]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/mm/pgtable.c
Merge tag 'driver-core-4.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / mm / pgtable.c
1 #include <linux/mm.h>
2 #include <linux/gfp.h>
3 #include <asm/pgalloc.h>
4 #include <asm/pgtable.h>
5 #include <asm/tlb.h>
6 #include <asm/fixmap.h>
7 #include <asm/mtrr.h>
8
9 #define PGALLOC_GFP (GFP_KERNEL_ACCOUNT | __GFP_NOTRACK | __GFP_ZERO)
10
11 #ifdef CONFIG_HIGHPTE
12 #define PGALLOC_USER_GFP __GFP_HIGHMEM
13 #else
14 #define PGALLOC_USER_GFP 0
15 #endif
16
17 gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
18
19 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
20 {
21 return (pte_t *)__get_free_page(PGALLOC_GFP & ~__GFP_ACCOUNT);
22 }
23
24 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
25 {
26 struct page *pte;
27
28 pte = alloc_pages(__userpte_alloc_gfp, 0);
29 if (!pte)
30 return NULL;
31 if (!pgtable_page_ctor(pte)) {
32 __free_page(pte);
33 return NULL;
34 }
35 return pte;
36 }
37
38 static int __init setup_userpte(char *arg)
39 {
40 if (!arg)
41 return -EINVAL;
42
43 /*
44 * "userpte=nohigh" disables allocation of user pagetables in
45 * high memory.
46 */
47 if (strcmp(arg, "nohigh") == 0)
48 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
49 else
50 return -EINVAL;
51 return 0;
52 }
53 early_param("userpte", setup_userpte);
54
55 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
56 {
57 pgtable_page_dtor(pte);
58 paravirt_release_pte(page_to_pfn(pte));
59 tlb_remove_table(tlb, pte);
60 }
61
62 #if CONFIG_PGTABLE_LEVELS > 2
63 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
64 {
65 struct page *page = virt_to_page(pmd);
66 paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
67 /*
68 * NOTE! For PAE, any changes to the top page-directory-pointer-table
69 * entries need a full cr3 reload to flush.
70 */
71 #ifdef CONFIG_X86_PAE
72 tlb->need_flush_all = 1;
73 #endif
74 pgtable_pmd_page_dtor(page);
75 tlb_remove_table(tlb, page);
76 }
77
78 #if CONFIG_PGTABLE_LEVELS > 3
79 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
80 {
81 paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
82 tlb_remove_table(tlb, virt_to_page(pud));
83 }
84
85 #if CONFIG_PGTABLE_LEVELS > 4
86 void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d)
87 {
88 paravirt_release_p4d(__pa(p4d) >> PAGE_SHIFT);
89 tlb_remove_table(tlb, virt_to_page(p4d));
90 }
91 #endif /* CONFIG_PGTABLE_LEVELS > 4 */
92 #endif /* CONFIG_PGTABLE_LEVELS > 3 */
93 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
94
95 static inline void pgd_list_add(pgd_t *pgd)
96 {
97 struct page *page = virt_to_page(pgd);
98
99 list_add(&page->lru, &pgd_list);
100 }
101
102 static inline void pgd_list_del(pgd_t *pgd)
103 {
104 struct page *page = virt_to_page(pgd);
105
106 list_del(&page->lru);
107 }
108
109 #define UNSHARED_PTRS_PER_PGD \
110 (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
111
112
113 static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
114 {
115 BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm));
116 virt_to_page(pgd)->index = (pgoff_t)mm;
117 }
118
119 struct mm_struct *pgd_page_get_mm(struct page *page)
120 {
121 return (struct mm_struct *)page->index;
122 }
123
124 static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
125 {
126 /* If the pgd points to a shared pagetable level (either the
127 ptes in non-PAE, or shared PMD in PAE), then just copy the
128 references from swapper_pg_dir. */
129 if (CONFIG_PGTABLE_LEVELS == 2 ||
130 (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
131 CONFIG_PGTABLE_LEVELS >= 4) {
132 clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
133 swapper_pg_dir + KERNEL_PGD_BOUNDARY,
134 KERNEL_PGD_PTRS);
135 }
136
137 /* list required to sync kernel mapping updates */
138 if (!SHARED_KERNEL_PMD) {
139 pgd_set_mm(pgd, mm);
140 pgd_list_add(pgd);
141 }
142 }
143
144 static void pgd_dtor(pgd_t *pgd)
145 {
146 if (SHARED_KERNEL_PMD)
147 return;
148
149 spin_lock(&pgd_lock);
150 pgd_list_del(pgd);
151 spin_unlock(&pgd_lock);
152 }
153
154 /*
155 * List of all pgd's needed for non-PAE so it can invalidate entries
156 * in both cached and uncached pgd's; not needed for PAE since the
157 * kernel pmd is shared. If PAE were not to share the pmd a similar
158 * tactic would be needed. This is essentially codepath-based locking
159 * against pageattr.c; it is the unique case in which a valid change
160 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
161 * vmalloc faults work because attached pagetables are never freed.
162 * -- nyc
163 */
164
165 #ifdef CONFIG_X86_PAE
166 /*
167 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
168 * updating the top-level pagetable entries to guarantee the
169 * processor notices the update. Since this is expensive, and
170 * all 4 top-level entries are used almost immediately in a
171 * new process's life, we just pre-populate them here.
172 *
173 * Also, if we're in a paravirt environment where the kernel pmd is
174 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
175 * and initialize the kernel pmds here.
176 */
177 #define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD
178
179 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
180 {
181 paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
182
183 /* Note: almost everything apart from _PAGE_PRESENT is
184 reserved at the pmd (PDPT) level. */
185 set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
186
187 /*
188 * According to Intel App note "TLBs, Paging-Structure Caches,
189 * and Their Invalidation", April 2007, document 317080-001,
190 * section 8.1: in PAE mode we explicitly have to flush the
191 * TLB via cr3 if the top-level pgd is changed...
192 */
193 flush_tlb_mm(mm);
194 }
195 #else /* !CONFIG_X86_PAE */
196
197 /* No need to prepopulate any pagetable entries in non-PAE modes. */
198 #define PREALLOCATED_PMDS 0
199
200 #endif /* CONFIG_X86_PAE */
201
202 static void free_pmds(struct mm_struct *mm, pmd_t *pmds[])
203 {
204 int i;
205
206 for(i = 0; i < PREALLOCATED_PMDS; i++)
207 if (pmds[i]) {
208 pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
209 free_page((unsigned long)pmds[i]);
210 mm_dec_nr_pmds(mm);
211 }
212 }
213
214 static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[])
215 {
216 int i;
217 bool failed = false;
218 gfp_t gfp = PGALLOC_GFP;
219
220 if (mm == &init_mm)
221 gfp &= ~__GFP_ACCOUNT;
222
223 for(i = 0; i < PREALLOCATED_PMDS; i++) {
224 pmd_t *pmd = (pmd_t *)__get_free_page(gfp);
225 if (!pmd)
226 failed = true;
227 if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
228 free_page((unsigned long)pmd);
229 pmd = NULL;
230 failed = true;
231 }
232 if (pmd)
233 mm_inc_nr_pmds(mm);
234 pmds[i] = pmd;
235 }
236
237 if (failed) {
238 free_pmds(mm, pmds);
239 return -ENOMEM;
240 }
241
242 return 0;
243 }
244
245 /*
246 * Mop up any pmd pages which may still be attached to the pgd.
247 * Normally they will be freed by munmap/exit_mmap, but any pmd we
248 * preallocate which never got a corresponding vma will need to be
249 * freed manually.
250 */
251 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
252 {
253 int i;
254
255 for(i = 0; i < PREALLOCATED_PMDS; i++) {
256 pgd_t pgd = pgdp[i];
257
258 if (pgd_val(pgd) != 0) {
259 pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
260
261 pgdp[i] = native_make_pgd(0);
262
263 paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
264 pmd_free(mm, pmd);
265 mm_dec_nr_pmds(mm);
266 }
267 }
268 }
269
270 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
271 {
272 p4d_t *p4d;
273 pud_t *pud;
274 int i;
275
276 if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
277 return;
278
279 p4d = p4d_offset(pgd, 0);
280 pud = pud_offset(p4d, 0);
281
282 for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
283 pmd_t *pmd = pmds[i];
284
285 if (i >= KERNEL_PGD_BOUNDARY)
286 memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
287 sizeof(pmd_t) * PTRS_PER_PMD);
288
289 pud_populate(mm, pud, pmd);
290 }
291 }
292
293 /*
294 * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
295 * assumes that pgd should be in one page.
296 *
297 * But kernel with PAE paging that is not running as a Xen domain
298 * only needs to allocate 32 bytes for pgd instead of one page.
299 */
300 #ifdef CONFIG_X86_PAE
301
302 #include <linux/slab.h>
303
304 #define PGD_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
305 #define PGD_ALIGN 32
306
307 static struct kmem_cache *pgd_cache;
308
309 static int __init pgd_cache_init(void)
310 {
311 /*
312 * When PAE kernel is running as a Xen domain, it does not use
313 * shared kernel pmd. And this requires a whole page for pgd.
314 */
315 if (!SHARED_KERNEL_PMD)
316 return 0;
317
318 /*
319 * when PAE kernel is not running as a Xen domain, it uses
320 * shared kernel pmd. Shared kernel pmd does not require a whole
321 * page for pgd. We are able to just allocate a 32-byte for pgd.
322 * During boot time, we create a 32-byte slab for pgd table allocation.
323 */
324 pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
325 SLAB_PANIC, NULL);
326 if (!pgd_cache)
327 return -ENOMEM;
328
329 return 0;
330 }
331 core_initcall(pgd_cache_init);
332
333 static inline pgd_t *_pgd_alloc(void)
334 {
335 /*
336 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
337 * We allocate one page for pgd.
338 */
339 if (!SHARED_KERNEL_PMD)
340 return (pgd_t *)__get_free_page(PGALLOC_GFP);
341
342 /*
343 * Now PAE kernel is not running as a Xen domain. We can allocate
344 * a 32-byte slab for pgd to save memory space.
345 */
346 return kmem_cache_alloc(pgd_cache, PGALLOC_GFP);
347 }
348
349 static inline void _pgd_free(pgd_t *pgd)
350 {
351 if (!SHARED_KERNEL_PMD)
352 free_page((unsigned long)pgd);
353 else
354 kmem_cache_free(pgd_cache, pgd);
355 }
356 #else
357 static inline pgd_t *_pgd_alloc(void)
358 {
359 return (pgd_t *)__get_free_page(PGALLOC_GFP);
360 }
361
362 static inline void _pgd_free(pgd_t *pgd)
363 {
364 free_page((unsigned long)pgd);
365 }
366 #endif /* CONFIG_X86_PAE */
367
368 pgd_t *pgd_alloc(struct mm_struct *mm)
369 {
370 pgd_t *pgd;
371 pmd_t *pmds[PREALLOCATED_PMDS];
372
373 pgd = _pgd_alloc();
374
375 if (pgd == NULL)
376 goto out;
377
378 mm->pgd = pgd;
379
380 if (preallocate_pmds(mm, pmds) != 0)
381 goto out_free_pgd;
382
383 if (paravirt_pgd_alloc(mm) != 0)
384 goto out_free_pmds;
385
386 /*
387 * Make sure that pre-populating the pmds is atomic with
388 * respect to anything walking the pgd_list, so that they
389 * never see a partially populated pgd.
390 */
391 spin_lock(&pgd_lock);
392
393 pgd_ctor(mm, pgd);
394 pgd_prepopulate_pmd(mm, pgd, pmds);
395
396 spin_unlock(&pgd_lock);
397
398 return pgd;
399
400 out_free_pmds:
401 free_pmds(mm, pmds);
402 out_free_pgd:
403 _pgd_free(pgd);
404 out:
405 return NULL;
406 }
407
408 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
409 {
410 pgd_mop_up_pmds(mm, pgd);
411 pgd_dtor(pgd);
412 paravirt_pgd_free(mm, pgd);
413 _pgd_free(pgd);
414 }
415
416 /*
417 * Used to set accessed or dirty bits in the page table entries
418 * on other architectures. On x86, the accessed and dirty bits
419 * are tracked by hardware. However, do_wp_page calls this function
420 * to also make the pte writeable at the same time the dirty bit is
421 * set. In that case we do actually need to write the PTE.
422 */
423 int ptep_set_access_flags(struct vm_area_struct *vma,
424 unsigned long address, pte_t *ptep,
425 pte_t entry, int dirty)
426 {
427 int changed = !pte_same(*ptep, entry);
428
429 if (changed && dirty) {
430 *ptep = entry;
431 pte_update(vma->vm_mm, address, ptep);
432 }
433
434 return changed;
435 }
436
437 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
438 int pmdp_set_access_flags(struct vm_area_struct *vma,
439 unsigned long address, pmd_t *pmdp,
440 pmd_t entry, int dirty)
441 {
442 int changed = !pmd_same(*pmdp, entry);
443
444 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
445
446 if (changed && dirty) {
447 *pmdp = entry;
448 /*
449 * We had a write-protection fault here and changed the pmd
450 * to to more permissive. No need to flush the TLB for that,
451 * #PF is architecturally guaranteed to do that and in the
452 * worst-case we'll generate a spurious fault.
453 */
454 }
455
456 return changed;
457 }
458
459 int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
460 pud_t *pudp, pud_t entry, int dirty)
461 {
462 int changed = !pud_same(*pudp, entry);
463
464 VM_BUG_ON(address & ~HPAGE_PUD_MASK);
465
466 if (changed && dirty) {
467 *pudp = entry;
468 /*
469 * We had a write-protection fault here and changed the pud
470 * to to more permissive. No need to flush the TLB for that,
471 * #PF is architecturally guaranteed to do that and in the
472 * worst-case we'll generate a spurious fault.
473 */
474 }
475
476 return changed;
477 }
478 #endif
479
480 int ptep_test_and_clear_young(struct vm_area_struct *vma,
481 unsigned long addr, pte_t *ptep)
482 {
483 int ret = 0;
484
485 if (pte_young(*ptep))
486 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
487 (unsigned long *) &ptep->pte);
488
489 if (ret)
490 pte_update(vma->vm_mm, addr, ptep);
491
492 return ret;
493 }
494
495 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
496 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
497 unsigned long addr, pmd_t *pmdp)
498 {
499 int ret = 0;
500
501 if (pmd_young(*pmdp))
502 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
503 (unsigned long *)pmdp);
504
505 return ret;
506 }
507 int pudp_test_and_clear_young(struct vm_area_struct *vma,
508 unsigned long addr, pud_t *pudp)
509 {
510 int ret = 0;
511
512 if (pud_young(*pudp))
513 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
514 (unsigned long *)pudp);
515
516 return ret;
517 }
518 #endif
519
520 int ptep_clear_flush_young(struct vm_area_struct *vma,
521 unsigned long address, pte_t *ptep)
522 {
523 /*
524 * On x86 CPUs, clearing the accessed bit without a TLB flush
525 * doesn't cause data corruption. [ It could cause incorrect
526 * page aging and the (mistaken) reclaim of hot pages, but the
527 * chance of that should be relatively low. ]
528 *
529 * So as a performance optimization don't flush the TLB when
530 * clearing the accessed bit, it will eventually be flushed by
531 * a context switch or a VM operation anyway. [ In the rare
532 * event of it not getting flushed for a long time the delay
533 * shouldn't really matter because there's no real memory
534 * pressure for swapout to react to. ]
535 */
536 return ptep_test_and_clear_young(vma, address, ptep);
537 }
538
539 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
540 int pmdp_clear_flush_young(struct vm_area_struct *vma,
541 unsigned long address, pmd_t *pmdp)
542 {
543 int young;
544
545 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
546
547 young = pmdp_test_and_clear_young(vma, address, pmdp);
548 if (young)
549 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
550
551 return young;
552 }
553 #endif
554
555 /**
556 * reserve_top_address - reserves a hole in the top of kernel address space
557 * @reserve - size of hole to reserve
558 *
559 * Can be used to relocate the fixmap area and poke a hole in the top
560 * of kernel address space to make room for a hypervisor.
561 */
562 void __init reserve_top_address(unsigned long reserve)
563 {
564 #ifdef CONFIG_X86_32
565 BUG_ON(fixmaps_set > 0);
566 __FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
567 printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
568 -reserve, __FIXADDR_TOP + PAGE_SIZE);
569 #endif
570 }
571
572 int fixmaps_set;
573
574 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
575 {
576 unsigned long address = __fix_to_virt(idx);
577
578 if (idx >= __end_of_fixed_addresses) {
579 BUG();
580 return;
581 }
582 set_pte_vaddr(address, pte);
583 fixmaps_set++;
584 }
585
586 void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
587 pgprot_t flags)
588 {
589 __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
590 }
591
592 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
593 #ifdef CONFIG_X86_5LEVEL
594 /**
595 * p4d_set_huge - setup kernel P4D mapping
596 *
597 * No 512GB pages yet -- always return 0
598 */
599 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
600 {
601 return 0;
602 }
603
604 /**
605 * p4d_clear_huge - clear kernel P4D mapping when it is set
606 *
607 * No 512GB pages yet -- always return 0
608 */
609 int p4d_clear_huge(p4d_t *p4d)
610 {
611 return 0;
612 }
613 #endif
614
615 /**
616 * pud_set_huge - setup kernel PUD mapping
617 *
618 * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
619 * function sets up a huge page only if any of the following conditions are met:
620 *
621 * - MTRRs are disabled, or
622 *
623 * - MTRRs are enabled and the range is completely covered by a single MTRR, or
624 *
625 * - MTRRs are enabled and the corresponding MTRR memory type is WB, which
626 * has no effect on the requested PAT memory type.
627 *
628 * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
629 * page mapping attempt fails.
630 *
631 * Returns 1 on success and 0 on failure.
632 */
633 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
634 {
635 u8 mtrr, uniform;
636
637 mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform);
638 if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
639 (mtrr != MTRR_TYPE_WRBACK))
640 return 0;
641
642 prot = pgprot_4k_2_large(prot);
643
644 set_pte((pte_t *)pud, pfn_pte(
645 (u64)addr >> PAGE_SHIFT,
646 __pgprot(pgprot_val(prot) | _PAGE_PSE)));
647
648 return 1;
649 }
650
651 /**
652 * pmd_set_huge - setup kernel PMD mapping
653 *
654 * See text over pud_set_huge() above.
655 *
656 * Returns 1 on success and 0 on failure.
657 */
658 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
659 {
660 u8 mtrr, uniform;
661
662 mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform);
663 if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
664 (mtrr != MTRR_TYPE_WRBACK)) {
665 pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
666 __func__, addr, addr + PMD_SIZE);
667 return 0;
668 }
669
670 prot = pgprot_4k_2_large(prot);
671
672 set_pte((pte_t *)pmd, pfn_pte(
673 (u64)addr >> PAGE_SHIFT,
674 __pgprot(pgprot_val(prot) | _PAGE_PSE)));
675
676 return 1;
677 }
678
679 /**
680 * pud_clear_huge - clear kernel PUD mapping when it is set
681 *
682 * Returns 1 on success and 0 on failure (no PUD map is found).
683 */
684 int pud_clear_huge(pud_t *pud)
685 {
686 if (pud_large(*pud)) {
687 pud_clear(pud);
688 return 1;
689 }
690
691 return 0;
692 }
693
694 /**
695 * pmd_clear_huge - clear kernel PMD mapping when it is set
696 *
697 * Returns 1 on success and 0 on failure (no PMD map is found).
698 */
699 int pmd_clear_huge(pmd_t *pmd)
700 {
701 if (pmd_large(*pmd)) {
702 pmd_clear(pmd);
703 return 1;
704 }
705
706 return 0;
707 }
708 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */