]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/x86/mm/pat.c
Merge branch 'docs-next' of git://git.lwn.net/linux-2.6
[mirror_ubuntu-hirsute-kernel.git] / arch / x86 / mm / pat.c
1 /*
2 * Handle caching attributes in page tables (PAT)
3 *
4 * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
5 * Suresh B Siddha <suresh.b.siddha@intel.com>
6 *
7 * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
8 */
9
10 #include <linux/seq_file.h>
11 #include <linux/bootmem.h>
12 #include <linux/debugfs.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/mm.h>
17 #include <linux/fs.h>
18 #include <linux/rbtree.h>
19
20 #include <asm/cacheflush.h>
21 #include <asm/processor.h>
22 #include <asm/tlbflush.h>
23 #include <asm/x86_init.h>
24 #include <asm/pgtable.h>
25 #include <asm/fcntl.h>
26 #include <asm/e820.h>
27 #include <asm/mtrr.h>
28 #include <asm/page.h>
29 #include <asm/msr.h>
30 #include <asm/pat.h>
31 #include <asm/io.h>
32
33 #include "pat_internal.h"
34
35 #ifdef CONFIG_X86_PAT
36 int __read_mostly pat_enabled = 1;
37
38 static inline void pat_disable(const char *reason)
39 {
40 pat_enabled = 0;
41 printk(KERN_INFO "%s\n", reason);
42 }
43
44 static int __init nopat(char *str)
45 {
46 pat_disable("PAT support disabled.");
47 return 0;
48 }
49 early_param("nopat", nopat);
50 #else
51 static inline void pat_disable(const char *reason)
52 {
53 (void)reason;
54 }
55 #endif
56
57
58 int pat_debug_enable;
59
60 static int __init pat_debug_setup(char *str)
61 {
62 pat_debug_enable = 1;
63 return 0;
64 }
65 __setup("debugpat", pat_debug_setup);
66
67 static u64 __read_mostly boot_pat_state;
68
69 enum {
70 PAT_UC = 0, /* uncached */
71 PAT_WC = 1, /* Write combining */
72 PAT_WT = 4, /* Write Through */
73 PAT_WP = 5, /* Write Protected */
74 PAT_WB = 6, /* Write Back (default) */
75 PAT_UC_MINUS = 7, /* UC, but can be overriden by MTRR */
76 };
77
78 #define PAT(x, y) ((u64)PAT_ ## y << ((x)*8))
79
80 void pat_init(void)
81 {
82 u64 pat;
83 bool boot_cpu = !boot_pat_state;
84
85 if (!pat_enabled)
86 return;
87
88 if (!cpu_has_pat) {
89 if (!boot_pat_state) {
90 pat_disable("PAT not supported by CPU.");
91 return;
92 } else {
93 /*
94 * If this happens we are on a secondary CPU, but
95 * switched to PAT on the boot CPU. We have no way to
96 * undo PAT.
97 */
98 printk(KERN_ERR "PAT enabled, "
99 "but not supported by secondary CPU\n");
100 BUG();
101 }
102 }
103
104 /* Set PWT to Write-Combining. All other bits stay the same */
105 /*
106 * PTE encoding used in Linux:
107 * PAT
108 * |PCD
109 * ||PWT
110 * |||
111 * 000 WB _PAGE_CACHE_WB
112 * 001 WC _PAGE_CACHE_WC
113 * 010 UC- _PAGE_CACHE_UC_MINUS
114 * 011 UC _PAGE_CACHE_UC
115 * PAT bit unused
116 */
117 pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
118 PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC);
119
120 /* Boot CPU check */
121 if (!boot_pat_state)
122 rdmsrl(MSR_IA32_CR_PAT, boot_pat_state);
123
124 wrmsrl(MSR_IA32_CR_PAT, pat);
125
126 if (boot_cpu)
127 printk(KERN_INFO "x86 PAT enabled: cpu %d, old 0x%Lx, new 0x%Lx\n",
128 smp_processor_id(), boot_pat_state, pat);
129 }
130
131 #undef PAT
132
133 static DEFINE_SPINLOCK(memtype_lock); /* protects memtype accesses */
134
135 /*
136 * Does intersection of PAT memory type and MTRR memory type and returns
137 * the resulting memory type as PAT understands it.
138 * (Type in pat and mtrr will not have same value)
139 * The intersection is based on "Effective Memory Type" tables in IA-32
140 * SDM vol 3a
141 */
142 static unsigned long pat_x_mtrr_type(u64 start, u64 end, unsigned long req_type)
143 {
144 /*
145 * Look for MTRR hint to get the effective type in case where PAT
146 * request is for WB.
147 */
148 if (req_type == _PAGE_CACHE_WB) {
149 u8 mtrr_type;
150
151 mtrr_type = mtrr_type_lookup(start, end);
152 if (mtrr_type != MTRR_TYPE_WRBACK)
153 return _PAGE_CACHE_UC_MINUS;
154
155 return _PAGE_CACHE_WB;
156 }
157
158 return req_type;
159 }
160
161 static int pat_pagerange_is_ram(unsigned long start, unsigned long end)
162 {
163 int ram_page = 0, not_rampage = 0;
164 unsigned long page_nr;
165
166 for (page_nr = (start >> PAGE_SHIFT); page_nr < (end >> PAGE_SHIFT);
167 ++page_nr) {
168 /*
169 * For legacy reasons, physical address range in the legacy ISA
170 * region is tracked as non-RAM. This will allow users of
171 * /dev/mem to map portions of legacy ISA region, even when
172 * some of those portions are listed(or not even listed) with
173 * different e820 types(RAM/reserved/..)
174 */
175 if (page_nr >= (ISA_END_ADDRESS >> PAGE_SHIFT) &&
176 page_is_ram(page_nr))
177 ram_page = 1;
178 else
179 not_rampage = 1;
180
181 if (ram_page == not_rampage)
182 return -1;
183 }
184
185 return ram_page;
186 }
187
188 /*
189 * For RAM pages, we use page flags to mark the pages with appropriate type.
190 * Here we do two pass:
191 * - Find the memtype of all the pages in the range, look for any conflicts
192 * - In case of no conflicts, set the new memtype for pages in the range
193 */
194 static int reserve_ram_pages_type(u64 start, u64 end, unsigned long req_type,
195 unsigned long *new_type)
196 {
197 struct page *page;
198 u64 pfn;
199
200 if (req_type == _PAGE_CACHE_UC) {
201 /* We do not support strong UC */
202 WARN_ON_ONCE(1);
203 req_type = _PAGE_CACHE_UC_MINUS;
204 }
205
206 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
207 unsigned long type;
208
209 page = pfn_to_page(pfn);
210 type = get_page_memtype(page);
211 if (type != -1) {
212 printk(KERN_INFO "reserve_ram_pages_type failed "
213 "0x%Lx-0x%Lx, track 0x%lx, req 0x%lx\n",
214 start, end, type, req_type);
215 if (new_type)
216 *new_type = type;
217
218 return -EBUSY;
219 }
220 }
221
222 if (new_type)
223 *new_type = req_type;
224
225 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
226 page = pfn_to_page(pfn);
227 set_page_memtype(page, req_type);
228 }
229 return 0;
230 }
231
232 static int free_ram_pages_type(u64 start, u64 end)
233 {
234 struct page *page;
235 u64 pfn;
236
237 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
238 page = pfn_to_page(pfn);
239 set_page_memtype(page, -1);
240 }
241 return 0;
242 }
243
244 /*
245 * req_type typically has one of the:
246 * - _PAGE_CACHE_WB
247 * - _PAGE_CACHE_WC
248 * - _PAGE_CACHE_UC_MINUS
249 * - _PAGE_CACHE_UC
250 *
251 * If new_type is NULL, function will return an error if it cannot reserve the
252 * region with req_type. If new_type is non-NULL, function will return
253 * available type in new_type in case of no error. In case of any error
254 * it will return a negative return value.
255 */
256 int reserve_memtype(u64 start, u64 end, unsigned long req_type,
257 unsigned long *new_type)
258 {
259 struct memtype *new;
260 unsigned long actual_type;
261 int is_range_ram;
262 int err = 0;
263
264 BUG_ON(start >= end); /* end is exclusive */
265
266 if (!pat_enabled) {
267 /* This is identical to page table setting without PAT */
268 if (new_type) {
269 if (req_type == _PAGE_CACHE_WC)
270 *new_type = _PAGE_CACHE_UC_MINUS;
271 else
272 *new_type = req_type & _PAGE_CACHE_MASK;
273 }
274 return 0;
275 }
276
277 /* Low ISA region is always mapped WB in page table. No need to track */
278 if (x86_platform.is_untracked_pat_range(start, end)) {
279 if (new_type)
280 *new_type = _PAGE_CACHE_WB;
281 return 0;
282 }
283
284 /*
285 * Call mtrr_lookup to get the type hint. This is an
286 * optimization for /dev/mem mmap'ers into WB memory (BIOS
287 * tools and ACPI tools). Use WB request for WB memory and use
288 * UC_MINUS otherwise.
289 */
290 actual_type = pat_x_mtrr_type(start, end, req_type & _PAGE_CACHE_MASK);
291
292 if (new_type)
293 *new_type = actual_type;
294
295 is_range_ram = pat_pagerange_is_ram(start, end);
296 if (is_range_ram == 1) {
297
298 err = reserve_ram_pages_type(start, end, req_type, new_type);
299
300 return err;
301 } else if (is_range_ram < 0) {
302 return -EINVAL;
303 }
304
305 new = kmalloc(sizeof(struct memtype), GFP_KERNEL);
306 if (!new)
307 return -ENOMEM;
308
309 new->start = start;
310 new->end = end;
311 new->type = actual_type;
312
313 spin_lock(&memtype_lock);
314
315 err = rbt_memtype_check_insert(new, new_type);
316 if (err) {
317 printk(KERN_INFO "reserve_memtype failed 0x%Lx-0x%Lx, "
318 "track %s, req %s\n",
319 start, end, cattr_name(new->type), cattr_name(req_type));
320 kfree(new);
321 spin_unlock(&memtype_lock);
322
323 return err;
324 }
325
326 spin_unlock(&memtype_lock);
327
328 dprintk("reserve_memtype added 0x%Lx-0x%Lx, track %s, req %s, ret %s\n",
329 start, end, cattr_name(new->type), cattr_name(req_type),
330 new_type ? cattr_name(*new_type) : "-");
331
332 return err;
333 }
334
335 int free_memtype(u64 start, u64 end)
336 {
337 int err = -EINVAL;
338 int is_range_ram;
339
340 if (!pat_enabled)
341 return 0;
342
343 /* Low ISA region is always mapped WB. No need to track */
344 if (x86_platform.is_untracked_pat_range(start, end))
345 return 0;
346
347 is_range_ram = pat_pagerange_is_ram(start, end);
348 if (is_range_ram == 1) {
349
350 err = free_ram_pages_type(start, end);
351
352 return err;
353 } else if (is_range_ram < 0) {
354 return -EINVAL;
355 }
356
357 spin_lock(&memtype_lock);
358 err = rbt_memtype_erase(start, end);
359 spin_unlock(&memtype_lock);
360
361 if (err) {
362 printk(KERN_INFO "%s:%d freeing invalid memtype %Lx-%Lx\n",
363 current->comm, current->pid, start, end);
364 }
365
366 dprintk("free_memtype request 0x%Lx-0x%Lx\n", start, end);
367
368 return err;
369 }
370
371
372 /**
373 * lookup_memtype - Looksup the memory type for a physical address
374 * @paddr: physical address of which memory type needs to be looked up
375 *
376 * Only to be called when PAT is enabled
377 *
378 * Returns _PAGE_CACHE_WB, _PAGE_CACHE_WC, _PAGE_CACHE_UC_MINUS or
379 * _PAGE_CACHE_UC
380 */
381 static unsigned long lookup_memtype(u64 paddr)
382 {
383 int rettype = _PAGE_CACHE_WB;
384 struct memtype *entry;
385
386 if (x86_platform.is_untracked_pat_range(paddr, paddr + PAGE_SIZE))
387 return rettype;
388
389 if (pat_pagerange_is_ram(paddr, paddr + PAGE_SIZE)) {
390 struct page *page;
391 page = pfn_to_page(paddr >> PAGE_SHIFT);
392 rettype = get_page_memtype(page);
393 /*
394 * -1 from get_page_memtype() implies RAM page is in its
395 * default state and not reserved, and hence of type WB
396 */
397 if (rettype == -1)
398 rettype = _PAGE_CACHE_WB;
399
400 return rettype;
401 }
402
403 spin_lock(&memtype_lock);
404
405 entry = rbt_memtype_lookup(paddr);
406 if (entry != NULL)
407 rettype = entry->type;
408 else
409 rettype = _PAGE_CACHE_UC_MINUS;
410
411 spin_unlock(&memtype_lock);
412 return rettype;
413 }
414
415 /**
416 * io_reserve_memtype - Request a memory type mapping for a region of memory
417 * @start: start (physical address) of the region
418 * @end: end (physical address) of the region
419 * @type: A pointer to memtype, with requested type. On success, requested
420 * or any other compatible type that was available for the region is returned
421 *
422 * On success, returns 0
423 * On failure, returns non-zero
424 */
425 int io_reserve_memtype(resource_size_t start, resource_size_t end,
426 unsigned long *type)
427 {
428 resource_size_t size = end - start;
429 unsigned long req_type = *type;
430 unsigned long new_type;
431 int ret;
432
433 WARN_ON_ONCE(iomem_map_sanity_check(start, size));
434
435 ret = reserve_memtype(start, end, req_type, &new_type);
436 if (ret)
437 goto out_err;
438
439 if (!is_new_memtype_allowed(start, size, req_type, new_type))
440 goto out_free;
441
442 if (kernel_map_sync_memtype(start, size, new_type) < 0)
443 goto out_free;
444
445 *type = new_type;
446 return 0;
447
448 out_free:
449 free_memtype(start, end);
450 ret = -EBUSY;
451 out_err:
452 return ret;
453 }
454
455 /**
456 * io_free_memtype - Release a memory type mapping for a region of memory
457 * @start: start (physical address) of the region
458 * @end: end (physical address) of the region
459 */
460 void io_free_memtype(resource_size_t start, resource_size_t end)
461 {
462 free_memtype(start, end);
463 }
464
465 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
466 unsigned long size, pgprot_t vma_prot)
467 {
468 return vma_prot;
469 }
470
471 #ifdef CONFIG_STRICT_DEVMEM
472 /* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM*/
473 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
474 {
475 return 1;
476 }
477 #else
478 /* This check is needed to avoid cache aliasing when PAT is enabled */
479 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
480 {
481 u64 from = ((u64)pfn) << PAGE_SHIFT;
482 u64 to = from + size;
483 u64 cursor = from;
484
485 if (!pat_enabled)
486 return 1;
487
488 while (cursor < to) {
489 if (!devmem_is_allowed(pfn)) {
490 printk(KERN_INFO
491 "Program %s tried to access /dev/mem between %Lx->%Lx.\n",
492 current->comm, from, to);
493 return 0;
494 }
495 cursor += PAGE_SIZE;
496 pfn++;
497 }
498 return 1;
499 }
500 #endif /* CONFIG_STRICT_DEVMEM */
501
502 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
503 unsigned long size, pgprot_t *vma_prot)
504 {
505 unsigned long flags = _PAGE_CACHE_WB;
506
507 if (!range_is_allowed(pfn, size))
508 return 0;
509
510 if (file->f_flags & O_DSYNC)
511 flags = _PAGE_CACHE_UC_MINUS;
512
513 #ifdef CONFIG_X86_32
514 /*
515 * On the PPro and successors, the MTRRs are used to set
516 * memory types for physical addresses outside main memory,
517 * so blindly setting UC or PWT on those pages is wrong.
518 * For Pentiums and earlier, the surround logic should disable
519 * caching for the high addresses through the KEN pin, but
520 * we maintain the tradition of paranoia in this code.
521 */
522 if (!pat_enabled &&
523 !(boot_cpu_has(X86_FEATURE_MTRR) ||
524 boot_cpu_has(X86_FEATURE_K6_MTRR) ||
525 boot_cpu_has(X86_FEATURE_CYRIX_ARR) ||
526 boot_cpu_has(X86_FEATURE_CENTAUR_MCR)) &&
527 (pfn << PAGE_SHIFT) >= __pa(high_memory)) {
528 flags = _PAGE_CACHE_UC;
529 }
530 #endif
531
532 *vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
533 flags);
534 return 1;
535 }
536
537 /*
538 * Change the memory type for the physial address range in kernel identity
539 * mapping space if that range is a part of identity map.
540 */
541 int kernel_map_sync_memtype(u64 base, unsigned long size, unsigned long flags)
542 {
543 unsigned long id_sz;
544
545 if (base >= __pa(high_memory))
546 return 0;
547
548 id_sz = (__pa(high_memory) < base + size) ?
549 __pa(high_memory) - base :
550 size;
551
552 if (ioremap_change_attr((unsigned long)__va(base), id_sz, flags) < 0) {
553 printk(KERN_INFO
554 "%s:%d ioremap_change_attr failed %s "
555 "for %Lx-%Lx\n",
556 current->comm, current->pid,
557 cattr_name(flags),
558 base, (unsigned long long)(base + size));
559 return -EINVAL;
560 }
561 return 0;
562 }
563
564 /*
565 * Internal interface to reserve a range of physical memory with prot.
566 * Reserved non RAM regions only and after successful reserve_memtype,
567 * this func also keeps identity mapping (if any) in sync with this new prot.
568 */
569 static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
570 int strict_prot)
571 {
572 int is_ram = 0;
573 int ret;
574 unsigned long want_flags = (pgprot_val(*vma_prot) & _PAGE_CACHE_MASK);
575 unsigned long flags = want_flags;
576
577 is_ram = pat_pagerange_is_ram(paddr, paddr + size);
578
579 /*
580 * reserve_pfn_range() for RAM pages. We do not refcount to keep
581 * track of number of mappings of RAM pages. We can assert that
582 * the type requested matches the type of first page in the range.
583 */
584 if (is_ram) {
585 if (!pat_enabled)
586 return 0;
587
588 flags = lookup_memtype(paddr);
589 if (want_flags != flags) {
590 printk(KERN_WARNING
591 "%s:%d map pfn RAM range req %s for %Lx-%Lx, got %s\n",
592 current->comm, current->pid,
593 cattr_name(want_flags),
594 (unsigned long long)paddr,
595 (unsigned long long)(paddr + size),
596 cattr_name(flags));
597 *vma_prot = __pgprot((pgprot_val(*vma_prot) &
598 (~_PAGE_CACHE_MASK)) |
599 flags);
600 }
601 return 0;
602 }
603
604 ret = reserve_memtype(paddr, paddr + size, want_flags, &flags);
605 if (ret)
606 return ret;
607
608 if (flags != want_flags) {
609 if (strict_prot ||
610 !is_new_memtype_allowed(paddr, size, want_flags, flags)) {
611 free_memtype(paddr, paddr + size);
612 printk(KERN_ERR "%s:%d map pfn expected mapping type %s"
613 " for %Lx-%Lx, got %s\n",
614 current->comm, current->pid,
615 cattr_name(want_flags),
616 (unsigned long long)paddr,
617 (unsigned long long)(paddr + size),
618 cattr_name(flags));
619 return -EINVAL;
620 }
621 /*
622 * We allow returning different type than the one requested in
623 * non strict case.
624 */
625 *vma_prot = __pgprot((pgprot_val(*vma_prot) &
626 (~_PAGE_CACHE_MASK)) |
627 flags);
628 }
629
630 if (kernel_map_sync_memtype(paddr, size, flags) < 0) {
631 free_memtype(paddr, paddr + size);
632 return -EINVAL;
633 }
634 return 0;
635 }
636
637 /*
638 * Internal interface to free a range of physical memory.
639 * Frees non RAM regions only.
640 */
641 static void free_pfn_range(u64 paddr, unsigned long size)
642 {
643 int is_ram;
644
645 is_ram = pat_pagerange_is_ram(paddr, paddr + size);
646 if (is_ram == 0)
647 free_memtype(paddr, paddr + size);
648 }
649
650 /*
651 * track_pfn_vma_copy is called when vma that is covering the pfnmap gets
652 * copied through copy_page_range().
653 *
654 * If the vma has a linear pfn mapping for the entire range, we get the prot
655 * from pte and reserve the entire vma range with single reserve_pfn_range call.
656 */
657 int track_pfn_vma_copy(struct vm_area_struct *vma)
658 {
659 resource_size_t paddr;
660 unsigned long prot;
661 unsigned long vma_size = vma->vm_end - vma->vm_start;
662 pgprot_t pgprot;
663
664 if (is_linear_pfn_mapping(vma)) {
665 /*
666 * reserve the whole chunk covered by vma. We need the
667 * starting address and protection from pte.
668 */
669 if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
670 WARN_ON_ONCE(1);
671 return -EINVAL;
672 }
673 pgprot = __pgprot(prot);
674 return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
675 }
676
677 return 0;
678 }
679
680 /*
681 * track_pfn_vma_new is called when a _new_ pfn mapping is being established
682 * for physical range indicated by pfn and size.
683 *
684 * prot is passed in as a parameter for the new mapping. If the vma has a
685 * linear pfn mapping for the entire range reserve the entire vma range with
686 * single reserve_pfn_range call.
687 */
688 int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot,
689 unsigned long pfn, unsigned long size)
690 {
691 unsigned long flags;
692 resource_size_t paddr;
693 unsigned long vma_size = vma->vm_end - vma->vm_start;
694
695 if (is_linear_pfn_mapping(vma)) {
696 /* reserve the whole chunk starting from vm_pgoff */
697 paddr = (resource_size_t)vma->vm_pgoff << PAGE_SHIFT;
698 return reserve_pfn_range(paddr, vma_size, prot, 0);
699 }
700
701 if (!pat_enabled)
702 return 0;
703
704 /* for vm_insert_pfn and friends, we set prot based on lookup */
705 flags = lookup_memtype(pfn << PAGE_SHIFT);
706 *prot = __pgprot((pgprot_val(vma->vm_page_prot) & (~_PAGE_CACHE_MASK)) |
707 flags);
708
709 return 0;
710 }
711
712 /*
713 * untrack_pfn_vma is called while unmapping a pfnmap for a region.
714 * untrack can be called for a specific region indicated by pfn and size or
715 * can be for the entire vma (in which case size can be zero).
716 */
717 void untrack_pfn_vma(struct vm_area_struct *vma, unsigned long pfn,
718 unsigned long size)
719 {
720 resource_size_t paddr;
721 unsigned long vma_size = vma->vm_end - vma->vm_start;
722
723 if (is_linear_pfn_mapping(vma)) {
724 /* free the whole chunk starting from vm_pgoff */
725 paddr = (resource_size_t)vma->vm_pgoff << PAGE_SHIFT;
726 free_pfn_range(paddr, vma_size);
727 return;
728 }
729 }
730
731 pgprot_t pgprot_writecombine(pgprot_t prot)
732 {
733 if (pat_enabled)
734 return __pgprot(pgprot_val(prot) | _PAGE_CACHE_WC);
735 else
736 return pgprot_noncached(prot);
737 }
738 EXPORT_SYMBOL_GPL(pgprot_writecombine);
739
740 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
741
742 static struct memtype *memtype_get_idx(loff_t pos)
743 {
744 struct memtype *print_entry;
745 int ret;
746
747 print_entry = kzalloc(sizeof(struct memtype), GFP_KERNEL);
748 if (!print_entry)
749 return NULL;
750
751 spin_lock(&memtype_lock);
752 ret = rbt_memtype_copy_nth_element(print_entry, pos);
753 spin_unlock(&memtype_lock);
754
755 if (!ret) {
756 return print_entry;
757 } else {
758 kfree(print_entry);
759 return NULL;
760 }
761 }
762
763 static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
764 {
765 if (*pos == 0) {
766 ++*pos;
767 seq_printf(seq, "PAT memtype list:\n");
768 }
769
770 return memtype_get_idx(*pos);
771 }
772
773 static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
774 {
775 ++*pos;
776 return memtype_get_idx(*pos);
777 }
778
779 static void memtype_seq_stop(struct seq_file *seq, void *v)
780 {
781 }
782
783 static int memtype_seq_show(struct seq_file *seq, void *v)
784 {
785 struct memtype *print_entry = (struct memtype *)v;
786
787 seq_printf(seq, "%s @ 0x%Lx-0x%Lx\n", cattr_name(print_entry->type),
788 print_entry->start, print_entry->end);
789 kfree(print_entry);
790
791 return 0;
792 }
793
794 static const struct seq_operations memtype_seq_ops = {
795 .start = memtype_seq_start,
796 .next = memtype_seq_next,
797 .stop = memtype_seq_stop,
798 .show = memtype_seq_show,
799 };
800
801 static int memtype_seq_open(struct inode *inode, struct file *file)
802 {
803 return seq_open(file, &memtype_seq_ops);
804 }
805
806 static const struct file_operations memtype_fops = {
807 .open = memtype_seq_open,
808 .read = seq_read,
809 .llseek = seq_lseek,
810 .release = seq_release,
811 };
812
813 static int __init pat_memtype_list_init(void)
814 {
815 if (pat_enabled) {
816 debugfs_create_file("pat_memtype_list", S_IRUSR,
817 arch_debugfs_dir, NULL, &memtype_fops);
818 }
819 return 0;
820 }
821
822 late_initcall(pat_memtype_list_init);
823
824 #endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */