]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/mm/pat.c
fe7d57a8fb6003a15e609bfd7481060005e429e4
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / mm / pat.c
1 /*
2 * Handle caching attributes in page tables (PAT)
3 *
4 * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
5 * Suresh B Siddha <suresh.b.siddha@intel.com>
6 *
7 * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
8 */
9
10 #include <linux/seq_file.h>
11 #include <linux/bootmem.h>
12 #include <linux/debugfs.h>
13 #include <linux/ioport.h>
14 #include <linux/kernel.h>
15 #include <linux/pfn_t.h>
16 #include <linux/slab.h>
17 #include <linux/mm.h>
18 #include <linux/fs.h>
19 #include <linux/rbtree.h>
20
21 #include <asm/cacheflush.h>
22 #include <asm/processor.h>
23 #include <asm/tlbflush.h>
24 #include <asm/x86_init.h>
25 #include <asm/pgtable.h>
26 #include <asm/fcntl.h>
27 #include <asm/e820/api.h>
28 #include <asm/mtrr.h>
29 #include <asm/page.h>
30 #include <asm/msr.h>
31 #include <asm/pat.h>
32 #include <asm/io.h>
33
34 #include "pat_internal.h"
35 #include "mm_internal.h"
36
37 #undef pr_fmt
38 #define pr_fmt(fmt) "" fmt
39
40 static bool __read_mostly boot_cpu_done;
41 static bool __read_mostly pat_disabled = !IS_ENABLED(CONFIG_X86_PAT);
42 static bool __read_mostly pat_initialized;
43 static bool __read_mostly init_cm_done;
44
45 void pat_disable(const char *reason)
46 {
47 if (pat_disabled)
48 return;
49
50 if (boot_cpu_done) {
51 WARN_ONCE(1, "x86/PAT: PAT cannot be disabled after initialization\n");
52 return;
53 }
54
55 pat_disabled = true;
56 pr_info("x86/PAT: %s\n", reason);
57 }
58
59 static int __init nopat(char *str)
60 {
61 pat_disable("PAT support disabled.");
62 return 0;
63 }
64 early_param("nopat", nopat);
65
66 bool pat_enabled(void)
67 {
68 return pat_initialized;
69 }
70 EXPORT_SYMBOL_GPL(pat_enabled);
71
72 int pat_debug_enable;
73
74 static int __init pat_debug_setup(char *str)
75 {
76 pat_debug_enable = 1;
77 return 0;
78 }
79 __setup("debugpat", pat_debug_setup);
80
81 #ifdef CONFIG_X86_PAT
82 /*
83 * X86 PAT uses page flags arch_1 and uncached together to keep track of
84 * memory type of pages that have backing page struct.
85 *
86 * X86 PAT supports 4 different memory types:
87 * - _PAGE_CACHE_MODE_WB
88 * - _PAGE_CACHE_MODE_WC
89 * - _PAGE_CACHE_MODE_UC_MINUS
90 * - _PAGE_CACHE_MODE_WT
91 *
92 * _PAGE_CACHE_MODE_WB is the default type.
93 */
94
95 #define _PGMT_WB 0
96 #define _PGMT_WC (1UL << PG_arch_1)
97 #define _PGMT_UC_MINUS (1UL << PG_uncached)
98 #define _PGMT_WT (1UL << PG_uncached | 1UL << PG_arch_1)
99 #define _PGMT_MASK (1UL << PG_uncached | 1UL << PG_arch_1)
100 #define _PGMT_CLEAR_MASK (~_PGMT_MASK)
101
102 static inline enum page_cache_mode get_page_memtype(struct page *pg)
103 {
104 unsigned long pg_flags = pg->flags & _PGMT_MASK;
105
106 if (pg_flags == _PGMT_WB)
107 return _PAGE_CACHE_MODE_WB;
108 else if (pg_flags == _PGMT_WC)
109 return _PAGE_CACHE_MODE_WC;
110 else if (pg_flags == _PGMT_UC_MINUS)
111 return _PAGE_CACHE_MODE_UC_MINUS;
112 else
113 return _PAGE_CACHE_MODE_WT;
114 }
115
116 static inline void set_page_memtype(struct page *pg,
117 enum page_cache_mode memtype)
118 {
119 unsigned long memtype_flags;
120 unsigned long old_flags;
121 unsigned long new_flags;
122
123 switch (memtype) {
124 case _PAGE_CACHE_MODE_WC:
125 memtype_flags = _PGMT_WC;
126 break;
127 case _PAGE_CACHE_MODE_UC_MINUS:
128 memtype_flags = _PGMT_UC_MINUS;
129 break;
130 case _PAGE_CACHE_MODE_WT:
131 memtype_flags = _PGMT_WT;
132 break;
133 case _PAGE_CACHE_MODE_WB:
134 default:
135 memtype_flags = _PGMT_WB;
136 break;
137 }
138
139 do {
140 old_flags = pg->flags;
141 new_flags = (old_flags & _PGMT_CLEAR_MASK) | memtype_flags;
142 } while (cmpxchg(&pg->flags, old_flags, new_flags) != old_flags);
143 }
144 #else
145 static inline enum page_cache_mode get_page_memtype(struct page *pg)
146 {
147 return -1;
148 }
149 static inline void set_page_memtype(struct page *pg,
150 enum page_cache_mode memtype)
151 {
152 }
153 #endif
154
155 enum {
156 PAT_UC = 0, /* uncached */
157 PAT_WC = 1, /* Write combining */
158 PAT_WT = 4, /* Write Through */
159 PAT_WP = 5, /* Write Protected */
160 PAT_WB = 6, /* Write Back (default) */
161 PAT_UC_MINUS = 7, /* UC, but can be overridden by MTRR */
162 };
163
164 #define CM(c) (_PAGE_CACHE_MODE_ ## c)
165
166 static enum page_cache_mode pat_get_cache_mode(unsigned pat_val, char *msg)
167 {
168 enum page_cache_mode cache;
169 char *cache_mode;
170
171 switch (pat_val) {
172 case PAT_UC: cache = CM(UC); cache_mode = "UC "; break;
173 case PAT_WC: cache = CM(WC); cache_mode = "WC "; break;
174 case PAT_WT: cache = CM(WT); cache_mode = "WT "; break;
175 case PAT_WP: cache = CM(WP); cache_mode = "WP "; break;
176 case PAT_WB: cache = CM(WB); cache_mode = "WB "; break;
177 case PAT_UC_MINUS: cache = CM(UC_MINUS); cache_mode = "UC- "; break;
178 default: cache = CM(WB); cache_mode = "WB "; break;
179 }
180
181 memcpy(msg, cache_mode, 4);
182
183 return cache;
184 }
185
186 #undef CM
187
188 /*
189 * Update the cache mode to pgprot translation tables according to PAT
190 * configuration.
191 * Using lower indices is preferred, so we start with highest index.
192 */
193 static void __init_cache_modes(u64 pat)
194 {
195 enum page_cache_mode cache;
196 char pat_msg[33];
197 int i;
198
199 pat_msg[32] = 0;
200 for (i = 7; i >= 0; i--) {
201 cache = pat_get_cache_mode((pat >> (i * 8)) & 7,
202 pat_msg + 4 * i);
203 update_cache_mode_entry(i, cache);
204 }
205 pr_info("x86/PAT: Configuration [0-7]: %s\n", pat_msg);
206
207 init_cm_done = true;
208 }
209
210 #define PAT(x, y) ((u64)PAT_ ## y << ((x)*8))
211
212 static void pat_bsp_init(u64 pat)
213 {
214 u64 tmp_pat;
215
216 if (!boot_cpu_has(X86_FEATURE_PAT)) {
217 pat_disable("PAT not supported by CPU.");
218 return;
219 }
220
221 rdmsrl(MSR_IA32_CR_PAT, tmp_pat);
222 if (!tmp_pat) {
223 pat_disable("PAT MSR is 0, disabled.");
224 return;
225 }
226
227 wrmsrl(MSR_IA32_CR_PAT, pat);
228 pat_initialized = true;
229
230 __init_cache_modes(pat);
231 }
232
233 static void pat_ap_init(u64 pat)
234 {
235 if (!boot_cpu_has(X86_FEATURE_PAT)) {
236 /*
237 * If this happens we are on a secondary CPU, but switched to
238 * PAT on the boot CPU. We have no way to undo PAT.
239 */
240 panic("x86/PAT: PAT enabled, but not supported by secondary CPU\n");
241 }
242
243 wrmsrl(MSR_IA32_CR_PAT, pat);
244 }
245
246 void init_cache_modes(void)
247 {
248 u64 pat = 0;
249
250 if (init_cm_done)
251 return;
252
253 if (boot_cpu_has(X86_FEATURE_PAT)) {
254 /*
255 * CPU supports PAT. Set PAT table to be consistent with
256 * PAT MSR. This case supports "nopat" boot option, and
257 * virtual machine environments which support PAT without
258 * MTRRs. In specific, Xen has unique setup to PAT MSR.
259 *
260 * If PAT MSR returns 0, it is considered invalid and emulates
261 * as No PAT.
262 */
263 rdmsrl(MSR_IA32_CR_PAT, pat);
264 }
265
266 if (!pat) {
267 /*
268 * No PAT. Emulate the PAT table that corresponds to the two
269 * cache bits, PWT (Write Through) and PCD (Cache Disable).
270 * This setup is also the same as the BIOS default setup.
271 *
272 * PTE encoding:
273 *
274 * PCD
275 * |PWT PAT
276 * || slot
277 * 00 0 WB : _PAGE_CACHE_MODE_WB
278 * 01 1 WT : _PAGE_CACHE_MODE_WT
279 * 10 2 UC-: _PAGE_CACHE_MODE_UC_MINUS
280 * 11 3 UC : _PAGE_CACHE_MODE_UC
281 *
282 * NOTE: When WC or WP is used, it is redirected to UC- per
283 * the default setup in __cachemode2pte_tbl[].
284 */
285 pat = PAT(0, WB) | PAT(1, WT) | PAT(2, UC_MINUS) | PAT(3, UC) |
286 PAT(4, WB) | PAT(5, WT) | PAT(6, UC_MINUS) | PAT(7, UC);
287 }
288
289 __init_cache_modes(pat);
290 }
291
292 /**
293 * pat_init - Initialize PAT MSR and PAT table
294 *
295 * This function initializes PAT MSR and PAT table with an OS-defined value
296 * to enable additional cache attributes, WC, WT and WP.
297 *
298 * This function must be called on all CPUs using the specific sequence of
299 * operations defined in Intel SDM. mtrr_rendezvous_handler() provides this
300 * procedure for PAT.
301 */
302 void pat_init(void)
303 {
304 u64 pat;
305 struct cpuinfo_x86 *c = &boot_cpu_data;
306
307 if (pat_disabled)
308 return;
309
310 if ((c->x86_vendor == X86_VENDOR_INTEL) &&
311 (((c->x86 == 0x6) && (c->x86_model <= 0xd)) ||
312 ((c->x86 == 0xf) && (c->x86_model <= 0x6)))) {
313 /*
314 * PAT support with the lower four entries. Intel Pentium 2,
315 * 3, M, and 4 are affected by PAT errata, which makes the
316 * upper four entries unusable. To be on the safe side, we don't
317 * use those.
318 *
319 * PTE encoding:
320 * PAT
321 * |PCD
322 * ||PWT PAT
323 * ||| slot
324 * 000 0 WB : _PAGE_CACHE_MODE_WB
325 * 001 1 WC : _PAGE_CACHE_MODE_WC
326 * 010 2 UC-: _PAGE_CACHE_MODE_UC_MINUS
327 * 011 3 UC : _PAGE_CACHE_MODE_UC
328 * PAT bit unused
329 *
330 * NOTE: When WT or WP is used, it is redirected to UC- per
331 * the default setup in __cachemode2pte_tbl[].
332 */
333 pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
334 PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC);
335 } else {
336 /*
337 * Full PAT support. We put WT in slot 7 to improve
338 * robustness in the presence of errata that might cause
339 * the high PAT bit to be ignored. This way, a buggy slot 7
340 * access will hit slot 3, and slot 3 is UC, so at worst
341 * we lose performance without causing a correctness issue.
342 * Pentium 4 erratum N46 is an example for such an erratum,
343 * although we try not to use PAT at all on affected CPUs.
344 *
345 * PTE encoding:
346 * PAT
347 * |PCD
348 * ||PWT PAT
349 * ||| slot
350 * 000 0 WB : _PAGE_CACHE_MODE_WB
351 * 001 1 WC : _PAGE_CACHE_MODE_WC
352 * 010 2 UC-: _PAGE_CACHE_MODE_UC_MINUS
353 * 011 3 UC : _PAGE_CACHE_MODE_UC
354 * 100 4 WB : Reserved
355 * 101 5 WP : _PAGE_CACHE_MODE_WP
356 * 110 6 UC-: Reserved
357 * 111 7 WT : _PAGE_CACHE_MODE_WT
358 *
359 * The reserved slots are unused, but mapped to their
360 * corresponding types in the presence of PAT errata.
361 */
362 pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
363 PAT(4, WB) | PAT(5, WP) | PAT(6, UC_MINUS) | PAT(7, WT);
364 }
365
366 if (!boot_cpu_done) {
367 pat_bsp_init(pat);
368 boot_cpu_done = true;
369 } else {
370 pat_ap_init(pat);
371 }
372 }
373
374 #undef PAT
375
376 static DEFINE_SPINLOCK(memtype_lock); /* protects memtype accesses */
377
378 /*
379 * Does intersection of PAT memory type and MTRR memory type and returns
380 * the resulting memory type as PAT understands it.
381 * (Type in pat and mtrr will not have same value)
382 * The intersection is based on "Effective Memory Type" tables in IA-32
383 * SDM vol 3a
384 */
385 static unsigned long pat_x_mtrr_type(u64 start, u64 end,
386 enum page_cache_mode req_type)
387 {
388 /*
389 * Look for MTRR hint to get the effective type in case where PAT
390 * request is for WB.
391 */
392 if (req_type == _PAGE_CACHE_MODE_WB) {
393 u8 mtrr_type, uniform;
394
395 mtrr_type = mtrr_type_lookup(start, end, &uniform);
396 if (mtrr_type != MTRR_TYPE_WRBACK)
397 return _PAGE_CACHE_MODE_UC_MINUS;
398
399 return _PAGE_CACHE_MODE_WB;
400 }
401
402 return req_type;
403 }
404
405 struct pagerange_state {
406 unsigned long cur_pfn;
407 int ram;
408 int not_ram;
409 };
410
411 static int
412 pagerange_is_ram_callback(unsigned long initial_pfn, unsigned long total_nr_pages, void *arg)
413 {
414 struct pagerange_state *state = arg;
415
416 state->not_ram |= initial_pfn > state->cur_pfn;
417 state->ram |= total_nr_pages > 0;
418 state->cur_pfn = initial_pfn + total_nr_pages;
419
420 return state->ram && state->not_ram;
421 }
422
423 static int pat_pagerange_is_ram(resource_size_t start, resource_size_t end)
424 {
425 int ret = 0;
426 unsigned long start_pfn = start >> PAGE_SHIFT;
427 unsigned long end_pfn = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
428 struct pagerange_state state = {start_pfn, 0, 0};
429
430 /*
431 * For legacy reasons, physical address range in the legacy ISA
432 * region is tracked as non-RAM. This will allow users of
433 * /dev/mem to map portions of legacy ISA region, even when
434 * some of those portions are listed(or not even listed) with
435 * different e820 types(RAM/reserved/..)
436 */
437 if (start_pfn < ISA_END_ADDRESS >> PAGE_SHIFT)
438 start_pfn = ISA_END_ADDRESS >> PAGE_SHIFT;
439
440 if (start_pfn < end_pfn) {
441 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
442 &state, pagerange_is_ram_callback);
443 }
444
445 return (ret > 0) ? -1 : (state.ram ? 1 : 0);
446 }
447
448 /*
449 * For RAM pages, we use page flags to mark the pages with appropriate type.
450 * The page flags are limited to four types, WB (default), WC, WT and UC-.
451 * WP request fails with -EINVAL, and UC gets redirected to UC-. Setting
452 * a new memory type is only allowed for a page mapped with the default WB
453 * type.
454 *
455 * Here we do two passes:
456 * - Find the memtype of all the pages in the range, look for any conflicts.
457 * - In case of no conflicts, set the new memtype for pages in the range.
458 */
459 static int reserve_ram_pages_type(u64 start, u64 end,
460 enum page_cache_mode req_type,
461 enum page_cache_mode *new_type)
462 {
463 struct page *page;
464 u64 pfn;
465
466 if (req_type == _PAGE_CACHE_MODE_WP) {
467 if (new_type)
468 *new_type = _PAGE_CACHE_MODE_UC_MINUS;
469 return -EINVAL;
470 }
471
472 if (req_type == _PAGE_CACHE_MODE_UC) {
473 /* We do not support strong UC */
474 WARN_ON_ONCE(1);
475 req_type = _PAGE_CACHE_MODE_UC_MINUS;
476 }
477
478 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
479 enum page_cache_mode type;
480
481 page = pfn_to_page(pfn);
482 type = get_page_memtype(page);
483 if (type != _PAGE_CACHE_MODE_WB) {
484 pr_info("x86/PAT: reserve_ram_pages_type failed [mem %#010Lx-%#010Lx], track 0x%x, req 0x%x\n",
485 start, end - 1, type, req_type);
486 if (new_type)
487 *new_type = type;
488
489 return -EBUSY;
490 }
491 }
492
493 if (new_type)
494 *new_type = req_type;
495
496 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
497 page = pfn_to_page(pfn);
498 set_page_memtype(page, req_type);
499 }
500 return 0;
501 }
502
503 static int free_ram_pages_type(u64 start, u64 end)
504 {
505 struct page *page;
506 u64 pfn;
507
508 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
509 page = pfn_to_page(pfn);
510 set_page_memtype(page, _PAGE_CACHE_MODE_WB);
511 }
512 return 0;
513 }
514
515 /*
516 * req_type typically has one of the:
517 * - _PAGE_CACHE_MODE_WB
518 * - _PAGE_CACHE_MODE_WC
519 * - _PAGE_CACHE_MODE_UC_MINUS
520 * - _PAGE_CACHE_MODE_UC
521 * - _PAGE_CACHE_MODE_WT
522 *
523 * If new_type is NULL, function will return an error if it cannot reserve the
524 * region with req_type. If new_type is non-NULL, function will return
525 * available type in new_type in case of no error. In case of any error
526 * it will return a negative return value.
527 */
528 int reserve_memtype(u64 start, u64 end, enum page_cache_mode req_type,
529 enum page_cache_mode *new_type)
530 {
531 struct memtype *new;
532 enum page_cache_mode actual_type;
533 int is_range_ram;
534 int err = 0;
535
536 BUG_ON(start >= end); /* end is exclusive */
537
538 if (!pat_enabled()) {
539 /* This is identical to page table setting without PAT */
540 if (new_type)
541 *new_type = req_type;
542 return 0;
543 }
544
545 /* Low ISA region is always mapped WB in page table. No need to track */
546 if (x86_platform.is_untracked_pat_range(start, end)) {
547 if (new_type)
548 *new_type = _PAGE_CACHE_MODE_WB;
549 return 0;
550 }
551
552 /*
553 * Call mtrr_lookup to get the type hint. This is an
554 * optimization for /dev/mem mmap'ers into WB memory (BIOS
555 * tools and ACPI tools). Use WB request for WB memory and use
556 * UC_MINUS otherwise.
557 */
558 actual_type = pat_x_mtrr_type(start, end, req_type);
559
560 if (new_type)
561 *new_type = actual_type;
562
563 is_range_ram = pat_pagerange_is_ram(start, end);
564 if (is_range_ram == 1) {
565
566 err = reserve_ram_pages_type(start, end, req_type, new_type);
567
568 return err;
569 } else if (is_range_ram < 0) {
570 return -EINVAL;
571 }
572
573 new = kzalloc(sizeof(struct memtype), GFP_KERNEL);
574 if (!new)
575 return -ENOMEM;
576
577 new->start = start;
578 new->end = end;
579 new->type = actual_type;
580
581 spin_lock(&memtype_lock);
582
583 err = rbt_memtype_check_insert(new, new_type);
584 if (err) {
585 pr_info("x86/PAT: reserve_memtype failed [mem %#010Lx-%#010Lx], track %s, req %s\n",
586 start, end - 1,
587 cattr_name(new->type), cattr_name(req_type));
588 kfree(new);
589 spin_unlock(&memtype_lock);
590
591 return err;
592 }
593
594 spin_unlock(&memtype_lock);
595
596 dprintk("reserve_memtype added [mem %#010Lx-%#010Lx], track %s, req %s, ret %s\n",
597 start, end - 1, cattr_name(new->type), cattr_name(req_type),
598 new_type ? cattr_name(*new_type) : "-");
599
600 return err;
601 }
602
603 int free_memtype(u64 start, u64 end)
604 {
605 int err = -EINVAL;
606 int is_range_ram;
607 struct memtype *entry;
608
609 if (!pat_enabled())
610 return 0;
611
612 /* Low ISA region is always mapped WB. No need to track */
613 if (x86_platform.is_untracked_pat_range(start, end))
614 return 0;
615
616 is_range_ram = pat_pagerange_is_ram(start, end);
617 if (is_range_ram == 1) {
618
619 err = free_ram_pages_type(start, end);
620
621 return err;
622 } else if (is_range_ram < 0) {
623 return -EINVAL;
624 }
625
626 spin_lock(&memtype_lock);
627 entry = rbt_memtype_erase(start, end);
628 spin_unlock(&memtype_lock);
629
630 if (IS_ERR(entry)) {
631 pr_info("x86/PAT: %s:%d freeing invalid memtype [mem %#010Lx-%#010Lx]\n",
632 current->comm, current->pid, start, end - 1);
633 return -EINVAL;
634 }
635
636 kfree(entry);
637
638 dprintk("free_memtype request [mem %#010Lx-%#010Lx]\n", start, end - 1);
639
640 return 0;
641 }
642
643
644 /**
645 * lookup_memtype - Looksup the memory type for a physical address
646 * @paddr: physical address of which memory type needs to be looked up
647 *
648 * Only to be called when PAT is enabled
649 *
650 * Returns _PAGE_CACHE_MODE_WB, _PAGE_CACHE_MODE_WC, _PAGE_CACHE_MODE_UC_MINUS
651 * or _PAGE_CACHE_MODE_WT.
652 */
653 static enum page_cache_mode lookup_memtype(u64 paddr)
654 {
655 enum page_cache_mode rettype = _PAGE_CACHE_MODE_WB;
656 struct memtype *entry;
657
658 if (x86_platform.is_untracked_pat_range(paddr, paddr + PAGE_SIZE))
659 return rettype;
660
661 if (pat_pagerange_is_ram(paddr, paddr + PAGE_SIZE)) {
662 struct page *page;
663
664 page = pfn_to_page(paddr >> PAGE_SHIFT);
665 return get_page_memtype(page);
666 }
667
668 spin_lock(&memtype_lock);
669
670 entry = rbt_memtype_lookup(paddr);
671 if (entry != NULL)
672 rettype = entry->type;
673 else
674 rettype = _PAGE_CACHE_MODE_UC_MINUS;
675
676 spin_unlock(&memtype_lock);
677 return rettype;
678 }
679
680 /**
681 * io_reserve_memtype - Request a memory type mapping for a region of memory
682 * @start: start (physical address) of the region
683 * @end: end (physical address) of the region
684 * @type: A pointer to memtype, with requested type. On success, requested
685 * or any other compatible type that was available for the region is returned
686 *
687 * On success, returns 0
688 * On failure, returns non-zero
689 */
690 int io_reserve_memtype(resource_size_t start, resource_size_t end,
691 enum page_cache_mode *type)
692 {
693 resource_size_t size = end - start;
694 enum page_cache_mode req_type = *type;
695 enum page_cache_mode new_type;
696 int ret;
697
698 WARN_ON_ONCE(iomem_map_sanity_check(start, size));
699
700 ret = reserve_memtype(start, end, req_type, &new_type);
701 if (ret)
702 goto out_err;
703
704 if (!is_new_memtype_allowed(start, size, req_type, new_type))
705 goto out_free;
706
707 if (kernel_map_sync_memtype(start, size, new_type) < 0)
708 goto out_free;
709
710 *type = new_type;
711 return 0;
712
713 out_free:
714 free_memtype(start, end);
715 ret = -EBUSY;
716 out_err:
717 return ret;
718 }
719
720 /**
721 * io_free_memtype - Release a memory type mapping for a region of memory
722 * @start: start (physical address) of the region
723 * @end: end (physical address) of the region
724 */
725 void io_free_memtype(resource_size_t start, resource_size_t end)
726 {
727 free_memtype(start, end);
728 }
729
730 int arch_io_reserve_memtype_wc(resource_size_t start, resource_size_t size)
731 {
732 enum page_cache_mode type = _PAGE_CACHE_MODE_WC;
733
734 return io_reserve_memtype(start, start + size, &type);
735 }
736 EXPORT_SYMBOL(arch_io_reserve_memtype_wc);
737
738 void arch_io_free_memtype_wc(resource_size_t start, resource_size_t size)
739 {
740 io_free_memtype(start, start + size);
741 }
742 EXPORT_SYMBOL(arch_io_free_memtype_wc);
743
744 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
745 unsigned long size, pgprot_t vma_prot)
746 {
747 if (!phys_mem_access_encrypted(pfn << PAGE_SHIFT, size))
748 vma_prot = pgprot_decrypted(vma_prot);
749
750 return vma_prot;
751 }
752
753 #ifdef CONFIG_STRICT_DEVMEM
754 /* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM */
755 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
756 {
757 return 1;
758 }
759 #else
760 /* This check is needed to avoid cache aliasing when PAT is enabled */
761 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
762 {
763 u64 from = ((u64)pfn) << PAGE_SHIFT;
764 u64 to = from + size;
765 u64 cursor = from;
766
767 if (!pat_enabled())
768 return 1;
769
770 while (cursor < to) {
771 if (!devmem_is_allowed(pfn))
772 return 0;
773 cursor += PAGE_SIZE;
774 pfn++;
775 }
776 return 1;
777 }
778 #endif /* CONFIG_STRICT_DEVMEM */
779
780 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
781 unsigned long size, pgprot_t *vma_prot)
782 {
783 enum page_cache_mode pcm = _PAGE_CACHE_MODE_WB;
784
785 if (!range_is_allowed(pfn, size))
786 return 0;
787
788 if (file->f_flags & O_DSYNC)
789 pcm = _PAGE_CACHE_MODE_UC_MINUS;
790
791 *vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
792 cachemode2protval(pcm));
793 return 1;
794 }
795
796 /*
797 * Change the memory type for the physial address range in kernel identity
798 * mapping space if that range is a part of identity map.
799 */
800 int kernel_map_sync_memtype(u64 base, unsigned long size,
801 enum page_cache_mode pcm)
802 {
803 unsigned long id_sz;
804
805 if (base > __pa(high_memory-1))
806 return 0;
807
808 /*
809 * some areas in the middle of the kernel identity range
810 * are not mapped, like the PCI space.
811 */
812 if (!page_is_ram(base >> PAGE_SHIFT))
813 return 0;
814
815 id_sz = (__pa(high_memory-1) <= base + size) ?
816 __pa(high_memory) - base :
817 size;
818
819 if (ioremap_change_attr((unsigned long)__va(base), id_sz, pcm) < 0) {
820 pr_info("x86/PAT: %s:%d ioremap_change_attr failed %s for [mem %#010Lx-%#010Lx]\n",
821 current->comm, current->pid,
822 cattr_name(pcm),
823 base, (unsigned long long)(base + size-1));
824 return -EINVAL;
825 }
826 return 0;
827 }
828
829 /*
830 * Internal interface to reserve a range of physical memory with prot.
831 * Reserved non RAM regions only and after successful reserve_memtype,
832 * this func also keeps identity mapping (if any) in sync with this new prot.
833 */
834 static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
835 int strict_prot)
836 {
837 int is_ram = 0;
838 int ret;
839 enum page_cache_mode want_pcm = pgprot2cachemode(*vma_prot);
840 enum page_cache_mode pcm = want_pcm;
841
842 is_ram = pat_pagerange_is_ram(paddr, paddr + size);
843
844 /*
845 * reserve_pfn_range() for RAM pages. We do not refcount to keep
846 * track of number of mappings of RAM pages. We can assert that
847 * the type requested matches the type of first page in the range.
848 */
849 if (is_ram) {
850 if (!pat_enabled())
851 return 0;
852
853 pcm = lookup_memtype(paddr);
854 if (want_pcm != pcm) {
855 pr_warn("x86/PAT: %s:%d map pfn RAM range req %s for [mem %#010Lx-%#010Lx], got %s\n",
856 current->comm, current->pid,
857 cattr_name(want_pcm),
858 (unsigned long long)paddr,
859 (unsigned long long)(paddr + size - 1),
860 cattr_name(pcm));
861 *vma_prot = __pgprot((pgprot_val(*vma_prot) &
862 (~_PAGE_CACHE_MASK)) |
863 cachemode2protval(pcm));
864 }
865 return 0;
866 }
867
868 ret = reserve_memtype(paddr, paddr + size, want_pcm, &pcm);
869 if (ret)
870 return ret;
871
872 if (pcm != want_pcm) {
873 if (strict_prot ||
874 !is_new_memtype_allowed(paddr, size, want_pcm, pcm)) {
875 free_memtype(paddr, paddr + size);
876 pr_err("x86/PAT: %s:%d map pfn expected mapping type %s for [mem %#010Lx-%#010Lx], got %s\n",
877 current->comm, current->pid,
878 cattr_name(want_pcm),
879 (unsigned long long)paddr,
880 (unsigned long long)(paddr + size - 1),
881 cattr_name(pcm));
882 return -EINVAL;
883 }
884 /*
885 * We allow returning different type than the one requested in
886 * non strict case.
887 */
888 *vma_prot = __pgprot((pgprot_val(*vma_prot) &
889 (~_PAGE_CACHE_MASK)) |
890 cachemode2protval(pcm));
891 }
892
893 if (kernel_map_sync_memtype(paddr, size, pcm) < 0) {
894 free_memtype(paddr, paddr + size);
895 return -EINVAL;
896 }
897 return 0;
898 }
899
900 /*
901 * Internal interface to free a range of physical memory.
902 * Frees non RAM regions only.
903 */
904 static void free_pfn_range(u64 paddr, unsigned long size)
905 {
906 int is_ram;
907
908 is_ram = pat_pagerange_is_ram(paddr, paddr + size);
909 if (is_ram == 0)
910 free_memtype(paddr, paddr + size);
911 }
912
913 /*
914 * track_pfn_copy is called when vma that is covering the pfnmap gets
915 * copied through copy_page_range().
916 *
917 * If the vma has a linear pfn mapping for the entire range, we get the prot
918 * from pte and reserve the entire vma range with single reserve_pfn_range call.
919 */
920 int track_pfn_copy(struct vm_area_struct *vma)
921 {
922 resource_size_t paddr;
923 unsigned long prot;
924 unsigned long vma_size = vma->vm_end - vma->vm_start;
925 pgprot_t pgprot;
926
927 if (vma->vm_flags & VM_PAT) {
928 /*
929 * reserve the whole chunk covered by vma. We need the
930 * starting address and protection from pte.
931 */
932 if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
933 WARN_ON_ONCE(1);
934 return -EINVAL;
935 }
936 pgprot = __pgprot(prot);
937 return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
938 }
939
940 return 0;
941 }
942
943 /*
944 * prot is passed in as a parameter for the new mapping. If the vma has
945 * a linear pfn mapping for the entire range, or no vma is provided,
946 * reserve the entire pfn + size range with single reserve_pfn_range
947 * call.
948 */
949 int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
950 unsigned long pfn, unsigned long addr, unsigned long size)
951 {
952 resource_size_t paddr = (resource_size_t)pfn << PAGE_SHIFT;
953 enum page_cache_mode pcm;
954
955 /* reserve the whole chunk starting from paddr */
956 if (!vma || (addr == vma->vm_start
957 && size == (vma->vm_end - vma->vm_start))) {
958 int ret;
959
960 ret = reserve_pfn_range(paddr, size, prot, 0);
961 if (ret == 0 && vma)
962 vma->vm_flags |= VM_PAT;
963 return ret;
964 }
965
966 if (!pat_enabled())
967 return 0;
968
969 /*
970 * For anything smaller than the vma size we set prot based on the
971 * lookup.
972 */
973 pcm = lookup_memtype(paddr);
974
975 /* Check memtype for the remaining pages */
976 while (size > PAGE_SIZE) {
977 size -= PAGE_SIZE;
978 paddr += PAGE_SIZE;
979 if (pcm != lookup_memtype(paddr))
980 return -EINVAL;
981 }
982
983 *prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
984 cachemode2protval(pcm));
985
986 return 0;
987 }
988
989 void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, pfn_t pfn)
990 {
991 enum page_cache_mode pcm;
992
993 if (!pat_enabled())
994 return;
995
996 /* Set prot based on lookup */
997 pcm = lookup_memtype(pfn_t_to_phys(pfn));
998 *prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
999 cachemode2protval(pcm));
1000 }
1001
1002 /*
1003 * untrack_pfn is called while unmapping a pfnmap for a region.
1004 * untrack can be called for a specific region indicated by pfn and size or
1005 * can be for the entire vma (in which case pfn, size are zero).
1006 */
1007 void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1008 unsigned long size)
1009 {
1010 resource_size_t paddr;
1011 unsigned long prot;
1012
1013 if (vma && !(vma->vm_flags & VM_PAT))
1014 return;
1015
1016 /* free the chunk starting from pfn or the whole chunk */
1017 paddr = (resource_size_t)pfn << PAGE_SHIFT;
1018 if (!paddr && !size) {
1019 if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
1020 WARN_ON_ONCE(1);
1021 return;
1022 }
1023
1024 size = vma->vm_end - vma->vm_start;
1025 }
1026 free_pfn_range(paddr, size);
1027 if (vma)
1028 vma->vm_flags &= ~VM_PAT;
1029 }
1030
1031 /*
1032 * untrack_pfn_moved is called, while mremapping a pfnmap for a new region,
1033 * with the old vma after its pfnmap page table has been removed. The new
1034 * vma has a new pfnmap to the same pfn & cache type with VM_PAT set.
1035 */
1036 void untrack_pfn_moved(struct vm_area_struct *vma)
1037 {
1038 vma->vm_flags &= ~VM_PAT;
1039 }
1040
1041 pgprot_t pgprot_writecombine(pgprot_t prot)
1042 {
1043 return __pgprot(pgprot_val(prot) |
1044 cachemode2protval(_PAGE_CACHE_MODE_WC));
1045 }
1046 EXPORT_SYMBOL_GPL(pgprot_writecombine);
1047
1048 pgprot_t pgprot_writethrough(pgprot_t prot)
1049 {
1050 return __pgprot(pgprot_val(prot) |
1051 cachemode2protval(_PAGE_CACHE_MODE_WT));
1052 }
1053 EXPORT_SYMBOL_GPL(pgprot_writethrough);
1054
1055 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
1056
1057 static struct memtype *memtype_get_idx(loff_t pos)
1058 {
1059 struct memtype *print_entry;
1060 int ret;
1061
1062 print_entry = kzalloc(sizeof(struct memtype), GFP_KERNEL);
1063 if (!print_entry)
1064 return NULL;
1065
1066 spin_lock(&memtype_lock);
1067 ret = rbt_memtype_copy_nth_element(print_entry, pos);
1068 spin_unlock(&memtype_lock);
1069
1070 if (!ret) {
1071 return print_entry;
1072 } else {
1073 kfree(print_entry);
1074 return NULL;
1075 }
1076 }
1077
1078 static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
1079 {
1080 if (*pos == 0) {
1081 ++*pos;
1082 seq_puts(seq, "PAT memtype list:\n");
1083 }
1084
1085 return memtype_get_idx(*pos);
1086 }
1087
1088 static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1089 {
1090 ++*pos;
1091 return memtype_get_idx(*pos);
1092 }
1093
1094 static void memtype_seq_stop(struct seq_file *seq, void *v)
1095 {
1096 }
1097
1098 static int memtype_seq_show(struct seq_file *seq, void *v)
1099 {
1100 struct memtype *print_entry = (struct memtype *)v;
1101
1102 seq_printf(seq, "%s @ 0x%Lx-0x%Lx\n", cattr_name(print_entry->type),
1103 print_entry->start, print_entry->end);
1104 kfree(print_entry);
1105
1106 return 0;
1107 }
1108
1109 static const struct seq_operations memtype_seq_ops = {
1110 .start = memtype_seq_start,
1111 .next = memtype_seq_next,
1112 .stop = memtype_seq_stop,
1113 .show = memtype_seq_show,
1114 };
1115
1116 static int memtype_seq_open(struct inode *inode, struct file *file)
1117 {
1118 return seq_open(file, &memtype_seq_ops);
1119 }
1120
1121 static const struct file_operations memtype_fops = {
1122 .open = memtype_seq_open,
1123 .read = seq_read,
1124 .llseek = seq_lseek,
1125 .release = seq_release,
1126 };
1127
1128 static int __init pat_memtype_list_init(void)
1129 {
1130 if (pat_enabled()) {
1131 debugfs_create_file("pat_memtype_list", S_IRUSR,
1132 arch_debugfs_dir, NULL, &memtype_fops);
1133 }
1134 return 0;
1135 }
1136
1137 late_initcall(pat_memtype_list_init);
1138
1139 #endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */