]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/mm/mpx.c
c439ec47821601c5b594bc1eec5abc529c5fd012
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / mm / mpx.c
1 /*
2 * mpx.c - Memory Protection eXtensions
3 *
4 * Copyright (c) 2014, Intel Corporation.
5 * Qiaowei Ren <qiaowei.ren@intel.com>
6 * Dave Hansen <dave.hansen@intel.com>
7 */
8 #include <linux/kernel.h>
9 #include <linux/slab.h>
10 #include <linux/syscalls.h>
11 #include <linux/sched/sysctl.h>
12
13 #include <asm/i387.h>
14 #include <asm/insn.h>
15 #include <asm/mman.h>
16 #include <asm/mmu_context.h>
17 #include <asm/mpx.h>
18 #include <asm/processor.h>
19 #include <asm/fpu-internal.h>
20
21 static const char *mpx_mapping_name(struct vm_area_struct *vma)
22 {
23 return "[mpx]";
24 }
25
26 static struct vm_operations_struct mpx_vma_ops = {
27 .name = mpx_mapping_name,
28 };
29
30 static int is_mpx_vma(struct vm_area_struct *vma)
31 {
32 return (vma->vm_ops == &mpx_vma_ops);
33 }
34
35 /*
36 * This is really a simplified "vm_mmap". it only handles MPX
37 * bounds tables (the bounds directory is user-allocated).
38 *
39 * Later on, we use the vma->vm_ops to uniquely identify these
40 * VMAs.
41 */
42 static unsigned long mpx_mmap(unsigned long len)
43 {
44 unsigned long ret;
45 unsigned long addr, pgoff;
46 struct mm_struct *mm = current->mm;
47 vm_flags_t vm_flags;
48 struct vm_area_struct *vma;
49
50 /* Only bounds table and bounds directory can be allocated here */
51 if (len != MPX_BD_SIZE_BYTES && len != MPX_BT_SIZE_BYTES)
52 return -EINVAL;
53
54 down_write(&mm->mmap_sem);
55
56 /* Too many mappings? */
57 if (mm->map_count > sysctl_max_map_count) {
58 ret = -ENOMEM;
59 goto out;
60 }
61
62 /* Obtain the address to map to. we verify (or select) it and ensure
63 * that it represents a valid section of the address space.
64 */
65 addr = get_unmapped_area(NULL, 0, len, 0, MAP_ANONYMOUS | MAP_PRIVATE);
66 if (addr & ~PAGE_MASK) {
67 ret = addr;
68 goto out;
69 }
70
71 vm_flags = VM_READ | VM_WRITE | VM_MPX |
72 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
73
74 /* Set pgoff according to addr for anon_vma */
75 pgoff = addr >> PAGE_SHIFT;
76
77 ret = mmap_region(NULL, addr, len, vm_flags, pgoff);
78 if (IS_ERR_VALUE(ret))
79 goto out;
80
81 vma = find_vma(mm, ret);
82 if (!vma) {
83 ret = -ENOMEM;
84 goto out;
85 }
86 vma->vm_ops = &mpx_vma_ops;
87
88 if (vm_flags & VM_LOCKED) {
89 up_write(&mm->mmap_sem);
90 mm_populate(ret, len);
91 return ret;
92 }
93
94 out:
95 up_write(&mm->mmap_sem);
96 return ret;
97 }
98
99 enum reg_type {
100 REG_TYPE_RM = 0,
101 REG_TYPE_INDEX,
102 REG_TYPE_BASE,
103 };
104
105 static int get_reg_offset(struct insn *insn, struct pt_regs *regs,
106 enum reg_type type)
107 {
108 int regno = 0;
109
110 static const int regoff[] = {
111 offsetof(struct pt_regs, ax),
112 offsetof(struct pt_regs, cx),
113 offsetof(struct pt_regs, dx),
114 offsetof(struct pt_regs, bx),
115 offsetof(struct pt_regs, sp),
116 offsetof(struct pt_regs, bp),
117 offsetof(struct pt_regs, si),
118 offsetof(struct pt_regs, di),
119 #ifdef CONFIG_X86_64
120 offsetof(struct pt_regs, r8),
121 offsetof(struct pt_regs, r9),
122 offsetof(struct pt_regs, r10),
123 offsetof(struct pt_regs, r11),
124 offsetof(struct pt_regs, r12),
125 offsetof(struct pt_regs, r13),
126 offsetof(struct pt_regs, r14),
127 offsetof(struct pt_regs, r15),
128 #endif
129 };
130 int nr_registers = ARRAY_SIZE(regoff);
131 /*
132 * Don't possibly decode a 32-bit instructions as
133 * reading a 64-bit-only register.
134 */
135 if (IS_ENABLED(CONFIG_X86_64) && !insn->x86_64)
136 nr_registers -= 8;
137
138 switch (type) {
139 case REG_TYPE_RM:
140 regno = X86_MODRM_RM(insn->modrm.value);
141 if (X86_REX_B(insn->rex_prefix.value) == 1)
142 regno += 8;
143 break;
144
145 case REG_TYPE_INDEX:
146 regno = X86_SIB_INDEX(insn->sib.value);
147 if (X86_REX_X(insn->rex_prefix.value) == 1)
148 regno += 8;
149 break;
150
151 case REG_TYPE_BASE:
152 regno = X86_SIB_BASE(insn->sib.value);
153 if (X86_REX_B(insn->rex_prefix.value) == 1)
154 regno += 8;
155 break;
156
157 default:
158 pr_err("invalid register type");
159 BUG();
160 break;
161 }
162
163 if (regno > nr_registers) {
164 WARN_ONCE(1, "decoded an instruction with an invalid register");
165 return -EINVAL;
166 }
167 return regoff[regno];
168 }
169
170 /*
171 * return the address being referenced be instruction
172 * for rm=3 returning the content of the rm reg
173 * for rm!=3 calculates the address using SIB and Disp
174 */
175 static void __user *mpx_get_addr_ref(struct insn *insn, struct pt_regs *regs)
176 {
177 unsigned long addr, base, indx;
178 int addr_offset, base_offset, indx_offset;
179 insn_byte_t sib;
180
181 insn_get_modrm(insn);
182 insn_get_sib(insn);
183 sib = insn->sib.value;
184
185 if (X86_MODRM_MOD(insn->modrm.value) == 3) {
186 addr_offset = get_reg_offset(insn, regs, REG_TYPE_RM);
187 if (addr_offset < 0)
188 goto out_err;
189 addr = regs_get_register(regs, addr_offset);
190 } else {
191 if (insn->sib.nbytes) {
192 base_offset = get_reg_offset(insn, regs, REG_TYPE_BASE);
193 if (base_offset < 0)
194 goto out_err;
195
196 indx_offset = get_reg_offset(insn, regs, REG_TYPE_INDEX);
197 if (indx_offset < 0)
198 goto out_err;
199
200 base = regs_get_register(regs, base_offset);
201 indx = regs_get_register(regs, indx_offset);
202 addr = base + indx * (1 << X86_SIB_SCALE(sib));
203 } else {
204 addr_offset = get_reg_offset(insn, regs, REG_TYPE_RM);
205 if (addr_offset < 0)
206 goto out_err;
207 addr = regs_get_register(regs, addr_offset);
208 }
209 addr += insn->displacement.value;
210 }
211 return (void __user *)addr;
212 out_err:
213 return (void __user *)-1;
214 }
215
216 static int mpx_insn_decode(struct insn *insn,
217 struct pt_regs *regs)
218 {
219 unsigned char buf[MAX_INSN_SIZE];
220 int x86_64 = !test_thread_flag(TIF_IA32);
221 int not_copied;
222 int nr_copied;
223
224 not_copied = copy_from_user(buf, (void __user *)regs->ip, sizeof(buf));
225 nr_copied = sizeof(buf) - not_copied;
226 /*
227 * The decoder _should_ fail nicely if we pass it a short buffer.
228 * But, let's not depend on that implementation detail. If we
229 * did not get anything, just error out now.
230 */
231 if (!nr_copied)
232 return -EFAULT;
233 insn_init(insn, buf, nr_copied, x86_64);
234 insn_get_length(insn);
235 /*
236 * copy_from_user() tries to get as many bytes as we could see in
237 * the largest possible instruction. If the instruction we are
238 * after is shorter than that _and_ we attempt to copy from
239 * something unreadable, we might get a short read. This is OK
240 * as long as the read did not stop in the middle of the
241 * instruction. Check to see if we got a partial instruction.
242 */
243 if (nr_copied < insn->length)
244 return -EFAULT;
245
246 insn_get_opcode(insn);
247 /*
248 * We only _really_ need to decode bndcl/bndcn/bndcu
249 * Error out on anything else.
250 */
251 if (insn->opcode.bytes[0] != 0x0f)
252 goto bad_opcode;
253 if ((insn->opcode.bytes[1] != 0x1a) &&
254 (insn->opcode.bytes[1] != 0x1b))
255 goto bad_opcode;
256
257 return 0;
258 bad_opcode:
259 return -EINVAL;
260 }
261
262 /*
263 * If a bounds overflow occurs then a #BR is generated. This
264 * function decodes MPX instructions to get violation address
265 * and set this address into extended struct siginfo.
266 *
267 * Note that this is not a super precise way of doing this.
268 * Userspace could have, by the time we get here, written
269 * anything it wants in to the instructions. We can not
270 * trust anything about it. They might not be valid
271 * instructions or might encode invalid registers, etc...
272 *
273 * The caller is expected to kfree() the returned siginfo_t.
274 */
275 siginfo_t *mpx_generate_siginfo(struct pt_regs *regs,
276 struct xsave_struct *xsave_buf)
277 {
278 struct bndreg *bndregs, *bndreg;
279 siginfo_t *info = NULL;
280 struct insn insn;
281 uint8_t bndregno;
282 int err;
283
284 err = mpx_insn_decode(&insn, regs);
285 if (err)
286 goto err_out;
287
288 /*
289 * We know at this point that we are only dealing with
290 * MPX instructions.
291 */
292 insn_get_modrm(&insn);
293 bndregno = X86_MODRM_REG(insn.modrm.value);
294 if (bndregno > 3) {
295 err = -EINVAL;
296 goto err_out;
297 }
298 /* get the bndregs _area_ of the xsave structure */
299 bndregs = get_xsave_addr(xsave_buf, XSTATE_BNDREGS);
300 if (!bndregs) {
301 err = -EINVAL;
302 goto err_out;
303 }
304 /* now go select the individual register in the set of 4 */
305 bndreg = &bndregs[bndregno];
306
307 info = kzalloc(sizeof(*info), GFP_KERNEL);
308 if (!info) {
309 err = -ENOMEM;
310 goto err_out;
311 }
312 /*
313 * The registers are always 64-bit, but the upper 32
314 * bits are ignored in 32-bit mode. Also, note that the
315 * upper bounds are architecturally represented in 1's
316 * complement form.
317 *
318 * The 'unsigned long' cast is because the compiler
319 * complains when casting from integers to different-size
320 * pointers.
321 */
322 info->si_lower = (void __user *)(unsigned long)bndreg->lower_bound;
323 info->si_upper = (void __user *)(unsigned long)~bndreg->upper_bound;
324 info->si_addr_lsb = 0;
325 info->si_signo = SIGSEGV;
326 info->si_errno = 0;
327 info->si_code = SEGV_BNDERR;
328 info->si_addr = mpx_get_addr_ref(&insn, regs);
329 /*
330 * We were not able to extract an address from the instruction,
331 * probably because there was something invalid in it.
332 */
333 if (info->si_addr == (void *)-1) {
334 err = -EINVAL;
335 goto err_out;
336 }
337 return info;
338 err_out:
339 /* info might be NULL, but kfree() handles that */
340 kfree(info);
341 return ERR_PTR(err);
342 }
343
344 static __user void *task_get_bounds_dir(struct task_struct *tsk)
345 {
346 struct bndcsr *bndcsr;
347
348 if (!cpu_feature_enabled(X86_FEATURE_MPX))
349 return MPX_INVALID_BOUNDS_DIR;
350
351 /*
352 * 32-bit binaries on 64-bit kernels are currently
353 * unsupported.
354 */
355 if (IS_ENABLED(CONFIG_X86_64) && test_thread_flag(TIF_IA32))
356 return MPX_INVALID_BOUNDS_DIR;
357 /*
358 * The bounds directory pointer is stored in a register
359 * only accessible if we first do an xsave.
360 */
361 fpu_save_init(&tsk->thread.fpu);
362 bndcsr = get_xsave_addr(&tsk->thread.fpu.state->xsave, XSTATE_BNDCSR);
363 if (!bndcsr)
364 return MPX_INVALID_BOUNDS_DIR;
365
366 /*
367 * Make sure the register looks valid by checking the
368 * enable bit.
369 */
370 if (!(bndcsr->bndcfgu & MPX_BNDCFG_ENABLE_FLAG))
371 return MPX_INVALID_BOUNDS_DIR;
372
373 /*
374 * Lastly, mask off the low bits used for configuration
375 * flags, and return the address of the bounds table.
376 */
377 return (void __user *)(unsigned long)
378 (bndcsr->bndcfgu & MPX_BNDCFG_ADDR_MASK);
379 }
380
381 int mpx_enable_management(struct task_struct *tsk)
382 {
383 void __user *bd_base = MPX_INVALID_BOUNDS_DIR;
384 struct mm_struct *mm = tsk->mm;
385 int ret = 0;
386
387 /*
388 * runtime in the userspace will be responsible for allocation of
389 * the bounds directory. Then, it will save the base of the bounds
390 * directory into XSAVE/XRSTOR Save Area and enable MPX through
391 * XRSTOR instruction.
392 *
393 * fpu_xsave() is expected to be very expensive. Storing the bounds
394 * directory here means that we do not have to do xsave in the unmap
395 * path; we can just use mm->bd_addr instead.
396 */
397 bd_base = task_get_bounds_dir(tsk);
398 down_write(&mm->mmap_sem);
399 mm->bd_addr = bd_base;
400 if (mm->bd_addr == MPX_INVALID_BOUNDS_DIR)
401 ret = -ENXIO;
402
403 up_write(&mm->mmap_sem);
404 return ret;
405 }
406
407 int mpx_disable_management(struct task_struct *tsk)
408 {
409 struct mm_struct *mm = current->mm;
410
411 if (!cpu_feature_enabled(X86_FEATURE_MPX))
412 return -ENXIO;
413
414 down_write(&mm->mmap_sem);
415 mm->bd_addr = MPX_INVALID_BOUNDS_DIR;
416 up_write(&mm->mmap_sem);
417 return 0;
418 }
419
420 /*
421 * With 32-bit mode, MPX_BT_SIZE_BYTES is 4MB, and the size of each
422 * bounds table is 16KB. With 64-bit mode, MPX_BT_SIZE_BYTES is 2GB,
423 * and the size of each bounds table is 4MB.
424 */
425 static int allocate_bt(long __user *bd_entry)
426 {
427 unsigned long expected_old_val = 0;
428 unsigned long actual_old_val = 0;
429 unsigned long bt_addr;
430 int ret = 0;
431
432 /*
433 * Carve the virtual space out of userspace for the new
434 * bounds table:
435 */
436 bt_addr = mpx_mmap(MPX_BT_SIZE_BYTES);
437 if (IS_ERR((void *)bt_addr))
438 return PTR_ERR((void *)bt_addr);
439 /*
440 * Set the valid flag (kinda like _PAGE_PRESENT in a pte)
441 */
442 bt_addr = bt_addr | MPX_BD_ENTRY_VALID_FLAG;
443
444 /*
445 * Go poke the address of the new bounds table in to the
446 * bounds directory entry out in userspace memory. Note:
447 * we may race with another CPU instantiating the same table.
448 * In that case the cmpxchg will see an unexpected
449 * 'actual_old_val'.
450 *
451 * This can fault, but that's OK because we do not hold
452 * mmap_sem at this point, unlike some of the other part
453 * of the MPX code that have to pagefault_disable().
454 */
455 ret = user_atomic_cmpxchg_inatomic(&actual_old_val, bd_entry,
456 expected_old_val, bt_addr);
457 if (ret)
458 goto out_unmap;
459
460 /*
461 * The user_atomic_cmpxchg_inatomic() will only return nonzero
462 * for faults, *not* if the cmpxchg itself fails. Now we must
463 * verify that the cmpxchg itself completed successfully.
464 */
465 /*
466 * We expected an empty 'expected_old_val', but instead found
467 * an apparently valid entry. Assume we raced with another
468 * thread to instantiate this table and desclare succecss.
469 */
470 if (actual_old_val & MPX_BD_ENTRY_VALID_FLAG) {
471 ret = 0;
472 goto out_unmap;
473 }
474 /*
475 * We found a non-empty bd_entry but it did not have the
476 * VALID_FLAG set. Return an error which will result in
477 * a SEGV since this probably means that somebody scribbled
478 * some invalid data in to a bounds table.
479 */
480 if (expected_old_val != actual_old_val) {
481 ret = -EINVAL;
482 goto out_unmap;
483 }
484 return 0;
485 out_unmap:
486 vm_munmap(bt_addr & MPX_BT_ADDR_MASK, MPX_BT_SIZE_BYTES);
487 return ret;
488 }
489
490 /*
491 * When a BNDSTX instruction attempts to save bounds to a bounds
492 * table, it will first attempt to look up the table in the
493 * first-level bounds directory. If it does not find a table in
494 * the directory, a #BR is generated and we get here in order to
495 * allocate a new table.
496 *
497 * With 32-bit mode, the size of BD is 4MB, and the size of each
498 * bound table is 16KB. With 64-bit mode, the size of BD is 2GB,
499 * and the size of each bound table is 4MB.
500 */
501 static int do_mpx_bt_fault(struct xsave_struct *xsave_buf)
502 {
503 unsigned long bd_entry, bd_base;
504 struct bndcsr *bndcsr;
505
506 bndcsr = get_xsave_addr(xsave_buf, XSTATE_BNDCSR);
507 if (!bndcsr)
508 return -EINVAL;
509 /*
510 * Mask off the preserve and enable bits
511 */
512 bd_base = bndcsr->bndcfgu & MPX_BNDCFG_ADDR_MASK;
513 /*
514 * The hardware provides the address of the missing or invalid
515 * entry via BNDSTATUS, so we don't have to go look it up.
516 */
517 bd_entry = bndcsr->bndstatus & MPX_BNDSTA_ADDR_MASK;
518 /*
519 * Make sure the directory entry is within where we think
520 * the directory is.
521 */
522 if ((bd_entry < bd_base) ||
523 (bd_entry >= bd_base + MPX_BD_SIZE_BYTES))
524 return -EINVAL;
525
526 return allocate_bt((long __user *)bd_entry);
527 }
528
529 int mpx_handle_bd_fault(struct xsave_struct *xsave_buf)
530 {
531 /*
532 * Userspace never asked us to manage the bounds tables,
533 * so refuse to help.
534 */
535 if (!kernel_managing_mpx_tables(current->mm))
536 return -EINVAL;
537
538 if (do_mpx_bt_fault(xsave_buf)) {
539 force_sig(SIGSEGV, current);
540 /*
541 * The force_sig() is essentially "handling" this
542 * exception, so we do not pass up the error
543 * from do_mpx_bt_fault().
544 */
545 }
546 return 0;
547 }
548
549 /*
550 * A thin wrapper around get_user_pages(). Returns 0 if the
551 * fault was resolved or -errno if not.
552 */
553 static int mpx_resolve_fault(long __user *addr, int write)
554 {
555 long gup_ret;
556 int nr_pages = 1;
557 int force = 0;
558
559 gup_ret = get_user_pages(current, current->mm, (unsigned long)addr,
560 nr_pages, write, force, NULL, NULL);
561 /*
562 * get_user_pages() returns number of pages gotten.
563 * 0 means we failed to fault in and get anything,
564 * probably because 'addr' is bad.
565 */
566 if (!gup_ret)
567 return -EFAULT;
568 /* Other error, return it */
569 if (gup_ret < 0)
570 return gup_ret;
571 /* must have gup'd a page and gup_ret>0, success */
572 return 0;
573 }
574
575 /*
576 * Get the base of bounds tables pointed by specific bounds
577 * directory entry.
578 */
579 static int get_bt_addr(struct mm_struct *mm,
580 long __user *bd_entry, unsigned long *bt_addr)
581 {
582 int ret;
583 int valid_bit;
584
585 if (!access_ok(VERIFY_READ, (bd_entry), sizeof(*bd_entry)))
586 return -EFAULT;
587
588 while (1) {
589 int need_write = 0;
590
591 pagefault_disable();
592 ret = get_user(*bt_addr, bd_entry);
593 pagefault_enable();
594 if (!ret)
595 break;
596 if (ret == -EFAULT)
597 ret = mpx_resolve_fault(bd_entry, need_write);
598 /*
599 * If we could not resolve the fault, consider it
600 * userspace's fault and error out.
601 */
602 if (ret)
603 return ret;
604 }
605
606 valid_bit = *bt_addr & MPX_BD_ENTRY_VALID_FLAG;
607 *bt_addr &= MPX_BT_ADDR_MASK;
608
609 /*
610 * When the kernel is managing bounds tables, a bounds directory
611 * entry will either have a valid address (plus the valid bit)
612 * *OR* be completely empty. If we see a !valid entry *and* some
613 * data in the address field, we know something is wrong. This
614 * -EINVAL return will cause a SIGSEGV.
615 */
616 if (!valid_bit && *bt_addr)
617 return -EINVAL;
618 /*
619 * Do we have an completely zeroed bt entry? That is OK. It
620 * just means there was no bounds table for this memory. Make
621 * sure to distinguish this from -EINVAL, which will cause
622 * a SEGV.
623 */
624 if (!valid_bit)
625 return -ENOENT;
626
627 return 0;
628 }
629
630 /*
631 * Free the backing physical pages of bounds table 'bt_addr'.
632 * Assume start...end is within that bounds table.
633 */
634 static int zap_bt_entries(struct mm_struct *mm,
635 unsigned long bt_addr,
636 unsigned long start, unsigned long end)
637 {
638 struct vm_area_struct *vma;
639 unsigned long addr, len;
640
641 /*
642 * Find the first overlapping vma. If vma->vm_start > start, there
643 * will be a hole in the bounds table. This -EINVAL return will
644 * cause a SIGSEGV.
645 */
646 vma = find_vma(mm, start);
647 if (!vma || vma->vm_start > start)
648 return -EINVAL;
649
650 /*
651 * A NUMA policy on a VM_MPX VMA could cause this bouds table to
652 * be split. So we need to look across the entire 'start -> end'
653 * range of this bounds table, find all of the VM_MPX VMAs, and
654 * zap only those.
655 */
656 addr = start;
657 while (vma && vma->vm_start < end) {
658 /*
659 * We followed a bounds directory entry down
660 * here. If we find a non-MPX VMA, that's bad,
661 * so stop immediately and return an error. This
662 * probably results in a SIGSEGV.
663 */
664 if (!is_mpx_vma(vma))
665 return -EINVAL;
666
667 len = min(vma->vm_end, end) - addr;
668 zap_page_range(vma, addr, len, NULL);
669
670 vma = vma->vm_next;
671 addr = vma->vm_start;
672 }
673
674 return 0;
675 }
676
677 static int unmap_single_bt(struct mm_struct *mm,
678 long __user *bd_entry, unsigned long bt_addr)
679 {
680 unsigned long expected_old_val = bt_addr | MPX_BD_ENTRY_VALID_FLAG;
681 unsigned long actual_old_val = 0;
682 int ret;
683
684 while (1) {
685 int need_write = 1;
686
687 pagefault_disable();
688 ret = user_atomic_cmpxchg_inatomic(&actual_old_val, bd_entry,
689 expected_old_val, 0);
690 pagefault_enable();
691 if (!ret)
692 break;
693 if (ret == -EFAULT)
694 ret = mpx_resolve_fault(bd_entry, need_write);
695 /*
696 * If we could not resolve the fault, consider it
697 * userspace's fault and error out.
698 */
699 if (ret)
700 return ret;
701 }
702 /*
703 * The cmpxchg was performed, check the results.
704 */
705 if (actual_old_val != expected_old_val) {
706 /*
707 * Someone else raced with us to unmap the table.
708 * There was no bounds table pointed to by the
709 * directory, so declare success. Somebody freed
710 * it.
711 */
712 if (!actual_old_val)
713 return 0;
714 /*
715 * Something messed with the bounds directory
716 * entry. We hold mmap_sem for read or write
717 * here, so it could not be a _new_ bounds table
718 * that someone just allocated. Something is
719 * wrong, so pass up the error and SIGSEGV.
720 */
721 return -EINVAL;
722 }
723
724 /*
725 * Note, we are likely being called under do_munmap() already. To
726 * avoid recursion, do_munmap() will check whether it comes
727 * from one bounds table through VM_MPX flag.
728 */
729 return do_munmap(mm, bt_addr, MPX_BT_SIZE_BYTES);
730 }
731
732 /*
733 * If the bounds table pointed by bounds directory 'bd_entry' is
734 * not shared, unmap this whole bounds table. Otherwise, only free
735 * those backing physical pages of bounds table entries covered
736 * in this virtual address region start...end.
737 */
738 static int unmap_shared_bt(struct mm_struct *mm,
739 long __user *bd_entry, unsigned long start,
740 unsigned long end, bool prev_shared, bool next_shared)
741 {
742 unsigned long bt_addr;
743 int ret;
744
745 ret = get_bt_addr(mm, bd_entry, &bt_addr);
746 /*
747 * We could see an "error" ret for not-present bounds
748 * tables (not really an error), or actual errors, but
749 * stop unmapping either way.
750 */
751 if (ret)
752 return ret;
753
754 if (prev_shared && next_shared)
755 ret = zap_bt_entries(mm, bt_addr,
756 bt_addr+MPX_GET_BT_ENTRY_OFFSET(start),
757 bt_addr+MPX_GET_BT_ENTRY_OFFSET(end));
758 else if (prev_shared)
759 ret = zap_bt_entries(mm, bt_addr,
760 bt_addr+MPX_GET_BT_ENTRY_OFFSET(start),
761 bt_addr+MPX_BT_SIZE_BYTES);
762 else if (next_shared)
763 ret = zap_bt_entries(mm, bt_addr, bt_addr,
764 bt_addr+MPX_GET_BT_ENTRY_OFFSET(end));
765 else
766 ret = unmap_single_bt(mm, bd_entry, bt_addr);
767
768 return ret;
769 }
770
771 /*
772 * A virtual address region being munmap()ed might share bounds table
773 * with adjacent VMAs. We only need to free the backing physical
774 * memory of these shared bounds tables entries covered in this virtual
775 * address region.
776 */
777 static int unmap_edge_bts(struct mm_struct *mm,
778 unsigned long start, unsigned long end)
779 {
780 int ret;
781 long __user *bde_start, *bde_end;
782 struct vm_area_struct *prev, *next;
783 bool prev_shared = false, next_shared = false;
784
785 bde_start = mm->bd_addr + MPX_GET_BD_ENTRY_OFFSET(start);
786 bde_end = mm->bd_addr + MPX_GET_BD_ENTRY_OFFSET(end-1);
787
788 /*
789 * Check whether bde_start and bde_end are shared with adjacent
790 * VMAs.
791 *
792 * We already unliked the VMAs from the mm's rbtree so 'start'
793 * is guaranteed to be in a hole. This gets us the first VMA
794 * before the hole in to 'prev' and the next VMA after the hole
795 * in to 'next'.
796 */
797 next = find_vma_prev(mm, start, &prev);
798 if (prev && (mm->bd_addr + MPX_GET_BD_ENTRY_OFFSET(prev->vm_end-1))
799 == bde_start)
800 prev_shared = true;
801 if (next && (mm->bd_addr + MPX_GET_BD_ENTRY_OFFSET(next->vm_start))
802 == bde_end)
803 next_shared = true;
804
805 /*
806 * This virtual address region being munmap()ed is only
807 * covered by one bounds table.
808 *
809 * In this case, if this table is also shared with adjacent
810 * VMAs, only part of the backing physical memory of the bounds
811 * table need be freeed. Otherwise the whole bounds table need
812 * be unmapped.
813 */
814 if (bde_start == bde_end) {
815 return unmap_shared_bt(mm, bde_start, start, end,
816 prev_shared, next_shared);
817 }
818
819 /*
820 * If more than one bounds tables are covered in this virtual
821 * address region being munmap()ed, we need to separately check
822 * whether bde_start and bde_end are shared with adjacent VMAs.
823 */
824 ret = unmap_shared_bt(mm, bde_start, start, end, prev_shared, false);
825 if (ret)
826 return ret;
827 ret = unmap_shared_bt(mm, bde_end, start, end, false, next_shared);
828 if (ret)
829 return ret;
830
831 return 0;
832 }
833
834 static int mpx_unmap_tables(struct mm_struct *mm,
835 unsigned long start, unsigned long end)
836 {
837 int ret;
838 long __user *bd_entry, *bde_start, *bde_end;
839 unsigned long bt_addr;
840
841 /*
842 * "Edge" bounds tables are those which are being used by the region
843 * (start -> end), but that may be shared with adjacent areas. If they
844 * turn out to be completely unshared, they will be freed. If they are
845 * shared, we will free the backing store (like an MADV_DONTNEED) for
846 * areas used by this region.
847 */
848 ret = unmap_edge_bts(mm, start, end);
849 switch (ret) {
850 /* non-present tables are OK */
851 case 0:
852 case -ENOENT:
853 /* Success, or no tables to unmap */
854 break;
855 case -EINVAL:
856 case -EFAULT:
857 default:
858 return ret;
859 }
860
861 /*
862 * Only unmap the bounds table that are
863 * 1. fully covered
864 * 2. not at the edges of the mapping, even if full aligned
865 */
866 bde_start = mm->bd_addr + MPX_GET_BD_ENTRY_OFFSET(start);
867 bde_end = mm->bd_addr + MPX_GET_BD_ENTRY_OFFSET(end-1);
868 for (bd_entry = bde_start + 1; bd_entry < bde_end; bd_entry++) {
869 ret = get_bt_addr(mm, bd_entry, &bt_addr);
870 switch (ret) {
871 case 0:
872 break;
873 case -ENOENT:
874 /* No table here, try the next one */
875 continue;
876 case -EINVAL:
877 case -EFAULT:
878 default:
879 /*
880 * Note: we are being strict here.
881 * Any time we run in to an issue
882 * unmapping tables, we stop and
883 * SIGSEGV.
884 */
885 return ret;
886 }
887
888 ret = unmap_single_bt(mm, bd_entry, bt_addr);
889 if (ret)
890 return ret;
891 }
892
893 return 0;
894 }
895
896 /*
897 * Free unused bounds tables covered in a virtual address region being
898 * munmap()ed. Assume end > start.
899 *
900 * This function will be called by do_munmap(), and the VMAs covering
901 * the virtual address region start...end have already been split if
902 * necessary, and the 'vma' is the first vma in this range (start -> end).
903 */
904 void mpx_notify_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
905 unsigned long start, unsigned long end)
906 {
907 int ret;
908
909 /*
910 * Refuse to do anything unless userspace has asked
911 * the kernel to help manage the bounds tables,
912 */
913 if (!kernel_managing_mpx_tables(current->mm))
914 return;
915 /*
916 * This will look across the entire 'start -> end' range,
917 * and find all of the non-VM_MPX VMAs.
918 *
919 * To avoid recursion, if a VM_MPX vma is found in the range
920 * (start->end), we will not continue follow-up work. This
921 * recursion represents having bounds tables for bounds tables,
922 * which should not occur normally. Being strict about it here
923 * helps ensure that we do not have an exploitable stack overflow.
924 */
925 do {
926 if (vma->vm_flags & VM_MPX)
927 return;
928 vma = vma->vm_next;
929 } while (vma && vma->vm_start < end);
930
931 ret = mpx_unmap_tables(mm, start, end);
932 if (ret)
933 force_sig(SIGSEGV, current);
934 }