]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/x86/mm/tlb.c
x86/ldt: Simplify the LDT switching logic
[mirror_ubuntu-focal-kernel.git] / arch / x86 / mm / tlb.c
1 #include <linux/init.h>
2
3 #include <linux/mm.h>
4 #include <linux/spinlock.h>
5 #include <linux/smp.h>
6 #include <linux/interrupt.h>
7 #include <linux/export.h>
8 #include <linux/cpu.h>
9
10 #include <asm/tlbflush.h>
11 #include <asm/mmu_context.h>
12 #include <asm/cache.h>
13 #include <asm/apic.h>
14 #include <asm/uv/uv.h>
15 #include <linux/debugfs.h>
16
17 /*
18 * TLB flushing, formerly SMP-only
19 * c/o Linus Torvalds.
20 *
21 * These mean you can really definitely utterly forget about
22 * writing to user space from interrupts. (Its not allowed anyway).
23 *
24 * Optimizations Manfred Spraul <manfred@colorfullife.com>
25 *
26 * More scalable flush, from Andi Kleen
27 *
28 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
29 */
30
31 void leave_mm(int cpu)
32 {
33 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
34
35 /*
36 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
37 * If so, our callers still expect us to flush the TLB, but there
38 * aren't any user TLB entries in init_mm to worry about.
39 *
40 * This needs to happen before any other sanity checks due to
41 * intel_idle's shenanigans.
42 */
43 if (loaded_mm == &init_mm)
44 return;
45
46 if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
47 BUG();
48
49 switch_mm(NULL, &init_mm, NULL);
50 }
51 EXPORT_SYMBOL_GPL(leave_mm);
52
53 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
54 struct task_struct *tsk)
55 {
56 unsigned long flags;
57
58 local_irq_save(flags);
59 switch_mm_irqs_off(prev, next, tsk);
60 local_irq_restore(flags);
61 }
62
63 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
64 struct task_struct *tsk)
65 {
66 unsigned cpu = smp_processor_id();
67 struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
68
69 /*
70 * NB: The scheduler will call us with prev == next when
71 * switching from lazy TLB mode to normal mode if active_mm
72 * isn't changing. When this happens, there is no guarantee
73 * that CR3 (and hence cpu_tlbstate.loaded_mm) matches next.
74 *
75 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
76 */
77
78 this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
79
80 if (real_prev == next) {
81 /*
82 * There's nothing to do: we always keep the per-mm control
83 * regs in sync with cpu_tlbstate.loaded_mm. Just
84 * sanity-check mm_cpumask.
85 */
86 if (WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(next))))
87 cpumask_set_cpu(cpu, mm_cpumask(next));
88 return;
89 }
90
91 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
92 /*
93 * If our current stack is in vmalloc space and isn't
94 * mapped in the new pgd, we'll double-fault. Forcibly
95 * map it.
96 */
97 unsigned int stack_pgd_index = pgd_index(current_stack_pointer());
98
99 pgd_t *pgd = next->pgd + stack_pgd_index;
100
101 if (unlikely(pgd_none(*pgd)))
102 set_pgd(pgd, init_mm.pgd[stack_pgd_index]);
103 }
104
105 this_cpu_write(cpu_tlbstate.loaded_mm, next);
106
107 WARN_ON_ONCE(cpumask_test_cpu(cpu, mm_cpumask(next)));
108 cpumask_set_cpu(cpu, mm_cpumask(next));
109
110 /*
111 * Re-load page tables.
112 *
113 * This logic has an ordering constraint:
114 *
115 * CPU 0: Write to a PTE for 'next'
116 * CPU 0: load bit 1 in mm_cpumask. if nonzero, send IPI.
117 * CPU 1: set bit 1 in next's mm_cpumask
118 * CPU 1: load from the PTE that CPU 0 writes (implicit)
119 *
120 * We need to prevent an outcome in which CPU 1 observes
121 * the new PTE value and CPU 0 observes bit 1 clear in
122 * mm_cpumask. (If that occurs, then the IPI will never
123 * be sent, and CPU 0's TLB will contain a stale entry.)
124 *
125 * The bad outcome can occur if either CPU's load is
126 * reordered before that CPU's store, so both CPUs must
127 * execute full barriers to prevent this from happening.
128 *
129 * Thus, switch_mm needs a full barrier between the
130 * store to mm_cpumask and any operation that could load
131 * from next->pgd. TLB fills are special and can happen
132 * due to instruction fetches or for no reason at all,
133 * and neither LOCK nor MFENCE orders them.
134 * Fortunately, load_cr3() is serializing and gives the
135 * ordering guarantee we need.
136 */
137 load_cr3(next->pgd);
138
139 /*
140 * This gets called via leave_mm() in the idle path where RCU
141 * functions differently. Tracing normally uses RCU, so we have to
142 * call the tracepoint specially here.
143 */
144 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
145
146 /* Stop flush ipis for the previous mm */
147 WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(real_prev)) &&
148 real_prev != &init_mm);
149 cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
150
151 /* Load per-mm CR4 and LDTR state */
152 load_mm_cr4(next);
153 switch_ldt(real_prev, next);
154 }
155
156 /*
157 * The flush IPI assumes that a thread switch happens in this order:
158 * [cpu0: the cpu that switches]
159 * 1) switch_mm() either 1a) or 1b)
160 * 1a) thread switch to a different mm
161 * 1a1) set cpu_tlbstate to TLBSTATE_OK
162 * Now the tlb flush NMI handler flush_tlb_func won't call leave_mm
163 * if cpu0 was in lazy tlb mode.
164 * 1a2) update cpu active_mm
165 * Now cpu0 accepts tlb flushes for the new mm.
166 * 1a3) cpu_set(cpu, new_mm->cpu_vm_mask);
167 * Now the other cpus will send tlb flush ipis.
168 * 1a4) change cr3.
169 * 1a5) cpu_clear(cpu, old_mm->cpu_vm_mask);
170 * Stop ipi delivery for the old mm. This is not synchronized with
171 * the other cpus, but flush_tlb_func ignore flush ipis for the wrong
172 * mm, and in the worst case we perform a superfluous tlb flush.
173 * 1b) thread switch without mm change
174 * cpu active_mm is correct, cpu0 already handles flush ipis.
175 * 1b1) set cpu_tlbstate to TLBSTATE_OK
176 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
177 * Atomically set the bit [other cpus will start sending flush ipis],
178 * and test the bit.
179 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
180 * 2) switch %%esp, ie current
181 *
182 * The interrupt must handle 2 special cases:
183 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
184 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
185 * runs in kernel space, the cpu could load tlb entries for user space
186 * pages.
187 *
188 * The good news is that cpu_tlbstate is local to each cpu, no
189 * write/read ordering problems.
190 */
191
192 static void flush_tlb_func_common(const struct flush_tlb_info *f,
193 bool local, enum tlb_flush_reason reason)
194 {
195 if (this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK) {
196 leave_mm(smp_processor_id());
197 return;
198 }
199
200 if (f->end == TLB_FLUSH_ALL) {
201 local_flush_tlb();
202 if (local)
203 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
204 trace_tlb_flush(reason, TLB_FLUSH_ALL);
205 } else {
206 unsigned long addr;
207 unsigned long nr_pages = (f->end - f->start) >> PAGE_SHIFT;
208 addr = f->start;
209 while (addr < f->end) {
210 __flush_tlb_single(addr);
211 addr += PAGE_SIZE;
212 }
213 if (local)
214 count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_pages);
215 trace_tlb_flush(reason, nr_pages);
216 }
217 }
218
219 static void flush_tlb_func_local(void *info, enum tlb_flush_reason reason)
220 {
221 const struct flush_tlb_info *f = info;
222
223 flush_tlb_func_common(f, true, reason);
224 }
225
226 static void flush_tlb_func_remote(void *info)
227 {
228 const struct flush_tlb_info *f = info;
229
230 inc_irq_stat(irq_tlb_count);
231
232 if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
233 return;
234
235 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
236 flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
237 }
238
239 void native_flush_tlb_others(const struct cpumask *cpumask,
240 const struct flush_tlb_info *info)
241 {
242 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
243 if (info->end == TLB_FLUSH_ALL)
244 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
245 else
246 trace_tlb_flush(TLB_REMOTE_SEND_IPI,
247 (info->end - info->start) >> PAGE_SHIFT);
248
249 if (is_uv_system()) {
250 unsigned int cpu;
251
252 cpu = smp_processor_id();
253 cpumask = uv_flush_tlb_others(cpumask, info);
254 if (cpumask)
255 smp_call_function_many(cpumask, flush_tlb_func_remote,
256 (void *)info, 1);
257 return;
258 }
259 smp_call_function_many(cpumask, flush_tlb_func_remote,
260 (void *)info, 1);
261 }
262
263 /*
264 * See Documentation/x86/tlb.txt for details. We choose 33
265 * because it is large enough to cover the vast majority (at
266 * least 95%) of allocations, and is small enough that we are
267 * confident it will not cause too much overhead. Each single
268 * flush is about 100 ns, so this caps the maximum overhead at
269 * _about_ 3,000 ns.
270 *
271 * This is in units of pages.
272 */
273 static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
274
275 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
276 unsigned long end, unsigned long vmflag)
277 {
278 int cpu;
279
280 struct flush_tlb_info info = {
281 .mm = mm,
282 };
283
284 cpu = get_cpu();
285
286 /* Synchronize with switch_mm. */
287 smp_mb();
288
289 /* Should we flush just the requested range? */
290 if ((end != TLB_FLUSH_ALL) &&
291 !(vmflag & VM_HUGETLB) &&
292 ((end - start) >> PAGE_SHIFT) <= tlb_single_page_flush_ceiling) {
293 info.start = start;
294 info.end = end;
295 } else {
296 info.start = 0UL;
297 info.end = TLB_FLUSH_ALL;
298 }
299
300 if (mm == this_cpu_read(cpu_tlbstate.loaded_mm))
301 flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN);
302 if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
303 flush_tlb_others(mm_cpumask(mm), &info);
304 put_cpu();
305 }
306
307
308 static void do_flush_tlb_all(void *info)
309 {
310 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
311 __flush_tlb_all();
312 if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY)
313 leave_mm(smp_processor_id());
314 }
315
316 void flush_tlb_all(void)
317 {
318 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
319 on_each_cpu(do_flush_tlb_all, NULL, 1);
320 }
321
322 static void do_kernel_range_flush(void *info)
323 {
324 struct flush_tlb_info *f = info;
325 unsigned long addr;
326
327 /* flush range by one by one 'invlpg' */
328 for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
329 __flush_tlb_single(addr);
330 }
331
332 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
333 {
334
335 /* Balance as user space task's flush, a bit conservative */
336 if (end == TLB_FLUSH_ALL ||
337 (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
338 on_each_cpu(do_flush_tlb_all, NULL, 1);
339 } else {
340 struct flush_tlb_info info;
341 info.start = start;
342 info.end = end;
343 on_each_cpu(do_kernel_range_flush, &info, 1);
344 }
345 }
346
347 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
348 {
349 struct flush_tlb_info info = {
350 .mm = NULL,
351 .start = 0UL,
352 .end = TLB_FLUSH_ALL,
353 };
354
355 int cpu = get_cpu();
356
357 if (cpumask_test_cpu(cpu, &batch->cpumask))
358 flush_tlb_func_local(&info, TLB_LOCAL_SHOOTDOWN);
359 if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
360 flush_tlb_others(&batch->cpumask, &info);
361 cpumask_clear(&batch->cpumask);
362
363 put_cpu();
364 }
365
366 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
367 size_t count, loff_t *ppos)
368 {
369 char buf[32];
370 unsigned int len;
371
372 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
373 return simple_read_from_buffer(user_buf, count, ppos, buf, len);
374 }
375
376 static ssize_t tlbflush_write_file(struct file *file,
377 const char __user *user_buf, size_t count, loff_t *ppos)
378 {
379 char buf[32];
380 ssize_t len;
381 int ceiling;
382
383 len = min(count, sizeof(buf) - 1);
384 if (copy_from_user(buf, user_buf, len))
385 return -EFAULT;
386
387 buf[len] = '\0';
388 if (kstrtoint(buf, 0, &ceiling))
389 return -EINVAL;
390
391 if (ceiling < 0)
392 return -EINVAL;
393
394 tlb_single_page_flush_ceiling = ceiling;
395 return count;
396 }
397
398 static const struct file_operations fops_tlbflush = {
399 .read = tlbflush_read_file,
400 .write = tlbflush_write_file,
401 .llseek = default_llseek,
402 };
403
404 static int __init create_tlb_single_page_flush_ceiling(void)
405 {
406 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
407 arch_debugfs_dir, NULL, &fops_tlbflush);
408 return 0;
409 }
410 late_initcall(create_tlb_single_page_flush_ceiling);