]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/mm/tlb.c
Merge remote-tracking branch 'asoc/topic/compress' into asoc-next
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / mm / tlb.c
1 #include <linux/init.h>
2
3 #include <linux/mm.h>
4 #include <linux/spinlock.h>
5 #include <linux/smp.h>
6 #include <linux/interrupt.h>
7 #include <linux/export.h>
8 #include <linux/cpu.h>
9
10 #include <asm/tlbflush.h>
11 #include <asm/mmu_context.h>
12 #include <asm/cache.h>
13 #include <asm/apic.h>
14 #include <asm/uv/uv.h>
15 #include <linux/debugfs.h>
16
17 /*
18 * TLB flushing, formerly SMP-only
19 * c/o Linus Torvalds.
20 *
21 * These mean you can really definitely utterly forget about
22 * writing to user space from interrupts. (Its not allowed anyway).
23 *
24 * Optimizations Manfred Spraul <manfred@colorfullife.com>
25 *
26 * More scalable flush, from Andi Kleen
27 *
28 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
29 */
30
31 /*
32 * We get here when we do something requiring a TLB invalidation
33 * but could not go invalidate all of the contexts. We do the
34 * necessary invalidation by clearing out the 'ctx_id' which
35 * forces a TLB flush when the context is loaded.
36 */
37 void clear_asid_other(void)
38 {
39 u16 asid;
40
41 /*
42 * This is only expected to be set if we have disabled
43 * kernel _PAGE_GLOBAL pages.
44 */
45 if (!static_cpu_has(X86_FEATURE_PTI)) {
46 WARN_ON_ONCE(1);
47 return;
48 }
49
50 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
51 /* Do not need to flush the current asid */
52 if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
53 continue;
54 /*
55 * Make sure the next time we go to switch to
56 * this asid, we do a flush:
57 */
58 this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
59 }
60 this_cpu_write(cpu_tlbstate.invalidate_other, false);
61 }
62
63 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
64
65
66 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
67 u16 *new_asid, bool *need_flush)
68 {
69 u16 asid;
70
71 if (!static_cpu_has(X86_FEATURE_PCID)) {
72 *new_asid = 0;
73 *need_flush = true;
74 return;
75 }
76
77 if (this_cpu_read(cpu_tlbstate.invalidate_other))
78 clear_asid_other();
79
80 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
81 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
82 next->context.ctx_id)
83 continue;
84
85 *new_asid = asid;
86 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
87 next_tlb_gen);
88 return;
89 }
90
91 /*
92 * We don't currently own an ASID slot on this CPU.
93 * Allocate a slot.
94 */
95 *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
96 if (*new_asid >= TLB_NR_DYN_ASIDS) {
97 *new_asid = 0;
98 this_cpu_write(cpu_tlbstate.next_asid, 1);
99 }
100 *need_flush = true;
101 }
102
103 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
104 {
105 unsigned long new_mm_cr3;
106
107 if (need_flush) {
108 invalidate_user_asid(new_asid);
109 new_mm_cr3 = build_cr3(pgdir, new_asid);
110 } else {
111 new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
112 }
113
114 /*
115 * Caution: many callers of this function expect
116 * that load_cr3() is serializing and orders TLB
117 * fills with respect to the mm_cpumask writes.
118 */
119 write_cr3(new_mm_cr3);
120 }
121
122 void leave_mm(int cpu)
123 {
124 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
125
126 /*
127 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
128 * If so, our callers still expect us to flush the TLB, but there
129 * aren't any user TLB entries in init_mm to worry about.
130 *
131 * This needs to happen before any other sanity checks due to
132 * intel_idle's shenanigans.
133 */
134 if (loaded_mm == &init_mm)
135 return;
136
137 /* Warn if we're not lazy. */
138 WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
139
140 switch_mm(NULL, &init_mm, NULL);
141 }
142 EXPORT_SYMBOL_GPL(leave_mm);
143
144 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
145 struct task_struct *tsk)
146 {
147 unsigned long flags;
148
149 local_irq_save(flags);
150 switch_mm_irqs_off(prev, next, tsk);
151 local_irq_restore(flags);
152 }
153
154 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
155 struct task_struct *tsk)
156 {
157 struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
158 u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
159 unsigned cpu = smp_processor_id();
160 u64 next_tlb_gen;
161
162 /*
163 * NB: The scheduler will call us with prev == next when switching
164 * from lazy TLB mode to normal mode if active_mm isn't changing.
165 * When this happens, we don't assume that CR3 (and hence
166 * cpu_tlbstate.loaded_mm) matches next.
167 *
168 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
169 */
170
171 /* We don't want flush_tlb_func_* to run concurrently with us. */
172 if (IS_ENABLED(CONFIG_PROVE_LOCKING))
173 WARN_ON_ONCE(!irqs_disabled());
174
175 /*
176 * Verify that CR3 is what we think it is. This will catch
177 * hypothetical buggy code that directly switches to swapper_pg_dir
178 * without going through leave_mm() / switch_mm_irqs_off() or that
179 * does something like write_cr3(read_cr3_pa()).
180 *
181 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
182 * isn't free.
183 */
184 #ifdef CONFIG_DEBUG_VM
185 if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
186 /*
187 * If we were to BUG here, we'd be very likely to kill
188 * the system so hard that we don't see the call trace.
189 * Try to recover instead by ignoring the error and doing
190 * a global flush to minimize the chance of corruption.
191 *
192 * (This is far from being a fully correct recovery.
193 * Architecturally, the CPU could prefetch something
194 * back into an incorrect ASID slot and leave it there
195 * to cause trouble down the road. It's better than
196 * nothing, though.)
197 */
198 __flush_tlb_all();
199 }
200 #endif
201 this_cpu_write(cpu_tlbstate.is_lazy, false);
202
203 if (real_prev == next) {
204 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
205 next->context.ctx_id);
206
207 /*
208 * We don't currently support having a real mm loaded without
209 * our cpu set in mm_cpumask(). We have all the bookkeeping
210 * in place to figure out whether we would need to flush
211 * if our cpu were cleared in mm_cpumask(), but we don't
212 * currently use it.
213 */
214 if (WARN_ON_ONCE(real_prev != &init_mm &&
215 !cpumask_test_cpu(cpu, mm_cpumask(next))))
216 cpumask_set_cpu(cpu, mm_cpumask(next));
217
218 return;
219 } else {
220 u16 new_asid;
221 bool need_flush;
222
223 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
224 /*
225 * If our current stack is in vmalloc space and isn't
226 * mapped in the new pgd, we'll double-fault. Forcibly
227 * map it.
228 */
229 unsigned int index = pgd_index(current_stack_pointer);
230 pgd_t *pgd = next->pgd + index;
231
232 if (unlikely(pgd_none(*pgd)))
233 set_pgd(pgd, init_mm.pgd[index]);
234 }
235
236 /* Stop remote flushes for the previous mm */
237 VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(real_prev)) &&
238 real_prev != &init_mm);
239 cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
240
241 /*
242 * Start remote flushes and then read tlb_gen.
243 */
244 cpumask_set_cpu(cpu, mm_cpumask(next));
245 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
246
247 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
248
249 if (need_flush) {
250 this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
251 this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
252 load_new_mm_cr3(next->pgd, new_asid, true);
253
254 /*
255 * NB: This gets called via leave_mm() in the idle path
256 * where RCU functions differently. Tracing normally
257 * uses RCU, so we need to use the _rcuidle variant.
258 *
259 * (There is no good reason for this. The idle code should
260 * be rearranged to call this before rcu_idle_enter().)
261 */
262 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
263 } else {
264 /* The new ASID is already up to date. */
265 load_new_mm_cr3(next->pgd, new_asid, false);
266
267 /* See above wrt _rcuidle. */
268 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, 0);
269 }
270
271 this_cpu_write(cpu_tlbstate.loaded_mm, next);
272 this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
273 }
274
275 load_mm_cr4(next);
276 switch_ldt(real_prev, next);
277 }
278
279 /*
280 * Please ignore the name of this function. It should be called
281 * switch_to_kernel_thread().
282 *
283 * enter_lazy_tlb() is a hint from the scheduler that we are entering a
284 * kernel thread or other context without an mm. Acceptable implementations
285 * include doing nothing whatsoever, switching to init_mm, or various clever
286 * lazy tricks to try to minimize TLB flushes.
287 *
288 * The scheduler reserves the right to call enter_lazy_tlb() several times
289 * in a row. It will notify us that we're going back to a real mm by
290 * calling switch_mm_irqs_off().
291 */
292 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
293 {
294 if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
295 return;
296
297 if (tlb_defer_switch_to_init_mm()) {
298 /*
299 * There's a significant optimization that may be possible
300 * here. We have accurate enough TLB flush tracking that we
301 * don't need to maintain coherence of TLB per se when we're
302 * lazy. We do, however, need to maintain coherence of
303 * paging-structure caches. We could, in principle, leave our
304 * old mm loaded and only switch to init_mm when
305 * tlb_remove_page() happens.
306 */
307 this_cpu_write(cpu_tlbstate.is_lazy, true);
308 } else {
309 switch_mm(NULL, &init_mm, NULL);
310 }
311 }
312
313 /*
314 * Call this when reinitializing a CPU. It fixes the following potential
315 * problems:
316 *
317 * - The ASID changed from what cpu_tlbstate thinks it is (most likely
318 * because the CPU was taken down and came back up with CR3's PCID
319 * bits clear. CPU hotplug can do this.
320 *
321 * - The TLB contains junk in slots corresponding to inactive ASIDs.
322 *
323 * - The CPU went so far out to lunch that it may have missed a TLB
324 * flush.
325 */
326 void initialize_tlbstate_and_flush(void)
327 {
328 int i;
329 struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
330 u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
331 unsigned long cr3 = __read_cr3();
332
333 /* Assert that CR3 already references the right mm. */
334 WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
335
336 /*
337 * Assert that CR4.PCIDE is set if needed. (CR4.PCIDE initialization
338 * doesn't work like other CR4 bits because it can only be set from
339 * long mode.)
340 */
341 WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
342 !(cr4_read_shadow() & X86_CR4_PCIDE));
343
344 /* Force ASID 0 and force a TLB flush. */
345 write_cr3(build_cr3(mm->pgd, 0));
346
347 /* Reinitialize tlbstate. */
348 this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
349 this_cpu_write(cpu_tlbstate.next_asid, 1);
350 this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
351 this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
352
353 for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
354 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
355 }
356
357 /*
358 * flush_tlb_func_common()'s memory ordering requirement is that any
359 * TLB fills that happen after we flush the TLB are ordered after we
360 * read active_mm's tlb_gen. We don't need any explicit barriers
361 * because all x86 flush operations are serializing and the
362 * atomic64_read operation won't be reordered by the compiler.
363 */
364 static void flush_tlb_func_common(const struct flush_tlb_info *f,
365 bool local, enum tlb_flush_reason reason)
366 {
367 /*
368 * We have three different tlb_gen values in here. They are:
369 *
370 * - mm_tlb_gen: the latest generation.
371 * - local_tlb_gen: the generation that this CPU has already caught
372 * up to.
373 * - f->new_tlb_gen: the generation that the requester of the flush
374 * wants us to catch up to.
375 */
376 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
377 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
378 u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
379 u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
380
381 /* This code cannot presently handle being reentered. */
382 VM_WARN_ON(!irqs_disabled());
383
384 if (unlikely(loaded_mm == &init_mm))
385 return;
386
387 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
388 loaded_mm->context.ctx_id);
389
390 if (this_cpu_read(cpu_tlbstate.is_lazy)) {
391 /*
392 * We're in lazy mode. We need to at least flush our
393 * paging-structure cache to avoid speculatively reading
394 * garbage into our TLB. Since switching to init_mm is barely
395 * slower than a minimal flush, just switch to init_mm.
396 */
397 switch_mm_irqs_off(NULL, &init_mm, NULL);
398 return;
399 }
400
401 if (unlikely(local_tlb_gen == mm_tlb_gen)) {
402 /*
403 * There's nothing to do: we're already up to date. This can
404 * happen if two concurrent flushes happen -- the first flush to
405 * be handled can catch us all the way up, leaving no work for
406 * the second flush.
407 */
408 trace_tlb_flush(reason, 0);
409 return;
410 }
411
412 WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
413 WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
414
415 /*
416 * If we get to this point, we know that our TLB is out of date.
417 * This does not strictly imply that we need to flush (it's
418 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
419 * going to need to flush in the very near future, so we might
420 * as well get it over with.
421 *
422 * The only question is whether to do a full or partial flush.
423 *
424 * We do a partial flush if requested and two extra conditions
425 * are met:
426 *
427 * 1. f->new_tlb_gen == local_tlb_gen + 1. We have an invariant that
428 * we've always done all needed flushes to catch up to
429 * local_tlb_gen. If, for example, local_tlb_gen == 2 and
430 * f->new_tlb_gen == 3, then we know that the flush needed to bring
431 * us up to date for tlb_gen 3 is the partial flush we're
432 * processing.
433 *
434 * As an example of why this check is needed, suppose that there
435 * are two concurrent flushes. The first is a full flush that
436 * changes context.tlb_gen from 1 to 2. The second is a partial
437 * flush that changes context.tlb_gen from 2 to 3. If they get
438 * processed on this CPU in reverse order, we'll see
439 * local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
440 * If we were to use __flush_tlb_single() and set local_tlb_gen to
441 * 3, we'd be break the invariant: we'd update local_tlb_gen above
442 * 1 without the full flush that's needed for tlb_gen 2.
443 *
444 * 2. f->new_tlb_gen == mm_tlb_gen. This is purely an optimiation.
445 * Partial TLB flushes are not all that much cheaper than full TLB
446 * flushes, so it seems unlikely that it would be a performance win
447 * to do a partial flush if that won't bring our TLB fully up to
448 * date. By doing a full flush instead, we can increase
449 * local_tlb_gen all the way to mm_tlb_gen and we can probably
450 * avoid another flush in the very near future.
451 */
452 if (f->end != TLB_FLUSH_ALL &&
453 f->new_tlb_gen == local_tlb_gen + 1 &&
454 f->new_tlb_gen == mm_tlb_gen) {
455 /* Partial flush */
456 unsigned long addr;
457 unsigned long nr_pages = (f->end - f->start) >> PAGE_SHIFT;
458
459 addr = f->start;
460 while (addr < f->end) {
461 __flush_tlb_single(addr);
462 addr += PAGE_SIZE;
463 }
464 if (local)
465 count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_pages);
466 trace_tlb_flush(reason, nr_pages);
467 } else {
468 /* Full flush. */
469 local_flush_tlb();
470 if (local)
471 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
472 trace_tlb_flush(reason, TLB_FLUSH_ALL);
473 }
474
475 /* Both paths above update our state to mm_tlb_gen. */
476 this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
477 }
478
479 static void flush_tlb_func_local(void *info, enum tlb_flush_reason reason)
480 {
481 const struct flush_tlb_info *f = info;
482
483 flush_tlb_func_common(f, true, reason);
484 }
485
486 static void flush_tlb_func_remote(void *info)
487 {
488 const struct flush_tlb_info *f = info;
489
490 inc_irq_stat(irq_tlb_count);
491
492 if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
493 return;
494
495 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
496 flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
497 }
498
499 void native_flush_tlb_others(const struct cpumask *cpumask,
500 const struct flush_tlb_info *info)
501 {
502 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
503 if (info->end == TLB_FLUSH_ALL)
504 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
505 else
506 trace_tlb_flush(TLB_REMOTE_SEND_IPI,
507 (info->end - info->start) >> PAGE_SHIFT);
508
509 if (is_uv_system()) {
510 /*
511 * This whole special case is confused. UV has a "Broadcast
512 * Assist Unit", which seems to be a fancy way to send IPIs.
513 * Back when x86 used an explicit TLB flush IPI, UV was
514 * optimized to use its own mechanism. These days, x86 uses
515 * smp_call_function_many(), but UV still uses a manual IPI,
516 * and that IPI's action is out of date -- it does a manual
517 * flush instead of calling flush_tlb_func_remote(). This
518 * means that the percpu tlb_gen variables won't be updated
519 * and we'll do pointless flushes on future context switches.
520 *
521 * Rather than hooking native_flush_tlb_others() here, I think
522 * that UV should be updated so that smp_call_function_many(),
523 * etc, are optimal on UV.
524 */
525 unsigned int cpu;
526
527 cpu = smp_processor_id();
528 cpumask = uv_flush_tlb_others(cpumask, info);
529 if (cpumask)
530 smp_call_function_many(cpumask, flush_tlb_func_remote,
531 (void *)info, 1);
532 return;
533 }
534 smp_call_function_many(cpumask, flush_tlb_func_remote,
535 (void *)info, 1);
536 }
537
538 /*
539 * See Documentation/x86/tlb.txt for details. We choose 33
540 * because it is large enough to cover the vast majority (at
541 * least 95%) of allocations, and is small enough that we are
542 * confident it will not cause too much overhead. Each single
543 * flush is about 100 ns, so this caps the maximum overhead at
544 * _about_ 3,000 ns.
545 *
546 * This is in units of pages.
547 */
548 static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
549
550 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
551 unsigned long end, unsigned long vmflag)
552 {
553 int cpu;
554
555 struct flush_tlb_info info = {
556 .mm = mm,
557 };
558
559 cpu = get_cpu();
560
561 /* This is also a barrier that synchronizes with switch_mm(). */
562 info.new_tlb_gen = inc_mm_tlb_gen(mm);
563
564 /* Should we flush just the requested range? */
565 if ((end != TLB_FLUSH_ALL) &&
566 !(vmflag & VM_HUGETLB) &&
567 ((end - start) >> PAGE_SHIFT) <= tlb_single_page_flush_ceiling) {
568 info.start = start;
569 info.end = end;
570 } else {
571 info.start = 0UL;
572 info.end = TLB_FLUSH_ALL;
573 }
574
575 if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
576 VM_WARN_ON(irqs_disabled());
577 local_irq_disable();
578 flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN);
579 local_irq_enable();
580 }
581
582 if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
583 flush_tlb_others(mm_cpumask(mm), &info);
584
585 put_cpu();
586 }
587
588
589 static void do_flush_tlb_all(void *info)
590 {
591 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
592 __flush_tlb_all();
593 }
594
595 void flush_tlb_all(void)
596 {
597 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
598 on_each_cpu(do_flush_tlb_all, NULL, 1);
599 }
600
601 static void do_kernel_range_flush(void *info)
602 {
603 struct flush_tlb_info *f = info;
604 unsigned long addr;
605
606 /* flush range by one by one 'invlpg' */
607 for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
608 __flush_tlb_one(addr);
609 }
610
611 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
612 {
613
614 /* Balance as user space task's flush, a bit conservative */
615 if (end == TLB_FLUSH_ALL ||
616 (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
617 on_each_cpu(do_flush_tlb_all, NULL, 1);
618 } else {
619 struct flush_tlb_info info;
620 info.start = start;
621 info.end = end;
622 on_each_cpu(do_kernel_range_flush, &info, 1);
623 }
624 }
625
626 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
627 {
628 struct flush_tlb_info info = {
629 .mm = NULL,
630 .start = 0UL,
631 .end = TLB_FLUSH_ALL,
632 };
633
634 int cpu = get_cpu();
635
636 if (cpumask_test_cpu(cpu, &batch->cpumask)) {
637 VM_WARN_ON(irqs_disabled());
638 local_irq_disable();
639 flush_tlb_func_local(&info, TLB_LOCAL_SHOOTDOWN);
640 local_irq_enable();
641 }
642
643 if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
644 flush_tlb_others(&batch->cpumask, &info);
645
646 cpumask_clear(&batch->cpumask);
647
648 put_cpu();
649 }
650
651 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
652 size_t count, loff_t *ppos)
653 {
654 char buf[32];
655 unsigned int len;
656
657 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
658 return simple_read_from_buffer(user_buf, count, ppos, buf, len);
659 }
660
661 static ssize_t tlbflush_write_file(struct file *file,
662 const char __user *user_buf, size_t count, loff_t *ppos)
663 {
664 char buf[32];
665 ssize_t len;
666 int ceiling;
667
668 len = min(count, sizeof(buf) - 1);
669 if (copy_from_user(buf, user_buf, len))
670 return -EFAULT;
671
672 buf[len] = '\0';
673 if (kstrtoint(buf, 0, &ceiling))
674 return -EINVAL;
675
676 if (ceiling < 0)
677 return -EINVAL;
678
679 tlb_single_page_flush_ceiling = ceiling;
680 return count;
681 }
682
683 static const struct file_operations fops_tlbflush = {
684 .read = tlbflush_read_file,
685 .write = tlbflush_write_file,
686 .llseek = default_llseek,
687 };
688
689 static int __init create_tlb_single_page_flush_ceiling(void)
690 {
691 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
692 arch_debugfs_dir, NULL, &fops_tlbflush);
693 return 0;
694 }
695 late_initcall(create_tlb_single_page_flush_ceiling);