]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/x86/mm/tlb.c
ASoC: tlv320aic31xx: Reset registers during power up
[mirror_ubuntu-focal-kernel.git] / arch / x86 / mm / tlb.c
1 #include <linux/init.h>
2
3 #include <linux/mm.h>
4 #include <linux/spinlock.h>
5 #include <linux/smp.h>
6 #include <linux/interrupt.h>
7 #include <linux/export.h>
8 #include <linux/cpu.h>
9
10 #include <asm/tlbflush.h>
11 #include <asm/mmu_context.h>
12 #include <asm/cache.h>
13 #include <asm/apic.h>
14 #include <asm/uv/uv.h>
15 #include <linux/debugfs.h>
16
17 /*
18 * TLB flushing, formerly SMP-only
19 * c/o Linus Torvalds.
20 *
21 * These mean you can really definitely utterly forget about
22 * writing to user space from interrupts. (Its not allowed anyway).
23 *
24 * Optimizations Manfred Spraul <manfred@colorfullife.com>
25 *
26 * More scalable flush, from Andi Kleen
27 *
28 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
29 */
30
31 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
32
33
34 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
35 u16 *new_asid, bool *need_flush)
36 {
37 u16 asid;
38
39 if (!static_cpu_has(X86_FEATURE_PCID)) {
40 *new_asid = 0;
41 *need_flush = true;
42 return;
43 }
44
45 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
46 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
47 next->context.ctx_id)
48 continue;
49
50 *new_asid = asid;
51 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
52 next_tlb_gen);
53 return;
54 }
55
56 /*
57 * We don't currently own an ASID slot on this CPU.
58 * Allocate a slot.
59 */
60 *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
61 if (*new_asid >= TLB_NR_DYN_ASIDS) {
62 *new_asid = 0;
63 this_cpu_write(cpu_tlbstate.next_asid, 1);
64 }
65 *need_flush = true;
66 }
67
68 void leave_mm(int cpu)
69 {
70 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
71
72 /*
73 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
74 * If so, our callers still expect us to flush the TLB, but there
75 * aren't any user TLB entries in init_mm to worry about.
76 *
77 * This needs to happen before any other sanity checks due to
78 * intel_idle's shenanigans.
79 */
80 if (loaded_mm == &init_mm)
81 return;
82
83 /* Warn if we're not lazy. */
84 WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
85
86 switch_mm(NULL, &init_mm, NULL);
87 }
88 EXPORT_SYMBOL_GPL(leave_mm);
89
90 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
91 struct task_struct *tsk)
92 {
93 unsigned long flags;
94
95 local_irq_save(flags);
96 switch_mm_irqs_off(prev, next, tsk);
97 local_irq_restore(flags);
98 }
99
100 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
101 struct task_struct *tsk)
102 {
103 struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
104 u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
105 unsigned cpu = smp_processor_id();
106 u64 next_tlb_gen;
107
108 /*
109 * NB: The scheduler will call us with prev == next when switching
110 * from lazy TLB mode to normal mode if active_mm isn't changing.
111 * When this happens, we don't assume that CR3 (and hence
112 * cpu_tlbstate.loaded_mm) matches next.
113 *
114 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
115 */
116
117 /* We don't want flush_tlb_func_* to run concurrently with us. */
118 if (IS_ENABLED(CONFIG_PROVE_LOCKING))
119 WARN_ON_ONCE(!irqs_disabled());
120
121 /*
122 * Verify that CR3 is what we think it is. This will catch
123 * hypothetical buggy code that directly switches to swapper_pg_dir
124 * without going through leave_mm() / switch_mm_irqs_off() or that
125 * does something like write_cr3(read_cr3_pa()).
126 *
127 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
128 * isn't free.
129 */
130 #ifdef CONFIG_DEBUG_VM
131 if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev, prev_asid))) {
132 /*
133 * If we were to BUG here, we'd be very likely to kill
134 * the system so hard that we don't see the call trace.
135 * Try to recover instead by ignoring the error and doing
136 * a global flush to minimize the chance of corruption.
137 *
138 * (This is far from being a fully correct recovery.
139 * Architecturally, the CPU could prefetch something
140 * back into an incorrect ASID slot and leave it there
141 * to cause trouble down the road. It's better than
142 * nothing, though.)
143 */
144 __flush_tlb_all();
145 }
146 #endif
147 this_cpu_write(cpu_tlbstate.is_lazy, false);
148
149 if (real_prev == next) {
150 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
151 next->context.ctx_id);
152
153 /*
154 * We don't currently support having a real mm loaded without
155 * our cpu set in mm_cpumask(). We have all the bookkeeping
156 * in place to figure out whether we would need to flush
157 * if our cpu were cleared in mm_cpumask(), but we don't
158 * currently use it.
159 */
160 if (WARN_ON_ONCE(real_prev != &init_mm &&
161 !cpumask_test_cpu(cpu, mm_cpumask(next))))
162 cpumask_set_cpu(cpu, mm_cpumask(next));
163
164 return;
165 } else {
166 u16 new_asid;
167 bool need_flush;
168
169 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
170 /*
171 * If our current stack is in vmalloc space and isn't
172 * mapped in the new pgd, we'll double-fault. Forcibly
173 * map it.
174 */
175 unsigned int index = pgd_index(current_stack_pointer);
176 pgd_t *pgd = next->pgd + index;
177
178 if (unlikely(pgd_none(*pgd)))
179 set_pgd(pgd, init_mm.pgd[index]);
180 }
181
182 /* Stop remote flushes for the previous mm */
183 VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(real_prev)) &&
184 real_prev != &init_mm);
185 cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
186
187 /*
188 * Start remote flushes and then read tlb_gen.
189 */
190 cpumask_set_cpu(cpu, mm_cpumask(next));
191 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
192
193 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
194
195 if (need_flush) {
196 this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
197 this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
198 write_cr3(build_cr3(next, new_asid));
199
200 /*
201 * NB: This gets called via leave_mm() in the idle path
202 * where RCU functions differently. Tracing normally
203 * uses RCU, so we need to use the _rcuidle variant.
204 *
205 * (There is no good reason for this. The idle code should
206 * be rearranged to call this before rcu_idle_enter().)
207 */
208 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
209 } else {
210 /* The new ASID is already up to date. */
211 write_cr3(build_cr3_noflush(next, new_asid));
212
213 /* See above wrt _rcuidle. */
214 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, 0);
215 }
216
217 this_cpu_write(cpu_tlbstate.loaded_mm, next);
218 this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
219 }
220
221 load_mm_cr4(next);
222 switch_ldt(real_prev, next);
223 }
224
225 /*
226 * Please ignore the name of this function. It should be called
227 * switch_to_kernel_thread().
228 *
229 * enter_lazy_tlb() is a hint from the scheduler that we are entering a
230 * kernel thread or other context without an mm. Acceptable implementations
231 * include doing nothing whatsoever, switching to init_mm, or various clever
232 * lazy tricks to try to minimize TLB flushes.
233 *
234 * The scheduler reserves the right to call enter_lazy_tlb() several times
235 * in a row. It will notify us that we're going back to a real mm by
236 * calling switch_mm_irqs_off().
237 */
238 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
239 {
240 if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
241 return;
242
243 if (tlb_defer_switch_to_init_mm()) {
244 /*
245 * There's a significant optimization that may be possible
246 * here. We have accurate enough TLB flush tracking that we
247 * don't need to maintain coherence of TLB per se when we're
248 * lazy. We do, however, need to maintain coherence of
249 * paging-structure caches. We could, in principle, leave our
250 * old mm loaded and only switch to init_mm when
251 * tlb_remove_page() happens.
252 */
253 this_cpu_write(cpu_tlbstate.is_lazy, true);
254 } else {
255 switch_mm(NULL, &init_mm, NULL);
256 }
257 }
258
259 /*
260 * Call this when reinitializing a CPU. It fixes the following potential
261 * problems:
262 *
263 * - The ASID changed from what cpu_tlbstate thinks it is (most likely
264 * because the CPU was taken down and came back up with CR3's PCID
265 * bits clear. CPU hotplug can do this.
266 *
267 * - The TLB contains junk in slots corresponding to inactive ASIDs.
268 *
269 * - The CPU went so far out to lunch that it may have missed a TLB
270 * flush.
271 */
272 void initialize_tlbstate_and_flush(void)
273 {
274 int i;
275 struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
276 u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
277 unsigned long cr3 = __read_cr3();
278
279 /* Assert that CR3 already references the right mm. */
280 WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
281
282 /*
283 * Assert that CR4.PCIDE is set if needed. (CR4.PCIDE initialization
284 * doesn't work like other CR4 bits because it can only be set from
285 * long mode.)
286 */
287 WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
288 !(cr4_read_shadow() & X86_CR4_PCIDE));
289
290 /* Force ASID 0 and force a TLB flush. */
291 write_cr3(build_cr3(mm, 0));
292
293 /* Reinitialize tlbstate. */
294 this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
295 this_cpu_write(cpu_tlbstate.next_asid, 1);
296 this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
297 this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
298
299 for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
300 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
301 }
302
303 /*
304 * flush_tlb_func_common()'s memory ordering requirement is that any
305 * TLB fills that happen after we flush the TLB are ordered after we
306 * read active_mm's tlb_gen. We don't need any explicit barriers
307 * because all x86 flush operations are serializing and the
308 * atomic64_read operation won't be reordered by the compiler.
309 */
310 static void flush_tlb_func_common(const struct flush_tlb_info *f,
311 bool local, enum tlb_flush_reason reason)
312 {
313 /*
314 * We have three different tlb_gen values in here. They are:
315 *
316 * - mm_tlb_gen: the latest generation.
317 * - local_tlb_gen: the generation that this CPU has already caught
318 * up to.
319 * - f->new_tlb_gen: the generation that the requester of the flush
320 * wants us to catch up to.
321 */
322 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
323 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
324 u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
325 u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
326
327 /* This code cannot presently handle being reentered. */
328 VM_WARN_ON(!irqs_disabled());
329
330 if (unlikely(loaded_mm == &init_mm))
331 return;
332
333 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
334 loaded_mm->context.ctx_id);
335
336 if (this_cpu_read(cpu_tlbstate.is_lazy)) {
337 /*
338 * We're in lazy mode. We need to at least flush our
339 * paging-structure cache to avoid speculatively reading
340 * garbage into our TLB. Since switching to init_mm is barely
341 * slower than a minimal flush, just switch to init_mm.
342 */
343 switch_mm_irqs_off(NULL, &init_mm, NULL);
344 return;
345 }
346
347 if (unlikely(local_tlb_gen == mm_tlb_gen)) {
348 /*
349 * There's nothing to do: we're already up to date. This can
350 * happen if two concurrent flushes happen -- the first flush to
351 * be handled can catch us all the way up, leaving no work for
352 * the second flush.
353 */
354 trace_tlb_flush(reason, 0);
355 return;
356 }
357
358 WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
359 WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
360
361 /*
362 * If we get to this point, we know that our TLB is out of date.
363 * This does not strictly imply that we need to flush (it's
364 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
365 * going to need to flush in the very near future, so we might
366 * as well get it over with.
367 *
368 * The only question is whether to do a full or partial flush.
369 *
370 * We do a partial flush if requested and two extra conditions
371 * are met:
372 *
373 * 1. f->new_tlb_gen == local_tlb_gen + 1. We have an invariant that
374 * we've always done all needed flushes to catch up to
375 * local_tlb_gen. If, for example, local_tlb_gen == 2 and
376 * f->new_tlb_gen == 3, then we know that the flush needed to bring
377 * us up to date for tlb_gen 3 is the partial flush we're
378 * processing.
379 *
380 * As an example of why this check is needed, suppose that there
381 * are two concurrent flushes. The first is a full flush that
382 * changes context.tlb_gen from 1 to 2. The second is a partial
383 * flush that changes context.tlb_gen from 2 to 3. If they get
384 * processed on this CPU in reverse order, we'll see
385 * local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
386 * If we were to use __flush_tlb_single() and set local_tlb_gen to
387 * 3, we'd be break the invariant: we'd update local_tlb_gen above
388 * 1 without the full flush that's needed for tlb_gen 2.
389 *
390 * 2. f->new_tlb_gen == mm_tlb_gen. This is purely an optimiation.
391 * Partial TLB flushes are not all that much cheaper than full TLB
392 * flushes, so it seems unlikely that it would be a performance win
393 * to do a partial flush if that won't bring our TLB fully up to
394 * date. By doing a full flush instead, we can increase
395 * local_tlb_gen all the way to mm_tlb_gen and we can probably
396 * avoid another flush in the very near future.
397 */
398 if (f->end != TLB_FLUSH_ALL &&
399 f->new_tlb_gen == local_tlb_gen + 1 &&
400 f->new_tlb_gen == mm_tlb_gen) {
401 /* Partial flush */
402 unsigned long addr;
403 unsigned long nr_pages = (f->end - f->start) >> PAGE_SHIFT;
404
405 addr = f->start;
406 while (addr < f->end) {
407 __flush_tlb_single(addr);
408 addr += PAGE_SIZE;
409 }
410 if (local)
411 count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_pages);
412 trace_tlb_flush(reason, nr_pages);
413 } else {
414 /* Full flush. */
415 local_flush_tlb();
416 if (local)
417 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
418 trace_tlb_flush(reason, TLB_FLUSH_ALL);
419 }
420
421 /* Both paths above update our state to mm_tlb_gen. */
422 this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
423 }
424
425 static void flush_tlb_func_local(void *info, enum tlb_flush_reason reason)
426 {
427 const struct flush_tlb_info *f = info;
428
429 flush_tlb_func_common(f, true, reason);
430 }
431
432 static void flush_tlb_func_remote(void *info)
433 {
434 const struct flush_tlb_info *f = info;
435
436 inc_irq_stat(irq_tlb_count);
437
438 if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
439 return;
440
441 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
442 flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
443 }
444
445 void native_flush_tlb_others(const struct cpumask *cpumask,
446 const struct flush_tlb_info *info)
447 {
448 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
449 if (info->end == TLB_FLUSH_ALL)
450 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
451 else
452 trace_tlb_flush(TLB_REMOTE_SEND_IPI,
453 (info->end - info->start) >> PAGE_SHIFT);
454
455 if (is_uv_system()) {
456 /*
457 * This whole special case is confused. UV has a "Broadcast
458 * Assist Unit", which seems to be a fancy way to send IPIs.
459 * Back when x86 used an explicit TLB flush IPI, UV was
460 * optimized to use its own mechanism. These days, x86 uses
461 * smp_call_function_many(), but UV still uses a manual IPI,
462 * and that IPI's action is out of date -- it does a manual
463 * flush instead of calling flush_tlb_func_remote(). This
464 * means that the percpu tlb_gen variables won't be updated
465 * and we'll do pointless flushes on future context switches.
466 *
467 * Rather than hooking native_flush_tlb_others() here, I think
468 * that UV should be updated so that smp_call_function_many(),
469 * etc, are optimal on UV.
470 */
471 unsigned int cpu;
472
473 cpu = smp_processor_id();
474 cpumask = uv_flush_tlb_others(cpumask, info);
475 if (cpumask)
476 smp_call_function_many(cpumask, flush_tlb_func_remote,
477 (void *)info, 1);
478 return;
479 }
480 smp_call_function_many(cpumask, flush_tlb_func_remote,
481 (void *)info, 1);
482 }
483
484 /*
485 * See Documentation/x86/tlb.txt for details. We choose 33
486 * because it is large enough to cover the vast majority (at
487 * least 95%) of allocations, and is small enough that we are
488 * confident it will not cause too much overhead. Each single
489 * flush is about 100 ns, so this caps the maximum overhead at
490 * _about_ 3,000 ns.
491 *
492 * This is in units of pages.
493 */
494 static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
495
496 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
497 unsigned long end, unsigned long vmflag)
498 {
499 int cpu;
500
501 struct flush_tlb_info info = {
502 .mm = mm,
503 };
504
505 cpu = get_cpu();
506
507 /* This is also a barrier that synchronizes with switch_mm(). */
508 info.new_tlb_gen = inc_mm_tlb_gen(mm);
509
510 /* Should we flush just the requested range? */
511 if ((end != TLB_FLUSH_ALL) &&
512 !(vmflag & VM_HUGETLB) &&
513 ((end - start) >> PAGE_SHIFT) <= tlb_single_page_flush_ceiling) {
514 info.start = start;
515 info.end = end;
516 } else {
517 info.start = 0UL;
518 info.end = TLB_FLUSH_ALL;
519 }
520
521 if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
522 VM_WARN_ON(irqs_disabled());
523 local_irq_disable();
524 flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN);
525 local_irq_enable();
526 }
527
528 if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
529 flush_tlb_others(mm_cpumask(mm), &info);
530
531 put_cpu();
532 }
533
534
535 static void do_flush_tlb_all(void *info)
536 {
537 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
538 __flush_tlb_all();
539 }
540
541 void flush_tlb_all(void)
542 {
543 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
544 on_each_cpu(do_flush_tlb_all, NULL, 1);
545 }
546
547 static void do_kernel_range_flush(void *info)
548 {
549 struct flush_tlb_info *f = info;
550 unsigned long addr;
551
552 /* flush range by one by one 'invlpg' */
553 for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
554 __flush_tlb_single(addr);
555 }
556
557 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
558 {
559
560 /* Balance as user space task's flush, a bit conservative */
561 if (end == TLB_FLUSH_ALL ||
562 (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
563 on_each_cpu(do_flush_tlb_all, NULL, 1);
564 } else {
565 struct flush_tlb_info info;
566 info.start = start;
567 info.end = end;
568 on_each_cpu(do_kernel_range_flush, &info, 1);
569 }
570 }
571
572 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
573 {
574 struct flush_tlb_info info = {
575 .mm = NULL,
576 .start = 0UL,
577 .end = TLB_FLUSH_ALL,
578 };
579
580 int cpu = get_cpu();
581
582 if (cpumask_test_cpu(cpu, &batch->cpumask)) {
583 VM_WARN_ON(irqs_disabled());
584 local_irq_disable();
585 flush_tlb_func_local(&info, TLB_LOCAL_SHOOTDOWN);
586 local_irq_enable();
587 }
588
589 if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
590 flush_tlb_others(&batch->cpumask, &info);
591
592 cpumask_clear(&batch->cpumask);
593
594 put_cpu();
595 }
596
597 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
598 size_t count, loff_t *ppos)
599 {
600 char buf[32];
601 unsigned int len;
602
603 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
604 return simple_read_from_buffer(user_buf, count, ppos, buf, len);
605 }
606
607 static ssize_t tlbflush_write_file(struct file *file,
608 const char __user *user_buf, size_t count, loff_t *ppos)
609 {
610 char buf[32];
611 ssize_t len;
612 int ceiling;
613
614 len = min(count, sizeof(buf) - 1);
615 if (copy_from_user(buf, user_buf, len))
616 return -EFAULT;
617
618 buf[len] = '\0';
619 if (kstrtoint(buf, 0, &ceiling))
620 return -EINVAL;
621
622 if (ceiling < 0)
623 return -EINVAL;
624
625 tlb_single_page_flush_ceiling = ceiling;
626 return count;
627 }
628
629 static const struct file_operations fops_tlbflush = {
630 .read = tlbflush_read_file,
631 .write = tlbflush_write_file,
632 .llseek = default_llseek,
633 };
634
635 static int __init create_tlb_single_page_flush_ceiling(void)
636 {
637 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
638 arch_debugfs_dir, NULL, &fops_tlbflush);
639 return 0;
640 }
641 late_initcall(create_tlb_single_page_flush_ceiling);