RCU) and post_kmmio_handler().
45 * Protected by kmmio_lock, when linked into kmmio_page_table.
46 */
47 int count;
48
49 bool scheduled_for_release;
50 };
51
52 struct kmmio_delayed_release {
53 struct rcu_head rcu;
54 struct kmmio_fault_page *release_list;
55 };
56
57 struct kmmio_context {
58 struct kmmio_fault_page *fpage;
59 struct kmmio_probe *probe;
60 unsigned long saved_flags;
61 unsigned long addr;
62 int active;
63 };
64
65 static DEFINE_SPINLOCK(kmmio_lock);
66
67 /* Protected by kmmio_lock */
68 unsigned int kmmio_count;
69
70 /* Read-protected by RCU, write-protected by kmmio_lock. */
71 static struct list_head kmmio_page_table[KMMIO_PAGE_TABLE_SIZE];
72 static LIST_HEAD(kmmio_probes);
73
74 static struct list_head *kmmio_page_list(unsigned long addr)
75 {
76 unsigned int l;
77 pte_t *pte = lookup_address(addr, &l);
78
79 if (!pte)
80 return NULL;
81 addr &= page_level_mask(l);
82
83 return &kmmio_page_table[hash_long(addr, KMMIO_PAGE_HASH_BITS)];
84 }
85
86 /* Accessed per-cpu */
87 static DEFINE_PER_CPU(struct kmmio_context, kmmio_ctx);
88
89 /*
90 * this is basically a dynamic stabbing problem:
91 * Could use the existing prio tree code or
92 * Possible better implementations:
93 * The Interval Skip List: A Data Structure for Finding All Intervals That
94 * Overlap a Point (might be simple)
95 * Space Efficient Dynamic Stabbing with Fast Queries - Mikkel Thorup
96 */
97 /* Get the kmmio at this addr (if any). You must be holding RCU read lock. */
98 static struct kmmio_probe *get_kmmio_probe(unsigned long addr)
99 {
100 struct kmmio_probe *p;
101 list_for_each_entry_rcu(p, &kmmio_probes, list) {
102 if (addr >= p->addr && addr < (p->addr + p->len))
103 return p;
104 }
105 return NULL;
106 }
107
108 /* You must be holding RCU read lock. */
109 static struct kmmio_fault_page *get_kmmio_fault_page(unsigned long addr)
110 {
111 struct list_head *head;
112 struct kmmio_fault_page *f;
113 unsigned int l;
114 pte_t *pte = lookup_address(addr, &l);
115
116 if (!pte)
117 return NULL;
118 addr &= page_level_mask(l);
119 head = kmmio_page_list(addr);
120 list_for_each_entry_rcu(f, head, list) {
121 if (f->addr == addr)
122 return f;
123 }
124 return NULL;
125 }
126
127 static void clear_pmd_presence(pmd_t *pmd, bool clear, pmdval_t *old)
128 {
129 pmdval_t v = pmd_val(*pmd);
130 if (clear) {
131 *old = v & _PAGE_PRESENT;
132 v &= ~_PAGE_PRESENT;
133 } else /* presume this has been called with clear==true previously */
134 v |= *old;
135 set_pmd(pmd, __pmd(v));
136 }
137
138 static void clear_pte_presence(pte_t *pte, bool clear, pteval_t *old)
139 {
140 pteval_t v = pte_val(*pte);
141 if (clear) {
142 *old = v & _PAGE_PRESENT;
143 v &= ~_PAGE_PRESENT;
144 } else /* presume this has been called with clear==true previously */
145 v |= *old;
146 set_pte_atomic(pte, __pte(v));
147 }
148
149 static int clear_page_presence(struct kmmio_fault_page *f, bool clear)
150 {
151 unsigned int level;
152 pte_t *pte = lookup_address(f->addr, &level);
153
154 if (!pte) {
155 pr_err("no pte for addr 0x%08lx\n", f->addr);
156 return -1;
157 }
158
159 switch (level) {
160 case PG_LEVEL_2M:
161 clear_pmd_presence((pmd_t *)pte, clear, &f->old_presence);
162 break;
163 case PG_LEVEL_4K:
164 clear_pte_presence(pte, clear, &f->old_presence);
165 break;
166 default:
167 pr_err("unexpected page level 0x%x.\n", level);
168 return -1;
169 }
170
171 __flush_tlb_one(f->addr);
172 return 0;
173 }
174
175 /*
176 * Mark the given page as not present. Access to it will trigger a fault.
177 *
178 * Struct kmmio_fault_page is protected by RCU and kmmio_lock, but the
179 * protection is ignored here. RCU read lock is assumed held, so the struct
180 * will not disappear unexpectedly. Furthermore, the caller must guarantee,
181 * that double arming the same virtual address (page) cannot occur.
182 *
183 * Double disarming on the other hand is allowed, and may occur when a fault
184 * and mmiotrace shutdown happen simultaneously.
185 */
186 static int arm_kmmio_fault_page(struct kmmio_fault_page *f)
187 {
188 int ret;
189 WARN_ONCE(f->armed, KERN_ERR pr_fmt("kmmio page already armed.\n"));
190 if (f->armed) {
191 pr_warning("double-arm: addr 0x%08lx, ref %d, old %d\n",
192 f->addr, f->count, !!f->old_presence);
193 }
194 ret = clear_page_presence(f, true);
195 WARN_ONCE(ret < 0, KERN_ERR pr_fmt("arming at 0x%08lx failed.\n"),
196 f->addr);
197 f->armed = true;
198 return ret;
199 }
200
201 /** Restore the given page to saved presence state. */
202 static void disarm_kmmio_fault_page(struct kmmio_fault_page *f)
203 {
204 int ret = clear_page_presence(f, false);
205 WARN_ONCE(ret < 0,
206 KERN_ERR "kmmio disarming at 0x%08lx failed.\n", f->addr);
207 f->armed = false;
208 }
209
210 /*
211 * This is being called from do_page_fault().
212 *
213 * We may be in an interrupt or a critical section. Also prefecthing may
214 * trigger a page fault. We may be in the middle of process switch.
215 * We cannot take any locks, because we could be executing especially
216 * within a kmmio critical section.
217 *
218 * Local interrupts are disabled, so preemption cannot happen.
219 * Do not enable interrupts, do not sleep, and watch out for other CPUs.
220 */
221 /*
222 * Interrupts are disabled on entry as trap3 is an interrupt gate
223 * and they remain disabled throughout this function.
224 */
225 int kmmio_handler(struct pt_regs *regs, unsigned long addr)
226 {
227 struct kmmio_context *ctx;
228 struct kmmio_fault_page *faultpage;
229 int ret = 0; /* default to fault not handled */
230 unsigned long page_base = addr;
231 unsigned int l;
232 pte_t *pte = lookup_address(addr, &l);
233 if (!pte)
234 return -EINVAL;
235 page_base &= page_level_mask(l);
236
237 /*
238 * Preemption is now disabled to prevent process switch during
239 * single stepping. We can only handle one active kmmio trace
240 * per cpu, so ensure that we finish it before something else
241 * gets to run. We also hold the RCU read lock over single
242 * stepping to avoid looking up the probe and kmmio_fault_page
243 * again.
244 */
245 preempt_disable();
246 rcu_read_lock();
247
248 faultpage = get_kmmio_fault_page(page_base);
249 if (!faultpage) {
250 /*
251 * Either this page fault is not caused by kmmio, or
252 * another CPU just pulled the kmmio probe from under
253 * our feet. The latter case should not be possible.
254 */
255 goto no_kmmio;
256 }
257
258 ctx = &get_cpu_var(kmmio_ctx);
259 if (ctx->active) {
260 if (page_base == ctx->addr) {
261 /*
262 * A second fault on the same page means some other
263 * condition needs handling by do_page_fault(), the
264 * page really not being present is the most common.
265 */
266 pr_debug("secondary hit for 0x%08lx CPU %d.\n",
267 addr, smp_processor_id());
268
269 if (!faultpage->old_presence)
270 pr_info("unexpected secondary hit for address 0x%08lx on CPU %d.\n",
271 addr, smp_processor_id());
272 } else {
273 /*
274 * Prevent overwriting already in-flight context.
275 * This should not happen, let's hope disarming at
276 * least prevents a panic.
277 */
278 pr_emerg("recursive probe hit on CPU %d, for address 0x%08lx. Ignoring.\n",
279 smp_processor_id(), addr);
280 pr_emerg("previous hit was at 0x%08lx.\n", ctx->addr);
281 disarm_kmmio_fault_page(faultpage);
282 }
283 goto no_kmmio_ctx;
284 }
285 ctx->active++;
286
287 ctx->fpage = faultpage;
288 ctx->probe = get_kmmio_probe(page_base);
289 ctx->saved_flags = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
290 ctx->addr = page_base;
291
292 if (ctx->probe && ctx->probe->pre_handler)
293 ctx->probe->pre_handler(ctx->probe, regs, addr);
294
295 /*
296 * Enable single-stepping and disable interrupts for the faulting
297 * context. Local interrupts must not get enabled during stepping.
298 */
299 regs->flags |= X86_EFLAGS_TF;
300 regs->flags &= ~X86_EFLAGS_IF;
301
302 /* Now we set present bit in PTE and single step. */
303 disarm_kmmio_fault_page(ctx->fpage);
304
305 /*
306 * If another cpu accesses the same page while we are stepping,
307 * the access will not be caught. It will simply succeed and the
308 * only downside is we lose the event. If this becomes a problem,
309 * the user should drop to single cpu before tracing.
310 */
311
312 put_cpu_var(kmmio_ctx);
313 return 1; /* fault handled */
314
315 no_kmmio_ctx:
316 put_cpu_var(kmmio_ctx);
317 no_kmmio:
318 rcu_read_unlock();
319 preempt_enable_no_resched();
320 return ret;
321 }
322
323 /*
324 * Interrupts are disabled on entry as trap1 is an interrupt gate
325 * and they remain disabled throughout this function.
326 * This must always get called as the pair to kmmio_handler().
327 */
328 static int post_kmmio_handler(unsigned long condition, struct pt_regs *regs)
329 {
330 int ret = 0;
331 struct kmmio_context *ctx = &get_cpu_var(kmmio_ctx);
332
333 if (!ctx->active) {
334 /*
335 * debug traps without an active context are due to either
336 * something external causing them (f.e. using a debugger while
337 * mmio tracing enabled), or erroneous behaviour
338 */
339 pr_warning("unexpected debug trap on CPU %d.\n",
340 smp_processor_id());
341 goto out;
342 }
343
344 if (ctx->probe && ctx->probe->post_handler)
345 ctx->probe->post_handler(ctx->probe, condition, regs);
346
347 /* Prevent racing against release_kmmio_fault_page(). */
348 spin_lock(&kmmio_lock);
349 if (ctx->fpage->count)
350 arm_kmmio_fault_page(ctx->fpage);
351 spin_unlock(&kmmio_lock);
352
353 regs->flags &= ~X86_EFLAGS_TF;
354 regs->flags |= ctx->saved_flags;
355
356 /* These were acquired in kmmio_handler(). */
357 ctx->active--;
358 BUG_ON(ctx->active);
359 rcu_read_unlock();
360 preempt_enable_no_resched();
361
362 /*
363 * if somebody else is singlestepping across a probe point, flags
364 * will have TF set, in which case, continue the remaining processing
365 * of do_debug, as if this is not a probe hit.
366 */
367 if (!(regs->flags & X86_EFLAGS_TF))
368 ret = 1;
369 out:
370 put_cpu_var(kmmio_ctx);
371 return ret;
372 }
373
374 /* You must be holding kmmio_lock. */
375 static int add_kmmio_fault_page(unsigned long addr)
376 {
377 struct kmmio_fault_page *f;
378
379 f = get_kmmio_fault_page(addr);
380 if (f) {
381 if (!f->count)
382 arm_kmmio_fault_page(f);
383 f->count++;
384 return 0;
385 }
386
387 f = kzalloc(sizeof(*f), GFP_ATOMIC);
388 if (!f)
389 return -1;
390
391 f->count = 1;
392 f->addr = addr;
393
394 if (arm_kmmio_fault_page(f)) {
395 kfree(f);
396 return -1;
397 }
398
399 list_add_rcu(&f->list, kmmio_page_list(f->addr));
400
401 return 0;
402 }
403
404 /* You must be holding kmmio_lock. */
405 static void release_kmmio_fault_page(unsigned long addr,
406 struct kmmio_fault_page **release_list)
407 {
408 struct kmmio_fault_page *f;
409
410 f = get_kmmio_fault_page(addr);
411 if (!f)
412 return;
413
414 f->count--;
415 BUG_ON(f->count < 0);
416 if (!f->count) {
417 disarm_kmmio_fault_page(f);
418 if (!f->scheduled_for_release) {
419 f->release_next = *release_list;
420 *release_list = f;
421 f->scheduled_for_release = true;
422 }
423 }
424 }
425
426 /*
427 * With page-unaligned ioremaps, one or two armed pages may contain
428 * addresses from outside the intended mapping. Events for these addresses
429 * are currently silently dropped. The events may result only from programming
430 * mistakes by accessing addresses before the beginning or past the end of a
431 * mapping.
432 */
433 int register_kmmio_probe(struct kmmio_probe *p)
434 {
435 unsigned long flags;
436 int ret = 0;
437 unsigned long size = 0;
438 const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
439 unsigned int l;
440 pte_t *pte;
441
442 spin_lock_irqsave(&kmmio_lock, flags);
443 if (get_kmmio_probe(p->addr)) {
444 ret = -EEXIST;
445 goto out;
446 }
447
448 pte = lookup_address(p->addr, &l);
449 if (!pte) {
450 ret = -EINVAL;
451 goto out;
452 }
453
454 kmmio_count++;
455 list_add_rcu(&p->list, &kmmio_probes);
456 while (size < size_lim) {
457 if (add_kmmio_fault_page(p->addr + size))
458 pr_err("Unable to set page fault.\n");
459 size += page_level_size(l);
460 }
461 out:
462 spin_unlock_irqrestore(&kmmio_lock, flags);
463 /*
464 * XXX: What should I do here?
465 * Here was a call to global_flush_tlb(), but it does not exist
466 * anymore. It seems it's not needed after all.
467 */
468 return ret;
469 }
470 EXPORT_SYMBOL(register_kmmio_probe);
471
472 static void rcu_free_kmmio_fault_pages(struct rcu_head *head)
473 {
474 struct kmmio_delayed_release *dr = container_of(
475 head,
476 struct kmmio_delayed_release,
477 rcu);
478 struct kmmio_fault_page *f = dr->release_list;
479 while (f) {
480 struct kmmio_fault_page *next = f->release_next;
481 BUG_ON(f->count);
482 kfree(f);
483 f = next;
484 }
485 kfree(dr);
486 }
487
488 static void remove_kmmio_fault_pages(struct rcu_head *head)
489 {
490 struct kmmio_delayed_release *dr =
491 container_of(head, struct kmmio_delayed_release, rcu);
492 struct kmmio_fault_page *f = dr->release_list;
493 struct kmmio_fault_page **prevp = &dr->release_list;
494 unsigned long flags;
495
496 spin_lock_irqsave(&kmmio_lock, flags);
497 while (f) {
498 if (!f->count) {
499 list_del_rcu(&f->list);
500 prevp = &f->release_next;
501 } else {
502 *prevp = f->release_next;
503 f->release_next = NULL;
504 f->scheduled_for_release = false;
505 }
506 f = *prevp;
507 }
508 spin_unlock_irqrestore(&kmmio_lock, flags);
509
510 /* This is the real RCU destroy call. */
511 call_rcu(&dr->rcu, rcu_free_kmmio_fault_pages);
512 }
513
514 /*
515 * Remove a kmmio probe. You have to synchronize_rcu() before you can be
516 * sure that the callbacks will not be called anymore. Only after that
517 * you may actually release your struct kmmio_probe.
518 *
519 * Unregistering a kmmio fault page has three steps:
520 * 1. release_kmmio_fault_page()
521 * Disarm the page, wait a grace period to let all faults finish.
522 * 2. remove_kmmio_fault_pages()
523 * Remove the pages from kmmio_page_table.
524 * 3. rcu_free_kmmio_fault_pages()
525 * Actually free the kmmio_fault_page structs as with RCU.
526 */
527 void unregister_kmmio_probe(struct kmmio_probe *p)
528 {
529 unsigned long flags;
530 unsigned long size = 0;
531 const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
532 struct kmmio_fault_page *release_list = NULL;
533 struct kmmio_delayed_release *drelease;
534 unsigned int l;
535 pte_t *pte;
536
537 pte = lookup_address(p->addr, &l);
538 if (!pte)
539 return;
540
541 spin_lock_irqsave(&kmmio_lock, flags);
542 while (size < size_lim) {
543 release_kmmio_fault_page(p->addr + size, &release_list);
544 size += page_level_size(l);
545 }
546 list_del_rcu(&p->list);
547 kmmio_count--;
548 spin_unlock_irqrestore(&kmmio_lock, flags);
549
550 if (!release_list)
551 return;
552
553 drelease = kmalloc(sizeof(*drelease), GFP_ATOMIC);
554 if (!drelease) {
555 pr_crit("leaking kmmio_fault_page objects.\n");
556 return;
557 }
558 drelease->release_list = release_list;
559
560 /*
561 * This is not really RCU here. We have just disarmed a set of
562 * pages so that they cannot trigger page faults anymore. However,
563 * we cannot remove the pages from kmmio_page_table,
564 * because a probe hit might be in flight on another CPU. The
565 * pages are collected into a list, and they will be removed from
566 * kmmio_page_table when it is certain that no probe hit related to
567 * these pages can be in flight. RCU grace period sounds like a
568 * good choice.
569 *
570 * If we removed the pages too early, kmmio page fault handler might
571 * not find the respective kmmio_fault_page and determine it's not
572 * a kmmio fault, when it actually is. This would lead to madness.
573 */
574 call_rcu(&drelease->rcu, remove_kmmio_fault_pages);
575 }
576 EXPORT_SYMBOL(unregister_kmmio_probe);
577
578 static int
579 kmmio_die_notifier(struct notifier_block *nb, unsigned long val, void *args)
580 {
581 struct die_args *arg = args;
582 unsigned long* dr6_p = (unsigned long *)ERR_PTR(arg->err);
583
584 if (val == DIE_DEBUG && (*dr6_p & DR_STEP))
585 if (post_kmmio_handler(*dr6_p, arg->regs) == 1) {
586 /*
587 * Reset the BS bit in dr6 (pointed by args->err) to
588 * denote completion of processing
589 */
590 *dr6_p &= ~DR_STEP;
591 return NOTIFY_STOP;
592 }
593
594 return NOTIFY_DONE;
595 }
596
597 static struct notifier_block nb_die = {
598 .notifier_call = kmmio_die_notifier
599 };
600
601 int kmmio_init(void)
602 {
603 int i;
604
605 for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++)
606 INIT_LIST_HEAD(&kmmio_page_table[i]);
607
608 return register_die_notifier(&nb_die);
609 }
610
611 void kmmio_cleanup(void)
612 {
613 int i;
614
615 unregister_die_notifier(&nb_die);
616 for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++) {
617 WARN_ONCE(!list_empty(&kmmio_page_table[i]),
618 KERN_ERR "kmmio_page_table not empty at cleanup, any further tracing will leak memory.\n");
619 }
620 }