]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/x86/mm/mem_encrypt.c
ASoC: tlv320aic31xx: Reset registers during power up
[mirror_ubuntu-focal-kernel.git] / arch / x86 / mm / mem_encrypt.c
1 /*
2 * AMD Memory Encryption Support
3 *
4 * Copyright (C) 2016 Advanced Micro Devices, Inc.
5 *
6 * Author: Tom Lendacky <thomas.lendacky@amd.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #define DISABLE_BRANCH_PROFILING
14
15 #include <linux/linkage.h>
16 #include <linux/init.h>
17 #include <linux/mm.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/swiotlb.h>
20 #include <linux/mem_encrypt.h>
21
22 #include <asm/tlbflush.h>
23 #include <asm/fixmap.h>
24 #include <asm/setup.h>
25 #include <asm/bootparam.h>
26 #include <asm/set_memory.h>
27 #include <asm/cacheflush.h>
28 #include <asm/sections.h>
29 #include <asm/processor-flags.h>
30 #include <asm/msr.h>
31 #include <asm/cmdline.h>
32
33 #include "mm_internal.h"
34
35 static char sme_cmdline_arg[] __initdata = "mem_encrypt";
36 static char sme_cmdline_on[] __initdata = "on";
37 static char sme_cmdline_off[] __initdata = "off";
38
39 /*
40 * Since SME related variables are set early in the boot process they must
41 * reside in the .data section so as not to be zeroed out when the .bss
42 * section is later cleared.
43 */
44 u64 sme_me_mask __section(.data) = 0;
45 EXPORT_SYMBOL(sme_me_mask);
46 DEFINE_STATIC_KEY_FALSE(sev_enable_key);
47 EXPORT_SYMBOL_GPL(sev_enable_key);
48
49 static bool sev_enabled __section(.data);
50
51 /* Buffer used for early in-place encryption by BSP, no locking needed */
52 static char sme_early_buffer[PAGE_SIZE] __aligned(PAGE_SIZE);
53
54 /*
55 * This routine does not change the underlying encryption setting of the
56 * page(s) that map this memory. It assumes that eventually the memory is
57 * meant to be accessed as either encrypted or decrypted but the contents
58 * are currently not in the desired state.
59 *
60 * This routine follows the steps outlined in the AMD64 Architecture
61 * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place.
62 */
63 static void __init __sme_early_enc_dec(resource_size_t paddr,
64 unsigned long size, bool enc)
65 {
66 void *src, *dst;
67 size_t len;
68
69 if (!sme_me_mask)
70 return;
71
72 wbinvd();
73
74 /*
75 * There are limited number of early mapping slots, so map (at most)
76 * one page at time.
77 */
78 while (size) {
79 len = min_t(size_t, sizeof(sme_early_buffer), size);
80
81 /*
82 * Create mappings for the current and desired format of
83 * the memory. Use a write-protected mapping for the source.
84 */
85 src = enc ? early_memremap_decrypted_wp(paddr, len) :
86 early_memremap_encrypted_wp(paddr, len);
87
88 dst = enc ? early_memremap_encrypted(paddr, len) :
89 early_memremap_decrypted(paddr, len);
90
91 /*
92 * If a mapping can't be obtained to perform the operation,
93 * then eventual access of that area in the desired mode
94 * will cause a crash.
95 */
96 BUG_ON(!src || !dst);
97
98 /*
99 * Use a temporary buffer, of cache-line multiple size, to
100 * avoid data corruption as documented in the APM.
101 */
102 memcpy(sme_early_buffer, src, len);
103 memcpy(dst, sme_early_buffer, len);
104
105 early_memunmap(dst, len);
106 early_memunmap(src, len);
107
108 paddr += len;
109 size -= len;
110 }
111 }
112
113 void __init sme_early_encrypt(resource_size_t paddr, unsigned long size)
114 {
115 __sme_early_enc_dec(paddr, size, true);
116 }
117
118 void __init sme_early_decrypt(resource_size_t paddr, unsigned long size)
119 {
120 __sme_early_enc_dec(paddr, size, false);
121 }
122
123 static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size,
124 bool map)
125 {
126 unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET;
127 pmdval_t pmd_flags, pmd;
128
129 /* Use early_pmd_flags but remove the encryption mask */
130 pmd_flags = __sme_clr(early_pmd_flags);
131
132 do {
133 pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0;
134 __early_make_pgtable((unsigned long)vaddr, pmd);
135
136 vaddr += PMD_SIZE;
137 paddr += PMD_SIZE;
138 size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE;
139 } while (size);
140
141 __native_flush_tlb();
142 }
143
144 void __init sme_unmap_bootdata(char *real_mode_data)
145 {
146 struct boot_params *boot_data;
147 unsigned long cmdline_paddr;
148
149 if (!sme_active())
150 return;
151
152 /* Get the command line address before unmapping the real_mode_data */
153 boot_data = (struct boot_params *)real_mode_data;
154 cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
155
156 __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false);
157
158 if (!cmdline_paddr)
159 return;
160
161 __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false);
162 }
163
164 void __init sme_map_bootdata(char *real_mode_data)
165 {
166 struct boot_params *boot_data;
167 unsigned long cmdline_paddr;
168
169 if (!sme_active())
170 return;
171
172 __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true);
173
174 /* Get the command line address after mapping the real_mode_data */
175 boot_data = (struct boot_params *)real_mode_data;
176 cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
177
178 if (!cmdline_paddr)
179 return;
180
181 __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true);
182 }
183
184 void __init sme_early_init(void)
185 {
186 unsigned int i;
187
188 if (!sme_me_mask)
189 return;
190
191 early_pmd_flags = __sme_set(early_pmd_flags);
192
193 __supported_pte_mask = __sme_set(__supported_pte_mask);
194
195 /* Update the protection map with memory encryption mask */
196 for (i = 0; i < ARRAY_SIZE(protection_map); i++)
197 protection_map[i] = pgprot_encrypted(protection_map[i]);
198
199 if (sev_active())
200 swiotlb_force = SWIOTLB_FORCE;
201 }
202
203 static void *sev_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
204 gfp_t gfp, unsigned long attrs)
205 {
206 unsigned long dma_mask;
207 unsigned int order;
208 struct page *page;
209 void *vaddr = NULL;
210
211 dma_mask = dma_alloc_coherent_mask(dev, gfp);
212 order = get_order(size);
213
214 /*
215 * Memory will be memset to zero after marking decrypted, so don't
216 * bother clearing it before.
217 */
218 gfp &= ~__GFP_ZERO;
219
220 page = alloc_pages_node(dev_to_node(dev), gfp, order);
221 if (page) {
222 dma_addr_t addr;
223
224 /*
225 * Since we will be clearing the encryption bit, check the
226 * mask with it already cleared.
227 */
228 addr = __sme_clr(phys_to_dma(dev, page_to_phys(page)));
229 if ((addr + size) > dma_mask) {
230 __free_pages(page, get_order(size));
231 } else {
232 vaddr = page_address(page);
233 *dma_handle = addr;
234 }
235 }
236
237 if (!vaddr)
238 vaddr = swiotlb_alloc_coherent(dev, size, dma_handle, gfp);
239
240 if (!vaddr)
241 return NULL;
242
243 /* Clear the SME encryption bit for DMA use if not swiotlb area */
244 if (!is_swiotlb_buffer(dma_to_phys(dev, *dma_handle))) {
245 set_memory_decrypted((unsigned long)vaddr, 1 << order);
246 memset(vaddr, 0, PAGE_SIZE << order);
247 *dma_handle = __sme_clr(*dma_handle);
248 }
249
250 return vaddr;
251 }
252
253 static void sev_free(struct device *dev, size_t size, void *vaddr,
254 dma_addr_t dma_handle, unsigned long attrs)
255 {
256 /* Set the SME encryption bit for re-use if not swiotlb area */
257 if (!is_swiotlb_buffer(dma_to_phys(dev, dma_handle)))
258 set_memory_encrypted((unsigned long)vaddr,
259 1 << get_order(size));
260
261 swiotlb_free_coherent(dev, size, vaddr, dma_handle);
262 }
263
264 static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc)
265 {
266 pgprot_t old_prot, new_prot;
267 unsigned long pfn, pa, size;
268 pte_t new_pte;
269
270 switch (level) {
271 case PG_LEVEL_4K:
272 pfn = pte_pfn(*kpte);
273 old_prot = pte_pgprot(*kpte);
274 break;
275 case PG_LEVEL_2M:
276 pfn = pmd_pfn(*(pmd_t *)kpte);
277 old_prot = pmd_pgprot(*(pmd_t *)kpte);
278 break;
279 case PG_LEVEL_1G:
280 pfn = pud_pfn(*(pud_t *)kpte);
281 old_prot = pud_pgprot(*(pud_t *)kpte);
282 break;
283 default:
284 return;
285 }
286
287 new_prot = old_prot;
288 if (enc)
289 pgprot_val(new_prot) |= _PAGE_ENC;
290 else
291 pgprot_val(new_prot) &= ~_PAGE_ENC;
292
293 /* If prot is same then do nothing. */
294 if (pgprot_val(old_prot) == pgprot_val(new_prot))
295 return;
296
297 pa = pfn << page_level_shift(level);
298 size = page_level_size(level);
299
300 /*
301 * We are going to perform in-place en-/decryption and change the
302 * physical page attribute from C=1 to C=0 or vice versa. Flush the
303 * caches to ensure that data gets accessed with the correct C-bit.
304 */
305 clflush_cache_range(__va(pa), size);
306
307 /* Encrypt/decrypt the contents in-place */
308 if (enc)
309 sme_early_encrypt(pa, size);
310 else
311 sme_early_decrypt(pa, size);
312
313 /* Change the page encryption mask. */
314 new_pte = pfn_pte(pfn, new_prot);
315 set_pte_atomic(kpte, new_pte);
316 }
317
318 static int __init early_set_memory_enc_dec(unsigned long vaddr,
319 unsigned long size, bool enc)
320 {
321 unsigned long vaddr_end, vaddr_next;
322 unsigned long psize, pmask;
323 int split_page_size_mask;
324 int level, ret;
325 pte_t *kpte;
326
327 vaddr_next = vaddr;
328 vaddr_end = vaddr + size;
329
330 for (; vaddr < vaddr_end; vaddr = vaddr_next) {
331 kpte = lookup_address(vaddr, &level);
332 if (!kpte || pte_none(*kpte)) {
333 ret = 1;
334 goto out;
335 }
336
337 if (level == PG_LEVEL_4K) {
338 __set_clr_pte_enc(kpte, level, enc);
339 vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE;
340 continue;
341 }
342
343 psize = page_level_size(level);
344 pmask = page_level_mask(level);
345
346 /*
347 * Check whether we can change the large page in one go.
348 * We request a split when the address is not aligned and
349 * the number of pages to set/clear encryption bit is smaller
350 * than the number of pages in the large page.
351 */
352 if (vaddr == (vaddr & pmask) &&
353 ((vaddr_end - vaddr) >= psize)) {
354 __set_clr_pte_enc(kpte, level, enc);
355 vaddr_next = (vaddr & pmask) + psize;
356 continue;
357 }
358
359 /*
360 * The virtual address is part of a larger page, create the next
361 * level page table mapping (4K or 2M). If it is part of a 2M
362 * page then we request a split of the large page into 4K
363 * chunks. A 1GB large page is split into 2M pages, resp.
364 */
365 if (level == PG_LEVEL_2M)
366 split_page_size_mask = 0;
367 else
368 split_page_size_mask = 1 << PG_LEVEL_2M;
369
370 kernel_physical_mapping_init(__pa(vaddr & pmask),
371 __pa((vaddr_end & pmask) + psize),
372 split_page_size_mask);
373 }
374
375 ret = 0;
376
377 out:
378 __flush_tlb_all();
379 return ret;
380 }
381
382 int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size)
383 {
384 return early_set_memory_enc_dec(vaddr, size, false);
385 }
386
387 int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size)
388 {
389 return early_set_memory_enc_dec(vaddr, size, true);
390 }
391
392 /*
393 * SME and SEV are very similar but they are not the same, so there are
394 * times that the kernel will need to distinguish between SME and SEV. The
395 * sme_active() and sev_active() functions are used for this. When a
396 * distinction isn't needed, the mem_encrypt_active() function can be used.
397 *
398 * The trampoline code is a good example for this requirement. Before
399 * paging is activated, SME will access all memory as decrypted, but SEV
400 * will access all memory as encrypted. So, when APs are being brought
401 * up under SME the trampoline area cannot be encrypted, whereas under SEV
402 * the trampoline area must be encrypted.
403 */
404 bool sme_active(void)
405 {
406 return sme_me_mask && !sev_enabled;
407 }
408 EXPORT_SYMBOL_GPL(sme_active);
409
410 bool sev_active(void)
411 {
412 return sme_me_mask && sev_enabled;
413 }
414 EXPORT_SYMBOL_GPL(sev_active);
415
416 static const struct dma_map_ops sev_dma_ops = {
417 .alloc = sev_alloc,
418 .free = sev_free,
419 .map_page = swiotlb_map_page,
420 .unmap_page = swiotlb_unmap_page,
421 .map_sg = swiotlb_map_sg_attrs,
422 .unmap_sg = swiotlb_unmap_sg_attrs,
423 .sync_single_for_cpu = swiotlb_sync_single_for_cpu,
424 .sync_single_for_device = swiotlb_sync_single_for_device,
425 .sync_sg_for_cpu = swiotlb_sync_sg_for_cpu,
426 .sync_sg_for_device = swiotlb_sync_sg_for_device,
427 .mapping_error = swiotlb_dma_mapping_error,
428 };
429
430 /* Architecture __weak replacement functions */
431 void __init mem_encrypt_init(void)
432 {
433 if (!sme_me_mask)
434 return;
435
436 /* Call into SWIOTLB to update the SWIOTLB DMA buffers */
437 swiotlb_update_mem_attributes();
438
439 /*
440 * With SEV, DMA operations cannot use encryption. New DMA ops
441 * are required in order to mark the DMA areas as decrypted or
442 * to use bounce buffers.
443 */
444 if (sev_active())
445 dma_ops = &sev_dma_ops;
446
447 /*
448 * With SEV, we need to unroll the rep string I/O instructions.
449 */
450 if (sev_active())
451 static_branch_enable(&sev_enable_key);
452
453 pr_info("AMD %s active\n",
454 sev_active() ? "Secure Encrypted Virtualization (SEV)"
455 : "Secure Memory Encryption (SME)");
456 }
457
458 void swiotlb_set_mem_attributes(void *vaddr, unsigned long size)
459 {
460 WARN(PAGE_ALIGN(size) != size,
461 "size is not page-aligned (%#lx)\n", size);
462
463 /* Make the SWIOTLB buffer area decrypted */
464 set_memory_decrypted((unsigned long)vaddr, size >> PAGE_SHIFT);
465 }
466
467 static void __init sme_clear_pgd(pgd_t *pgd_base, unsigned long start,
468 unsigned long end)
469 {
470 unsigned long pgd_start, pgd_end, pgd_size;
471 pgd_t *pgd_p;
472
473 pgd_start = start & PGDIR_MASK;
474 pgd_end = end & PGDIR_MASK;
475
476 pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1);
477 pgd_size *= sizeof(pgd_t);
478
479 pgd_p = pgd_base + pgd_index(start);
480
481 memset(pgd_p, 0, pgd_size);
482 }
483
484 #define PGD_FLAGS _KERNPG_TABLE_NOENC
485 #define P4D_FLAGS _KERNPG_TABLE_NOENC
486 #define PUD_FLAGS _KERNPG_TABLE_NOENC
487 #define PMD_FLAGS (__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL)
488
489 static void __init *sme_populate_pgd(pgd_t *pgd_base, void *pgtable_area,
490 unsigned long vaddr, pmdval_t pmd_val)
491 {
492 pgd_t *pgd_p;
493 p4d_t *p4d_p;
494 pud_t *pud_p;
495 pmd_t *pmd_p;
496
497 pgd_p = pgd_base + pgd_index(vaddr);
498 if (native_pgd_val(*pgd_p)) {
499 if (IS_ENABLED(CONFIG_X86_5LEVEL))
500 p4d_p = (p4d_t *)(native_pgd_val(*pgd_p) & ~PTE_FLAGS_MASK);
501 else
502 pud_p = (pud_t *)(native_pgd_val(*pgd_p) & ~PTE_FLAGS_MASK);
503 } else {
504 pgd_t pgd;
505
506 if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
507 p4d_p = pgtable_area;
508 memset(p4d_p, 0, sizeof(*p4d_p) * PTRS_PER_P4D);
509 pgtable_area += sizeof(*p4d_p) * PTRS_PER_P4D;
510
511 pgd = native_make_pgd((pgdval_t)p4d_p + PGD_FLAGS);
512 } else {
513 pud_p = pgtable_area;
514 memset(pud_p, 0, sizeof(*pud_p) * PTRS_PER_PUD);
515 pgtable_area += sizeof(*pud_p) * PTRS_PER_PUD;
516
517 pgd = native_make_pgd((pgdval_t)pud_p + PGD_FLAGS);
518 }
519 native_set_pgd(pgd_p, pgd);
520 }
521
522 if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
523 p4d_p += p4d_index(vaddr);
524 if (native_p4d_val(*p4d_p)) {
525 pud_p = (pud_t *)(native_p4d_val(*p4d_p) & ~PTE_FLAGS_MASK);
526 } else {
527 p4d_t p4d;
528
529 pud_p = pgtable_area;
530 memset(pud_p, 0, sizeof(*pud_p) * PTRS_PER_PUD);
531 pgtable_area += sizeof(*pud_p) * PTRS_PER_PUD;
532
533 p4d = native_make_p4d((pudval_t)pud_p + P4D_FLAGS);
534 native_set_p4d(p4d_p, p4d);
535 }
536 }
537
538 pud_p += pud_index(vaddr);
539 if (native_pud_val(*pud_p)) {
540 if (native_pud_val(*pud_p) & _PAGE_PSE)
541 goto out;
542
543 pmd_p = (pmd_t *)(native_pud_val(*pud_p) & ~PTE_FLAGS_MASK);
544 } else {
545 pud_t pud;
546
547 pmd_p = pgtable_area;
548 memset(pmd_p, 0, sizeof(*pmd_p) * PTRS_PER_PMD);
549 pgtable_area += sizeof(*pmd_p) * PTRS_PER_PMD;
550
551 pud = native_make_pud((pmdval_t)pmd_p + PUD_FLAGS);
552 native_set_pud(pud_p, pud);
553 }
554
555 pmd_p += pmd_index(vaddr);
556 if (!native_pmd_val(*pmd_p) || !(native_pmd_val(*pmd_p) & _PAGE_PSE))
557 native_set_pmd(pmd_p, native_make_pmd(pmd_val));
558
559 out:
560 return pgtable_area;
561 }
562
563 static unsigned long __init sme_pgtable_calc(unsigned long len)
564 {
565 unsigned long p4d_size, pud_size, pmd_size;
566 unsigned long total;
567
568 /*
569 * Perform a relatively simplistic calculation of the pagetable
570 * entries that are needed. That mappings will be covered by 2MB
571 * PMD entries so we can conservatively calculate the required
572 * number of P4D, PUD and PMD structures needed to perform the
573 * mappings. Incrementing the count for each covers the case where
574 * the addresses cross entries.
575 */
576 if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
577 p4d_size = (ALIGN(len, PGDIR_SIZE) / PGDIR_SIZE) + 1;
578 p4d_size *= sizeof(p4d_t) * PTRS_PER_P4D;
579 pud_size = (ALIGN(len, P4D_SIZE) / P4D_SIZE) + 1;
580 pud_size *= sizeof(pud_t) * PTRS_PER_PUD;
581 } else {
582 p4d_size = 0;
583 pud_size = (ALIGN(len, PGDIR_SIZE) / PGDIR_SIZE) + 1;
584 pud_size *= sizeof(pud_t) * PTRS_PER_PUD;
585 }
586 pmd_size = (ALIGN(len, PUD_SIZE) / PUD_SIZE) + 1;
587 pmd_size *= sizeof(pmd_t) * PTRS_PER_PMD;
588
589 total = p4d_size + pud_size + pmd_size;
590
591 /*
592 * Now calculate the added pagetable structures needed to populate
593 * the new pagetables.
594 */
595 if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
596 p4d_size = ALIGN(total, PGDIR_SIZE) / PGDIR_SIZE;
597 p4d_size *= sizeof(p4d_t) * PTRS_PER_P4D;
598 pud_size = ALIGN(total, P4D_SIZE) / P4D_SIZE;
599 pud_size *= sizeof(pud_t) * PTRS_PER_PUD;
600 } else {
601 p4d_size = 0;
602 pud_size = ALIGN(total, PGDIR_SIZE) / PGDIR_SIZE;
603 pud_size *= sizeof(pud_t) * PTRS_PER_PUD;
604 }
605 pmd_size = ALIGN(total, PUD_SIZE) / PUD_SIZE;
606 pmd_size *= sizeof(pmd_t) * PTRS_PER_PMD;
607
608 total += p4d_size + pud_size + pmd_size;
609
610 return total;
611 }
612
613 void __init sme_encrypt_kernel(void)
614 {
615 unsigned long workarea_start, workarea_end, workarea_len;
616 unsigned long execute_start, execute_end, execute_len;
617 unsigned long kernel_start, kernel_end, kernel_len;
618 unsigned long pgtable_area_len;
619 unsigned long paddr, pmd_flags;
620 unsigned long decrypted_base;
621 void *pgtable_area;
622 pgd_t *pgd;
623
624 if (!sme_active())
625 return;
626
627 /*
628 * Prepare for encrypting the kernel by building new pagetables with
629 * the necessary attributes needed to encrypt the kernel in place.
630 *
631 * One range of virtual addresses will map the memory occupied
632 * by the kernel as encrypted.
633 *
634 * Another range of virtual addresses will map the memory occupied
635 * by the kernel as decrypted and write-protected.
636 *
637 * The use of write-protect attribute will prevent any of the
638 * memory from being cached.
639 */
640
641 /* Physical addresses gives us the identity mapped virtual addresses */
642 kernel_start = __pa_symbol(_text);
643 kernel_end = ALIGN(__pa_symbol(_end), PMD_PAGE_SIZE);
644 kernel_len = kernel_end - kernel_start;
645
646 /* Set the encryption workarea to be immediately after the kernel */
647 workarea_start = kernel_end;
648
649 /*
650 * Calculate required number of workarea bytes needed:
651 * executable encryption area size:
652 * stack page (PAGE_SIZE)
653 * encryption routine page (PAGE_SIZE)
654 * intermediate copy buffer (PMD_PAGE_SIZE)
655 * pagetable structures for the encryption of the kernel
656 * pagetable structures for workarea (in case not currently mapped)
657 */
658 execute_start = workarea_start;
659 execute_end = execute_start + (PAGE_SIZE * 2) + PMD_PAGE_SIZE;
660 execute_len = execute_end - execute_start;
661
662 /*
663 * One PGD for both encrypted and decrypted mappings and a set of
664 * PUDs and PMDs for each of the encrypted and decrypted mappings.
665 */
666 pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD;
667 pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2;
668
669 /* PUDs and PMDs needed in the current pagetables for the workarea */
670 pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len);
671
672 /*
673 * The total workarea includes the executable encryption area and
674 * the pagetable area.
675 */
676 workarea_len = execute_len + pgtable_area_len;
677 workarea_end = workarea_start + workarea_len;
678
679 /*
680 * Set the address to the start of where newly created pagetable
681 * structures (PGDs, PUDs and PMDs) will be allocated. New pagetable
682 * structures are created when the workarea is added to the current
683 * pagetables and when the new encrypted and decrypted kernel
684 * mappings are populated.
685 */
686 pgtable_area = (void *)execute_end;
687
688 /*
689 * Make sure the current pagetable structure has entries for
690 * addressing the workarea.
691 */
692 pgd = (pgd_t *)native_read_cr3_pa();
693 paddr = workarea_start;
694 while (paddr < workarea_end) {
695 pgtable_area = sme_populate_pgd(pgd, pgtable_area,
696 paddr,
697 paddr + PMD_FLAGS);
698
699 paddr += PMD_PAGE_SIZE;
700 }
701
702 /* Flush the TLB - no globals so cr3 is enough */
703 native_write_cr3(__native_read_cr3());
704
705 /*
706 * A new pagetable structure is being built to allow for the kernel
707 * to be encrypted. It starts with an empty PGD that will then be
708 * populated with new PUDs and PMDs as the encrypted and decrypted
709 * kernel mappings are created.
710 */
711 pgd = pgtable_area;
712 memset(pgd, 0, sizeof(*pgd) * PTRS_PER_PGD);
713 pgtable_area += sizeof(*pgd) * PTRS_PER_PGD;
714
715 /* Add encrypted kernel (identity) mappings */
716 pmd_flags = PMD_FLAGS | _PAGE_ENC;
717 paddr = kernel_start;
718 while (paddr < kernel_end) {
719 pgtable_area = sme_populate_pgd(pgd, pgtable_area,
720 paddr,
721 paddr + pmd_flags);
722
723 paddr += PMD_PAGE_SIZE;
724 }
725
726 /*
727 * A different PGD index/entry must be used to get different
728 * pagetable entries for the decrypted mapping. Choose the next
729 * PGD index and convert it to a virtual address to be used as
730 * the base of the mapping.
731 */
732 decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1);
733 decrypted_base <<= PGDIR_SHIFT;
734
735 /* Add decrypted, write-protected kernel (non-identity) mappings */
736 pmd_flags = (PMD_FLAGS & ~_PAGE_CACHE_MASK) | (_PAGE_PAT | _PAGE_PWT);
737 paddr = kernel_start;
738 while (paddr < kernel_end) {
739 pgtable_area = sme_populate_pgd(pgd, pgtable_area,
740 paddr + decrypted_base,
741 paddr + pmd_flags);
742
743 paddr += PMD_PAGE_SIZE;
744 }
745
746 /* Add decrypted workarea mappings to both kernel mappings */
747 paddr = workarea_start;
748 while (paddr < workarea_end) {
749 pgtable_area = sme_populate_pgd(pgd, pgtable_area,
750 paddr,
751 paddr + PMD_FLAGS);
752
753 pgtable_area = sme_populate_pgd(pgd, pgtable_area,
754 paddr + decrypted_base,
755 paddr + PMD_FLAGS);
756
757 paddr += PMD_PAGE_SIZE;
758 }
759
760 /* Perform the encryption */
761 sme_encrypt_execute(kernel_start, kernel_start + decrypted_base,
762 kernel_len, workarea_start, (unsigned long)pgd);
763
764 /*
765 * At this point we are running encrypted. Remove the mappings for
766 * the decrypted areas - all that is needed for this is to remove
767 * the PGD entry/entries.
768 */
769 sme_clear_pgd(pgd, kernel_start + decrypted_base,
770 kernel_end + decrypted_base);
771
772 sme_clear_pgd(pgd, workarea_start + decrypted_base,
773 workarea_end + decrypted_base);
774
775 /* Flush the TLB - no globals so cr3 is enough */
776 native_write_cr3(__native_read_cr3());
777 }
778
779 void __init __nostackprotector sme_enable(struct boot_params *bp)
780 {
781 const char *cmdline_ptr, *cmdline_arg, *cmdline_on, *cmdline_off;
782 unsigned int eax, ebx, ecx, edx;
783 unsigned long feature_mask;
784 bool active_by_default;
785 unsigned long me_mask;
786 char buffer[16];
787 u64 msr;
788
789 /* Check for the SME/SEV support leaf */
790 eax = 0x80000000;
791 ecx = 0;
792 native_cpuid(&eax, &ebx, &ecx, &edx);
793 if (eax < 0x8000001f)
794 return;
795
796 #define AMD_SME_BIT BIT(0)
797 #define AMD_SEV_BIT BIT(1)
798 /*
799 * Set the feature mask (SME or SEV) based on whether we are
800 * running under a hypervisor.
801 */
802 eax = 1;
803 ecx = 0;
804 native_cpuid(&eax, &ebx, &ecx, &edx);
805 feature_mask = (ecx & BIT(31)) ? AMD_SEV_BIT : AMD_SME_BIT;
806
807 /*
808 * Check for the SME/SEV feature:
809 * CPUID Fn8000_001F[EAX]
810 * - Bit 0 - Secure Memory Encryption support
811 * - Bit 1 - Secure Encrypted Virtualization support
812 * CPUID Fn8000_001F[EBX]
813 * - Bits 5:0 - Pagetable bit position used to indicate encryption
814 */
815 eax = 0x8000001f;
816 ecx = 0;
817 native_cpuid(&eax, &ebx, &ecx, &edx);
818 if (!(eax & feature_mask))
819 return;
820
821 me_mask = 1UL << (ebx & 0x3f);
822
823 /* Check if memory encryption is enabled */
824 if (feature_mask == AMD_SME_BIT) {
825 /* For SME, check the SYSCFG MSR */
826 msr = __rdmsr(MSR_K8_SYSCFG);
827 if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
828 return;
829 } else {
830 /* For SEV, check the SEV MSR */
831 msr = __rdmsr(MSR_AMD64_SEV);
832 if (!(msr & MSR_AMD64_SEV_ENABLED))
833 return;
834
835 /* SEV state cannot be controlled by a command line option */
836 sme_me_mask = me_mask;
837 sev_enabled = true;
838 return;
839 }
840
841 /*
842 * Fixups have not been applied to phys_base yet and we're running
843 * identity mapped, so we must obtain the address to the SME command
844 * line argument data using rip-relative addressing.
845 */
846 asm ("lea sme_cmdline_arg(%%rip), %0"
847 : "=r" (cmdline_arg)
848 : "p" (sme_cmdline_arg));
849 asm ("lea sme_cmdline_on(%%rip), %0"
850 : "=r" (cmdline_on)
851 : "p" (sme_cmdline_on));
852 asm ("lea sme_cmdline_off(%%rip), %0"
853 : "=r" (cmdline_off)
854 : "p" (sme_cmdline_off));
855
856 if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT))
857 active_by_default = true;
858 else
859 active_by_default = false;
860
861 cmdline_ptr = (const char *)((u64)bp->hdr.cmd_line_ptr |
862 ((u64)bp->ext_cmd_line_ptr << 32));
863
864 cmdline_find_option(cmdline_ptr, cmdline_arg, buffer, sizeof(buffer));
865
866 if (!strncmp(buffer, cmdline_on, sizeof(buffer)))
867 sme_me_mask = me_mask;
868 else if (!strncmp(buffer, cmdline_off, sizeof(buffer)))
869 sme_me_mask = 0;
870 else
871 sme_me_mask = active_by_default ? me_mask : 0;
872 }