]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/mm/pgtable.c
Merge branch 'next' of git://git.infradead.org/users/pcmoore/selinux into next
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / mm / pgtable.c
1 #include <linux/mm.h>
2 #include <linux/gfp.h>
3 #include <asm/pgalloc.h>
4 #include <asm/pgtable.h>
5 #include <asm/tlb.h>
6 #include <asm/fixmap.h>
7
8 #define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO
9
10 #ifdef CONFIG_HIGHPTE
11 #define PGALLOC_USER_GFP __GFP_HIGHMEM
12 #else
13 #define PGALLOC_USER_GFP 0
14 #endif
15
16 gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
17
18 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
19 {
20 return (pte_t *)__get_free_page(PGALLOC_GFP);
21 }
22
23 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
24 {
25 struct page *pte;
26
27 pte = alloc_pages(__userpte_alloc_gfp, 0);
28 if (!pte)
29 return NULL;
30 if (!pgtable_page_ctor(pte)) {
31 __free_page(pte);
32 return NULL;
33 }
34 return pte;
35 }
36
37 static int __init setup_userpte(char *arg)
38 {
39 if (!arg)
40 return -EINVAL;
41
42 /*
43 * "userpte=nohigh" disables allocation of user pagetables in
44 * high memory.
45 */
46 if (strcmp(arg, "nohigh") == 0)
47 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
48 else
49 return -EINVAL;
50 return 0;
51 }
52 early_param("userpte", setup_userpte);
53
54 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
55 {
56 pgtable_page_dtor(pte);
57 paravirt_release_pte(page_to_pfn(pte));
58 tlb_remove_page(tlb, pte);
59 }
60
61 #if PAGETABLE_LEVELS > 2
62 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
63 {
64 struct page *page = virt_to_page(pmd);
65 paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
66 /*
67 * NOTE! For PAE, any changes to the top page-directory-pointer-table
68 * entries need a full cr3 reload to flush.
69 */
70 #ifdef CONFIG_X86_PAE
71 tlb->need_flush_all = 1;
72 #endif
73 pgtable_pmd_page_dtor(page);
74 tlb_remove_page(tlb, page);
75 }
76
77 #if PAGETABLE_LEVELS > 3
78 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
79 {
80 paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
81 tlb_remove_page(tlb, virt_to_page(pud));
82 }
83 #endif /* PAGETABLE_LEVELS > 3 */
84 #endif /* PAGETABLE_LEVELS > 2 */
85
86 static inline void pgd_list_add(pgd_t *pgd)
87 {
88 struct page *page = virt_to_page(pgd);
89
90 list_add(&page->lru, &pgd_list);
91 }
92
93 static inline void pgd_list_del(pgd_t *pgd)
94 {
95 struct page *page = virt_to_page(pgd);
96
97 list_del(&page->lru);
98 }
99
100 #define UNSHARED_PTRS_PER_PGD \
101 (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
102
103
104 static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
105 {
106 BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm));
107 virt_to_page(pgd)->index = (pgoff_t)mm;
108 }
109
110 struct mm_struct *pgd_page_get_mm(struct page *page)
111 {
112 return (struct mm_struct *)page->index;
113 }
114
115 static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
116 {
117 /* If the pgd points to a shared pagetable level (either the
118 ptes in non-PAE, or shared PMD in PAE), then just copy the
119 references from swapper_pg_dir. */
120 if (PAGETABLE_LEVELS == 2 ||
121 (PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
122 PAGETABLE_LEVELS == 4) {
123 clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
124 swapper_pg_dir + KERNEL_PGD_BOUNDARY,
125 KERNEL_PGD_PTRS);
126 }
127
128 /* list required to sync kernel mapping updates */
129 if (!SHARED_KERNEL_PMD) {
130 pgd_set_mm(pgd, mm);
131 pgd_list_add(pgd);
132 }
133 }
134
135 static void pgd_dtor(pgd_t *pgd)
136 {
137 if (SHARED_KERNEL_PMD)
138 return;
139
140 spin_lock(&pgd_lock);
141 pgd_list_del(pgd);
142 spin_unlock(&pgd_lock);
143 }
144
145 /*
146 * List of all pgd's needed for non-PAE so it can invalidate entries
147 * in both cached and uncached pgd's; not needed for PAE since the
148 * kernel pmd is shared. If PAE were not to share the pmd a similar
149 * tactic would be needed. This is essentially codepath-based locking
150 * against pageattr.c; it is the unique case in which a valid change
151 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
152 * vmalloc faults work because attached pagetables are never freed.
153 * -- nyc
154 */
155
156 #ifdef CONFIG_X86_PAE
157 /*
158 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
159 * updating the top-level pagetable entries to guarantee the
160 * processor notices the update. Since this is expensive, and
161 * all 4 top-level entries are used almost immediately in a
162 * new process's life, we just pre-populate them here.
163 *
164 * Also, if we're in a paravirt environment where the kernel pmd is
165 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
166 * and initialize the kernel pmds here.
167 */
168 #define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD
169
170 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
171 {
172 paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
173
174 /* Note: almost everything apart from _PAGE_PRESENT is
175 reserved at the pmd (PDPT) level. */
176 set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
177
178 /*
179 * According to Intel App note "TLBs, Paging-Structure Caches,
180 * and Their Invalidation", April 2007, document 317080-001,
181 * section 8.1: in PAE mode we explicitly have to flush the
182 * TLB via cr3 if the top-level pgd is changed...
183 */
184 flush_tlb_mm(mm);
185 }
186 #else /* !CONFIG_X86_PAE */
187
188 /* No need to prepopulate any pagetable entries in non-PAE modes. */
189 #define PREALLOCATED_PMDS 0
190
191 #endif /* CONFIG_X86_PAE */
192
193 static void free_pmds(pmd_t *pmds[])
194 {
195 int i;
196
197 for(i = 0; i < PREALLOCATED_PMDS; i++)
198 if (pmds[i]) {
199 pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
200 free_page((unsigned long)pmds[i]);
201 }
202 }
203
204 static int preallocate_pmds(pmd_t *pmds[])
205 {
206 int i;
207 bool failed = false;
208
209 for(i = 0; i < PREALLOCATED_PMDS; i++) {
210 pmd_t *pmd = (pmd_t *)__get_free_page(PGALLOC_GFP);
211 if (!pmd)
212 failed = true;
213 if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
214 free_page((unsigned long)pmd);
215 pmd = NULL;
216 failed = true;
217 }
218 pmds[i] = pmd;
219 }
220
221 if (failed) {
222 free_pmds(pmds);
223 return -ENOMEM;
224 }
225
226 return 0;
227 }
228
229 /*
230 * Mop up any pmd pages which may still be attached to the pgd.
231 * Normally they will be freed by munmap/exit_mmap, but any pmd we
232 * preallocate which never got a corresponding vma will need to be
233 * freed manually.
234 */
235 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
236 {
237 int i;
238
239 for(i = 0; i < PREALLOCATED_PMDS; i++) {
240 pgd_t pgd = pgdp[i];
241
242 if (pgd_val(pgd) != 0) {
243 pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
244
245 pgdp[i] = native_make_pgd(0);
246
247 paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
248 pmd_free(mm, pmd);
249 }
250 }
251 }
252
253 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
254 {
255 pud_t *pud;
256 int i;
257
258 if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
259 return;
260
261 pud = pud_offset(pgd, 0);
262
263 for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
264 pmd_t *pmd = pmds[i];
265
266 if (i >= KERNEL_PGD_BOUNDARY)
267 memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
268 sizeof(pmd_t) * PTRS_PER_PMD);
269
270 pud_populate(mm, pud, pmd);
271 }
272 }
273
274 pgd_t *pgd_alloc(struct mm_struct *mm)
275 {
276 pgd_t *pgd;
277 pmd_t *pmds[PREALLOCATED_PMDS];
278
279 pgd = (pgd_t *)__get_free_page(PGALLOC_GFP);
280
281 if (pgd == NULL)
282 goto out;
283
284 mm->pgd = pgd;
285
286 if (preallocate_pmds(pmds) != 0)
287 goto out_free_pgd;
288
289 if (paravirt_pgd_alloc(mm) != 0)
290 goto out_free_pmds;
291
292 /*
293 * Make sure that pre-populating the pmds is atomic with
294 * respect to anything walking the pgd_list, so that they
295 * never see a partially populated pgd.
296 */
297 spin_lock(&pgd_lock);
298
299 pgd_ctor(mm, pgd);
300 pgd_prepopulate_pmd(mm, pgd, pmds);
301
302 spin_unlock(&pgd_lock);
303
304 return pgd;
305
306 out_free_pmds:
307 free_pmds(pmds);
308 out_free_pgd:
309 free_page((unsigned long)pgd);
310 out:
311 return NULL;
312 }
313
314 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
315 {
316 pgd_mop_up_pmds(mm, pgd);
317 pgd_dtor(pgd);
318 paravirt_pgd_free(mm, pgd);
319 free_page((unsigned long)pgd);
320 }
321
322 /*
323 * Used to set accessed or dirty bits in the page table entries
324 * on other architectures. On x86, the accessed and dirty bits
325 * are tracked by hardware. However, do_wp_page calls this function
326 * to also make the pte writeable at the same time the dirty bit is
327 * set. In that case we do actually need to write the PTE.
328 */
329 int ptep_set_access_flags(struct vm_area_struct *vma,
330 unsigned long address, pte_t *ptep,
331 pte_t entry, int dirty)
332 {
333 int changed = !pte_same(*ptep, entry);
334
335 if (changed && dirty) {
336 *ptep = entry;
337 pte_update_defer(vma->vm_mm, address, ptep);
338 }
339
340 return changed;
341 }
342
343 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
344 int pmdp_set_access_flags(struct vm_area_struct *vma,
345 unsigned long address, pmd_t *pmdp,
346 pmd_t entry, int dirty)
347 {
348 int changed = !pmd_same(*pmdp, entry);
349
350 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
351
352 if (changed && dirty) {
353 *pmdp = entry;
354 pmd_update_defer(vma->vm_mm, address, pmdp);
355 /*
356 * We had a write-protection fault here and changed the pmd
357 * to to more permissive. No need to flush the TLB for that,
358 * #PF is architecturally guaranteed to do that and in the
359 * worst-case we'll generate a spurious fault.
360 */
361 }
362
363 return changed;
364 }
365 #endif
366
367 int ptep_test_and_clear_young(struct vm_area_struct *vma,
368 unsigned long addr, pte_t *ptep)
369 {
370 int ret = 0;
371
372 if (pte_young(*ptep))
373 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
374 (unsigned long *) &ptep->pte);
375
376 if (ret)
377 pte_update(vma->vm_mm, addr, ptep);
378
379 return ret;
380 }
381
382 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
383 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
384 unsigned long addr, pmd_t *pmdp)
385 {
386 int ret = 0;
387
388 if (pmd_young(*pmdp))
389 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
390 (unsigned long *)pmdp);
391
392 if (ret)
393 pmd_update(vma->vm_mm, addr, pmdp);
394
395 return ret;
396 }
397 #endif
398
399 int ptep_clear_flush_young(struct vm_area_struct *vma,
400 unsigned long address, pte_t *ptep)
401 {
402 /*
403 * On x86 CPUs, clearing the accessed bit without a TLB flush
404 * doesn't cause data corruption. [ It could cause incorrect
405 * page aging and the (mistaken) reclaim of hot pages, but the
406 * chance of that should be relatively low. ]
407 *
408 * So as a performance optimization don't flush the TLB when
409 * clearing the accessed bit, it will eventually be flushed by
410 * a context switch or a VM operation anyway. [ In the rare
411 * event of it not getting flushed for a long time the delay
412 * shouldn't really matter because there's no real memory
413 * pressure for swapout to react to. ]
414 */
415 return ptep_test_and_clear_young(vma, address, ptep);
416 }
417
418 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
419 int pmdp_clear_flush_young(struct vm_area_struct *vma,
420 unsigned long address, pmd_t *pmdp)
421 {
422 int young;
423
424 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
425
426 young = pmdp_test_and_clear_young(vma, address, pmdp);
427 if (young)
428 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
429
430 return young;
431 }
432
433 void pmdp_splitting_flush(struct vm_area_struct *vma,
434 unsigned long address, pmd_t *pmdp)
435 {
436 int set;
437 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
438 set = !test_and_set_bit(_PAGE_BIT_SPLITTING,
439 (unsigned long *)pmdp);
440 if (set) {
441 pmd_update(vma->vm_mm, address, pmdp);
442 /* need tlb flush only to serialize against gup-fast */
443 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
444 }
445 }
446 #endif
447
448 /**
449 * reserve_top_address - reserves a hole in the top of kernel address space
450 * @reserve - size of hole to reserve
451 *
452 * Can be used to relocate the fixmap area and poke a hole in the top
453 * of kernel address space to make room for a hypervisor.
454 */
455 void __init reserve_top_address(unsigned long reserve)
456 {
457 #ifdef CONFIG_X86_32
458 BUG_ON(fixmaps_set > 0);
459 __FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
460 printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
461 -reserve, __FIXADDR_TOP + PAGE_SIZE);
462 #endif
463 }
464
465 int fixmaps_set;
466
467 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
468 {
469 unsigned long address = __fix_to_virt(idx);
470
471 if (idx >= __end_of_fixed_addresses) {
472 BUG();
473 return;
474 }
475 set_pte_vaddr(address, pte);
476 fixmaps_set++;
477 }
478
479 void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
480 pgprot_t flags)
481 {
482 __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
483 }