]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/mm/pgtable.c
x86/ldt: Make the LDT mapping RO
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / mm / pgtable.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/gfp.h>
4 #include <asm/pgalloc.h>
5 #include <asm/pgtable.h>
6 #include <asm/tlb.h>
7 #include <asm/fixmap.h>
8 #include <asm/mtrr.h>
9
10 #define PGALLOC_GFP (GFP_KERNEL_ACCOUNT | __GFP_NOTRACK | __GFP_ZERO)
11
12 #ifdef CONFIG_HIGHPTE
13 #define PGALLOC_USER_GFP __GFP_HIGHMEM
14 #else
15 #define PGALLOC_USER_GFP 0
16 #endif
17
18 gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
19
20 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
21 {
22 return (pte_t *)__get_free_page(PGALLOC_GFP & ~__GFP_ACCOUNT);
23 }
24
25 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
26 {
27 struct page *pte;
28
29 pte = alloc_pages(__userpte_alloc_gfp, 0);
30 if (!pte)
31 return NULL;
32 if (!pgtable_page_ctor(pte)) {
33 __free_page(pte);
34 return NULL;
35 }
36 return pte;
37 }
38
39 static int __init setup_userpte(char *arg)
40 {
41 if (!arg)
42 return -EINVAL;
43
44 /*
45 * "userpte=nohigh" disables allocation of user pagetables in
46 * high memory.
47 */
48 if (strcmp(arg, "nohigh") == 0)
49 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
50 else
51 return -EINVAL;
52 return 0;
53 }
54 early_param("userpte", setup_userpte);
55
56 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
57 {
58 pgtable_page_dtor(pte);
59 paravirt_release_pte(page_to_pfn(pte));
60 tlb_remove_table(tlb, pte);
61 }
62
63 #if CONFIG_PGTABLE_LEVELS > 2
64 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
65 {
66 struct page *page = virt_to_page(pmd);
67 paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
68 /*
69 * NOTE! For PAE, any changes to the top page-directory-pointer-table
70 * entries need a full cr3 reload to flush.
71 */
72 #ifdef CONFIG_X86_PAE
73 tlb->need_flush_all = 1;
74 #endif
75 pgtable_pmd_page_dtor(page);
76 tlb_remove_table(tlb, page);
77 }
78
79 #if CONFIG_PGTABLE_LEVELS > 3
80 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
81 {
82 paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
83 tlb_remove_table(tlb, virt_to_page(pud));
84 }
85
86 #if CONFIG_PGTABLE_LEVELS > 4
87 void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d)
88 {
89 paravirt_release_p4d(__pa(p4d) >> PAGE_SHIFT);
90 tlb_remove_table(tlb, virt_to_page(p4d));
91 }
92 #endif /* CONFIG_PGTABLE_LEVELS > 4 */
93 #endif /* CONFIG_PGTABLE_LEVELS > 3 */
94 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
95
96 static inline void pgd_list_add(pgd_t *pgd)
97 {
98 struct page *page = virt_to_page(pgd);
99
100 list_add(&page->lru, &pgd_list);
101 }
102
103 static inline void pgd_list_del(pgd_t *pgd)
104 {
105 struct page *page = virt_to_page(pgd);
106
107 list_del(&page->lru);
108 }
109
110 #define UNSHARED_PTRS_PER_PGD \
111 (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
112
113
114 static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
115 {
116 BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm));
117 virt_to_page(pgd)->index = (pgoff_t)mm;
118 }
119
120 struct mm_struct *pgd_page_get_mm(struct page *page)
121 {
122 return (struct mm_struct *)page->index;
123 }
124
125 static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
126 {
127 /* If the pgd points to a shared pagetable level (either the
128 ptes in non-PAE, or shared PMD in PAE), then just copy the
129 references from swapper_pg_dir. */
130 if (CONFIG_PGTABLE_LEVELS == 2 ||
131 (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
132 CONFIG_PGTABLE_LEVELS >= 4) {
133 clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
134 swapper_pg_dir + KERNEL_PGD_BOUNDARY,
135 KERNEL_PGD_PTRS);
136 }
137
138 /* list required to sync kernel mapping updates */
139 if (!SHARED_KERNEL_PMD) {
140 pgd_set_mm(pgd, mm);
141 pgd_list_add(pgd);
142 }
143 }
144
145 static void pgd_dtor(pgd_t *pgd)
146 {
147 if (SHARED_KERNEL_PMD)
148 return;
149
150 spin_lock(&pgd_lock);
151 pgd_list_del(pgd);
152 spin_unlock(&pgd_lock);
153 }
154
155 /*
156 * List of all pgd's needed for non-PAE so it can invalidate entries
157 * in both cached and uncached pgd's; not needed for PAE since the
158 * kernel pmd is shared. If PAE were not to share the pmd a similar
159 * tactic would be needed. This is essentially codepath-based locking
160 * against pageattr.c; it is the unique case in which a valid change
161 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
162 * vmalloc faults work because attached pagetables are never freed.
163 * -- nyc
164 */
165
166 #ifdef CONFIG_X86_PAE
167 /*
168 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
169 * updating the top-level pagetable entries to guarantee the
170 * processor notices the update. Since this is expensive, and
171 * all 4 top-level entries are used almost immediately in a
172 * new process's life, we just pre-populate them here.
173 *
174 * Also, if we're in a paravirt environment where the kernel pmd is
175 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
176 * and initialize the kernel pmds here.
177 */
178 #define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD
179
180 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
181 {
182 paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
183
184 /* Note: almost everything apart from _PAGE_PRESENT is
185 reserved at the pmd (PDPT) level. */
186 set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
187
188 /*
189 * According to Intel App note "TLBs, Paging-Structure Caches,
190 * and Their Invalidation", April 2007, document 317080-001,
191 * section 8.1: in PAE mode we explicitly have to flush the
192 * TLB via cr3 if the top-level pgd is changed...
193 */
194 flush_tlb_mm(mm);
195 }
196 #else /* !CONFIG_X86_PAE */
197
198 /* No need to prepopulate any pagetable entries in non-PAE modes. */
199 #define PREALLOCATED_PMDS 0
200
201 #endif /* CONFIG_X86_PAE */
202
203 static void free_pmds(struct mm_struct *mm, pmd_t *pmds[])
204 {
205 int i;
206
207 for(i = 0; i < PREALLOCATED_PMDS; i++)
208 if (pmds[i]) {
209 pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
210 free_page((unsigned long)pmds[i]);
211 mm_dec_nr_pmds(mm);
212 }
213 }
214
215 static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[])
216 {
217 int i;
218 bool failed = false;
219 gfp_t gfp = PGALLOC_GFP;
220
221 if (mm == &init_mm)
222 gfp &= ~__GFP_ACCOUNT;
223
224 for(i = 0; i < PREALLOCATED_PMDS; i++) {
225 pmd_t *pmd = (pmd_t *)__get_free_page(gfp);
226 if (!pmd)
227 failed = true;
228 if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
229 free_page((unsigned long)pmd);
230 pmd = NULL;
231 failed = true;
232 }
233 if (pmd)
234 mm_inc_nr_pmds(mm);
235 pmds[i] = pmd;
236 }
237
238 if (failed) {
239 free_pmds(mm, pmds);
240 return -ENOMEM;
241 }
242
243 return 0;
244 }
245
246 /*
247 * Mop up any pmd pages which may still be attached to the pgd.
248 * Normally they will be freed by munmap/exit_mmap, but any pmd we
249 * preallocate which never got a corresponding vma will need to be
250 * freed manually.
251 */
252 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
253 {
254 int i;
255
256 for(i = 0; i < PREALLOCATED_PMDS; i++) {
257 pgd_t pgd = pgdp[i];
258
259 if (pgd_val(pgd) != 0) {
260 pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
261
262 pgdp[i] = native_make_pgd(0);
263
264 paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
265 pmd_free(mm, pmd);
266 mm_dec_nr_pmds(mm);
267 }
268 }
269 }
270
271 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
272 {
273 p4d_t *p4d;
274 pud_t *pud;
275 int i;
276
277 if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
278 return;
279
280 p4d = p4d_offset(pgd, 0);
281 pud = pud_offset(p4d, 0);
282
283 for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
284 pmd_t *pmd = pmds[i];
285
286 if (i >= KERNEL_PGD_BOUNDARY)
287 memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
288 sizeof(pmd_t) * PTRS_PER_PMD);
289
290 pud_populate(mm, pud, pmd);
291 }
292 }
293
294 /*
295 * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
296 * assumes that pgd should be in one page.
297 *
298 * But kernel with PAE paging that is not running as a Xen domain
299 * only needs to allocate 32 bytes for pgd instead of one page.
300 */
301 #ifdef CONFIG_X86_PAE
302
303 #include <linux/slab.h>
304
305 #define PGD_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
306 #define PGD_ALIGN 32
307
308 static struct kmem_cache *pgd_cache;
309
310 static int __init pgd_cache_init(void)
311 {
312 /*
313 * When PAE kernel is running as a Xen domain, it does not use
314 * shared kernel pmd. And this requires a whole page for pgd.
315 */
316 if (!SHARED_KERNEL_PMD)
317 return 0;
318
319 /*
320 * when PAE kernel is not running as a Xen domain, it uses
321 * shared kernel pmd. Shared kernel pmd does not require a whole
322 * page for pgd. We are able to just allocate a 32-byte for pgd.
323 * During boot time, we create a 32-byte slab for pgd table allocation.
324 */
325 pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
326 SLAB_PANIC, NULL);
327 if (!pgd_cache)
328 return -ENOMEM;
329
330 return 0;
331 }
332 core_initcall(pgd_cache_init);
333
334 static inline pgd_t *_pgd_alloc(void)
335 {
336 /*
337 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
338 * We allocate one page for pgd.
339 */
340 if (!SHARED_KERNEL_PMD)
341 return (pgd_t *)__get_free_page(PGALLOC_GFP);
342
343 /*
344 * Now PAE kernel is not running as a Xen domain. We can allocate
345 * a 32-byte slab for pgd to save memory space.
346 */
347 return kmem_cache_alloc(pgd_cache, PGALLOC_GFP);
348 }
349
350 static inline void _pgd_free(pgd_t *pgd)
351 {
352 if (!SHARED_KERNEL_PMD)
353 free_page((unsigned long)pgd);
354 else
355 kmem_cache_free(pgd_cache, pgd);
356 }
357 #else
358
359 static inline pgd_t *_pgd_alloc(void)
360 {
361 return (pgd_t *)__get_free_pages(PGALLOC_GFP, PGD_ALLOCATION_ORDER);
362 }
363
364 static inline void _pgd_free(pgd_t *pgd)
365 {
366 free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
367 }
368 #endif /* CONFIG_X86_PAE */
369
370 pgd_t *pgd_alloc(struct mm_struct *mm)
371 {
372 pgd_t *pgd;
373 pmd_t *pmds[PREALLOCATED_PMDS];
374
375 pgd = _pgd_alloc();
376
377 if (pgd == NULL)
378 goto out;
379
380 mm->pgd = pgd;
381
382 if (preallocate_pmds(mm, pmds) != 0)
383 goto out_free_pgd;
384
385 if (paravirt_pgd_alloc(mm) != 0)
386 goto out_free_pmds;
387
388 /*
389 * Make sure that pre-populating the pmds is atomic with
390 * respect to anything walking the pgd_list, so that they
391 * never see a partially populated pgd.
392 */
393 spin_lock(&pgd_lock);
394
395 pgd_ctor(mm, pgd);
396 pgd_prepopulate_pmd(mm, pgd, pmds);
397
398 spin_unlock(&pgd_lock);
399
400 return pgd;
401
402 out_free_pmds:
403 free_pmds(mm, pmds);
404 out_free_pgd:
405 _pgd_free(pgd);
406 out:
407 return NULL;
408 }
409
410 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
411 {
412 pgd_mop_up_pmds(mm, pgd);
413 pgd_dtor(pgd);
414 paravirt_pgd_free(mm, pgd);
415 _pgd_free(pgd);
416 }
417
418 /*
419 * Used to set accessed or dirty bits in the page table entries
420 * on other architectures. On x86, the accessed and dirty bits
421 * are tracked by hardware. However, do_wp_page calls this function
422 * to also make the pte writeable at the same time the dirty bit is
423 * set. In that case we do actually need to write the PTE.
424 */
425 int ptep_set_access_flags(struct vm_area_struct *vma,
426 unsigned long address, pte_t *ptep,
427 pte_t entry, int dirty)
428 {
429 int changed = !pte_same(*ptep, entry);
430
431 if (changed && dirty)
432 *ptep = entry;
433
434 return changed;
435 }
436
437 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
438 int pmdp_set_access_flags(struct vm_area_struct *vma,
439 unsigned long address, pmd_t *pmdp,
440 pmd_t entry, int dirty)
441 {
442 int changed = !pmd_same(*pmdp, entry);
443
444 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
445
446 if (changed && dirty) {
447 *pmdp = entry;
448 /*
449 * We had a write-protection fault here and changed the pmd
450 * to to more permissive. No need to flush the TLB for that,
451 * #PF is architecturally guaranteed to do that and in the
452 * worst-case we'll generate a spurious fault.
453 */
454 }
455
456 return changed;
457 }
458
459 int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
460 pud_t *pudp, pud_t entry, int dirty)
461 {
462 int changed = !pud_same(*pudp, entry);
463
464 VM_BUG_ON(address & ~HPAGE_PUD_MASK);
465
466 if (changed && dirty) {
467 *pudp = entry;
468 /*
469 * We had a write-protection fault here and changed the pud
470 * to to more permissive. No need to flush the TLB for that,
471 * #PF is architecturally guaranteed to do that and in the
472 * worst-case we'll generate a spurious fault.
473 */
474 }
475
476 return changed;
477 }
478 #endif
479
480 int ptep_test_and_clear_young(struct vm_area_struct *vma,
481 unsigned long addr, pte_t *ptep)
482 {
483 int ret = 0;
484
485 if (pte_young(*ptep))
486 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
487 (unsigned long *) &ptep->pte);
488
489 return ret;
490 }
491
492 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
493 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
494 unsigned long addr, pmd_t *pmdp)
495 {
496 int ret = 0;
497
498 if (pmd_young(*pmdp))
499 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
500 (unsigned long *)pmdp);
501
502 return ret;
503 }
504 int pudp_test_and_clear_young(struct vm_area_struct *vma,
505 unsigned long addr, pud_t *pudp)
506 {
507 int ret = 0;
508
509 if (pud_young(*pudp))
510 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
511 (unsigned long *)pudp);
512
513 return ret;
514 }
515 #endif
516
517 int ptep_clear_flush_young(struct vm_area_struct *vma,
518 unsigned long address, pte_t *ptep)
519 {
520 /*
521 * On x86 CPUs, clearing the accessed bit without a TLB flush
522 * doesn't cause data corruption. [ It could cause incorrect
523 * page aging and the (mistaken) reclaim of hot pages, but the
524 * chance of that should be relatively low. ]
525 *
526 * So as a performance optimization don't flush the TLB when
527 * clearing the accessed bit, it will eventually be flushed by
528 * a context switch or a VM operation anyway. [ In the rare
529 * event of it not getting flushed for a long time the delay
530 * shouldn't really matter because there's no real memory
531 * pressure for swapout to react to. ]
532 */
533 return ptep_test_and_clear_young(vma, address, ptep);
534 }
535
536 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
537 int pmdp_clear_flush_young(struct vm_area_struct *vma,
538 unsigned long address, pmd_t *pmdp)
539 {
540 int young;
541
542 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
543
544 young = pmdp_test_and_clear_young(vma, address, pmdp);
545 if (young)
546 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
547
548 return young;
549 }
550 #endif
551
552 /**
553 * reserve_top_address - reserves a hole in the top of kernel address space
554 * @reserve - size of hole to reserve
555 *
556 * Can be used to relocate the fixmap area and poke a hole in the top
557 * of kernel address space to make room for a hypervisor.
558 */
559 void __init reserve_top_address(unsigned long reserve)
560 {
561 #ifdef CONFIG_X86_32
562 BUG_ON(fixmaps_set > 0);
563 __FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
564 printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
565 -reserve, __FIXADDR_TOP + PAGE_SIZE);
566 #endif
567 }
568
569 int fixmaps_set;
570
571 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
572 {
573 unsigned long address = __fix_to_virt(idx);
574
575 if (idx >= __end_of_fixed_addresses) {
576 BUG();
577 return;
578 }
579 set_pte_vaddr(address, pte);
580 fixmaps_set++;
581 }
582
583 void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
584 pgprot_t flags)
585 {
586 __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
587 }
588
589 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
590 #ifdef CONFIG_X86_5LEVEL
591 /**
592 * p4d_set_huge - setup kernel P4D mapping
593 *
594 * No 512GB pages yet -- always return 0
595 */
596 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
597 {
598 return 0;
599 }
600
601 /**
602 * p4d_clear_huge - clear kernel P4D mapping when it is set
603 *
604 * No 512GB pages yet -- always return 0
605 */
606 int p4d_clear_huge(p4d_t *p4d)
607 {
608 return 0;
609 }
610 #endif
611
612 /**
613 * pud_set_huge - setup kernel PUD mapping
614 *
615 * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
616 * function sets up a huge page only if any of the following conditions are met:
617 *
618 * - MTRRs are disabled, or
619 *
620 * - MTRRs are enabled and the range is completely covered by a single MTRR, or
621 *
622 * - MTRRs are enabled and the corresponding MTRR memory type is WB, which
623 * has no effect on the requested PAT memory type.
624 *
625 * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
626 * page mapping attempt fails.
627 *
628 * Returns 1 on success and 0 on failure.
629 */
630 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
631 {
632 u8 mtrr, uniform;
633
634 mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform);
635 if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
636 (mtrr != MTRR_TYPE_WRBACK))
637 return 0;
638
639 prot = pgprot_4k_2_large(prot);
640
641 set_pte((pte_t *)pud, pfn_pte(
642 (u64)addr >> PAGE_SHIFT,
643 __pgprot(pgprot_val(prot) | _PAGE_PSE)));
644
645 return 1;
646 }
647
648 /**
649 * pmd_set_huge - setup kernel PMD mapping
650 *
651 * See text over pud_set_huge() above.
652 *
653 * Returns 1 on success and 0 on failure.
654 */
655 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
656 {
657 u8 mtrr, uniform;
658
659 mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform);
660 if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
661 (mtrr != MTRR_TYPE_WRBACK)) {
662 pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
663 __func__, addr, addr + PMD_SIZE);
664 return 0;
665 }
666
667 prot = pgprot_4k_2_large(prot);
668
669 set_pte((pte_t *)pmd, pfn_pte(
670 (u64)addr >> PAGE_SHIFT,
671 __pgprot(pgprot_val(prot) | _PAGE_PSE)));
672
673 return 1;
674 }
675
676 /**
677 * pud_clear_huge - clear kernel PUD mapping when it is set
678 *
679 * Returns 1 on success and 0 on failure (no PUD map is found).
680 */
681 int pud_clear_huge(pud_t *pud)
682 {
683 if (pud_large(*pud)) {
684 pud_clear(pud);
685 return 1;
686 }
687
688 return 0;
689 }
690
691 /**
692 * pmd_clear_huge - clear kernel PMD mapping when it is set
693 *
694 * Returns 1 on success and 0 on failure (no PMD map is found).
695 */
696 int pmd_clear_huge(pmd_t *pmd)
697 {
698 if (pmd_large(*pmd)) {
699 pmd_clear(pmd);
700 return 1;
701 }
702
703 return 0;
704 }
705 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */