]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/mm/numa_64.c
x86: fix nodemap_size according to nodeid bits
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / mm / numa_64.c
1 /*
2 * Generic VM initialization for x86-64 NUMA setups.
3 * Copyright 2002,2003 Andi Kleen, SuSE Labs.
4 */
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/string.h>
8 #include <linux/init.h>
9 #include <linux/bootmem.h>
10 #include <linux/mmzone.h>
11 #include <linux/ctype.h>
12 #include <linux/module.h>
13 #include <linux/nodemask.h>
14 #include <linux/sched.h>
15
16 #include <asm/e820.h>
17 #include <asm/proto.h>
18 #include <asm/dma.h>
19 #include <asm/numa.h>
20 #include <asm/acpi.h>
21 #include <asm/k8.h>
22
23 #ifndef Dprintk
24 #define Dprintk(x...)
25 #endif
26
27 struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
28 EXPORT_SYMBOL(node_data);
29
30 bootmem_data_t plat_node_bdata[MAX_NUMNODES];
31
32 struct memnode memnode;
33
34 int x86_cpu_to_node_map_init[NR_CPUS] = {
35 [0 ... NR_CPUS-1] = NUMA_NO_NODE
36 };
37 void *x86_cpu_to_node_map_early_ptr;
38 DEFINE_PER_CPU(int, x86_cpu_to_node_map) = NUMA_NO_NODE;
39 EXPORT_PER_CPU_SYMBOL(x86_cpu_to_node_map);
40 EXPORT_SYMBOL(x86_cpu_to_node_map_early_ptr);
41
42 s16 apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = {
43 [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
44 };
45
46 cpumask_t node_to_cpumask_map[MAX_NUMNODES] __read_mostly;
47 EXPORT_SYMBOL(node_to_cpumask_map);
48
49 int numa_off __initdata;
50 unsigned long __initdata nodemap_addr;
51 unsigned long __initdata nodemap_size;
52
53 /*
54 * Given a shift value, try to populate memnodemap[]
55 * Returns :
56 * 1 if OK
57 * 0 if memnodmap[] too small (of shift too small)
58 * -1 if node overlap or lost ram (shift too big)
59 */
60 static int __init populate_memnodemap(const struct bootnode *nodes,
61 int numnodes, int shift)
62 {
63 unsigned long addr, end;
64 int i, res = -1;
65
66 memset(memnodemap, 0xff, sizeof(s16)*memnodemapsize);
67 for (i = 0; i < numnodes; i++) {
68 addr = nodes[i].start;
69 end = nodes[i].end;
70 if (addr >= end)
71 continue;
72 if ((end >> shift) >= memnodemapsize)
73 return 0;
74 do {
75 if (memnodemap[addr >> shift] != NUMA_NO_NODE)
76 return -1;
77 memnodemap[addr >> shift] = i;
78 addr += (1UL << shift);
79 } while (addr < end);
80 res = 1;
81 }
82 return res;
83 }
84
85 static int __init allocate_cachealigned_memnodemap(void)
86 {
87 unsigned long pad, pad_addr;
88
89 memnodemap = memnode.embedded_map;
90 if (memnodemapsize <= ARRAY_SIZE(memnode.embedded_map))
91 return 0;
92
93 pad = L1_CACHE_BYTES - 1;
94 pad_addr = 0x8000;
95 nodemap_size = pad + sizeof(s16) * memnodemapsize;
96 nodemap_addr = find_e820_area(pad_addr, end_pfn<<PAGE_SHIFT,
97 nodemap_size);
98 if (nodemap_addr == -1UL) {
99 printk(KERN_ERR
100 "NUMA: Unable to allocate Memory to Node hash map\n");
101 nodemap_addr = nodemap_size = 0;
102 return -1;
103 }
104 pad_addr = (nodemap_addr + pad) & ~pad;
105 memnodemap = phys_to_virt(pad_addr);
106 reserve_early(nodemap_addr, nodemap_addr + nodemap_size);
107
108 printk(KERN_DEBUG "NUMA: Allocated memnodemap from %lx - %lx\n",
109 nodemap_addr, nodemap_addr + nodemap_size);
110 return 0;
111 }
112
113 /*
114 * The LSB of all start and end addresses in the node map is the value of the
115 * maximum possible shift.
116 */
117 static int __init extract_lsb_from_nodes(const struct bootnode *nodes,
118 int numnodes)
119 {
120 int i, nodes_used = 0;
121 unsigned long start, end;
122 unsigned long bitfield = 0, memtop = 0;
123
124 for (i = 0; i < numnodes; i++) {
125 start = nodes[i].start;
126 end = nodes[i].end;
127 if (start >= end)
128 continue;
129 bitfield |= start;
130 nodes_used++;
131 if (end > memtop)
132 memtop = end;
133 }
134 if (nodes_used <= 1)
135 i = 63;
136 else
137 i = find_first_bit(&bitfield, sizeof(unsigned long)*8);
138 memnodemapsize = (memtop >> i)+1;
139 return i;
140 }
141
142 int __init compute_hash_shift(struct bootnode *nodes, int numnodes)
143 {
144 int shift;
145
146 shift = extract_lsb_from_nodes(nodes, numnodes);
147 if (allocate_cachealigned_memnodemap())
148 return -1;
149 printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n",
150 shift);
151
152 if (populate_memnodemap(nodes, numnodes, shift) != 1) {
153 printk(KERN_INFO "Your memory is not aligned you need to "
154 "rebuild your kernel with a bigger NODEMAPSIZE "
155 "shift=%d\n", shift);
156 return -1;
157 }
158 return shift;
159 }
160
161 int early_pfn_to_nid(unsigned long pfn)
162 {
163 return phys_to_nid(pfn << PAGE_SHIFT);
164 }
165
166 static void * __init early_node_mem(int nodeid, unsigned long start,
167 unsigned long end, unsigned long size)
168 {
169 unsigned long mem = find_e820_area(start, end, size);
170 void *ptr;
171
172 if (mem != -1L)
173 return __va(mem);
174 ptr = __alloc_bootmem_nopanic(size,
175 SMP_CACHE_BYTES, __pa(MAX_DMA_ADDRESS));
176 if (ptr == NULL) {
177 printk(KERN_ERR "Cannot find %lu bytes in node %d\n",
178 size, nodeid);
179 return NULL;
180 }
181 return ptr;
182 }
183
184 /* Initialize bootmem allocator for a node */
185 void __init setup_node_bootmem(int nodeid, unsigned long start,
186 unsigned long end)
187 {
188 unsigned long start_pfn, end_pfn, bootmap_pages, bootmap_size;
189 unsigned long bootmap_start, nodedata_phys;
190 void *bootmap;
191 const int pgdat_size = round_up(sizeof(pg_data_t), PAGE_SIZE);
192
193 start = round_up(start, ZONE_ALIGN);
194
195 printk(KERN_INFO "Bootmem setup node %d %016lx-%016lx\n", nodeid,
196 start, end);
197
198 start_pfn = start >> PAGE_SHIFT;
199 end_pfn = end >> PAGE_SHIFT;
200
201 node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size);
202 if (node_data[nodeid] == NULL)
203 return;
204 nodedata_phys = __pa(node_data[nodeid]);
205
206 memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t));
207 NODE_DATA(nodeid)->bdata = &plat_node_bdata[nodeid];
208 NODE_DATA(nodeid)->node_start_pfn = start_pfn;
209 NODE_DATA(nodeid)->node_spanned_pages = end_pfn - start_pfn;
210
211 /* Find a place for the bootmem map */
212 bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
213 bootmap_start = round_up(nodedata_phys + pgdat_size, PAGE_SIZE);
214 bootmap = early_node_mem(nodeid, bootmap_start, end,
215 bootmap_pages<<PAGE_SHIFT);
216 if (bootmap == NULL) {
217 if (nodedata_phys < start || nodedata_phys >= end)
218 free_bootmem((unsigned long)node_data[nodeid],
219 pgdat_size);
220 node_data[nodeid] = NULL;
221 return;
222 }
223 bootmap_start = __pa(bootmap);
224 Dprintk("bootmap start %lu pages %lu\n", bootmap_start, bootmap_pages);
225
226 bootmap_size = init_bootmem_node(NODE_DATA(nodeid),
227 bootmap_start >> PAGE_SHIFT,
228 start_pfn, end_pfn);
229
230 free_bootmem_with_active_regions(nodeid, end);
231
232 reserve_bootmem_node(NODE_DATA(nodeid), nodedata_phys, pgdat_size);
233 reserve_bootmem_node(NODE_DATA(nodeid), bootmap_start,
234 bootmap_pages<<PAGE_SHIFT);
235 #ifdef CONFIG_ACPI_NUMA
236 srat_reserve_add_area(nodeid);
237 #endif
238 node_set_online(nodeid);
239 }
240
241 /*
242 * There are unfortunately some poorly designed mainboards around that
243 * only connect memory to a single CPU. This breaks the 1:1 cpu->node
244 * mapping. To avoid this fill in the mapping for all possible CPUs,
245 * as the number of CPUs is not known yet. We round robin the existing
246 * nodes.
247 */
248 void __init numa_init_array(void)
249 {
250 int rr, i;
251
252 rr = first_node(node_online_map);
253 for (i = 0; i < NR_CPUS; i++) {
254 if (early_cpu_to_node(i) != NUMA_NO_NODE)
255 continue;
256 numa_set_node(i, rr);
257 rr = next_node(rr, node_online_map);
258 if (rr == MAX_NUMNODES)
259 rr = first_node(node_online_map);
260 }
261 }
262
263 #ifdef CONFIG_NUMA_EMU
264 /* Numa emulation */
265 char *cmdline __initdata;
266
267 /*
268 * Setups up nid to range from addr to addr + size. If the end
269 * boundary is greater than max_addr, then max_addr is used instead.
270 * The return value is 0 if there is additional memory left for
271 * allocation past addr and -1 otherwise. addr is adjusted to be at
272 * the end of the node.
273 */
274 static int __init setup_node_range(int nid, struct bootnode *nodes, u64 *addr,
275 u64 size, u64 max_addr)
276 {
277 int ret = 0;
278
279 nodes[nid].start = *addr;
280 *addr += size;
281 if (*addr >= max_addr) {
282 *addr = max_addr;
283 ret = -1;
284 }
285 nodes[nid].end = *addr;
286 node_set(nid, node_possible_map);
287 printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n", nid,
288 nodes[nid].start, nodes[nid].end,
289 (nodes[nid].end - nodes[nid].start) >> 20);
290 return ret;
291 }
292
293 /*
294 * Splits num_nodes nodes up equally starting at node_start. The return value
295 * is the number of nodes split up and addr is adjusted to be at the end of the
296 * last node allocated.
297 */
298 static int __init split_nodes_equally(struct bootnode *nodes, u64 *addr,
299 u64 max_addr, int node_start,
300 int num_nodes)
301 {
302 unsigned int big;
303 u64 size;
304 int i;
305
306 if (num_nodes <= 0)
307 return -1;
308 if (num_nodes > MAX_NUMNODES)
309 num_nodes = MAX_NUMNODES;
310 size = (max_addr - *addr - e820_hole_size(*addr, max_addr)) /
311 num_nodes;
312 /*
313 * Calculate the number of big nodes that can be allocated as a result
314 * of consolidating the leftovers.
315 */
316 big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * num_nodes) /
317 FAKE_NODE_MIN_SIZE;
318
319 /* Round down to nearest FAKE_NODE_MIN_SIZE. */
320 size &= FAKE_NODE_MIN_HASH_MASK;
321 if (!size) {
322 printk(KERN_ERR "Not enough memory for each node. "
323 "NUMA emulation disabled.\n");
324 return -1;
325 }
326
327 for (i = node_start; i < num_nodes + node_start; i++) {
328 u64 end = *addr + size;
329
330 if (i < big)
331 end += FAKE_NODE_MIN_SIZE;
332 /*
333 * The final node can have the remaining system RAM. Other
334 * nodes receive roughly the same amount of available pages.
335 */
336 if (i == num_nodes + node_start - 1)
337 end = max_addr;
338 else
339 while (end - *addr - e820_hole_size(*addr, end) <
340 size) {
341 end += FAKE_NODE_MIN_SIZE;
342 if (end > max_addr) {
343 end = max_addr;
344 break;
345 }
346 }
347 if (setup_node_range(i, nodes, addr, end - *addr, max_addr) < 0)
348 break;
349 }
350 return i - node_start + 1;
351 }
352
353 /*
354 * Splits the remaining system RAM into chunks of size. The remaining memory is
355 * always assigned to a final node and can be asymmetric. Returns the number of
356 * nodes split.
357 */
358 static int __init split_nodes_by_size(struct bootnode *nodes, u64 *addr,
359 u64 max_addr, int node_start, u64 size)
360 {
361 int i = node_start;
362 size = (size << 20) & FAKE_NODE_MIN_HASH_MASK;
363 while (!setup_node_range(i++, nodes, addr, size, max_addr))
364 ;
365 return i - node_start;
366 }
367
368 /*
369 * Sets up the system RAM area from start_pfn to end_pfn according to the
370 * numa=fake command-line option.
371 */
372 static int __init numa_emulation(unsigned long start_pfn, unsigned long end_pfn)
373 {
374 struct bootnode nodes[MAX_NUMNODES];
375 u64 size, addr = start_pfn << PAGE_SHIFT;
376 u64 max_addr = end_pfn << PAGE_SHIFT;
377 int num_nodes = 0, num = 0, coeff_flag, coeff = -1, i;
378
379 memset(&nodes, 0, sizeof(nodes));
380 /*
381 * If the numa=fake command-line is just a single number N, split the
382 * system RAM into N fake nodes.
383 */
384 if (!strchr(cmdline, '*') && !strchr(cmdline, ',')) {
385 long n = simple_strtol(cmdline, NULL, 0);
386
387 num_nodes = split_nodes_equally(nodes, &addr, max_addr, 0, n);
388 if (num_nodes < 0)
389 return num_nodes;
390 goto out;
391 }
392
393 /* Parse the command line. */
394 for (coeff_flag = 0; ; cmdline++) {
395 if (*cmdline && isdigit(*cmdline)) {
396 num = num * 10 + *cmdline - '0';
397 continue;
398 }
399 if (*cmdline == '*') {
400 if (num > 0)
401 coeff = num;
402 coeff_flag = 1;
403 }
404 if (!*cmdline || *cmdline == ',') {
405 if (!coeff_flag)
406 coeff = 1;
407 /*
408 * Round down to the nearest FAKE_NODE_MIN_SIZE.
409 * Command-line coefficients are in megabytes.
410 */
411 size = ((u64)num << 20) & FAKE_NODE_MIN_HASH_MASK;
412 if (size)
413 for (i = 0; i < coeff; i++, num_nodes++)
414 if (setup_node_range(num_nodes, nodes,
415 &addr, size, max_addr) < 0)
416 goto done;
417 if (!*cmdline)
418 break;
419 coeff_flag = 0;
420 coeff = -1;
421 }
422 num = 0;
423 }
424 done:
425 if (!num_nodes)
426 return -1;
427 /* Fill remainder of system RAM, if appropriate. */
428 if (addr < max_addr) {
429 if (coeff_flag && coeff < 0) {
430 /* Split remaining nodes into num-sized chunks */
431 num_nodes += split_nodes_by_size(nodes, &addr, max_addr,
432 num_nodes, num);
433 goto out;
434 }
435 switch (*(cmdline - 1)) {
436 case '*':
437 /* Split remaining nodes into coeff chunks */
438 if (coeff <= 0)
439 break;
440 num_nodes += split_nodes_equally(nodes, &addr, max_addr,
441 num_nodes, coeff);
442 break;
443 case ',':
444 /* Do not allocate remaining system RAM */
445 break;
446 default:
447 /* Give one final node */
448 setup_node_range(num_nodes, nodes, &addr,
449 max_addr - addr, max_addr);
450 num_nodes++;
451 }
452 }
453 out:
454 memnode_shift = compute_hash_shift(nodes, num_nodes);
455 if (memnode_shift < 0) {
456 memnode_shift = 0;
457 printk(KERN_ERR "No NUMA hash function found. NUMA emulation "
458 "disabled.\n");
459 return -1;
460 }
461
462 /*
463 * We need to vacate all active ranges that may have been registered by
464 * SRAT and set acpi_numa to -1 so that srat_disabled() always returns
465 * true. NUMA emulation has succeeded so we will not scan ACPI nodes.
466 */
467 remove_all_active_ranges();
468 #ifdef CONFIG_ACPI_NUMA
469 acpi_numa = -1;
470 #endif
471 for_each_node_mask(i, node_possible_map) {
472 e820_register_active_regions(i, nodes[i].start >> PAGE_SHIFT,
473 nodes[i].end >> PAGE_SHIFT);
474 setup_node_bootmem(i, nodes[i].start, nodes[i].end);
475 }
476 acpi_fake_nodes(nodes, num_nodes);
477 numa_init_array();
478 return 0;
479 }
480 #endif /* CONFIG_NUMA_EMU */
481
482 void __init numa_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
483 {
484 int i;
485
486 nodes_clear(node_possible_map);
487
488 #ifdef CONFIG_NUMA_EMU
489 if (cmdline && !numa_emulation(start_pfn, end_pfn))
490 return;
491 nodes_clear(node_possible_map);
492 #endif
493
494 #ifdef CONFIG_ACPI_NUMA
495 if (!numa_off && !acpi_scan_nodes(start_pfn << PAGE_SHIFT,
496 end_pfn << PAGE_SHIFT))
497 return;
498 nodes_clear(node_possible_map);
499 #endif
500
501 #ifdef CONFIG_K8_NUMA
502 if (!numa_off && !k8_scan_nodes(start_pfn<<PAGE_SHIFT,
503 end_pfn<<PAGE_SHIFT))
504 return;
505 nodes_clear(node_possible_map);
506 #endif
507 printk(KERN_INFO "%s\n",
508 numa_off ? "NUMA turned off" : "No NUMA configuration found");
509
510 printk(KERN_INFO "Faking a node at %016lx-%016lx\n",
511 start_pfn << PAGE_SHIFT,
512 end_pfn << PAGE_SHIFT);
513 /* setup dummy node covering all memory */
514 memnode_shift = 63;
515 memnodemap = memnode.embedded_map;
516 memnodemap[0] = 0;
517 nodes_clear(node_online_map);
518 node_set_online(0);
519 node_set(0, node_possible_map);
520 for (i = 0; i < NR_CPUS; i++)
521 numa_set_node(i, 0);
522 /* cpumask_of_cpu() may not be available during early startup */
523 memset(&node_to_cpumask_map[0], 0, sizeof(node_to_cpumask_map[0]));
524 cpu_set(0, node_to_cpumask_map[0]);
525 e820_register_active_regions(0, start_pfn, end_pfn);
526 setup_node_bootmem(0, start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
527 }
528
529 __cpuinit void numa_add_cpu(int cpu)
530 {
531 set_bit(cpu,
532 (unsigned long *)&node_to_cpumask_map[early_cpu_to_node(cpu)]);
533 }
534
535 void __cpuinit numa_set_node(int cpu, int node)
536 {
537 int *cpu_to_node_map = x86_cpu_to_node_map_early_ptr;
538
539 cpu_pda(cpu)->nodenumber = node;
540
541 if(cpu_to_node_map)
542 cpu_to_node_map[cpu] = node;
543 else if(per_cpu_offset(cpu))
544 per_cpu(x86_cpu_to_node_map, cpu) = node;
545 else
546 Dprintk(KERN_INFO "Setting node for non-present cpu %d\n", cpu);
547 }
548
549 unsigned long __init numa_free_all_bootmem(void)
550 {
551 unsigned long pages = 0;
552 int i;
553
554 for_each_online_node(i)
555 pages += free_all_bootmem_node(NODE_DATA(i));
556
557 return pages;
558 }
559
560 void __init paging_init(void)
561 {
562 unsigned long max_zone_pfns[MAX_NR_ZONES];
563
564 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
565 max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
566 max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
567 max_zone_pfns[ZONE_NORMAL] = end_pfn;
568
569 sparse_memory_present_with_active_regions(MAX_NUMNODES);
570 sparse_init();
571
572 free_area_init_nodes(max_zone_pfns);
573 }
574
575 static __init int numa_setup(char *opt)
576 {
577 if (!opt)
578 return -EINVAL;
579 if (!strncmp(opt, "off", 3))
580 numa_off = 1;
581 #ifdef CONFIG_NUMA_EMU
582 if (!strncmp(opt, "fake=", 5))
583 cmdline = opt + 5;
584 #endif
585 #ifdef CONFIG_ACPI_NUMA
586 if (!strncmp(opt, "noacpi", 6))
587 acpi_numa = -1;
588 if (!strncmp(opt, "hotadd=", 7))
589 hotadd_percent = simple_strtoul(opt+7, NULL, 10);
590 #endif
591 return 0;
592 }
593 early_param("numa", numa_setup);
594
595 /*
596 * Setup early cpu_to_node.
597 *
598 * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
599 * and apicid_to_node[] tables have valid entries for a CPU.
600 * This means we skip cpu_to_node[] initialisation for NUMA
601 * emulation and faking node case (when running a kernel compiled
602 * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
603 * is already initialized in a round robin manner at numa_init_array,
604 * prior to this call, and this initialization is good enough
605 * for the fake NUMA cases.
606 */
607 void __init init_cpu_to_node(void)
608 {
609 int i;
610
611 for (i = 0; i < NR_CPUS; i++) {
612 u16 apicid = x86_cpu_to_apicid_init[i];
613
614 if (apicid == BAD_APICID)
615 continue;
616 if (apicid_to_node[apicid] == NUMA_NO_NODE)
617 continue;
618 numa_set_node(i, apicid_to_node[apicid]);
619 }
620 }
621
622