]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/x86/mm/numa_64.c
95ea1551eebca344bee38ebc160ba8f3057c1734
[mirror_ubuntu-zesty-kernel.git] / arch / x86 / mm / numa_64.c
1 /*
2 * Generic VM initialization for x86-64 NUMA setups.
3 * Copyright 2002,2003 Andi Kleen, SuSE Labs.
4 */
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/string.h>
8 #include <linux/init.h>
9 #include <linux/bootmem.h>
10 #include <linux/memblock.h>
11 #include <linux/mmzone.h>
12 #include <linux/ctype.h>
13 #include <linux/module.h>
14 #include <linux/nodemask.h>
15 #include <linux/sched.h>
16
17 #include <asm/e820.h>
18 #include <asm/proto.h>
19 #include <asm/dma.h>
20 #include <asm/numa.h>
21 #include <asm/acpi.h>
22 #include <asm/amd_nb.h>
23
24 struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
25 EXPORT_SYMBOL(node_data);
26
27 struct memnode memnode;
28
29 s16 apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = {
30 [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
31 };
32
33 static unsigned long __initdata nodemap_addr;
34 static unsigned long __initdata nodemap_size;
35
36 /*
37 * Map cpu index to node index
38 */
39 DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE);
40 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map);
41
42 /*
43 * Given a shift value, try to populate memnodemap[]
44 * Returns :
45 * 1 if OK
46 * 0 if memnodmap[] too small (of shift too small)
47 * -1 if node overlap or lost ram (shift too big)
48 */
49 static int __init populate_memnodemap(const struct bootnode *nodes,
50 int numnodes, int shift, int *nodeids)
51 {
52 unsigned long addr, end;
53 int i, res = -1;
54
55 memset(memnodemap, 0xff, sizeof(s16)*memnodemapsize);
56 for (i = 0; i < numnodes; i++) {
57 addr = nodes[i].start;
58 end = nodes[i].end;
59 if (addr >= end)
60 continue;
61 if ((end >> shift) >= memnodemapsize)
62 return 0;
63 do {
64 if (memnodemap[addr >> shift] != NUMA_NO_NODE)
65 return -1;
66
67 if (!nodeids)
68 memnodemap[addr >> shift] = i;
69 else
70 memnodemap[addr >> shift] = nodeids[i];
71
72 addr += (1UL << shift);
73 } while (addr < end);
74 res = 1;
75 }
76 return res;
77 }
78
79 static int __init allocate_cachealigned_memnodemap(void)
80 {
81 unsigned long addr;
82
83 memnodemap = memnode.embedded_map;
84 if (memnodemapsize <= ARRAY_SIZE(memnode.embedded_map))
85 return 0;
86
87 addr = 0x8000;
88 nodemap_size = roundup(sizeof(s16) * memnodemapsize, L1_CACHE_BYTES);
89 nodemap_addr = memblock_find_in_range(addr, max_pfn<<PAGE_SHIFT,
90 nodemap_size, L1_CACHE_BYTES);
91 if (nodemap_addr == MEMBLOCK_ERROR) {
92 printk(KERN_ERR
93 "NUMA: Unable to allocate Memory to Node hash map\n");
94 nodemap_addr = nodemap_size = 0;
95 return -1;
96 }
97 memnodemap = phys_to_virt(nodemap_addr);
98 memblock_x86_reserve_range(nodemap_addr, nodemap_addr + nodemap_size, "MEMNODEMAP");
99
100 printk(KERN_DEBUG "NUMA: Allocated memnodemap from %lx - %lx\n",
101 nodemap_addr, nodemap_addr + nodemap_size);
102 return 0;
103 }
104
105 /*
106 * The LSB of all start and end addresses in the node map is the value of the
107 * maximum possible shift.
108 */
109 static int __init extract_lsb_from_nodes(const struct bootnode *nodes,
110 int numnodes)
111 {
112 int i, nodes_used = 0;
113 unsigned long start, end;
114 unsigned long bitfield = 0, memtop = 0;
115
116 for (i = 0; i < numnodes; i++) {
117 start = nodes[i].start;
118 end = nodes[i].end;
119 if (start >= end)
120 continue;
121 bitfield |= start;
122 nodes_used++;
123 if (end > memtop)
124 memtop = end;
125 }
126 if (nodes_used <= 1)
127 i = 63;
128 else
129 i = find_first_bit(&bitfield, sizeof(unsigned long)*8);
130 memnodemapsize = (memtop >> i)+1;
131 return i;
132 }
133
134 int __init compute_hash_shift(struct bootnode *nodes, int numnodes,
135 int *nodeids)
136 {
137 int shift;
138
139 shift = extract_lsb_from_nodes(nodes, numnodes);
140 if (allocate_cachealigned_memnodemap())
141 return -1;
142 printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n",
143 shift);
144
145 if (populate_memnodemap(nodes, numnodes, shift, nodeids) != 1) {
146 printk(KERN_INFO "Your memory is not aligned you need to "
147 "rebuild your kernel with a bigger NODEMAPSIZE "
148 "shift=%d\n", shift);
149 return -1;
150 }
151 return shift;
152 }
153
154 int __meminit __early_pfn_to_nid(unsigned long pfn)
155 {
156 return phys_to_nid(pfn << PAGE_SHIFT);
157 }
158
159 static void * __init early_node_mem(int nodeid, unsigned long start,
160 unsigned long end, unsigned long size,
161 unsigned long align)
162 {
163 unsigned long mem;
164
165 /*
166 * put it on high as possible
167 * something will go with NODE_DATA
168 */
169 if (start < (MAX_DMA_PFN<<PAGE_SHIFT))
170 start = MAX_DMA_PFN<<PAGE_SHIFT;
171 if (start < (MAX_DMA32_PFN<<PAGE_SHIFT) &&
172 end > (MAX_DMA32_PFN<<PAGE_SHIFT))
173 start = MAX_DMA32_PFN<<PAGE_SHIFT;
174 mem = memblock_x86_find_in_range_node(nodeid, start, end, size, align);
175 if (mem != MEMBLOCK_ERROR)
176 return __va(mem);
177
178 /* extend the search scope */
179 end = max_pfn_mapped << PAGE_SHIFT;
180 start = MAX_DMA_PFN << PAGE_SHIFT;
181 mem = memblock_find_in_range(start, end, size, align);
182 if (mem != MEMBLOCK_ERROR)
183 return __va(mem);
184
185 printk(KERN_ERR "Cannot find %lu bytes in node %d\n",
186 size, nodeid);
187
188 return NULL;
189 }
190
191 /* Initialize bootmem allocator for a node */
192 void __init
193 setup_node_bootmem(int nodeid, unsigned long start, unsigned long end)
194 {
195 unsigned long start_pfn, last_pfn, nodedata_phys;
196 const int pgdat_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
197 int nid;
198
199 if (!end)
200 return;
201
202 /*
203 * Don't confuse VM with a node that doesn't have the
204 * minimum amount of memory:
205 */
206 if (end && (end - start) < NODE_MIN_SIZE)
207 return;
208
209 start = roundup(start, ZONE_ALIGN);
210
211 printk(KERN_INFO "Initmem setup node %d %016lx-%016lx\n", nodeid,
212 start, end);
213
214 start_pfn = start >> PAGE_SHIFT;
215 last_pfn = end >> PAGE_SHIFT;
216
217 node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size,
218 SMP_CACHE_BYTES);
219 if (node_data[nodeid] == NULL)
220 return;
221 nodedata_phys = __pa(node_data[nodeid]);
222 memblock_x86_reserve_range(nodedata_phys, nodedata_phys + pgdat_size, "NODE_DATA");
223 printk(KERN_INFO " NODE_DATA [%016lx - %016lx]\n", nodedata_phys,
224 nodedata_phys + pgdat_size - 1);
225 nid = phys_to_nid(nodedata_phys);
226 if (nid != nodeid)
227 printk(KERN_INFO " NODE_DATA(%d) on node %d\n", nodeid, nid);
228
229 memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t));
230 NODE_DATA(nodeid)->node_id = nodeid;
231 NODE_DATA(nodeid)->node_start_pfn = start_pfn;
232 NODE_DATA(nodeid)->node_spanned_pages = last_pfn - start_pfn;
233
234 node_set_online(nodeid);
235 }
236
237 /*
238 * There are unfortunately some poorly designed mainboards around that
239 * only connect memory to a single CPU. This breaks the 1:1 cpu->node
240 * mapping. To avoid this fill in the mapping for all possible CPUs,
241 * as the number of CPUs is not known yet. We round robin the existing
242 * nodes.
243 */
244 void __init numa_init_array(void)
245 {
246 int rr, i;
247
248 rr = first_node(node_online_map);
249 for (i = 0; i < nr_cpu_ids; i++) {
250 if (early_cpu_to_node(i) != NUMA_NO_NODE)
251 continue;
252 numa_set_node(i, rr);
253 rr = next_node(rr, node_online_map);
254 if (rr == MAX_NUMNODES)
255 rr = first_node(node_online_map);
256 }
257 }
258
259 #ifdef CONFIG_NUMA_EMU
260 /* Numa emulation */
261 static struct bootnode nodes[MAX_NUMNODES] __initdata;
262 static struct bootnode physnodes[MAX_NUMNODES] __cpuinitdata;
263 static char *cmdline __initdata;
264
265 void __init numa_emu_cmdline(char *str)
266 {
267 cmdline = str;
268 }
269
270 static int __init setup_physnodes(unsigned long start, unsigned long end,
271 int acpi, int amd)
272 {
273 int ret = 0;
274 int i;
275
276 memset(physnodes, 0, sizeof(physnodes));
277 #ifdef CONFIG_ACPI_NUMA
278 if (acpi)
279 acpi_get_nodes(physnodes, start, end);
280 #endif
281 #ifdef CONFIG_AMD_NUMA
282 if (amd)
283 amd_get_nodes(physnodes);
284 #endif
285 /*
286 * Basic sanity checking on the physical node map: there may be errors
287 * if the SRAT or AMD code incorrectly reported the topology or the mem=
288 * kernel parameter is used.
289 */
290 for (i = 0; i < MAX_NUMNODES; i++) {
291 if (physnodes[i].start == physnodes[i].end)
292 continue;
293 if (physnodes[i].start > end) {
294 physnodes[i].end = physnodes[i].start;
295 continue;
296 }
297 if (physnodes[i].end < start) {
298 physnodes[i].start = physnodes[i].end;
299 continue;
300 }
301 if (physnodes[i].start < start)
302 physnodes[i].start = start;
303 if (physnodes[i].end > end)
304 physnodes[i].end = end;
305 ret++;
306 }
307
308 /*
309 * If no physical topology was detected, a single node is faked to cover
310 * the entire address space.
311 */
312 if (!ret) {
313 physnodes[ret].start = start;
314 physnodes[ret].end = end;
315 ret = 1;
316 }
317 return ret;
318 }
319
320 static void __init fake_physnodes(int acpi, int amd, int nr_nodes)
321 {
322 int i;
323
324 BUG_ON(acpi && amd);
325 #ifdef CONFIG_ACPI_NUMA
326 if (acpi)
327 acpi_fake_nodes(nodes, nr_nodes);
328 #endif
329 #ifdef CONFIG_AMD_NUMA
330 if (amd)
331 amd_fake_nodes(nodes, nr_nodes);
332 #endif
333 if (!acpi && !amd)
334 for (i = 0; i < nr_cpu_ids; i++)
335 numa_set_node(i, 0);
336 }
337
338 /*
339 * Setups up nid to range from addr to addr + size. If the end
340 * boundary is greater than max_addr, then max_addr is used instead.
341 * The return value is 0 if there is additional memory left for
342 * allocation past addr and -1 otherwise. addr is adjusted to be at
343 * the end of the node.
344 */
345 static int __init setup_node_range(int nid, u64 *addr, u64 size, u64 max_addr)
346 {
347 int ret = 0;
348 nodes[nid].start = *addr;
349 *addr += size;
350 if (*addr >= max_addr) {
351 *addr = max_addr;
352 ret = -1;
353 }
354 nodes[nid].end = *addr;
355 node_set(nid, node_possible_map);
356 printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n", nid,
357 nodes[nid].start, nodes[nid].end,
358 (nodes[nid].end - nodes[nid].start) >> 20);
359 return ret;
360 }
361
362 /*
363 * Sets up nr_nodes fake nodes interleaved over physical nodes ranging from addr
364 * to max_addr. The return value is the number of nodes allocated.
365 */
366 static int __init split_nodes_interleave(u64 addr, u64 max_addr, int nr_nodes)
367 {
368 nodemask_t physnode_mask = NODE_MASK_NONE;
369 u64 size;
370 int big;
371 int ret = 0;
372 int i;
373
374 if (nr_nodes <= 0)
375 return -1;
376 if (nr_nodes > MAX_NUMNODES) {
377 pr_info("numa=fake=%d too large, reducing to %d\n",
378 nr_nodes, MAX_NUMNODES);
379 nr_nodes = MAX_NUMNODES;
380 }
381
382 size = (max_addr - addr - memblock_x86_hole_size(addr, max_addr)) / nr_nodes;
383 /*
384 * Calculate the number of big nodes that can be allocated as a result
385 * of consolidating the remainder.
386 */
387 big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * nr_nodes) /
388 FAKE_NODE_MIN_SIZE;
389
390 size &= FAKE_NODE_MIN_HASH_MASK;
391 if (!size) {
392 pr_err("Not enough memory for each node. "
393 "NUMA emulation disabled.\n");
394 return -1;
395 }
396
397 for (i = 0; i < MAX_NUMNODES; i++)
398 if (physnodes[i].start != physnodes[i].end)
399 node_set(i, physnode_mask);
400
401 /*
402 * Continue to fill physical nodes with fake nodes until there is no
403 * memory left on any of them.
404 */
405 while (nodes_weight(physnode_mask)) {
406 for_each_node_mask(i, physnode_mask) {
407 u64 end = physnodes[i].start + size;
408 u64 dma32_end = PFN_PHYS(MAX_DMA32_PFN);
409
410 if (ret < big)
411 end += FAKE_NODE_MIN_SIZE;
412
413 /*
414 * Continue to add memory to this fake node if its
415 * non-reserved memory is less than the per-node size.
416 */
417 while (end - physnodes[i].start -
418 memblock_x86_hole_size(physnodes[i].start, end) < size) {
419 end += FAKE_NODE_MIN_SIZE;
420 if (end > physnodes[i].end) {
421 end = physnodes[i].end;
422 break;
423 }
424 }
425
426 /*
427 * If there won't be at least FAKE_NODE_MIN_SIZE of
428 * non-reserved memory in ZONE_DMA32 for the next node,
429 * this one must extend to the boundary.
430 */
431 if (end < dma32_end && dma32_end - end -
432 memblock_x86_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
433 end = dma32_end;
434
435 /*
436 * If there won't be enough non-reserved memory for the
437 * next node, this one must extend to the end of the
438 * physical node.
439 */
440 if (physnodes[i].end - end -
441 memblock_x86_hole_size(end, physnodes[i].end) < size)
442 end = physnodes[i].end;
443
444 /*
445 * Avoid allocating more nodes than requested, which can
446 * happen as a result of rounding down each node's size
447 * to FAKE_NODE_MIN_SIZE.
448 */
449 if (nodes_weight(physnode_mask) + ret >= nr_nodes)
450 end = physnodes[i].end;
451
452 if (setup_node_range(ret++, &physnodes[i].start,
453 end - physnodes[i].start,
454 physnodes[i].end) < 0)
455 node_clear(i, physnode_mask);
456 }
457 }
458 return ret;
459 }
460
461 /*
462 * Returns the end address of a node so that there is at least `size' amount of
463 * non-reserved memory or `max_addr' is reached.
464 */
465 static u64 __init find_end_of_node(u64 start, u64 max_addr, u64 size)
466 {
467 u64 end = start + size;
468
469 while (end - start - memblock_x86_hole_size(start, end) < size) {
470 end += FAKE_NODE_MIN_SIZE;
471 if (end > max_addr) {
472 end = max_addr;
473 break;
474 }
475 }
476 return end;
477 }
478
479 /*
480 * Sets up fake nodes of `size' interleaved over physical nodes ranging from
481 * `addr' to `max_addr'. The return value is the number of nodes allocated.
482 */
483 static int __init split_nodes_size_interleave(u64 addr, u64 max_addr, u64 size)
484 {
485 nodemask_t physnode_mask = NODE_MASK_NONE;
486 u64 min_size;
487 int ret = 0;
488 int i;
489
490 if (!size)
491 return -1;
492 /*
493 * The limit on emulated nodes is MAX_NUMNODES, so the size per node is
494 * increased accordingly if the requested size is too small. This
495 * creates a uniform distribution of node sizes across the entire
496 * machine (but not necessarily over physical nodes).
497 */
498 min_size = (max_addr - addr - memblock_x86_hole_size(addr, max_addr)) /
499 MAX_NUMNODES;
500 min_size = max(min_size, FAKE_NODE_MIN_SIZE);
501 if ((min_size & FAKE_NODE_MIN_HASH_MASK) < min_size)
502 min_size = (min_size + FAKE_NODE_MIN_SIZE) &
503 FAKE_NODE_MIN_HASH_MASK;
504 if (size < min_size) {
505 pr_err("Fake node size %LuMB too small, increasing to %LuMB\n",
506 size >> 20, min_size >> 20);
507 size = min_size;
508 }
509 size &= FAKE_NODE_MIN_HASH_MASK;
510
511 for (i = 0; i < MAX_NUMNODES; i++)
512 if (physnodes[i].start != physnodes[i].end)
513 node_set(i, physnode_mask);
514 /*
515 * Fill physical nodes with fake nodes of size until there is no memory
516 * left on any of them.
517 */
518 while (nodes_weight(physnode_mask)) {
519 for_each_node_mask(i, physnode_mask) {
520 u64 dma32_end = MAX_DMA32_PFN << PAGE_SHIFT;
521 u64 end;
522
523 end = find_end_of_node(physnodes[i].start,
524 physnodes[i].end, size);
525 /*
526 * If there won't be at least FAKE_NODE_MIN_SIZE of
527 * non-reserved memory in ZONE_DMA32 for the next node,
528 * this one must extend to the boundary.
529 */
530 if (end < dma32_end && dma32_end - end -
531 memblock_x86_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
532 end = dma32_end;
533
534 /*
535 * If there won't be enough non-reserved memory for the
536 * next node, this one must extend to the end of the
537 * physical node.
538 */
539 if (physnodes[i].end - end -
540 memblock_x86_hole_size(end, physnodes[i].end) < size)
541 end = physnodes[i].end;
542
543 /*
544 * Setup the fake node that will be allocated as bootmem
545 * later. If setup_node_range() returns non-zero, there
546 * is no more memory available on this physical node.
547 */
548 if (setup_node_range(ret++, &physnodes[i].start,
549 end - physnodes[i].start,
550 physnodes[i].end) < 0)
551 node_clear(i, physnode_mask);
552 }
553 }
554 return ret;
555 }
556
557 /*
558 * Sets up the system RAM area from start_pfn to last_pfn according to the
559 * numa=fake command-line option.
560 */
561 static int __init numa_emulation(unsigned long start_pfn,
562 unsigned long last_pfn, int acpi, int amd)
563 {
564 u64 addr = start_pfn << PAGE_SHIFT;
565 u64 max_addr = last_pfn << PAGE_SHIFT;
566 int num_nodes;
567 int i;
568
569 /*
570 * If the numa=fake command-line contains a 'M' or 'G', it represents
571 * the fixed node size. Otherwise, if it is just a single number N,
572 * split the system RAM into N fake nodes.
573 */
574 if (strchr(cmdline, 'M') || strchr(cmdline, 'G')) {
575 u64 size;
576
577 size = memparse(cmdline, &cmdline);
578 num_nodes = split_nodes_size_interleave(addr, max_addr, size);
579 } else {
580 unsigned long n;
581
582 n = simple_strtoul(cmdline, NULL, 0);
583 num_nodes = split_nodes_interleave(addr, max_addr, n);
584 }
585
586 if (num_nodes < 0)
587 return num_nodes;
588 memnode_shift = compute_hash_shift(nodes, num_nodes, NULL);
589 if (memnode_shift < 0) {
590 memnode_shift = 0;
591 printk(KERN_ERR "No NUMA hash function found. NUMA emulation "
592 "disabled.\n");
593 return -1;
594 }
595
596 /*
597 * We need to vacate all active ranges that may have been registered for
598 * the e820 memory map.
599 */
600 remove_all_active_ranges();
601 for_each_node_mask(i, node_possible_map) {
602 memblock_x86_register_active_regions(i, nodes[i].start >> PAGE_SHIFT,
603 nodes[i].end >> PAGE_SHIFT);
604 setup_node_bootmem(i, nodes[i].start, nodes[i].end);
605 }
606 setup_physnodes(addr, max_addr, acpi, amd);
607 fake_physnodes(acpi, amd, num_nodes);
608 numa_init_array();
609 return 0;
610 }
611 #endif /* CONFIG_NUMA_EMU */
612
613 void __init initmem_init(unsigned long start_pfn, unsigned long last_pfn,
614 int acpi, int amd)
615 {
616 int i;
617
618 nodes_clear(node_possible_map);
619 nodes_clear(node_online_map);
620
621 #ifdef CONFIG_NUMA_EMU
622 setup_physnodes(start_pfn << PAGE_SHIFT, last_pfn << PAGE_SHIFT,
623 acpi, amd);
624 if (cmdline && !numa_emulation(start_pfn, last_pfn, acpi, amd))
625 return;
626 setup_physnodes(start_pfn << PAGE_SHIFT, last_pfn << PAGE_SHIFT,
627 acpi, amd);
628 nodes_clear(node_possible_map);
629 nodes_clear(node_online_map);
630 #endif
631
632 #ifdef CONFIG_ACPI_NUMA
633 if (!numa_off && acpi && !acpi_scan_nodes(start_pfn << PAGE_SHIFT,
634 last_pfn << PAGE_SHIFT))
635 return;
636 nodes_clear(node_possible_map);
637 nodes_clear(node_online_map);
638 #endif
639
640 #ifdef CONFIG_AMD_NUMA
641 if (!numa_off && amd && !amd_scan_nodes())
642 return;
643 nodes_clear(node_possible_map);
644 nodes_clear(node_online_map);
645 #endif
646 printk(KERN_INFO "%s\n",
647 numa_off ? "NUMA turned off" : "No NUMA configuration found");
648
649 printk(KERN_INFO "Faking a node at %016lx-%016lx\n",
650 start_pfn << PAGE_SHIFT,
651 last_pfn << PAGE_SHIFT);
652 /* setup dummy node covering all memory */
653 memnode_shift = 63;
654 memnodemap = memnode.embedded_map;
655 memnodemap[0] = 0;
656 node_set_online(0);
657 node_set(0, node_possible_map);
658 for (i = 0; i < nr_cpu_ids; i++)
659 numa_set_node(i, 0);
660 memblock_x86_register_active_regions(0, start_pfn, last_pfn);
661 setup_node_bootmem(0, start_pfn << PAGE_SHIFT, last_pfn << PAGE_SHIFT);
662 }
663
664 unsigned long __init numa_free_all_bootmem(void)
665 {
666 unsigned long pages = 0;
667 int i;
668
669 for_each_online_node(i)
670 pages += free_all_bootmem_node(NODE_DATA(i));
671
672 pages += free_all_memory_core_early(MAX_NUMNODES);
673
674 return pages;
675 }
676
677 #ifdef CONFIG_NUMA
678
679 static __init int find_near_online_node(int node)
680 {
681 int n, val;
682 int min_val = INT_MAX;
683 int best_node = -1;
684
685 for_each_online_node(n) {
686 val = node_distance(node, n);
687
688 if (val < min_val) {
689 min_val = val;
690 best_node = n;
691 }
692 }
693
694 return best_node;
695 }
696
697 /*
698 * Setup early cpu_to_node.
699 *
700 * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
701 * and apicid_to_node[] tables have valid entries for a CPU.
702 * This means we skip cpu_to_node[] initialisation for NUMA
703 * emulation and faking node case (when running a kernel compiled
704 * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
705 * is already initialized in a round robin manner at numa_init_array,
706 * prior to this call, and this initialization is good enough
707 * for the fake NUMA cases.
708 *
709 * Called before the per_cpu areas are setup.
710 */
711 void __init init_cpu_to_node(void)
712 {
713 int cpu;
714 u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);
715
716 BUG_ON(cpu_to_apicid == NULL);
717
718 for_each_possible_cpu(cpu) {
719 int node;
720 u16 apicid = cpu_to_apicid[cpu];
721
722 if (apicid == BAD_APICID)
723 continue;
724 node = apicid_to_node[apicid];
725 if (node == NUMA_NO_NODE)
726 continue;
727 if (!node_online(node))
728 node = find_near_online_node(node);
729 numa_set_node(cpu, node);
730 }
731 }
732 #endif
733
734
735 void __cpuinit numa_set_node(int cpu, int node)
736 {
737 int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map);
738
739 /* early setting, no percpu area yet */
740 if (cpu_to_node_map) {
741 cpu_to_node_map[cpu] = node;
742 return;
743 }
744
745 #ifdef CONFIG_DEBUG_PER_CPU_MAPS
746 if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
747 printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu);
748 dump_stack();
749 return;
750 }
751 #endif
752 per_cpu(x86_cpu_to_node_map, cpu) = node;
753
754 if (node != NUMA_NO_NODE)
755 set_cpu_numa_node(cpu, node);
756 }
757
758 void __cpuinit numa_clear_node(int cpu)
759 {
760 numa_set_node(cpu, NUMA_NO_NODE);
761 }
762
763 #ifndef CONFIG_DEBUG_PER_CPU_MAPS
764
765 #ifndef CONFIG_NUMA_EMU
766 void __cpuinit numa_add_cpu(int cpu)
767 {
768 cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
769 }
770
771 void __cpuinit numa_remove_cpu(int cpu)
772 {
773 cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
774 }
775 #else
776 void __cpuinit numa_add_cpu(int cpu)
777 {
778 unsigned long addr;
779 u16 apicid;
780 int physnid;
781 int nid = NUMA_NO_NODE;
782
783 apicid = early_per_cpu(x86_cpu_to_apicid, cpu);
784 if (apicid != BAD_APICID)
785 nid = apicid_to_node[apicid];
786 if (nid == NUMA_NO_NODE)
787 nid = early_cpu_to_node(cpu);
788 BUG_ON(nid == NUMA_NO_NODE || !node_online(nid));
789
790 /*
791 * Use the starting address of the emulated node to find which physical
792 * node it is allocated on.
793 */
794 addr = node_start_pfn(nid) << PAGE_SHIFT;
795 for (physnid = 0; physnid < MAX_NUMNODES; physnid++)
796 if (addr >= physnodes[physnid].start &&
797 addr < physnodes[physnid].end)
798 break;
799
800 /*
801 * Map the cpu to each emulated node that is allocated on the physical
802 * node of the cpu's apic id.
803 */
804 for_each_online_node(nid) {
805 addr = node_start_pfn(nid) << PAGE_SHIFT;
806 if (addr >= physnodes[physnid].start &&
807 addr < physnodes[physnid].end)
808 cpumask_set_cpu(cpu, node_to_cpumask_map[nid]);
809 }
810 }
811
812 void __cpuinit numa_remove_cpu(int cpu)
813 {
814 int i;
815
816 for_each_online_node(i)
817 cpumask_clear_cpu(cpu, node_to_cpumask_map[i]);
818 }
819 #endif /* !CONFIG_NUMA_EMU */
820
821 #else /* CONFIG_DEBUG_PER_CPU_MAPS */
822 static struct cpumask __cpuinit *debug_cpumask_set_cpu(int cpu, int enable)
823 {
824 int node = early_cpu_to_node(cpu);
825 struct cpumask *mask;
826 char buf[64];
827
828 mask = node_to_cpumask_map[node];
829 if (!mask) {
830 pr_err("node_to_cpumask_map[%i] NULL\n", node);
831 dump_stack();
832 return NULL;
833 }
834
835 cpulist_scnprintf(buf, sizeof(buf), mask);
836 printk(KERN_DEBUG "%s cpu %d node %d: mask now %s\n",
837 enable ? "numa_add_cpu" : "numa_remove_cpu",
838 cpu, node, buf);
839 return mask;
840 }
841
842 /*
843 * --------- debug versions of the numa functions ---------
844 */
845 #ifndef CONFIG_NUMA_EMU
846 static void __cpuinit numa_set_cpumask(int cpu, int enable)
847 {
848 struct cpumask *mask;
849
850 mask = debug_cpumask_set_cpu(cpu, enable);
851 if (!mask)
852 return;
853
854 if (enable)
855 cpumask_set_cpu(cpu, mask);
856 else
857 cpumask_clear_cpu(cpu, mask);
858 }
859 #else
860 static void __cpuinit numa_set_cpumask(int cpu, int enable)
861 {
862 int node = early_cpu_to_node(cpu);
863 struct cpumask *mask;
864 int i;
865
866 for_each_online_node(i) {
867 unsigned long addr;
868
869 addr = node_start_pfn(i) << PAGE_SHIFT;
870 if (addr < physnodes[node].start ||
871 addr >= physnodes[node].end)
872 continue;
873 mask = debug_cpumask_set_cpu(cpu, enable);
874 if (!mask)
875 return;
876
877 if (enable)
878 cpumask_set_cpu(cpu, mask);
879 else
880 cpumask_clear_cpu(cpu, mask);
881 }
882 }
883 #endif /* CONFIG_NUMA_EMU */
884
885 void __cpuinit numa_add_cpu(int cpu)
886 {
887 numa_set_cpumask(cpu, 1);
888 }
889
890 void __cpuinit numa_remove_cpu(int cpu)
891 {
892 numa_set_cpumask(cpu, 0);
893 }
894
895 int __cpu_to_node(int cpu)
896 {
897 if (early_per_cpu_ptr(x86_cpu_to_node_map)) {
898 printk(KERN_WARNING
899 "cpu_to_node(%d): usage too early!\n", cpu);
900 dump_stack();
901 return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
902 }
903 return per_cpu(x86_cpu_to_node_map, cpu);
904 }
905 EXPORT_SYMBOL(__cpu_to_node);
906
907 /*
908 * Same function as cpu_to_node() but used if called before the
909 * per_cpu areas are setup.
910 */
911 int early_cpu_to_node(int cpu)
912 {
913 if (early_per_cpu_ptr(x86_cpu_to_node_map))
914 return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
915
916 if (!cpu_possible(cpu)) {
917 printk(KERN_WARNING
918 "early_cpu_to_node(%d): no per_cpu area!\n", cpu);
919 dump_stack();
920 return NUMA_NO_NODE;
921 }
922 return per_cpu(x86_cpu_to_node_map, cpu);
923 }
924
925 /*
926 * --------- end of debug versions of the numa functions ---------
927 */
928
929 #endif /* CONFIG_DEBUG_PER_CPU_MAPS */