]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/mm/tlb.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/pablo/nf
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / mm / tlb.c
1 #include <linux/init.h>
2
3 #include <linux/mm.h>
4 #include <linux/spinlock.h>
5 #include <linux/smp.h>
6 #include <linux/interrupt.h>
7 #include <linux/export.h>
8 #include <linux/cpu.h>
9 #include <linux/debugfs.h>
10
11 #include <asm/tlbflush.h>
12 #include <asm/mmu_context.h>
13 #include <asm/nospec-branch.h>
14 #include <asm/cache.h>
15 #include <asm/apic.h>
16 #include <asm/uv/uv.h>
17
18 /*
19 * TLB flushing, formerly SMP-only
20 * c/o Linus Torvalds.
21 *
22 * These mean you can really definitely utterly forget about
23 * writing to user space from interrupts. (Its not allowed anyway).
24 *
25 * Optimizations Manfred Spraul <manfred@colorfullife.com>
26 *
27 * More scalable flush, from Andi Kleen
28 *
29 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
30 */
31
32 /*
33 * We get here when we do something requiring a TLB invalidation
34 * but could not go invalidate all of the contexts. We do the
35 * necessary invalidation by clearing out the 'ctx_id' which
36 * forces a TLB flush when the context is loaded.
37 */
38 void clear_asid_other(void)
39 {
40 u16 asid;
41
42 /*
43 * This is only expected to be set if we have disabled
44 * kernel _PAGE_GLOBAL pages.
45 */
46 if (!static_cpu_has(X86_FEATURE_PTI)) {
47 WARN_ON_ONCE(1);
48 return;
49 }
50
51 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
52 /* Do not need to flush the current asid */
53 if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
54 continue;
55 /*
56 * Make sure the next time we go to switch to
57 * this asid, we do a flush:
58 */
59 this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
60 }
61 this_cpu_write(cpu_tlbstate.invalidate_other, false);
62 }
63
64 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
65
66
67 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
68 u16 *new_asid, bool *need_flush)
69 {
70 u16 asid;
71
72 if (!static_cpu_has(X86_FEATURE_PCID)) {
73 *new_asid = 0;
74 *need_flush = true;
75 return;
76 }
77
78 if (this_cpu_read(cpu_tlbstate.invalidate_other))
79 clear_asid_other();
80
81 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
82 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
83 next->context.ctx_id)
84 continue;
85
86 *new_asid = asid;
87 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
88 next_tlb_gen);
89 return;
90 }
91
92 /*
93 * We don't currently own an ASID slot on this CPU.
94 * Allocate a slot.
95 */
96 *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
97 if (*new_asid >= TLB_NR_DYN_ASIDS) {
98 *new_asid = 0;
99 this_cpu_write(cpu_tlbstate.next_asid, 1);
100 }
101 *need_flush = true;
102 }
103
104 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
105 {
106 unsigned long new_mm_cr3;
107
108 if (need_flush) {
109 invalidate_user_asid(new_asid);
110 new_mm_cr3 = build_cr3(pgdir, new_asid);
111 } else {
112 new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
113 }
114
115 /*
116 * Caution: many callers of this function expect
117 * that load_cr3() is serializing and orders TLB
118 * fills with respect to the mm_cpumask writes.
119 */
120 write_cr3(new_mm_cr3);
121 }
122
123 void leave_mm(int cpu)
124 {
125 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
126
127 /*
128 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
129 * If so, our callers still expect us to flush the TLB, but there
130 * aren't any user TLB entries in init_mm to worry about.
131 *
132 * This needs to happen before any other sanity checks due to
133 * intel_idle's shenanigans.
134 */
135 if (loaded_mm == &init_mm)
136 return;
137
138 /* Warn if we're not lazy. */
139 WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
140
141 switch_mm(NULL, &init_mm, NULL);
142 }
143 EXPORT_SYMBOL_GPL(leave_mm);
144
145 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
146 struct task_struct *tsk)
147 {
148 unsigned long flags;
149
150 local_irq_save(flags);
151 switch_mm_irqs_off(prev, next, tsk);
152 local_irq_restore(flags);
153 }
154
155 static void sync_current_stack_to_mm(struct mm_struct *mm)
156 {
157 unsigned long sp = current_stack_pointer;
158 pgd_t *pgd = pgd_offset(mm, sp);
159
160 if (CONFIG_PGTABLE_LEVELS > 4) {
161 if (unlikely(pgd_none(*pgd))) {
162 pgd_t *pgd_ref = pgd_offset_k(sp);
163
164 set_pgd(pgd, *pgd_ref);
165 }
166 } else {
167 /*
168 * "pgd" is faked. The top level entries are "p4d"s, so sync
169 * the p4d. This compiles to approximately the same code as
170 * the 5-level case.
171 */
172 p4d_t *p4d = p4d_offset(pgd, sp);
173
174 if (unlikely(p4d_none(*p4d))) {
175 pgd_t *pgd_ref = pgd_offset_k(sp);
176 p4d_t *p4d_ref = p4d_offset(pgd_ref, sp);
177
178 set_p4d(p4d, *p4d_ref);
179 }
180 }
181 }
182
183 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
184 struct task_struct *tsk)
185 {
186 struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
187 u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
188 unsigned cpu = smp_processor_id();
189 u64 next_tlb_gen;
190
191 /*
192 * NB: The scheduler will call us with prev == next when switching
193 * from lazy TLB mode to normal mode if active_mm isn't changing.
194 * When this happens, we don't assume that CR3 (and hence
195 * cpu_tlbstate.loaded_mm) matches next.
196 *
197 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
198 */
199
200 /* We don't want flush_tlb_func_* to run concurrently with us. */
201 if (IS_ENABLED(CONFIG_PROVE_LOCKING))
202 WARN_ON_ONCE(!irqs_disabled());
203
204 /*
205 * Verify that CR3 is what we think it is. This will catch
206 * hypothetical buggy code that directly switches to swapper_pg_dir
207 * without going through leave_mm() / switch_mm_irqs_off() or that
208 * does something like write_cr3(read_cr3_pa()).
209 *
210 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
211 * isn't free.
212 */
213 #ifdef CONFIG_DEBUG_VM
214 if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
215 /*
216 * If we were to BUG here, we'd be very likely to kill
217 * the system so hard that we don't see the call trace.
218 * Try to recover instead by ignoring the error and doing
219 * a global flush to minimize the chance of corruption.
220 *
221 * (This is far from being a fully correct recovery.
222 * Architecturally, the CPU could prefetch something
223 * back into an incorrect ASID slot and leave it there
224 * to cause trouble down the road. It's better than
225 * nothing, though.)
226 */
227 __flush_tlb_all();
228 }
229 #endif
230 this_cpu_write(cpu_tlbstate.is_lazy, false);
231
232 /*
233 * The membarrier system call requires a full memory barrier and
234 * core serialization before returning to user-space, after
235 * storing to rq->curr. Writing to CR3 provides that full
236 * memory barrier and core serializing instruction.
237 */
238 if (real_prev == next) {
239 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
240 next->context.ctx_id);
241
242 /*
243 * We don't currently support having a real mm loaded without
244 * our cpu set in mm_cpumask(). We have all the bookkeeping
245 * in place to figure out whether we would need to flush
246 * if our cpu were cleared in mm_cpumask(), but we don't
247 * currently use it.
248 */
249 if (WARN_ON_ONCE(real_prev != &init_mm &&
250 !cpumask_test_cpu(cpu, mm_cpumask(next))))
251 cpumask_set_cpu(cpu, mm_cpumask(next));
252
253 return;
254 } else {
255 u16 new_asid;
256 bool need_flush;
257 u64 last_ctx_id = this_cpu_read(cpu_tlbstate.last_ctx_id);
258
259 /*
260 * Avoid user/user BTB poisoning by flushing the branch
261 * predictor when switching between processes. This stops
262 * one process from doing Spectre-v2 attacks on another.
263 *
264 * As an optimization, flush indirect branches only when
265 * switching into processes that disable dumping. This
266 * protects high value processes like gpg, without having
267 * too high performance overhead. IBPB is *expensive*!
268 *
269 * This will not flush branches when switching into kernel
270 * threads. It will also not flush if we switch to idle
271 * thread and back to the same process. It will flush if we
272 * switch to a different non-dumpable process.
273 */
274 if (tsk && tsk->mm &&
275 tsk->mm->context.ctx_id != last_ctx_id &&
276 get_dumpable(tsk->mm) != SUID_DUMP_USER)
277 indirect_branch_prediction_barrier();
278
279 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
280 /*
281 * If our current stack is in vmalloc space and isn't
282 * mapped in the new pgd, we'll double-fault. Forcibly
283 * map it.
284 */
285 sync_current_stack_to_mm(next);
286 }
287
288 /* Stop remote flushes for the previous mm */
289 VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(real_prev)) &&
290 real_prev != &init_mm);
291 cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
292
293 /*
294 * Start remote flushes and then read tlb_gen.
295 */
296 cpumask_set_cpu(cpu, mm_cpumask(next));
297 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
298
299 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
300
301 if (need_flush) {
302 this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
303 this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
304 load_new_mm_cr3(next->pgd, new_asid, true);
305
306 /*
307 * NB: This gets called via leave_mm() in the idle path
308 * where RCU functions differently. Tracing normally
309 * uses RCU, so we need to use the _rcuidle variant.
310 *
311 * (There is no good reason for this. The idle code should
312 * be rearranged to call this before rcu_idle_enter().)
313 */
314 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
315 } else {
316 /* The new ASID is already up to date. */
317 load_new_mm_cr3(next->pgd, new_asid, false);
318
319 /* See above wrt _rcuidle. */
320 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, 0);
321 }
322
323 /*
324 * Record last user mm's context id, so we can avoid
325 * flushing branch buffer with IBPB if we switch back
326 * to the same user.
327 */
328 if (next != &init_mm)
329 this_cpu_write(cpu_tlbstate.last_ctx_id, next->context.ctx_id);
330
331 this_cpu_write(cpu_tlbstate.loaded_mm, next);
332 this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
333 }
334
335 load_mm_cr4(next);
336 switch_ldt(real_prev, next);
337 }
338
339 /*
340 * Please ignore the name of this function. It should be called
341 * switch_to_kernel_thread().
342 *
343 * enter_lazy_tlb() is a hint from the scheduler that we are entering a
344 * kernel thread or other context without an mm. Acceptable implementations
345 * include doing nothing whatsoever, switching to init_mm, or various clever
346 * lazy tricks to try to minimize TLB flushes.
347 *
348 * The scheduler reserves the right to call enter_lazy_tlb() several times
349 * in a row. It will notify us that we're going back to a real mm by
350 * calling switch_mm_irqs_off().
351 */
352 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
353 {
354 if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
355 return;
356
357 if (tlb_defer_switch_to_init_mm()) {
358 /*
359 * There's a significant optimization that may be possible
360 * here. We have accurate enough TLB flush tracking that we
361 * don't need to maintain coherence of TLB per se when we're
362 * lazy. We do, however, need to maintain coherence of
363 * paging-structure caches. We could, in principle, leave our
364 * old mm loaded and only switch to init_mm when
365 * tlb_remove_page() happens.
366 */
367 this_cpu_write(cpu_tlbstate.is_lazy, true);
368 } else {
369 switch_mm(NULL, &init_mm, NULL);
370 }
371 }
372
373 /*
374 * Call this when reinitializing a CPU. It fixes the following potential
375 * problems:
376 *
377 * - The ASID changed from what cpu_tlbstate thinks it is (most likely
378 * because the CPU was taken down and came back up with CR3's PCID
379 * bits clear. CPU hotplug can do this.
380 *
381 * - The TLB contains junk in slots corresponding to inactive ASIDs.
382 *
383 * - The CPU went so far out to lunch that it may have missed a TLB
384 * flush.
385 */
386 void initialize_tlbstate_and_flush(void)
387 {
388 int i;
389 struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
390 u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
391 unsigned long cr3 = __read_cr3();
392
393 /* Assert that CR3 already references the right mm. */
394 WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
395
396 /*
397 * Assert that CR4.PCIDE is set if needed. (CR4.PCIDE initialization
398 * doesn't work like other CR4 bits because it can only be set from
399 * long mode.)
400 */
401 WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
402 !(cr4_read_shadow() & X86_CR4_PCIDE));
403
404 /* Force ASID 0 and force a TLB flush. */
405 write_cr3(build_cr3(mm->pgd, 0));
406
407 /* Reinitialize tlbstate. */
408 this_cpu_write(cpu_tlbstate.last_ctx_id, mm->context.ctx_id);
409 this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
410 this_cpu_write(cpu_tlbstate.next_asid, 1);
411 this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
412 this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
413
414 for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
415 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
416 }
417
418 /*
419 * flush_tlb_func_common()'s memory ordering requirement is that any
420 * TLB fills that happen after we flush the TLB are ordered after we
421 * read active_mm's tlb_gen. We don't need any explicit barriers
422 * because all x86 flush operations are serializing and the
423 * atomic64_read operation won't be reordered by the compiler.
424 */
425 static void flush_tlb_func_common(const struct flush_tlb_info *f,
426 bool local, enum tlb_flush_reason reason)
427 {
428 /*
429 * We have three different tlb_gen values in here. They are:
430 *
431 * - mm_tlb_gen: the latest generation.
432 * - local_tlb_gen: the generation that this CPU has already caught
433 * up to.
434 * - f->new_tlb_gen: the generation that the requester of the flush
435 * wants us to catch up to.
436 */
437 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
438 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
439 u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
440 u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
441
442 /* This code cannot presently handle being reentered. */
443 VM_WARN_ON(!irqs_disabled());
444
445 if (unlikely(loaded_mm == &init_mm))
446 return;
447
448 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
449 loaded_mm->context.ctx_id);
450
451 if (this_cpu_read(cpu_tlbstate.is_lazy)) {
452 /*
453 * We're in lazy mode. We need to at least flush our
454 * paging-structure cache to avoid speculatively reading
455 * garbage into our TLB. Since switching to init_mm is barely
456 * slower than a minimal flush, just switch to init_mm.
457 */
458 switch_mm_irqs_off(NULL, &init_mm, NULL);
459 return;
460 }
461
462 if (unlikely(local_tlb_gen == mm_tlb_gen)) {
463 /*
464 * There's nothing to do: we're already up to date. This can
465 * happen if two concurrent flushes happen -- the first flush to
466 * be handled can catch us all the way up, leaving no work for
467 * the second flush.
468 */
469 trace_tlb_flush(reason, 0);
470 return;
471 }
472
473 WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
474 WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
475
476 /*
477 * If we get to this point, we know that our TLB is out of date.
478 * This does not strictly imply that we need to flush (it's
479 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
480 * going to need to flush in the very near future, so we might
481 * as well get it over with.
482 *
483 * The only question is whether to do a full or partial flush.
484 *
485 * We do a partial flush if requested and two extra conditions
486 * are met:
487 *
488 * 1. f->new_tlb_gen == local_tlb_gen + 1. We have an invariant that
489 * we've always done all needed flushes to catch up to
490 * local_tlb_gen. If, for example, local_tlb_gen == 2 and
491 * f->new_tlb_gen == 3, then we know that the flush needed to bring
492 * us up to date for tlb_gen 3 is the partial flush we're
493 * processing.
494 *
495 * As an example of why this check is needed, suppose that there
496 * are two concurrent flushes. The first is a full flush that
497 * changes context.tlb_gen from 1 to 2. The second is a partial
498 * flush that changes context.tlb_gen from 2 to 3. If they get
499 * processed on this CPU in reverse order, we'll see
500 * local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
501 * If we were to use __flush_tlb_single() and set local_tlb_gen to
502 * 3, we'd be break the invariant: we'd update local_tlb_gen above
503 * 1 without the full flush that's needed for tlb_gen 2.
504 *
505 * 2. f->new_tlb_gen == mm_tlb_gen. This is purely an optimiation.
506 * Partial TLB flushes are not all that much cheaper than full TLB
507 * flushes, so it seems unlikely that it would be a performance win
508 * to do a partial flush if that won't bring our TLB fully up to
509 * date. By doing a full flush instead, we can increase
510 * local_tlb_gen all the way to mm_tlb_gen and we can probably
511 * avoid another flush in the very near future.
512 */
513 if (f->end != TLB_FLUSH_ALL &&
514 f->new_tlb_gen == local_tlb_gen + 1 &&
515 f->new_tlb_gen == mm_tlb_gen) {
516 /* Partial flush */
517 unsigned long addr;
518 unsigned long nr_pages = (f->end - f->start) >> PAGE_SHIFT;
519
520 addr = f->start;
521 while (addr < f->end) {
522 __flush_tlb_single(addr);
523 addr += PAGE_SIZE;
524 }
525 if (local)
526 count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_pages);
527 trace_tlb_flush(reason, nr_pages);
528 } else {
529 /* Full flush. */
530 local_flush_tlb();
531 if (local)
532 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
533 trace_tlb_flush(reason, TLB_FLUSH_ALL);
534 }
535
536 /* Both paths above update our state to mm_tlb_gen. */
537 this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
538 }
539
540 static void flush_tlb_func_local(void *info, enum tlb_flush_reason reason)
541 {
542 const struct flush_tlb_info *f = info;
543
544 flush_tlb_func_common(f, true, reason);
545 }
546
547 static void flush_tlb_func_remote(void *info)
548 {
549 const struct flush_tlb_info *f = info;
550
551 inc_irq_stat(irq_tlb_count);
552
553 if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
554 return;
555
556 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
557 flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
558 }
559
560 void native_flush_tlb_others(const struct cpumask *cpumask,
561 const struct flush_tlb_info *info)
562 {
563 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
564 if (info->end == TLB_FLUSH_ALL)
565 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
566 else
567 trace_tlb_flush(TLB_REMOTE_SEND_IPI,
568 (info->end - info->start) >> PAGE_SHIFT);
569
570 if (is_uv_system()) {
571 /*
572 * This whole special case is confused. UV has a "Broadcast
573 * Assist Unit", which seems to be a fancy way to send IPIs.
574 * Back when x86 used an explicit TLB flush IPI, UV was
575 * optimized to use its own mechanism. These days, x86 uses
576 * smp_call_function_many(), but UV still uses a manual IPI,
577 * and that IPI's action is out of date -- it does a manual
578 * flush instead of calling flush_tlb_func_remote(). This
579 * means that the percpu tlb_gen variables won't be updated
580 * and we'll do pointless flushes on future context switches.
581 *
582 * Rather than hooking native_flush_tlb_others() here, I think
583 * that UV should be updated so that smp_call_function_many(),
584 * etc, are optimal on UV.
585 */
586 unsigned int cpu;
587
588 cpu = smp_processor_id();
589 cpumask = uv_flush_tlb_others(cpumask, info);
590 if (cpumask)
591 smp_call_function_many(cpumask, flush_tlb_func_remote,
592 (void *)info, 1);
593 return;
594 }
595 smp_call_function_many(cpumask, flush_tlb_func_remote,
596 (void *)info, 1);
597 }
598
599 /*
600 * See Documentation/x86/tlb.txt for details. We choose 33
601 * because it is large enough to cover the vast majority (at
602 * least 95%) of allocations, and is small enough that we are
603 * confident it will not cause too much overhead. Each single
604 * flush is about 100 ns, so this caps the maximum overhead at
605 * _about_ 3,000 ns.
606 *
607 * This is in units of pages.
608 */
609 static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
610
611 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
612 unsigned long end, unsigned long vmflag)
613 {
614 int cpu;
615
616 struct flush_tlb_info info = {
617 .mm = mm,
618 };
619
620 cpu = get_cpu();
621
622 /* This is also a barrier that synchronizes with switch_mm(). */
623 info.new_tlb_gen = inc_mm_tlb_gen(mm);
624
625 /* Should we flush just the requested range? */
626 if ((end != TLB_FLUSH_ALL) &&
627 !(vmflag & VM_HUGETLB) &&
628 ((end - start) >> PAGE_SHIFT) <= tlb_single_page_flush_ceiling) {
629 info.start = start;
630 info.end = end;
631 } else {
632 info.start = 0UL;
633 info.end = TLB_FLUSH_ALL;
634 }
635
636 if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
637 VM_WARN_ON(irqs_disabled());
638 local_irq_disable();
639 flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN);
640 local_irq_enable();
641 }
642
643 if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
644 flush_tlb_others(mm_cpumask(mm), &info);
645
646 put_cpu();
647 }
648
649
650 static void do_flush_tlb_all(void *info)
651 {
652 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
653 __flush_tlb_all();
654 }
655
656 void flush_tlb_all(void)
657 {
658 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
659 on_each_cpu(do_flush_tlb_all, NULL, 1);
660 }
661
662 static void do_kernel_range_flush(void *info)
663 {
664 struct flush_tlb_info *f = info;
665 unsigned long addr;
666
667 /* flush range by one by one 'invlpg' */
668 for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
669 __flush_tlb_one(addr);
670 }
671
672 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
673 {
674
675 /* Balance as user space task's flush, a bit conservative */
676 if (end == TLB_FLUSH_ALL ||
677 (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
678 on_each_cpu(do_flush_tlb_all, NULL, 1);
679 } else {
680 struct flush_tlb_info info;
681 info.start = start;
682 info.end = end;
683 on_each_cpu(do_kernel_range_flush, &info, 1);
684 }
685 }
686
687 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
688 {
689 struct flush_tlb_info info = {
690 .mm = NULL,
691 .start = 0UL,
692 .end = TLB_FLUSH_ALL,
693 };
694
695 int cpu = get_cpu();
696
697 if (cpumask_test_cpu(cpu, &batch->cpumask)) {
698 VM_WARN_ON(irqs_disabled());
699 local_irq_disable();
700 flush_tlb_func_local(&info, TLB_LOCAL_SHOOTDOWN);
701 local_irq_enable();
702 }
703
704 if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
705 flush_tlb_others(&batch->cpumask, &info);
706
707 cpumask_clear(&batch->cpumask);
708
709 put_cpu();
710 }
711
712 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
713 size_t count, loff_t *ppos)
714 {
715 char buf[32];
716 unsigned int len;
717
718 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
719 return simple_read_from_buffer(user_buf, count, ppos, buf, len);
720 }
721
722 static ssize_t tlbflush_write_file(struct file *file,
723 const char __user *user_buf, size_t count, loff_t *ppos)
724 {
725 char buf[32];
726 ssize_t len;
727 int ceiling;
728
729 len = min(count, sizeof(buf) - 1);
730 if (copy_from_user(buf, user_buf, len))
731 return -EFAULT;
732
733 buf[len] = '\0';
734 if (kstrtoint(buf, 0, &ceiling))
735 return -EINVAL;
736
737 if (ceiling < 0)
738 return -EINVAL;
739
740 tlb_single_page_flush_ceiling = ceiling;
741 return count;
742 }
743
744 static const struct file_operations fops_tlbflush = {
745 .read = tlbflush_read_file,
746 .write = tlbflush_write_file,
747 .llseek = default_llseek,
748 };
749
750 static int __init create_tlb_single_page_flush_ceiling(void)
751 {
752 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
753 arch_debugfs_dir, NULL, &fops_tlbflush);
754 return 0;
755 }
756 late_initcall(create_tlb_single_page_flush_ceiling);