]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - arch/x86/mm/pageattr.c
Merge branches 'for-5.1/upstream-fixes', 'for-5.2/core', 'for-5.2/ish', 'for-5.2...
[mirror_ubuntu-kernels.git] / arch / x86 / mm / pageattr.c
1 /*
2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
4 */
5 #include <linux/highmem.h>
6 #include <linux/memblock.h>
7 #include <linux/sched.h>
8 #include <linux/mm.h>
9 #include <linux/interrupt.h>
10 #include <linux/seq_file.h>
11 #include <linux/debugfs.h>
12 #include <linux/pfn.h>
13 #include <linux/percpu.h>
14 #include <linux/gfp.h>
15 #include <linux/pci.h>
16 #include <linux/vmalloc.h>
17
18 #include <asm/e820/api.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <linux/uaccess.h>
24 #include <asm/pgalloc.h>
25 #include <asm/proto.h>
26 #include <asm/pat.h>
27 #include <asm/set_memory.h>
28
29 #include "mm_internal.h"
30
31 /*
32 * The current flushing context - we pass it instead of 5 arguments:
33 */
34 struct cpa_data {
35 unsigned long *vaddr;
36 pgd_t *pgd;
37 pgprot_t mask_set;
38 pgprot_t mask_clr;
39 unsigned long numpages;
40 unsigned long curpage;
41 unsigned long pfn;
42 unsigned int flags;
43 unsigned int force_split : 1,
44 force_static_prot : 1;
45 struct page **pages;
46 };
47
48 enum cpa_warn {
49 CPA_CONFLICT,
50 CPA_PROTECT,
51 CPA_DETECT,
52 };
53
54 static const int cpa_warn_level = CPA_PROTECT;
55
56 /*
57 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
58 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
59 * entries change the page attribute in parallel to some other cpu
60 * splitting a large page entry along with changing the attribute.
61 */
62 static DEFINE_SPINLOCK(cpa_lock);
63
64 #define CPA_FLUSHTLB 1
65 #define CPA_ARRAY 2
66 #define CPA_PAGES_ARRAY 4
67 #define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */
68
69 #ifdef CONFIG_PROC_FS
70 static unsigned long direct_pages_count[PG_LEVEL_NUM];
71
72 void update_page_count(int level, unsigned long pages)
73 {
74 /* Protect against CPA */
75 spin_lock(&pgd_lock);
76 direct_pages_count[level] += pages;
77 spin_unlock(&pgd_lock);
78 }
79
80 static void split_page_count(int level)
81 {
82 if (direct_pages_count[level] == 0)
83 return;
84
85 direct_pages_count[level]--;
86 direct_pages_count[level - 1] += PTRS_PER_PTE;
87 }
88
89 void arch_report_meminfo(struct seq_file *m)
90 {
91 seq_printf(m, "DirectMap4k: %8lu kB\n",
92 direct_pages_count[PG_LEVEL_4K] << 2);
93 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
94 seq_printf(m, "DirectMap2M: %8lu kB\n",
95 direct_pages_count[PG_LEVEL_2M] << 11);
96 #else
97 seq_printf(m, "DirectMap4M: %8lu kB\n",
98 direct_pages_count[PG_LEVEL_2M] << 12);
99 #endif
100 if (direct_gbpages)
101 seq_printf(m, "DirectMap1G: %8lu kB\n",
102 direct_pages_count[PG_LEVEL_1G] << 20);
103 }
104 #else
105 static inline void split_page_count(int level) { }
106 #endif
107
108 #ifdef CONFIG_X86_CPA_STATISTICS
109
110 static unsigned long cpa_1g_checked;
111 static unsigned long cpa_1g_sameprot;
112 static unsigned long cpa_1g_preserved;
113 static unsigned long cpa_2m_checked;
114 static unsigned long cpa_2m_sameprot;
115 static unsigned long cpa_2m_preserved;
116 static unsigned long cpa_4k_install;
117
118 static inline void cpa_inc_1g_checked(void)
119 {
120 cpa_1g_checked++;
121 }
122
123 static inline void cpa_inc_2m_checked(void)
124 {
125 cpa_2m_checked++;
126 }
127
128 static inline void cpa_inc_4k_install(void)
129 {
130 cpa_4k_install++;
131 }
132
133 static inline void cpa_inc_lp_sameprot(int level)
134 {
135 if (level == PG_LEVEL_1G)
136 cpa_1g_sameprot++;
137 else
138 cpa_2m_sameprot++;
139 }
140
141 static inline void cpa_inc_lp_preserved(int level)
142 {
143 if (level == PG_LEVEL_1G)
144 cpa_1g_preserved++;
145 else
146 cpa_2m_preserved++;
147 }
148
149 static int cpastats_show(struct seq_file *m, void *p)
150 {
151 seq_printf(m, "1G pages checked: %16lu\n", cpa_1g_checked);
152 seq_printf(m, "1G pages sameprot: %16lu\n", cpa_1g_sameprot);
153 seq_printf(m, "1G pages preserved: %16lu\n", cpa_1g_preserved);
154 seq_printf(m, "2M pages checked: %16lu\n", cpa_2m_checked);
155 seq_printf(m, "2M pages sameprot: %16lu\n", cpa_2m_sameprot);
156 seq_printf(m, "2M pages preserved: %16lu\n", cpa_2m_preserved);
157 seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install);
158 return 0;
159 }
160
161 static int cpastats_open(struct inode *inode, struct file *file)
162 {
163 return single_open(file, cpastats_show, NULL);
164 }
165
166 static const struct file_operations cpastats_fops = {
167 .open = cpastats_open,
168 .read = seq_read,
169 .llseek = seq_lseek,
170 .release = single_release,
171 };
172
173 static int __init cpa_stats_init(void)
174 {
175 debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL,
176 &cpastats_fops);
177 return 0;
178 }
179 late_initcall(cpa_stats_init);
180 #else
181 static inline void cpa_inc_1g_checked(void) { }
182 static inline void cpa_inc_2m_checked(void) { }
183 static inline void cpa_inc_4k_install(void) { }
184 static inline void cpa_inc_lp_sameprot(int level) { }
185 static inline void cpa_inc_lp_preserved(int level) { }
186 #endif
187
188
189 static inline int
190 within(unsigned long addr, unsigned long start, unsigned long end)
191 {
192 return addr >= start && addr < end;
193 }
194
195 static inline int
196 within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
197 {
198 return addr >= start && addr <= end;
199 }
200
201 #ifdef CONFIG_X86_64
202
203 static inline unsigned long highmap_start_pfn(void)
204 {
205 return __pa_symbol(_text) >> PAGE_SHIFT;
206 }
207
208 static inline unsigned long highmap_end_pfn(void)
209 {
210 /* Do not reference physical address outside the kernel. */
211 return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
212 }
213
214 static bool __cpa_pfn_in_highmap(unsigned long pfn)
215 {
216 /*
217 * Kernel text has an alias mapping at a high address, known
218 * here as "highmap".
219 */
220 return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn());
221 }
222
223 #else
224
225 static bool __cpa_pfn_in_highmap(unsigned long pfn)
226 {
227 /* There is no highmap on 32-bit */
228 return false;
229 }
230
231 #endif
232
233 /*
234 * See set_mce_nospec().
235 *
236 * Machine check recovery code needs to change cache mode of poisoned pages to
237 * UC to avoid speculative access logging another error. But passing the
238 * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a
239 * speculative access. So we cheat and flip the top bit of the address. This
240 * works fine for the code that updates the page tables. But at the end of the
241 * process we need to flush the TLB and cache and the non-canonical address
242 * causes a #GP fault when used by the INVLPG and CLFLUSH instructions.
243 *
244 * But in the common case we already have a canonical address. This code
245 * will fix the top bit if needed and is a no-op otherwise.
246 */
247 static inline unsigned long fix_addr(unsigned long addr)
248 {
249 #ifdef CONFIG_X86_64
250 return (long)(addr << 1) >> 1;
251 #else
252 return addr;
253 #endif
254 }
255
256 static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx)
257 {
258 if (cpa->flags & CPA_PAGES_ARRAY) {
259 struct page *page = cpa->pages[idx];
260
261 if (unlikely(PageHighMem(page)))
262 return 0;
263
264 return (unsigned long)page_address(page);
265 }
266
267 if (cpa->flags & CPA_ARRAY)
268 return cpa->vaddr[idx];
269
270 return *cpa->vaddr + idx * PAGE_SIZE;
271 }
272
273 /*
274 * Flushing functions
275 */
276
277 static void clflush_cache_range_opt(void *vaddr, unsigned int size)
278 {
279 const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
280 void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
281 void *vend = vaddr + size;
282
283 if (p >= vend)
284 return;
285
286 for (; p < vend; p += clflush_size)
287 clflushopt(p);
288 }
289
290 /**
291 * clflush_cache_range - flush a cache range with clflush
292 * @vaddr: virtual start address
293 * @size: number of bytes to flush
294 *
295 * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or
296 * SFENCE to avoid ordering issues.
297 */
298 void clflush_cache_range(void *vaddr, unsigned int size)
299 {
300 mb();
301 clflush_cache_range_opt(vaddr, size);
302 mb();
303 }
304 EXPORT_SYMBOL_GPL(clflush_cache_range);
305
306 void arch_invalidate_pmem(void *addr, size_t size)
307 {
308 clflush_cache_range(addr, size);
309 }
310 EXPORT_SYMBOL_GPL(arch_invalidate_pmem);
311
312 static void __cpa_flush_all(void *arg)
313 {
314 unsigned long cache = (unsigned long)arg;
315
316 /*
317 * Flush all to work around Errata in early athlons regarding
318 * large page flushing.
319 */
320 __flush_tlb_all();
321
322 if (cache && boot_cpu_data.x86 >= 4)
323 wbinvd();
324 }
325
326 static void cpa_flush_all(unsigned long cache)
327 {
328 BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
329
330 on_each_cpu(__cpa_flush_all, (void *) cache, 1);
331 }
332
333 void __cpa_flush_tlb(void *data)
334 {
335 struct cpa_data *cpa = data;
336 unsigned int i;
337
338 for (i = 0; i < cpa->numpages; i++)
339 __flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i)));
340 }
341
342 static void cpa_flush(struct cpa_data *data, int cache)
343 {
344 struct cpa_data *cpa = data;
345 unsigned int i;
346
347 BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
348
349 if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
350 cpa_flush_all(cache);
351 return;
352 }
353
354 if (cpa->numpages <= tlb_single_page_flush_ceiling)
355 on_each_cpu(__cpa_flush_tlb, cpa, 1);
356 else
357 flush_tlb_all();
358
359 if (!cache)
360 return;
361
362 mb();
363 for (i = 0; i < cpa->numpages; i++) {
364 unsigned long addr = __cpa_addr(cpa, i);
365 unsigned int level;
366
367 pte_t *pte = lookup_address(addr, &level);
368
369 /*
370 * Only flush present addresses:
371 */
372 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
373 clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE);
374 }
375 mb();
376 }
377
378 static bool overlaps(unsigned long r1_start, unsigned long r1_end,
379 unsigned long r2_start, unsigned long r2_end)
380 {
381 return (r1_start <= r2_end && r1_end >= r2_start) ||
382 (r2_start <= r1_end && r2_end >= r1_start);
383 }
384
385 #ifdef CONFIG_PCI_BIOS
386 /*
387 * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS
388 * based config access (CONFIG_PCI_GOBIOS) support.
389 */
390 #define BIOS_PFN PFN_DOWN(BIOS_BEGIN)
391 #define BIOS_PFN_END PFN_DOWN(BIOS_END - 1)
392
393 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
394 {
395 if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END))
396 return _PAGE_NX;
397 return 0;
398 }
399 #else
400 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
401 {
402 return 0;
403 }
404 #endif
405
406 /*
407 * The .rodata section needs to be read-only. Using the pfn catches all
408 * aliases. This also includes __ro_after_init, so do not enforce until
409 * kernel_set_to_readonly is true.
410 */
411 static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn)
412 {
413 unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata));
414
415 /*
416 * Note: __end_rodata is at page aligned and not inclusive, so
417 * subtract 1 to get the last enforced PFN in the rodata area.
418 */
419 epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1;
420
421 if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro))
422 return _PAGE_RW;
423 return 0;
424 }
425
426 /*
427 * Protect kernel text against becoming non executable by forbidding
428 * _PAGE_NX. This protects only the high kernel mapping (_text -> _etext)
429 * out of which the kernel actually executes. Do not protect the low
430 * mapping.
431 *
432 * This does not cover __inittext since that is gone after boot.
433 */
434 static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end)
435 {
436 unsigned long t_end = (unsigned long)_etext - 1;
437 unsigned long t_start = (unsigned long)_text;
438
439 if (overlaps(start, end, t_start, t_end))
440 return _PAGE_NX;
441 return 0;
442 }
443
444 #if defined(CONFIG_X86_64)
445 /*
446 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
447 * kernel text mappings for the large page aligned text, rodata sections
448 * will be always read-only. For the kernel identity mappings covering the
449 * holes caused by this alignment can be anything that user asks.
450 *
451 * This will preserve the large page mappings for kernel text/data at no
452 * extra cost.
453 */
454 static pgprotval_t protect_kernel_text_ro(unsigned long start,
455 unsigned long end)
456 {
457 unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1;
458 unsigned long t_start = (unsigned long)_text;
459 unsigned int level;
460
461 if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end))
462 return 0;
463 /*
464 * Don't enforce the !RW mapping for the kernel text mapping, if
465 * the current mapping is already using small page mapping. No
466 * need to work hard to preserve large page mappings in this case.
467 *
468 * This also fixes the Linux Xen paravirt guest boot failure caused
469 * by unexpected read-only mappings for kernel identity
470 * mappings. In this paravirt guest case, the kernel text mapping
471 * and the kernel identity mapping share the same page-table pages,
472 * so the protections for kernel text and identity mappings have to
473 * be the same.
474 */
475 if (lookup_address(start, &level) && (level != PG_LEVEL_4K))
476 return _PAGE_RW;
477 return 0;
478 }
479 #else
480 static pgprotval_t protect_kernel_text_ro(unsigned long start,
481 unsigned long end)
482 {
483 return 0;
484 }
485 #endif
486
487 static inline bool conflicts(pgprot_t prot, pgprotval_t val)
488 {
489 return (pgprot_val(prot) & ~val) != pgprot_val(prot);
490 }
491
492 static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val,
493 unsigned long start, unsigned long end,
494 unsigned long pfn, const char *txt)
495 {
496 static const char *lvltxt[] = {
497 [CPA_CONFLICT] = "conflict",
498 [CPA_PROTECT] = "protect",
499 [CPA_DETECT] = "detect",
500 };
501
502 if (warnlvl > cpa_warn_level || !conflicts(prot, val))
503 return;
504
505 pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n",
506 lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot),
507 (unsigned long long)val);
508 }
509
510 /*
511 * Certain areas of memory on x86 require very specific protection flags,
512 * for example the BIOS area or kernel text. Callers don't always get this
513 * right (again, ioremap() on BIOS memory is not uncommon) so this function
514 * checks and fixes these known static required protection bits.
515 */
516 static inline pgprot_t static_protections(pgprot_t prot, unsigned long start,
517 unsigned long pfn, unsigned long npg,
518 int warnlvl)
519 {
520 pgprotval_t forbidden, res;
521 unsigned long end;
522
523 /*
524 * There is no point in checking RW/NX conflicts when the requested
525 * mapping is setting the page !PRESENT.
526 */
527 if (!(pgprot_val(prot) & _PAGE_PRESENT))
528 return prot;
529
530 /* Operate on the virtual address */
531 end = start + npg * PAGE_SIZE - 1;
532
533 res = protect_kernel_text(start, end);
534 check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX");
535 forbidden = res;
536
537 res = protect_kernel_text_ro(start, end);
538 check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO");
539 forbidden |= res;
540
541 /* Check the PFN directly */
542 res = protect_pci_bios(pfn, pfn + npg - 1);
543 check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX");
544 forbidden |= res;
545
546 res = protect_rodata(pfn, pfn + npg - 1);
547 check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO");
548 forbidden |= res;
549
550 return __pgprot(pgprot_val(prot) & ~forbidden);
551 }
552
553 /*
554 * Lookup the page table entry for a virtual address in a specific pgd.
555 * Return a pointer to the entry and the level of the mapping.
556 */
557 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
558 unsigned int *level)
559 {
560 p4d_t *p4d;
561 pud_t *pud;
562 pmd_t *pmd;
563
564 *level = PG_LEVEL_NONE;
565
566 if (pgd_none(*pgd))
567 return NULL;
568
569 p4d = p4d_offset(pgd, address);
570 if (p4d_none(*p4d))
571 return NULL;
572
573 *level = PG_LEVEL_512G;
574 if (p4d_large(*p4d) || !p4d_present(*p4d))
575 return (pte_t *)p4d;
576
577 pud = pud_offset(p4d, address);
578 if (pud_none(*pud))
579 return NULL;
580
581 *level = PG_LEVEL_1G;
582 if (pud_large(*pud) || !pud_present(*pud))
583 return (pte_t *)pud;
584
585 pmd = pmd_offset(pud, address);
586 if (pmd_none(*pmd))
587 return NULL;
588
589 *level = PG_LEVEL_2M;
590 if (pmd_large(*pmd) || !pmd_present(*pmd))
591 return (pte_t *)pmd;
592
593 *level = PG_LEVEL_4K;
594
595 return pte_offset_kernel(pmd, address);
596 }
597
598 /*
599 * Lookup the page table entry for a virtual address. Return a pointer
600 * to the entry and the level of the mapping.
601 *
602 * Note: We return pud and pmd either when the entry is marked large
603 * or when the present bit is not set. Otherwise we would return a
604 * pointer to a nonexisting mapping.
605 */
606 pte_t *lookup_address(unsigned long address, unsigned int *level)
607 {
608 return lookup_address_in_pgd(pgd_offset_k(address), address, level);
609 }
610 EXPORT_SYMBOL_GPL(lookup_address);
611
612 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
613 unsigned int *level)
614 {
615 if (cpa->pgd)
616 return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
617 address, level);
618
619 return lookup_address(address, level);
620 }
621
622 /*
623 * Lookup the PMD entry for a virtual address. Return a pointer to the entry
624 * or NULL if not present.
625 */
626 pmd_t *lookup_pmd_address(unsigned long address)
627 {
628 pgd_t *pgd;
629 p4d_t *p4d;
630 pud_t *pud;
631
632 pgd = pgd_offset_k(address);
633 if (pgd_none(*pgd))
634 return NULL;
635
636 p4d = p4d_offset(pgd, address);
637 if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d))
638 return NULL;
639
640 pud = pud_offset(p4d, address);
641 if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
642 return NULL;
643
644 return pmd_offset(pud, address);
645 }
646
647 /*
648 * This is necessary because __pa() does not work on some
649 * kinds of memory, like vmalloc() or the alloc_remap()
650 * areas on 32-bit NUMA systems. The percpu areas can
651 * end up in this kind of memory, for instance.
652 *
653 * This could be optimized, but it is only intended to be
654 * used at inititalization time, and keeping it
655 * unoptimized should increase the testing coverage for
656 * the more obscure platforms.
657 */
658 phys_addr_t slow_virt_to_phys(void *__virt_addr)
659 {
660 unsigned long virt_addr = (unsigned long)__virt_addr;
661 phys_addr_t phys_addr;
662 unsigned long offset;
663 enum pg_level level;
664 pte_t *pte;
665
666 pte = lookup_address(virt_addr, &level);
667 BUG_ON(!pte);
668
669 /*
670 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
671 * before being left-shifted PAGE_SHIFT bits -- this trick is to
672 * make 32-PAE kernel work correctly.
673 */
674 switch (level) {
675 case PG_LEVEL_1G:
676 phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
677 offset = virt_addr & ~PUD_PAGE_MASK;
678 break;
679 case PG_LEVEL_2M:
680 phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
681 offset = virt_addr & ~PMD_PAGE_MASK;
682 break;
683 default:
684 phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
685 offset = virt_addr & ~PAGE_MASK;
686 }
687
688 return (phys_addr_t)(phys_addr | offset);
689 }
690 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
691
692 /*
693 * Set the new pmd in all the pgds we know about:
694 */
695 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
696 {
697 /* change init_mm */
698 set_pte_atomic(kpte, pte);
699 #ifdef CONFIG_X86_32
700 if (!SHARED_KERNEL_PMD) {
701 struct page *page;
702
703 list_for_each_entry(page, &pgd_list, lru) {
704 pgd_t *pgd;
705 p4d_t *p4d;
706 pud_t *pud;
707 pmd_t *pmd;
708
709 pgd = (pgd_t *)page_address(page) + pgd_index(address);
710 p4d = p4d_offset(pgd, address);
711 pud = pud_offset(p4d, address);
712 pmd = pmd_offset(pud, address);
713 set_pte_atomic((pte_t *)pmd, pte);
714 }
715 }
716 #endif
717 }
718
719 static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot)
720 {
721 /*
722 * _PAGE_GLOBAL means "global page" for present PTEs.
723 * But, it is also used to indicate _PAGE_PROTNONE
724 * for non-present PTEs.
725 *
726 * This ensures that a _PAGE_GLOBAL PTE going from
727 * present to non-present is not confused as
728 * _PAGE_PROTNONE.
729 */
730 if (!(pgprot_val(prot) & _PAGE_PRESENT))
731 pgprot_val(prot) &= ~_PAGE_GLOBAL;
732
733 return prot;
734 }
735
736 static int __should_split_large_page(pte_t *kpte, unsigned long address,
737 struct cpa_data *cpa)
738 {
739 unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn;
740 pgprot_t old_prot, new_prot, req_prot, chk_prot;
741 pte_t new_pte, *tmp;
742 enum pg_level level;
743
744 /*
745 * Check for races, another CPU might have split this page
746 * up already:
747 */
748 tmp = _lookup_address_cpa(cpa, address, &level);
749 if (tmp != kpte)
750 return 1;
751
752 switch (level) {
753 case PG_LEVEL_2M:
754 old_prot = pmd_pgprot(*(pmd_t *)kpte);
755 old_pfn = pmd_pfn(*(pmd_t *)kpte);
756 cpa_inc_2m_checked();
757 break;
758 case PG_LEVEL_1G:
759 old_prot = pud_pgprot(*(pud_t *)kpte);
760 old_pfn = pud_pfn(*(pud_t *)kpte);
761 cpa_inc_1g_checked();
762 break;
763 default:
764 return -EINVAL;
765 }
766
767 psize = page_level_size(level);
768 pmask = page_level_mask(level);
769
770 /*
771 * Calculate the number of pages, which fit into this large
772 * page starting at address:
773 */
774 lpaddr = (address + psize) & pmask;
775 numpages = (lpaddr - address) >> PAGE_SHIFT;
776 if (numpages < cpa->numpages)
777 cpa->numpages = numpages;
778
779 /*
780 * We are safe now. Check whether the new pgprot is the same:
781 * Convert protection attributes to 4k-format, as cpa->mask* are set
782 * up accordingly.
783 */
784
785 /* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
786 req_prot = pgprot_large_2_4k(old_prot);
787
788 pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
789 pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
790
791 /*
792 * req_prot is in format of 4k pages. It must be converted to large
793 * page format: the caching mode includes the PAT bit located at
794 * different bit positions in the two formats.
795 */
796 req_prot = pgprot_4k_2_large(req_prot);
797 req_prot = pgprot_clear_protnone_bits(req_prot);
798 if (pgprot_val(req_prot) & _PAGE_PRESENT)
799 pgprot_val(req_prot) |= _PAGE_PSE;
800
801 /*
802 * old_pfn points to the large page base pfn. So we need to add the
803 * offset of the virtual address:
804 */
805 pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
806 cpa->pfn = pfn;
807
808 /*
809 * Calculate the large page base address and the number of 4K pages
810 * in the large page
811 */
812 lpaddr = address & pmask;
813 numpages = psize >> PAGE_SHIFT;
814
815 /*
816 * Sanity check that the existing mapping is correct versus the static
817 * protections. static_protections() guards against !PRESENT, so no
818 * extra conditional required here.
819 */
820 chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages,
821 CPA_CONFLICT);
822
823 if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) {
824 /*
825 * Split the large page and tell the split code to
826 * enforce static protections.
827 */
828 cpa->force_static_prot = 1;
829 return 1;
830 }
831
832 /*
833 * Optimization: If the requested pgprot is the same as the current
834 * pgprot, then the large page can be preserved and no updates are
835 * required independent of alignment and length of the requested
836 * range. The above already established that the current pgprot is
837 * correct, which in consequence makes the requested pgprot correct
838 * as well if it is the same. The static protection scan below will
839 * not come to a different conclusion.
840 */
841 if (pgprot_val(req_prot) == pgprot_val(old_prot)) {
842 cpa_inc_lp_sameprot(level);
843 return 0;
844 }
845
846 /*
847 * If the requested range does not cover the full page, split it up
848 */
849 if (address != lpaddr || cpa->numpages != numpages)
850 return 1;
851
852 /*
853 * Check whether the requested pgprot is conflicting with a static
854 * protection requirement in the large page.
855 */
856 new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages,
857 CPA_DETECT);
858
859 /*
860 * If there is a conflict, split the large page.
861 *
862 * There used to be a 4k wise evaluation trying really hard to
863 * preserve the large pages, but experimentation has shown, that this
864 * does not help at all. There might be corner cases which would
865 * preserve one large page occasionally, but it's really not worth the
866 * extra code and cycles for the common case.
867 */
868 if (pgprot_val(req_prot) != pgprot_val(new_prot))
869 return 1;
870
871 /* All checks passed. Update the large page mapping. */
872 new_pte = pfn_pte(old_pfn, new_prot);
873 __set_pmd_pte(kpte, address, new_pte);
874 cpa->flags |= CPA_FLUSHTLB;
875 cpa_inc_lp_preserved(level);
876 return 0;
877 }
878
879 static int should_split_large_page(pte_t *kpte, unsigned long address,
880 struct cpa_data *cpa)
881 {
882 int do_split;
883
884 if (cpa->force_split)
885 return 1;
886
887 spin_lock(&pgd_lock);
888 do_split = __should_split_large_page(kpte, address, cpa);
889 spin_unlock(&pgd_lock);
890
891 return do_split;
892 }
893
894 static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn,
895 pgprot_t ref_prot, unsigned long address,
896 unsigned long size)
897 {
898 unsigned int npg = PFN_DOWN(size);
899 pgprot_t prot;
900
901 /*
902 * If should_split_large_page() discovered an inconsistent mapping,
903 * remove the invalid protection in the split mapping.
904 */
905 if (!cpa->force_static_prot)
906 goto set;
907
908 prot = static_protections(ref_prot, address, pfn, npg, CPA_PROTECT);
909
910 if (pgprot_val(prot) == pgprot_val(ref_prot))
911 goto set;
912
913 /*
914 * If this is splitting a PMD, fix it up. PUD splits cannot be
915 * fixed trivially as that would require to rescan the newly
916 * installed PMD mappings after returning from split_large_page()
917 * so an eventual further split can allocate the necessary PTE
918 * pages. Warn for now and revisit it in case this actually
919 * happens.
920 */
921 if (size == PAGE_SIZE)
922 ref_prot = prot;
923 else
924 pr_warn_once("CPA: Cannot fixup static protections for PUD split\n");
925 set:
926 set_pte(pte, pfn_pte(pfn, ref_prot));
927 }
928
929 static int
930 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
931 struct page *base)
932 {
933 unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1;
934 pte_t *pbase = (pte_t *)page_address(base);
935 unsigned int i, level;
936 pgprot_t ref_prot;
937 pte_t *tmp;
938
939 spin_lock(&pgd_lock);
940 /*
941 * Check for races, another CPU might have split this page
942 * up for us already:
943 */
944 tmp = _lookup_address_cpa(cpa, address, &level);
945 if (tmp != kpte) {
946 spin_unlock(&pgd_lock);
947 return 1;
948 }
949
950 paravirt_alloc_pte(&init_mm, page_to_pfn(base));
951
952 switch (level) {
953 case PG_LEVEL_2M:
954 ref_prot = pmd_pgprot(*(pmd_t *)kpte);
955 /*
956 * Clear PSE (aka _PAGE_PAT) and move
957 * PAT bit to correct position.
958 */
959 ref_prot = pgprot_large_2_4k(ref_prot);
960 ref_pfn = pmd_pfn(*(pmd_t *)kpte);
961 lpaddr = address & PMD_MASK;
962 lpinc = PAGE_SIZE;
963 break;
964
965 case PG_LEVEL_1G:
966 ref_prot = pud_pgprot(*(pud_t *)kpte);
967 ref_pfn = pud_pfn(*(pud_t *)kpte);
968 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
969 lpaddr = address & PUD_MASK;
970 lpinc = PMD_SIZE;
971 /*
972 * Clear the PSE flags if the PRESENT flag is not set
973 * otherwise pmd_present/pmd_huge will return true
974 * even on a non present pmd.
975 */
976 if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
977 pgprot_val(ref_prot) &= ~_PAGE_PSE;
978 break;
979
980 default:
981 spin_unlock(&pgd_lock);
982 return 1;
983 }
984
985 ref_prot = pgprot_clear_protnone_bits(ref_prot);
986
987 /*
988 * Get the target pfn from the original entry:
989 */
990 pfn = ref_pfn;
991 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc)
992 split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc);
993
994 if (virt_addr_valid(address)) {
995 unsigned long pfn = PFN_DOWN(__pa(address));
996
997 if (pfn_range_is_mapped(pfn, pfn + 1))
998 split_page_count(level);
999 }
1000
1001 /*
1002 * Install the new, split up pagetable.
1003 *
1004 * We use the standard kernel pagetable protections for the new
1005 * pagetable protections, the actual ptes set above control the
1006 * primary protection behavior:
1007 */
1008 __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
1009
1010 /*
1011 * Do a global flush tlb after splitting the large page
1012 * and before we do the actual change page attribute in the PTE.
1013 *
1014 * Without this, we violate the TLB application note, that says:
1015 * "The TLBs may contain both ordinary and large-page
1016 * translations for a 4-KByte range of linear addresses. This
1017 * may occur if software modifies the paging structures so that
1018 * the page size used for the address range changes. If the two
1019 * translations differ with respect to page frame or attributes
1020 * (e.g., permissions), processor behavior is undefined and may
1021 * be implementation-specific."
1022 *
1023 * We do this global tlb flush inside the cpa_lock, so that we
1024 * don't allow any other cpu, with stale tlb entries change the
1025 * page attribute in parallel, that also falls into the
1026 * just split large page entry.
1027 */
1028 flush_tlb_all();
1029 spin_unlock(&pgd_lock);
1030
1031 return 0;
1032 }
1033
1034 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
1035 unsigned long address)
1036 {
1037 struct page *base;
1038
1039 if (!debug_pagealloc_enabled())
1040 spin_unlock(&cpa_lock);
1041 base = alloc_pages(GFP_KERNEL, 0);
1042 if (!debug_pagealloc_enabled())
1043 spin_lock(&cpa_lock);
1044 if (!base)
1045 return -ENOMEM;
1046
1047 if (__split_large_page(cpa, kpte, address, base))
1048 __free_page(base);
1049
1050 return 0;
1051 }
1052
1053 static bool try_to_free_pte_page(pte_t *pte)
1054 {
1055 int i;
1056
1057 for (i = 0; i < PTRS_PER_PTE; i++)
1058 if (!pte_none(pte[i]))
1059 return false;
1060
1061 free_page((unsigned long)pte);
1062 return true;
1063 }
1064
1065 static bool try_to_free_pmd_page(pmd_t *pmd)
1066 {
1067 int i;
1068
1069 for (i = 0; i < PTRS_PER_PMD; i++)
1070 if (!pmd_none(pmd[i]))
1071 return false;
1072
1073 free_page((unsigned long)pmd);
1074 return true;
1075 }
1076
1077 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
1078 {
1079 pte_t *pte = pte_offset_kernel(pmd, start);
1080
1081 while (start < end) {
1082 set_pte(pte, __pte(0));
1083
1084 start += PAGE_SIZE;
1085 pte++;
1086 }
1087
1088 if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
1089 pmd_clear(pmd);
1090 return true;
1091 }
1092 return false;
1093 }
1094
1095 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
1096 unsigned long start, unsigned long end)
1097 {
1098 if (unmap_pte_range(pmd, start, end))
1099 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
1100 pud_clear(pud);
1101 }
1102
1103 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
1104 {
1105 pmd_t *pmd = pmd_offset(pud, start);
1106
1107 /*
1108 * Not on a 2MB page boundary?
1109 */
1110 if (start & (PMD_SIZE - 1)) {
1111 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1112 unsigned long pre_end = min_t(unsigned long, end, next_page);
1113
1114 __unmap_pmd_range(pud, pmd, start, pre_end);
1115
1116 start = pre_end;
1117 pmd++;
1118 }
1119
1120 /*
1121 * Try to unmap in 2M chunks.
1122 */
1123 while (end - start >= PMD_SIZE) {
1124 if (pmd_large(*pmd))
1125 pmd_clear(pmd);
1126 else
1127 __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
1128
1129 start += PMD_SIZE;
1130 pmd++;
1131 }
1132
1133 /*
1134 * 4K leftovers?
1135 */
1136 if (start < end)
1137 return __unmap_pmd_range(pud, pmd, start, end);
1138
1139 /*
1140 * Try again to free the PMD page if haven't succeeded above.
1141 */
1142 if (!pud_none(*pud))
1143 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
1144 pud_clear(pud);
1145 }
1146
1147 static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
1148 {
1149 pud_t *pud = pud_offset(p4d, start);
1150
1151 /*
1152 * Not on a GB page boundary?
1153 */
1154 if (start & (PUD_SIZE - 1)) {
1155 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1156 unsigned long pre_end = min_t(unsigned long, end, next_page);
1157
1158 unmap_pmd_range(pud, start, pre_end);
1159
1160 start = pre_end;
1161 pud++;
1162 }
1163
1164 /*
1165 * Try to unmap in 1G chunks?
1166 */
1167 while (end - start >= PUD_SIZE) {
1168
1169 if (pud_large(*pud))
1170 pud_clear(pud);
1171 else
1172 unmap_pmd_range(pud, start, start + PUD_SIZE);
1173
1174 start += PUD_SIZE;
1175 pud++;
1176 }
1177
1178 /*
1179 * 2M leftovers?
1180 */
1181 if (start < end)
1182 unmap_pmd_range(pud, start, end);
1183
1184 /*
1185 * No need to try to free the PUD page because we'll free it in
1186 * populate_pgd's error path
1187 */
1188 }
1189
1190 static int alloc_pte_page(pmd_t *pmd)
1191 {
1192 pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
1193 if (!pte)
1194 return -1;
1195
1196 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
1197 return 0;
1198 }
1199
1200 static int alloc_pmd_page(pud_t *pud)
1201 {
1202 pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
1203 if (!pmd)
1204 return -1;
1205
1206 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
1207 return 0;
1208 }
1209
1210 static void populate_pte(struct cpa_data *cpa,
1211 unsigned long start, unsigned long end,
1212 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
1213 {
1214 pte_t *pte;
1215
1216 pte = pte_offset_kernel(pmd, start);
1217
1218 pgprot = pgprot_clear_protnone_bits(pgprot);
1219
1220 while (num_pages-- && start < end) {
1221 set_pte(pte, pfn_pte(cpa->pfn, pgprot));
1222
1223 start += PAGE_SIZE;
1224 cpa->pfn++;
1225 pte++;
1226 }
1227 }
1228
1229 static long populate_pmd(struct cpa_data *cpa,
1230 unsigned long start, unsigned long end,
1231 unsigned num_pages, pud_t *pud, pgprot_t pgprot)
1232 {
1233 long cur_pages = 0;
1234 pmd_t *pmd;
1235 pgprot_t pmd_pgprot;
1236
1237 /*
1238 * Not on a 2M boundary?
1239 */
1240 if (start & (PMD_SIZE - 1)) {
1241 unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
1242 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1243
1244 pre_end = min_t(unsigned long, pre_end, next_page);
1245 cur_pages = (pre_end - start) >> PAGE_SHIFT;
1246 cur_pages = min_t(unsigned int, num_pages, cur_pages);
1247
1248 /*
1249 * Need a PTE page?
1250 */
1251 pmd = pmd_offset(pud, start);
1252 if (pmd_none(*pmd))
1253 if (alloc_pte_page(pmd))
1254 return -1;
1255
1256 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
1257
1258 start = pre_end;
1259 }
1260
1261 /*
1262 * We mapped them all?
1263 */
1264 if (num_pages == cur_pages)
1265 return cur_pages;
1266
1267 pmd_pgprot = pgprot_4k_2_large(pgprot);
1268
1269 while (end - start >= PMD_SIZE) {
1270
1271 /*
1272 * We cannot use a 1G page so allocate a PMD page if needed.
1273 */
1274 if (pud_none(*pud))
1275 if (alloc_pmd_page(pud))
1276 return -1;
1277
1278 pmd = pmd_offset(pud, start);
1279
1280 set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn,
1281 canon_pgprot(pmd_pgprot))));
1282
1283 start += PMD_SIZE;
1284 cpa->pfn += PMD_SIZE >> PAGE_SHIFT;
1285 cur_pages += PMD_SIZE >> PAGE_SHIFT;
1286 }
1287
1288 /*
1289 * Map trailing 4K pages.
1290 */
1291 if (start < end) {
1292 pmd = pmd_offset(pud, start);
1293 if (pmd_none(*pmd))
1294 if (alloc_pte_page(pmd))
1295 return -1;
1296
1297 populate_pte(cpa, start, end, num_pages - cur_pages,
1298 pmd, pgprot);
1299 }
1300 return num_pages;
1301 }
1302
1303 static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
1304 pgprot_t pgprot)
1305 {
1306 pud_t *pud;
1307 unsigned long end;
1308 long cur_pages = 0;
1309 pgprot_t pud_pgprot;
1310
1311 end = start + (cpa->numpages << PAGE_SHIFT);
1312
1313 /*
1314 * Not on a Gb page boundary? => map everything up to it with
1315 * smaller pages.
1316 */
1317 if (start & (PUD_SIZE - 1)) {
1318 unsigned long pre_end;
1319 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1320
1321 pre_end = min_t(unsigned long, end, next_page);
1322 cur_pages = (pre_end - start) >> PAGE_SHIFT;
1323 cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1324
1325 pud = pud_offset(p4d, start);
1326
1327 /*
1328 * Need a PMD page?
1329 */
1330 if (pud_none(*pud))
1331 if (alloc_pmd_page(pud))
1332 return -1;
1333
1334 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1335 pud, pgprot);
1336 if (cur_pages < 0)
1337 return cur_pages;
1338
1339 start = pre_end;
1340 }
1341
1342 /* We mapped them all? */
1343 if (cpa->numpages == cur_pages)
1344 return cur_pages;
1345
1346 pud = pud_offset(p4d, start);
1347 pud_pgprot = pgprot_4k_2_large(pgprot);
1348
1349 /*
1350 * Map everything starting from the Gb boundary, possibly with 1G pages
1351 */
1352 while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1353 set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn,
1354 canon_pgprot(pud_pgprot))));
1355
1356 start += PUD_SIZE;
1357 cpa->pfn += PUD_SIZE >> PAGE_SHIFT;
1358 cur_pages += PUD_SIZE >> PAGE_SHIFT;
1359 pud++;
1360 }
1361
1362 /* Map trailing leftover */
1363 if (start < end) {
1364 long tmp;
1365
1366 pud = pud_offset(p4d, start);
1367 if (pud_none(*pud))
1368 if (alloc_pmd_page(pud))
1369 return -1;
1370
1371 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1372 pud, pgprot);
1373 if (tmp < 0)
1374 return cur_pages;
1375
1376 cur_pages += tmp;
1377 }
1378 return cur_pages;
1379 }
1380
1381 /*
1382 * Restrictions for kernel page table do not necessarily apply when mapping in
1383 * an alternate PGD.
1384 */
1385 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1386 {
1387 pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1388 pud_t *pud = NULL; /* shut up gcc */
1389 p4d_t *p4d;
1390 pgd_t *pgd_entry;
1391 long ret;
1392
1393 pgd_entry = cpa->pgd + pgd_index(addr);
1394
1395 if (pgd_none(*pgd_entry)) {
1396 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
1397 if (!p4d)
1398 return -1;
1399
1400 set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
1401 }
1402
1403 /*
1404 * Allocate a PUD page and hand it down for mapping.
1405 */
1406 p4d = p4d_offset(pgd_entry, addr);
1407 if (p4d_none(*p4d)) {
1408 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
1409 if (!pud)
1410 return -1;
1411
1412 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
1413 }
1414
1415 pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1416 pgprot_val(pgprot) |= pgprot_val(cpa->mask_set);
1417
1418 ret = populate_pud(cpa, addr, p4d, pgprot);
1419 if (ret < 0) {
1420 /*
1421 * Leave the PUD page in place in case some other CPU or thread
1422 * already found it, but remove any useless entries we just
1423 * added to it.
1424 */
1425 unmap_pud_range(p4d, addr,
1426 addr + (cpa->numpages << PAGE_SHIFT));
1427 return ret;
1428 }
1429
1430 cpa->numpages = ret;
1431 return 0;
1432 }
1433
1434 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1435 int primary)
1436 {
1437 if (cpa->pgd) {
1438 /*
1439 * Right now, we only execute this code path when mapping
1440 * the EFI virtual memory map regions, no other users
1441 * provide a ->pgd value. This may change in the future.
1442 */
1443 return populate_pgd(cpa, vaddr);
1444 }
1445
1446 /*
1447 * Ignore all non primary paths.
1448 */
1449 if (!primary) {
1450 cpa->numpages = 1;
1451 return 0;
1452 }
1453
1454 /*
1455 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1456 * to have holes.
1457 * Also set numpages to '1' indicating that we processed cpa req for
1458 * one virtual address page and its pfn. TBD: numpages can be set based
1459 * on the initial value and the level returned by lookup_address().
1460 */
1461 if (within(vaddr, PAGE_OFFSET,
1462 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1463 cpa->numpages = 1;
1464 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1465 return 0;
1466
1467 } else if (__cpa_pfn_in_highmap(cpa->pfn)) {
1468 /* Faults in the highmap are OK, so do not warn: */
1469 return -EFAULT;
1470 } else {
1471 WARN(1, KERN_WARNING "CPA: called for zero pte. "
1472 "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1473 *cpa->vaddr);
1474
1475 return -EFAULT;
1476 }
1477 }
1478
1479 static int __change_page_attr(struct cpa_data *cpa, int primary)
1480 {
1481 unsigned long address;
1482 int do_split, err;
1483 unsigned int level;
1484 pte_t *kpte, old_pte;
1485
1486 address = __cpa_addr(cpa, cpa->curpage);
1487 repeat:
1488 kpte = _lookup_address_cpa(cpa, address, &level);
1489 if (!kpte)
1490 return __cpa_process_fault(cpa, address, primary);
1491
1492 old_pte = *kpte;
1493 if (pte_none(old_pte))
1494 return __cpa_process_fault(cpa, address, primary);
1495
1496 if (level == PG_LEVEL_4K) {
1497 pte_t new_pte;
1498 pgprot_t new_prot = pte_pgprot(old_pte);
1499 unsigned long pfn = pte_pfn(old_pte);
1500
1501 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1502 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1503
1504 cpa_inc_4k_install();
1505 new_prot = static_protections(new_prot, address, pfn, 1,
1506 CPA_PROTECT);
1507
1508 new_prot = pgprot_clear_protnone_bits(new_prot);
1509
1510 /*
1511 * We need to keep the pfn from the existing PTE,
1512 * after all we're only going to change it's attributes
1513 * not the memory it points to
1514 */
1515 new_pte = pfn_pte(pfn, new_prot);
1516 cpa->pfn = pfn;
1517 /*
1518 * Do we really change anything ?
1519 */
1520 if (pte_val(old_pte) != pte_val(new_pte)) {
1521 set_pte_atomic(kpte, new_pte);
1522 cpa->flags |= CPA_FLUSHTLB;
1523 }
1524 cpa->numpages = 1;
1525 return 0;
1526 }
1527
1528 /*
1529 * Check, whether we can keep the large page intact
1530 * and just change the pte:
1531 */
1532 do_split = should_split_large_page(kpte, address, cpa);
1533 /*
1534 * When the range fits into the existing large page,
1535 * return. cp->numpages and cpa->tlbflush have been updated in
1536 * try_large_page:
1537 */
1538 if (do_split <= 0)
1539 return do_split;
1540
1541 /*
1542 * We have to split the large page:
1543 */
1544 err = split_large_page(cpa, kpte, address);
1545 if (!err)
1546 goto repeat;
1547
1548 return err;
1549 }
1550
1551 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1552
1553 static int cpa_process_alias(struct cpa_data *cpa)
1554 {
1555 struct cpa_data alias_cpa;
1556 unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1557 unsigned long vaddr;
1558 int ret;
1559
1560 if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1561 return 0;
1562
1563 /*
1564 * No need to redo, when the primary call touched the direct
1565 * mapping already:
1566 */
1567 vaddr = __cpa_addr(cpa, cpa->curpage);
1568 if (!(within(vaddr, PAGE_OFFSET,
1569 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1570
1571 alias_cpa = *cpa;
1572 alias_cpa.vaddr = &laddr;
1573 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1574 alias_cpa.curpage = 0;
1575
1576 ret = __change_page_attr_set_clr(&alias_cpa, 0);
1577 if (ret)
1578 return ret;
1579 }
1580
1581 #ifdef CONFIG_X86_64
1582 /*
1583 * If the primary call didn't touch the high mapping already
1584 * and the physical address is inside the kernel map, we need
1585 * to touch the high mapped kernel as well:
1586 */
1587 if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1588 __cpa_pfn_in_highmap(cpa->pfn)) {
1589 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1590 __START_KERNEL_map - phys_base;
1591 alias_cpa = *cpa;
1592 alias_cpa.vaddr = &temp_cpa_vaddr;
1593 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1594 alias_cpa.curpage = 0;
1595
1596 /*
1597 * The high mapping range is imprecise, so ignore the
1598 * return value.
1599 */
1600 __change_page_attr_set_clr(&alias_cpa, 0);
1601 }
1602 #endif
1603
1604 return 0;
1605 }
1606
1607 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1608 {
1609 unsigned long numpages = cpa->numpages;
1610 unsigned long rempages = numpages;
1611 int ret = 0;
1612
1613 while (rempages) {
1614 /*
1615 * Store the remaining nr of pages for the large page
1616 * preservation check.
1617 */
1618 cpa->numpages = rempages;
1619 /* for array changes, we can't use large page */
1620 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1621 cpa->numpages = 1;
1622
1623 if (!debug_pagealloc_enabled())
1624 spin_lock(&cpa_lock);
1625 ret = __change_page_attr(cpa, checkalias);
1626 if (!debug_pagealloc_enabled())
1627 spin_unlock(&cpa_lock);
1628 if (ret)
1629 goto out;
1630
1631 if (checkalias) {
1632 ret = cpa_process_alias(cpa);
1633 if (ret)
1634 goto out;
1635 }
1636
1637 /*
1638 * Adjust the number of pages with the result of the
1639 * CPA operation. Either a large page has been
1640 * preserved or a single page update happened.
1641 */
1642 BUG_ON(cpa->numpages > rempages || !cpa->numpages);
1643 rempages -= cpa->numpages;
1644 cpa->curpage += cpa->numpages;
1645 }
1646
1647 out:
1648 /* Restore the original numpages */
1649 cpa->numpages = numpages;
1650 return ret;
1651 }
1652
1653 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1654 pgprot_t mask_set, pgprot_t mask_clr,
1655 int force_split, int in_flag,
1656 struct page **pages)
1657 {
1658 struct cpa_data cpa;
1659 int ret, cache, checkalias;
1660
1661 memset(&cpa, 0, sizeof(cpa));
1662
1663 /*
1664 * Check, if we are requested to set a not supported
1665 * feature. Clearing non-supported features is OK.
1666 */
1667 mask_set = canon_pgprot(mask_set);
1668
1669 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1670 return 0;
1671
1672 /* Ensure we are PAGE_SIZE aligned */
1673 if (in_flag & CPA_ARRAY) {
1674 int i;
1675 for (i = 0; i < numpages; i++) {
1676 if (addr[i] & ~PAGE_MASK) {
1677 addr[i] &= PAGE_MASK;
1678 WARN_ON_ONCE(1);
1679 }
1680 }
1681 } else if (!(in_flag & CPA_PAGES_ARRAY)) {
1682 /*
1683 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1684 * No need to check in that case
1685 */
1686 if (*addr & ~PAGE_MASK) {
1687 *addr &= PAGE_MASK;
1688 /*
1689 * People should not be passing in unaligned addresses:
1690 */
1691 WARN_ON_ONCE(1);
1692 }
1693 }
1694
1695 /* Must avoid aliasing mappings in the highmem code */
1696 kmap_flush_unused();
1697
1698 vm_unmap_aliases();
1699
1700 cpa.vaddr = addr;
1701 cpa.pages = pages;
1702 cpa.numpages = numpages;
1703 cpa.mask_set = mask_set;
1704 cpa.mask_clr = mask_clr;
1705 cpa.flags = 0;
1706 cpa.curpage = 0;
1707 cpa.force_split = force_split;
1708
1709 if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1710 cpa.flags |= in_flag;
1711
1712 /* No alias checking for _NX bit modifications */
1713 checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1714 /* Has caller explicitly disabled alias checking? */
1715 if (in_flag & CPA_NO_CHECK_ALIAS)
1716 checkalias = 0;
1717
1718 ret = __change_page_attr_set_clr(&cpa, checkalias);
1719
1720 /*
1721 * Check whether we really changed something:
1722 */
1723 if (!(cpa.flags & CPA_FLUSHTLB))
1724 goto out;
1725
1726 /*
1727 * No need to flush, when we did not set any of the caching
1728 * attributes:
1729 */
1730 cache = !!pgprot2cachemode(mask_set);
1731
1732 /*
1733 * On error; flush everything to be sure.
1734 */
1735 if (ret) {
1736 cpa_flush_all(cache);
1737 goto out;
1738 }
1739
1740 cpa_flush(&cpa, cache);
1741 out:
1742 return ret;
1743 }
1744
1745 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1746 pgprot_t mask, int array)
1747 {
1748 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1749 (array ? CPA_ARRAY : 0), NULL);
1750 }
1751
1752 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1753 pgprot_t mask, int array)
1754 {
1755 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1756 (array ? CPA_ARRAY : 0), NULL);
1757 }
1758
1759 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1760 pgprot_t mask)
1761 {
1762 return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1763 CPA_PAGES_ARRAY, pages);
1764 }
1765
1766 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1767 pgprot_t mask)
1768 {
1769 return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1770 CPA_PAGES_ARRAY, pages);
1771 }
1772
1773 int _set_memory_uc(unsigned long addr, int numpages)
1774 {
1775 /*
1776 * for now UC MINUS. see comments in ioremap_nocache()
1777 * If you really need strong UC use ioremap_uc(), but note
1778 * that you cannot override IO areas with set_memory_*() as
1779 * these helpers cannot work with IO memory.
1780 */
1781 return change_page_attr_set(&addr, numpages,
1782 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1783 0);
1784 }
1785
1786 int set_memory_uc(unsigned long addr, int numpages)
1787 {
1788 int ret;
1789
1790 /*
1791 * for now UC MINUS. see comments in ioremap_nocache()
1792 */
1793 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1794 _PAGE_CACHE_MODE_UC_MINUS, NULL);
1795 if (ret)
1796 goto out_err;
1797
1798 ret = _set_memory_uc(addr, numpages);
1799 if (ret)
1800 goto out_free;
1801
1802 return 0;
1803
1804 out_free:
1805 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1806 out_err:
1807 return ret;
1808 }
1809 EXPORT_SYMBOL(set_memory_uc);
1810
1811 static int _set_memory_array(unsigned long *addr, int numpages,
1812 enum page_cache_mode new_type)
1813 {
1814 enum page_cache_mode set_type;
1815 int i, j;
1816 int ret;
1817
1818 for (i = 0; i < numpages; i++) {
1819 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1820 new_type, NULL);
1821 if (ret)
1822 goto out_free;
1823 }
1824
1825 /* If WC, set to UC- first and then WC */
1826 set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1827 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1828
1829 ret = change_page_attr_set(addr, numpages,
1830 cachemode2pgprot(set_type), 1);
1831
1832 if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1833 ret = change_page_attr_set_clr(addr, numpages,
1834 cachemode2pgprot(
1835 _PAGE_CACHE_MODE_WC),
1836 __pgprot(_PAGE_CACHE_MASK),
1837 0, CPA_ARRAY, NULL);
1838 if (ret)
1839 goto out_free;
1840
1841 return 0;
1842
1843 out_free:
1844 for (j = 0; j < i; j++)
1845 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1846
1847 return ret;
1848 }
1849
1850 int set_memory_array_uc(unsigned long *addr, int numpages)
1851 {
1852 return _set_memory_array(addr, numpages, _PAGE_CACHE_MODE_UC_MINUS);
1853 }
1854 EXPORT_SYMBOL(set_memory_array_uc);
1855
1856 int set_memory_array_wc(unsigned long *addr, int numpages)
1857 {
1858 return _set_memory_array(addr, numpages, _PAGE_CACHE_MODE_WC);
1859 }
1860 EXPORT_SYMBOL(set_memory_array_wc);
1861
1862 int set_memory_array_wt(unsigned long *addr, int numpages)
1863 {
1864 return _set_memory_array(addr, numpages, _PAGE_CACHE_MODE_WT);
1865 }
1866 EXPORT_SYMBOL_GPL(set_memory_array_wt);
1867
1868 int _set_memory_wc(unsigned long addr, int numpages)
1869 {
1870 int ret;
1871
1872 ret = change_page_attr_set(&addr, numpages,
1873 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1874 0);
1875 if (!ret) {
1876 ret = change_page_attr_set_clr(&addr, numpages,
1877 cachemode2pgprot(_PAGE_CACHE_MODE_WC),
1878 __pgprot(_PAGE_CACHE_MASK),
1879 0, 0, NULL);
1880 }
1881 return ret;
1882 }
1883
1884 int set_memory_wc(unsigned long addr, int numpages)
1885 {
1886 int ret;
1887
1888 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1889 _PAGE_CACHE_MODE_WC, NULL);
1890 if (ret)
1891 return ret;
1892
1893 ret = _set_memory_wc(addr, numpages);
1894 if (ret)
1895 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1896
1897 return ret;
1898 }
1899 EXPORT_SYMBOL(set_memory_wc);
1900
1901 int _set_memory_wt(unsigned long addr, int numpages)
1902 {
1903 return change_page_attr_set(&addr, numpages,
1904 cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1905 }
1906
1907 int set_memory_wt(unsigned long addr, int numpages)
1908 {
1909 int ret;
1910
1911 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1912 _PAGE_CACHE_MODE_WT, NULL);
1913 if (ret)
1914 return ret;
1915
1916 ret = _set_memory_wt(addr, numpages);
1917 if (ret)
1918 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1919
1920 return ret;
1921 }
1922 EXPORT_SYMBOL_GPL(set_memory_wt);
1923
1924 int _set_memory_wb(unsigned long addr, int numpages)
1925 {
1926 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1927 return change_page_attr_clear(&addr, numpages,
1928 __pgprot(_PAGE_CACHE_MASK), 0);
1929 }
1930
1931 int set_memory_wb(unsigned long addr, int numpages)
1932 {
1933 int ret;
1934
1935 ret = _set_memory_wb(addr, numpages);
1936 if (ret)
1937 return ret;
1938
1939 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1940 return 0;
1941 }
1942 EXPORT_SYMBOL(set_memory_wb);
1943
1944 int set_memory_array_wb(unsigned long *addr, int numpages)
1945 {
1946 int i;
1947 int ret;
1948
1949 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1950 ret = change_page_attr_clear(addr, numpages,
1951 __pgprot(_PAGE_CACHE_MASK), 1);
1952 if (ret)
1953 return ret;
1954
1955 for (i = 0; i < numpages; i++)
1956 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1957
1958 return 0;
1959 }
1960 EXPORT_SYMBOL(set_memory_array_wb);
1961
1962 int set_memory_x(unsigned long addr, int numpages)
1963 {
1964 if (!(__supported_pte_mask & _PAGE_NX))
1965 return 0;
1966
1967 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1968 }
1969 EXPORT_SYMBOL(set_memory_x);
1970
1971 int set_memory_nx(unsigned long addr, int numpages)
1972 {
1973 if (!(__supported_pte_mask & _PAGE_NX))
1974 return 0;
1975
1976 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1977 }
1978 EXPORT_SYMBOL(set_memory_nx);
1979
1980 int set_memory_ro(unsigned long addr, int numpages)
1981 {
1982 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1983 }
1984
1985 int set_memory_rw(unsigned long addr, int numpages)
1986 {
1987 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1988 }
1989
1990 int set_memory_np(unsigned long addr, int numpages)
1991 {
1992 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1993 }
1994
1995 int set_memory_np_noalias(unsigned long addr, int numpages)
1996 {
1997 int cpa_flags = CPA_NO_CHECK_ALIAS;
1998
1999 return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
2000 __pgprot(_PAGE_PRESENT), 0,
2001 cpa_flags, NULL);
2002 }
2003
2004 int set_memory_4k(unsigned long addr, int numpages)
2005 {
2006 return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
2007 __pgprot(0), 1, 0, NULL);
2008 }
2009
2010 int set_memory_nonglobal(unsigned long addr, int numpages)
2011 {
2012 return change_page_attr_clear(&addr, numpages,
2013 __pgprot(_PAGE_GLOBAL), 0);
2014 }
2015
2016 int set_memory_global(unsigned long addr, int numpages)
2017 {
2018 return change_page_attr_set(&addr, numpages,
2019 __pgprot(_PAGE_GLOBAL), 0);
2020 }
2021
2022 static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
2023 {
2024 struct cpa_data cpa;
2025 int ret;
2026
2027 /* Nothing to do if memory encryption is not active */
2028 if (!mem_encrypt_active())
2029 return 0;
2030
2031 /* Should not be working on unaligned addresses */
2032 if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
2033 addr &= PAGE_MASK;
2034
2035 memset(&cpa, 0, sizeof(cpa));
2036 cpa.vaddr = &addr;
2037 cpa.numpages = numpages;
2038 cpa.mask_set = enc ? __pgprot(_PAGE_ENC) : __pgprot(0);
2039 cpa.mask_clr = enc ? __pgprot(0) : __pgprot(_PAGE_ENC);
2040 cpa.pgd = init_mm.pgd;
2041
2042 /* Must avoid aliasing mappings in the highmem code */
2043 kmap_flush_unused();
2044 vm_unmap_aliases();
2045
2046 /*
2047 * Before changing the encryption attribute, we need to flush caches.
2048 */
2049 cpa_flush(&cpa, 1);
2050
2051 ret = __change_page_attr_set_clr(&cpa, 1);
2052
2053 /*
2054 * After changing the encryption attribute, we need to flush TLBs again
2055 * in case any speculative TLB caching occurred (but no need to flush
2056 * caches again). We could just use cpa_flush_all(), but in case TLB
2057 * flushing gets optimized in the cpa_flush() path use the same logic
2058 * as above.
2059 */
2060 cpa_flush(&cpa, 0);
2061
2062 return ret;
2063 }
2064
2065 int set_memory_encrypted(unsigned long addr, int numpages)
2066 {
2067 return __set_memory_enc_dec(addr, numpages, true);
2068 }
2069 EXPORT_SYMBOL_GPL(set_memory_encrypted);
2070
2071 int set_memory_decrypted(unsigned long addr, int numpages)
2072 {
2073 return __set_memory_enc_dec(addr, numpages, false);
2074 }
2075 EXPORT_SYMBOL_GPL(set_memory_decrypted);
2076
2077 int set_pages_uc(struct page *page, int numpages)
2078 {
2079 unsigned long addr = (unsigned long)page_address(page);
2080
2081 return set_memory_uc(addr, numpages);
2082 }
2083 EXPORT_SYMBOL(set_pages_uc);
2084
2085 static int _set_pages_array(struct page **pages, int numpages,
2086 enum page_cache_mode new_type)
2087 {
2088 unsigned long start;
2089 unsigned long end;
2090 enum page_cache_mode set_type;
2091 int i;
2092 int free_idx;
2093 int ret;
2094
2095 for (i = 0; i < numpages; i++) {
2096 if (PageHighMem(pages[i]))
2097 continue;
2098 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2099 end = start + PAGE_SIZE;
2100 if (reserve_memtype(start, end, new_type, NULL))
2101 goto err_out;
2102 }
2103
2104 /* If WC, set to UC- first and then WC */
2105 set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
2106 _PAGE_CACHE_MODE_UC_MINUS : new_type;
2107
2108 ret = cpa_set_pages_array(pages, numpages,
2109 cachemode2pgprot(set_type));
2110 if (!ret && new_type == _PAGE_CACHE_MODE_WC)
2111 ret = change_page_attr_set_clr(NULL, numpages,
2112 cachemode2pgprot(
2113 _PAGE_CACHE_MODE_WC),
2114 __pgprot(_PAGE_CACHE_MASK),
2115 0, CPA_PAGES_ARRAY, pages);
2116 if (ret)
2117 goto err_out;
2118 return 0; /* Success */
2119 err_out:
2120 free_idx = i;
2121 for (i = 0; i < free_idx; i++) {
2122 if (PageHighMem(pages[i]))
2123 continue;
2124 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2125 end = start + PAGE_SIZE;
2126 free_memtype(start, end);
2127 }
2128 return -EINVAL;
2129 }
2130
2131 int set_pages_array_uc(struct page **pages, int numpages)
2132 {
2133 return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS);
2134 }
2135 EXPORT_SYMBOL(set_pages_array_uc);
2136
2137 int set_pages_array_wc(struct page **pages, int numpages)
2138 {
2139 return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC);
2140 }
2141 EXPORT_SYMBOL(set_pages_array_wc);
2142
2143 int set_pages_array_wt(struct page **pages, int numpages)
2144 {
2145 return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WT);
2146 }
2147 EXPORT_SYMBOL_GPL(set_pages_array_wt);
2148
2149 int set_pages_wb(struct page *page, int numpages)
2150 {
2151 unsigned long addr = (unsigned long)page_address(page);
2152
2153 return set_memory_wb(addr, numpages);
2154 }
2155 EXPORT_SYMBOL(set_pages_wb);
2156
2157 int set_pages_array_wb(struct page **pages, int numpages)
2158 {
2159 int retval;
2160 unsigned long start;
2161 unsigned long end;
2162 int i;
2163
2164 /* WB cache mode is hard wired to all cache attribute bits being 0 */
2165 retval = cpa_clear_pages_array(pages, numpages,
2166 __pgprot(_PAGE_CACHE_MASK));
2167 if (retval)
2168 return retval;
2169
2170 for (i = 0; i < numpages; i++) {
2171 if (PageHighMem(pages[i]))
2172 continue;
2173 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2174 end = start + PAGE_SIZE;
2175 free_memtype(start, end);
2176 }
2177
2178 return 0;
2179 }
2180 EXPORT_SYMBOL(set_pages_array_wb);
2181
2182 int set_pages_x(struct page *page, int numpages)
2183 {
2184 unsigned long addr = (unsigned long)page_address(page);
2185
2186 return set_memory_x(addr, numpages);
2187 }
2188 EXPORT_SYMBOL(set_pages_x);
2189
2190 int set_pages_nx(struct page *page, int numpages)
2191 {
2192 unsigned long addr = (unsigned long)page_address(page);
2193
2194 return set_memory_nx(addr, numpages);
2195 }
2196 EXPORT_SYMBOL(set_pages_nx);
2197
2198 int set_pages_ro(struct page *page, int numpages)
2199 {
2200 unsigned long addr = (unsigned long)page_address(page);
2201
2202 return set_memory_ro(addr, numpages);
2203 }
2204
2205 int set_pages_rw(struct page *page, int numpages)
2206 {
2207 unsigned long addr = (unsigned long)page_address(page);
2208
2209 return set_memory_rw(addr, numpages);
2210 }
2211
2212 #ifdef CONFIG_DEBUG_PAGEALLOC
2213
2214 static int __set_pages_p(struct page *page, int numpages)
2215 {
2216 unsigned long tempaddr = (unsigned long) page_address(page);
2217 struct cpa_data cpa = { .vaddr = &tempaddr,
2218 .pgd = NULL,
2219 .numpages = numpages,
2220 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2221 .mask_clr = __pgprot(0),
2222 .flags = 0};
2223
2224 /*
2225 * No alias checking needed for setting present flag. otherwise,
2226 * we may need to break large pages for 64-bit kernel text
2227 * mappings (this adds to complexity if we want to do this from
2228 * atomic context especially). Let's keep it simple!
2229 */
2230 return __change_page_attr_set_clr(&cpa, 0);
2231 }
2232
2233 static int __set_pages_np(struct page *page, int numpages)
2234 {
2235 unsigned long tempaddr = (unsigned long) page_address(page);
2236 struct cpa_data cpa = { .vaddr = &tempaddr,
2237 .pgd = NULL,
2238 .numpages = numpages,
2239 .mask_set = __pgprot(0),
2240 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2241 .flags = 0};
2242
2243 /*
2244 * No alias checking needed for setting not present flag. otherwise,
2245 * we may need to break large pages for 64-bit kernel text
2246 * mappings (this adds to complexity if we want to do this from
2247 * atomic context especially). Let's keep it simple!
2248 */
2249 return __change_page_attr_set_clr(&cpa, 0);
2250 }
2251
2252 void __kernel_map_pages(struct page *page, int numpages, int enable)
2253 {
2254 if (PageHighMem(page))
2255 return;
2256 if (!enable) {
2257 debug_check_no_locks_freed(page_address(page),
2258 numpages * PAGE_SIZE);
2259 }
2260
2261 /*
2262 * The return value is ignored as the calls cannot fail.
2263 * Large pages for identity mappings are not used at boot time
2264 * and hence no memory allocations during large page split.
2265 */
2266 if (enable)
2267 __set_pages_p(page, numpages);
2268 else
2269 __set_pages_np(page, numpages);
2270
2271 /*
2272 * We should perform an IPI and flush all tlbs,
2273 * but that can deadlock->flush only current cpu.
2274 * Preemption needs to be disabled around __flush_tlb_all() due to
2275 * CR3 reload in __native_flush_tlb().
2276 */
2277 preempt_disable();
2278 __flush_tlb_all();
2279 preempt_enable();
2280
2281 arch_flush_lazy_mmu_mode();
2282 }
2283
2284 #ifdef CONFIG_HIBERNATION
2285
2286 bool kernel_page_present(struct page *page)
2287 {
2288 unsigned int level;
2289 pte_t *pte;
2290
2291 if (PageHighMem(page))
2292 return false;
2293
2294 pte = lookup_address((unsigned long)page_address(page), &level);
2295 return (pte_val(*pte) & _PAGE_PRESENT);
2296 }
2297
2298 #endif /* CONFIG_HIBERNATION */
2299
2300 #endif /* CONFIG_DEBUG_PAGEALLOC */
2301
2302 int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
2303 unsigned numpages, unsigned long page_flags)
2304 {
2305 int retval = -EINVAL;
2306
2307 struct cpa_data cpa = {
2308 .vaddr = &address,
2309 .pfn = pfn,
2310 .pgd = pgd,
2311 .numpages = numpages,
2312 .mask_set = __pgprot(0),
2313 .mask_clr = __pgprot(0),
2314 .flags = 0,
2315 };
2316
2317 WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2318
2319 if (!(__supported_pte_mask & _PAGE_NX))
2320 goto out;
2321
2322 if (!(page_flags & _PAGE_NX))
2323 cpa.mask_clr = __pgprot(_PAGE_NX);
2324
2325 if (!(page_flags & _PAGE_RW))
2326 cpa.mask_clr = __pgprot(_PAGE_RW);
2327
2328 if (!(page_flags & _PAGE_ENC))
2329 cpa.mask_clr = pgprot_encrypted(cpa.mask_clr);
2330
2331 cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
2332
2333 retval = __change_page_attr_set_clr(&cpa, 0);
2334 __flush_tlb_all();
2335
2336 out:
2337 return retval;
2338 }
2339
2340 /*
2341 * __flush_tlb_all() flushes mappings only on current CPU and hence this
2342 * function shouldn't be used in an SMP environment. Presently, it's used only
2343 * during boot (way before smp_init()) by EFI subsystem and hence is ok.
2344 */
2345 int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address,
2346 unsigned long numpages)
2347 {
2348 int retval;
2349
2350 /*
2351 * The typical sequence for unmapping is to find a pte through
2352 * lookup_address_in_pgd() (ideally, it should never return NULL because
2353 * the address is already mapped) and change it's protections. As pfn is
2354 * the *target* of a mapping, it's not useful while unmapping.
2355 */
2356 struct cpa_data cpa = {
2357 .vaddr = &address,
2358 .pfn = 0,
2359 .pgd = pgd,
2360 .numpages = numpages,
2361 .mask_set = __pgprot(0),
2362 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2363 .flags = 0,
2364 };
2365
2366 WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2367
2368 retval = __change_page_attr_set_clr(&cpa, 0);
2369 __flush_tlb_all();
2370
2371 return retval;
2372 }
2373
2374 /*
2375 * The testcases use internal knowledge of the implementation that shouldn't
2376 * be exposed to the rest of the kernel. Include these directly here.
2377 */
2378 #ifdef CONFIG_CPA_DEBUG
2379 #include "pageattr-test.c"
2380 #endif