]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/x86/net/bpf_jit_comp.c
udp: consistently apply ufo or fragmentation
[mirror_ubuntu-zesty-kernel.git] / arch / x86 / net / bpf_jit_comp.c
1 /* bpf_jit_comp.c : BPF JIT compiler
2 *
3 * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
4 * Internal BPF Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; version 2
9 * of the License.
10 */
11 #include <linux/netdevice.h>
12 #include <linux/filter.h>
13 #include <linux/if_vlan.h>
14 #include <asm/cacheflush.h>
15 #include <linux/bpf.h>
16
17 int bpf_jit_enable __read_mostly;
18
19 /*
20 * assembly code in arch/x86/net/bpf_jit.S
21 */
22 extern u8 sk_load_word[], sk_load_half[], sk_load_byte[];
23 extern u8 sk_load_word_positive_offset[], sk_load_half_positive_offset[];
24 extern u8 sk_load_byte_positive_offset[];
25 extern u8 sk_load_word_negative_offset[], sk_load_half_negative_offset[];
26 extern u8 sk_load_byte_negative_offset[];
27
28 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
29 {
30 if (len == 1)
31 *ptr = bytes;
32 else if (len == 2)
33 *(u16 *)ptr = bytes;
34 else {
35 *(u32 *)ptr = bytes;
36 barrier();
37 }
38 return ptr + len;
39 }
40
41 #define EMIT(bytes, len) \
42 do { prog = emit_code(prog, bytes, len); cnt += len; } while (0)
43
44 #define EMIT1(b1) EMIT(b1, 1)
45 #define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2)
46 #define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
47 #define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
48 #define EMIT1_off32(b1, off) \
49 do {EMIT1(b1); EMIT(off, 4); } while (0)
50 #define EMIT2_off32(b1, b2, off) \
51 do {EMIT2(b1, b2); EMIT(off, 4); } while (0)
52 #define EMIT3_off32(b1, b2, b3, off) \
53 do {EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
54 #define EMIT4_off32(b1, b2, b3, b4, off) \
55 do {EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
56
57 static bool is_imm8(int value)
58 {
59 return value <= 127 && value >= -128;
60 }
61
62 static bool is_simm32(s64 value)
63 {
64 return value == (s64) (s32) value;
65 }
66
67 /* mov dst, src */
68 #define EMIT_mov(DST, SRC) \
69 do {if (DST != SRC) \
70 EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
71 } while (0)
72
73 static int bpf_size_to_x86_bytes(int bpf_size)
74 {
75 if (bpf_size == BPF_W)
76 return 4;
77 else if (bpf_size == BPF_H)
78 return 2;
79 else if (bpf_size == BPF_B)
80 return 1;
81 else if (bpf_size == BPF_DW)
82 return 4; /* imm32 */
83 else
84 return 0;
85 }
86
87 /* list of x86 cond jumps opcodes (. + s8)
88 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
89 */
90 #define X86_JB 0x72
91 #define X86_JAE 0x73
92 #define X86_JE 0x74
93 #define X86_JNE 0x75
94 #define X86_JBE 0x76
95 #define X86_JA 0x77
96 #define X86_JGE 0x7D
97 #define X86_JG 0x7F
98
99 static void bpf_flush_icache(void *start, void *end)
100 {
101 mm_segment_t old_fs = get_fs();
102
103 set_fs(KERNEL_DS);
104 smp_wmb();
105 flush_icache_range((unsigned long)start, (unsigned long)end);
106 set_fs(old_fs);
107 }
108
109 #define CHOOSE_LOAD_FUNC(K, func) \
110 ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
111
112 /* pick a register outside of BPF range for JIT internal work */
113 #define AUX_REG (MAX_BPF_JIT_REG + 1)
114
115 /* The following table maps BPF registers to x64 registers.
116 *
117 * x64 register r12 is unused, since if used as base address
118 * register in load/store instructions, it always needs an
119 * extra byte of encoding and is callee saved.
120 *
121 * r9 caches skb->len - skb->data_len
122 * r10 caches skb->data, and used for blinding (if enabled)
123 */
124 static const int reg2hex[] = {
125 [BPF_REG_0] = 0, /* rax */
126 [BPF_REG_1] = 7, /* rdi */
127 [BPF_REG_2] = 6, /* rsi */
128 [BPF_REG_3] = 2, /* rdx */
129 [BPF_REG_4] = 1, /* rcx */
130 [BPF_REG_5] = 0, /* r8 */
131 [BPF_REG_6] = 3, /* rbx callee saved */
132 [BPF_REG_7] = 5, /* r13 callee saved */
133 [BPF_REG_8] = 6, /* r14 callee saved */
134 [BPF_REG_9] = 7, /* r15 callee saved */
135 [BPF_REG_FP] = 5, /* rbp readonly */
136 [BPF_REG_AX] = 2, /* r10 temp register */
137 [AUX_REG] = 3, /* r11 temp register */
138 };
139
140 /* is_ereg() == true if BPF register 'reg' maps to x64 r8..r15
141 * which need extra byte of encoding.
142 * rax,rcx,...,rbp have simpler encoding
143 */
144 static bool is_ereg(u32 reg)
145 {
146 return (1 << reg) & (BIT(BPF_REG_5) |
147 BIT(AUX_REG) |
148 BIT(BPF_REG_7) |
149 BIT(BPF_REG_8) |
150 BIT(BPF_REG_9) |
151 BIT(BPF_REG_AX));
152 }
153
154 /* add modifiers if 'reg' maps to x64 registers r8..r15 */
155 static u8 add_1mod(u8 byte, u32 reg)
156 {
157 if (is_ereg(reg))
158 byte |= 1;
159 return byte;
160 }
161
162 static u8 add_2mod(u8 byte, u32 r1, u32 r2)
163 {
164 if (is_ereg(r1))
165 byte |= 1;
166 if (is_ereg(r2))
167 byte |= 4;
168 return byte;
169 }
170
171 /* encode 'dst_reg' register into x64 opcode 'byte' */
172 static u8 add_1reg(u8 byte, u32 dst_reg)
173 {
174 return byte + reg2hex[dst_reg];
175 }
176
177 /* encode 'dst_reg' and 'src_reg' registers into x64 opcode 'byte' */
178 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
179 {
180 return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
181 }
182
183 static void jit_fill_hole(void *area, unsigned int size)
184 {
185 /* fill whole space with int3 instructions */
186 memset(area, 0xcc, size);
187 }
188
189 struct jit_context {
190 int cleanup_addr; /* epilogue code offset */
191 bool seen_ld_abs;
192 bool seen_ax_reg;
193 };
194
195 /* maximum number of bytes emitted while JITing one eBPF insn */
196 #define BPF_MAX_INSN_SIZE 128
197 #define BPF_INSN_SAFETY 64
198
199 #define STACKSIZE \
200 (MAX_BPF_STACK + \
201 32 /* space for rbx, r13, r14, r15 */ + \
202 8 /* space for skb_copy_bits() buffer */)
203
204 #define PROLOGUE_SIZE 48
205
206 /* emit x64 prologue code for BPF program and check it's size.
207 * bpf_tail_call helper will skip it while jumping into another program
208 */
209 static void emit_prologue(u8 **pprog)
210 {
211 u8 *prog = *pprog;
212 int cnt = 0;
213
214 EMIT1(0x55); /* push rbp */
215 EMIT3(0x48, 0x89, 0xE5); /* mov rbp,rsp */
216
217 /* sub rsp, STACKSIZE */
218 EMIT3_off32(0x48, 0x81, 0xEC, STACKSIZE);
219
220 /* all classic BPF filters use R6(rbx) save it */
221
222 /* mov qword ptr [rbp-X],rbx */
223 EMIT3_off32(0x48, 0x89, 0x9D, -STACKSIZE);
224
225 /* bpf_convert_filter() maps classic BPF register X to R7 and uses R8
226 * as temporary, so all tcpdump filters need to spill/fill R7(r13) and
227 * R8(r14). R9(r15) spill could be made conditional, but there is only
228 * one 'bpf_error' return path out of helper functions inside bpf_jit.S
229 * The overhead of extra spill is negligible for any filter other
230 * than synthetic ones. Therefore not worth adding complexity.
231 */
232
233 /* mov qword ptr [rbp-X],r13 */
234 EMIT3_off32(0x4C, 0x89, 0xAD, -STACKSIZE + 8);
235 /* mov qword ptr [rbp-X],r14 */
236 EMIT3_off32(0x4C, 0x89, 0xB5, -STACKSIZE + 16);
237 /* mov qword ptr [rbp-X],r15 */
238 EMIT3_off32(0x4C, 0x89, 0xBD, -STACKSIZE + 24);
239
240 /* Clear the tail call counter (tail_call_cnt): for eBPF tail calls
241 * we need to reset the counter to 0. It's done in two instructions,
242 * resetting rax register to 0 (xor on eax gets 0 extended), and
243 * moving it to the counter location.
244 */
245
246 /* xor eax, eax */
247 EMIT2(0x31, 0xc0);
248 /* mov qword ptr [rbp-X], rax */
249 EMIT3_off32(0x48, 0x89, 0x85, -STACKSIZE + 32);
250
251 BUILD_BUG_ON(cnt != PROLOGUE_SIZE);
252 *pprog = prog;
253 }
254
255 /* generate the following code:
256 * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
257 * if (index >= array->map.max_entries)
258 * goto out;
259 * if (++tail_call_cnt > MAX_TAIL_CALL_CNT)
260 * goto out;
261 * prog = array->ptrs[index];
262 * if (prog == NULL)
263 * goto out;
264 * goto *(prog->bpf_func + prologue_size);
265 * out:
266 */
267 static void emit_bpf_tail_call(u8 **pprog)
268 {
269 u8 *prog = *pprog;
270 int label1, label2, label3;
271 int cnt = 0;
272
273 /* rdi - pointer to ctx
274 * rsi - pointer to bpf_array
275 * rdx - index in bpf_array
276 */
277
278 /* if (index >= array->map.max_entries)
279 * goto out;
280 */
281 EMIT4(0x48, 0x8B, 0x46, /* mov rax, qword ptr [rsi + 16] */
282 offsetof(struct bpf_array, map.max_entries));
283 EMIT3(0x48, 0x39, 0xD0); /* cmp rax, rdx */
284 #define OFFSET1 47 /* number of bytes to jump */
285 EMIT2(X86_JBE, OFFSET1); /* jbe out */
286 label1 = cnt;
287
288 /* if (tail_call_cnt > MAX_TAIL_CALL_CNT)
289 * goto out;
290 */
291 EMIT2_off32(0x8B, 0x85, -STACKSIZE + 36); /* mov eax, dword ptr [rbp - 516] */
292 EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT); /* cmp eax, MAX_TAIL_CALL_CNT */
293 #define OFFSET2 36
294 EMIT2(X86_JA, OFFSET2); /* ja out */
295 label2 = cnt;
296 EMIT3(0x83, 0xC0, 0x01); /* add eax, 1 */
297 EMIT2_off32(0x89, 0x85, -STACKSIZE + 36); /* mov dword ptr [rbp - 516], eax */
298
299 /* prog = array->ptrs[index]; */
300 EMIT4_off32(0x48, 0x8D, 0x84, 0xD6, /* lea rax, [rsi + rdx * 8 + offsetof(...)] */
301 offsetof(struct bpf_array, ptrs));
302 EMIT3(0x48, 0x8B, 0x00); /* mov rax, qword ptr [rax] */
303
304 /* if (prog == NULL)
305 * goto out;
306 */
307 EMIT4(0x48, 0x83, 0xF8, 0x00); /* cmp rax, 0 */
308 #define OFFSET3 10
309 EMIT2(X86_JE, OFFSET3); /* je out */
310 label3 = cnt;
311
312 /* goto *(prog->bpf_func + prologue_size); */
313 EMIT4(0x48, 0x8B, 0x40, /* mov rax, qword ptr [rax + 32] */
314 offsetof(struct bpf_prog, bpf_func));
315 EMIT4(0x48, 0x83, 0xC0, PROLOGUE_SIZE); /* add rax, prologue_size */
316
317 /* now we're ready to jump into next BPF program
318 * rdi == ctx (1st arg)
319 * rax == prog->bpf_func + prologue_size
320 */
321 EMIT2(0xFF, 0xE0); /* jmp rax */
322
323 /* out: */
324 BUILD_BUG_ON(cnt - label1 != OFFSET1);
325 BUILD_BUG_ON(cnt - label2 != OFFSET2);
326 BUILD_BUG_ON(cnt - label3 != OFFSET3);
327 *pprog = prog;
328 }
329
330
331 static void emit_load_skb_data_hlen(u8 **pprog)
332 {
333 u8 *prog = *pprog;
334 int cnt = 0;
335
336 /* r9d = skb->len - skb->data_len (headlen)
337 * r10 = skb->data
338 */
339 /* mov %r9d, off32(%rdi) */
340 EMIT3_off32(0x44, 0x8b, 0x8f, offsetof(struct sk_buff, len));
341
342 /* sub %r9d, off32(%rdi) */
343 EMIT3_off32(0x44, 0x2b, 0x8f, offsetof(struct sk_buff, data_len));
344
345 /* mov %r10, off32(%rdi) */
346 EMIT3_off32(0x4c, 0x8b, 0x97, offsetof(struct sk_buff, data));
347 *pprog = prog;
348 }
349
350 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image,
351 int oldproglen, struct jit_context *ctx)
352 {
353 struct bpf_insn *insn = bpf_prog->insnsi;
354 int insn_cnt = bpf_prog->len;
355 bool seen_ld_abs = ctx->seen_ld_abs | (oldproglen == 0);
356 bool seen_ax_reg = ctx->seen_ax_reg | (oldproglen == 0);
357 bool seen_exit = false;
358 u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
359 int i, cnt = 0;
360 int proglen = 0;
361 u8 *prog = temp;
362
363 emit_prologue(&prog);
364
365 if (seen_ld_abs)
366 emit_load_skb_data_hlen(&prog);
367
368 for (i = 0; i < insn_cnt; i++, insn++) {
369 const s32 imm32 = insn->imm;
370 u32 dst_reg = insn->dst_reg;
371 u32 src_reg = insn->src_reg;
372 u8 b1 = 0, b2 = 0, b3 = 0;
373 s64 jmp_offset;
374 u8 jmp_cond;
375 bool reload_skb_data;
376 int ilen;
377 u8 *func;
378
379 if (dst_reg == BPF_REG_AX || src_reg == BPF_REG_AX)
380 ctx->seen_ax_reg = seen_ax_reg = true;
381
382 switch (insn->code) {
383 /* ALU */
384 case BPF_ALU | BPF_ADD | BPF_X:
385 case BPF_ALU | BPF_SUB | BPF_X:
386 case BPF_ALU | BPF_AND | BPF_X:
387 case BPF_ALU | BPF_OR | BPF_X:
388 case BPF_ALU | BPF_XOR | BPF_X:
389 case BPF_ALU64 | BPF_ADD | BPF_X:
390 case BPF_ALU64 | BPF_SUB | BPF_X:
391 case BPF_ALU64 | BPF_AND | BPF_X:
392 case BPF_ALU64 | BPF_OR | BPF_X:
393 case BPF_ALU64 | BPF_XOR | BPF_X:
394 switch (BPF_OP(insn->code)) {
395 case BPF_ADD: b2 = 0x01; break;
396 case BPF_SUB: b2 = 0x29; break;
397 case BPF_AND: b2 = 0x21; break;
398 case BPF_OR: b2 = 0x09; break;
399 case BPF_XOR: b2 = 0x31; break;
400 }
401 if (BPF_CLASS(insn->code) == BPF_ALU64)
402 EMIT1(add_2mod(0x48, dst_reg, src_reg));
403 else if (is_ereg(dst_reg) || is_ereg(src_reg))
404 EMIT1(add_2mod(0x40, dst_reg, src_reg));
405 EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
406 break;
407
408 /* mov dst, src */
409 case BPF_ALU64 | BPF_MOV | BPF_X:
410 EMIT_mov(dst_reg, src_reg);
411 break;
412
413 /* mov32 dst, src */
414 case BPF_ALU | BPF_MOV | BPF_X:
415 if (is_ereg(dst_reg) || is_ereg(src_reg))
416 EMIT1(add_2mod(0x40, dst_reg, src_reg));
417 EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
418 break;
419
420 /* neg dst */
421 case BPF_ALU | BPF_NEG:
422 case BPF_ALU64 | BPF_NEG:
423 if (BPF_CLASS(insn->code) == BPF_ALU64)
424 EMIT1(add_1mod(0x48, dst_reg));
425 else if (is_ereg(dst_reg))
426 EMIT1(add_1mod(0x40, dst_reg));
427 EMIT2(0xF7, add_1reg(0xD8, dst_reg));
428 break;
429
430 case BPF_ALU | BPF_ADD | BPF_K:
431 case BPF_ALU | BPF_SUB | BPF_K:
432 case BPF_ALU | BPF_AND | BPF_K:
433 case BPF_ALU | BPF_OR | BPF_K:
434 case BPF_ALU | BPF_XOR | BPF_K:
435 case BPF_ALU64 | BPF_ADD | BPF_K:
436 case BPF_ALU64 | BPF_SUB | BPF_K:
437 case BPF_ALU64 | BPF_AND | BPF_K:
438 case BPF_ALU64 | BPF_OR | BPF_K:
439 case BPF_ALU64 | BPF_XOR | BPF_K:
440 if (BPF_CLASS(insn->code) == BPF_ALU64)
441 EMIT1(add_1mod(0x48, dst_reg));
442 else if (is_ereg(dst_reg))
443 EMIT1(add_1mod(0x40, dst_reg));
444
445 switch (BPF_OP(insn->code)) {
446 case BPF_ADD: b3 = 0xC0; break;
447 case BPF_SUB: b3 = 0xE8; break;
448 case BPF_AND: b3 = 0xE0; break;
449 case BPF_OR: b3 = 0xC8; break;
450 case BPF_XOR: b3 = 0xF0; break;
451 }
452
453 if (is_imm8(imm32))
454 EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
455 else
456 EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
457 break;
458
459 case BPF_ALU64 | BPF_MOV | BPF_K:
460 /* optimization: if imm32 is positive,
461 * use 'mov eax, imm32' (which zero-extends imm32)
462 * to save 2 bytes
463 */
464 if (imm32 < 0) {
465 /* 'mov rax, imm32' sign extends imm32 */
466 b1 = add_1mod(0x48, dst_reg);
467 b2 = 0xC7;
468 b3 = 0xC0;
469 EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
470 break;
471 }
472
473 case BPF_ALU | BPF_MOV | BPF_K:
474 /* optimization: if imm32 is zero, use 'xor <dst>,<dst>'
475 * to save 3 bytes.
476 */
477 if (imm32 == 0) {
478 if (is_ereg(dst_reg))
479 EMIT1(add_2mod(0x40, dst_reg, dst_reg));
480 b2 = 0x31; /* xor */
481 b3 = 0xC0;
482 EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
483 break;
484 }
485
486 /* mov %eax, imm32 */
487 if (is_ereg(dst_reg))
488 EMIT1(add_1mod(0x40, dst_reg));
489 EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
490 break;
491
492 case BPF_LD | BPF_IMM | BPF_DW:
493 if (insn[1].code != 0 || insn[1].src_reg != 0 ||
494 insn[1].dst_reg != 0 || insn[1].off != 0) {
495 /* verifier must catch invalid insns */
496 pr_err("invalid BPF_LD_IMM64 insn\n");
497 return -EINVAL;
498 }
499
500 /* optimization: if imm64 is zero, use 'xor <dst>,<dst>'
501 * to save 7 bytes.
502 */
503 if (insn[0].imm == 0 && insn[1].imm == 0) {
504 b1 = add_2mod(0x48, dst_reg, dst_reg);
505 b2 = 0x31; /* xor */
506 b3 = 0xC0;
507 EMIT3(b1, b2, add_2reg(b3, dst_reg, dst_reg));
508
509 insn++;
510 i++;
511 break;
512 }
513
514 /* movabsq %rax, imm64 */
515 EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
516 EMIT(insn[0].imm, 4);
517 EMIT(insn[1].imm, 4);
518
519 insn++;
520 i++;
521 break;
522
523 /* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
524 case BPF_ALU | BPF_MOD | BPF_X:
525 case BPF_ALU | BPF_DIV | BPF_X:
526 case BPF_ALU | BPF_MOD | BPF_K:
527 case BPF_ALU | BPF_DIV | BPF_K:
528 case BPF_ALU64 | BPF_MOD | BPF_X:
529 case BPF_ALU64 | BPF_DIV | BPF_X:
530 case BPF_ALU64 | BPF_MOD | BPF_K:
531 case BPF_ALU64 | BPF_DIV | BPF_K:
532 EMIT1(0x50); /* push rax */
533 EMIT1(0x52); /* push rdx */
534
535 if (BPF_SRC(insn->code) == BPF_X)
536 /* mov r11, src_reg */
537 EMIT_mov(AUX_REG, src_reg);
538 else
539 /* mov r11, imm32 */
540 EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
541
542 /* mov rax, dst_reg */
543 EMIT_mov(BPF_REG_0, dst_reg);
544
545 /* xor edx, edx
546 * equivalent to 'xor rdx, rdx', but one byte less
547 */
548 EMIT2(0x31, 0xd2);
549
550 if (BPF_SRC(insn->code) == BPF_X) {
551 /* if (src_reg == 0) return 0 */
552
553 /* cmp r11, 0 */
554 EMIT4(0x49, 0x83, 0xFB, 0x00);
555
556 /* jne .+9 (skip over pop, pop, xor and jmp) */
557 EMIT2(X86_JNE, 1 + 1 + 2 + 5);
558 EMIT1(0x5A); /* pop rdx */
559 EMIT1(0x58); /* pop rax */
560 EMIT2(0x31, 0xc0); /* xor eax, eax */
561
562 /* jmp cleanup_addr
563 * addrs[i] - 11, because there are 11 bytes
564 * after this insn: div, mov, pop, pop, mov
565 */
566 jmp_offset = ctx->cleanup_addr - (addrs[i] - 11);
567 EMIT1_off32(0xE9, jmp_offset);
568 }
569
570 if (BPF_CLASS(insn->code) == BPF_ALU64)
571 /* div r11 */
572 EMIT3(0x49, 0xF7, 0xF3);
573 else
574 /* div r11d */
575 EMIT3(0x41, 0xF7, 0xF3);
576
577 if (BPF_OP(insn->code) == BPF_MOD)
578 /* mov r11, rdx */
579 EMIT3(0x49, 0x89, 0xD3);
580 else
581 /* mov r11, rax */
582 EMIT3(0x49, 0x89, 0xC3);
583
584 EMIT1(0x5A); /* pop rdx */
585 EMIT1(0x58); /* pop rax */
586
587 /* mov dst_reg, r11 */
588 EMIT_mov(dst_reg, AUX_REG);
589 break;
590
591 case BPF_ALU | BPF_MUL | BPF_K:
592 case BPF_ALU | BPF_MUL | BPF_X:
593 case BPF_ALU64 | BPF_MUL | BPF_K:
594 case BPF_ALU64 | BPF_MUL | BPF_X:
595 EMIT1(0x50); /* push rax */
596 EMIT1(0x52); /* push rdx */
597
598 /* mov r11, dst_reg */
599 EMIT_mov(AUX_REG, dst_reg);
600
601 if (BPF_SRC(insn->code) == BPF_X)
602 /* mov rax, src_reg */
603 EMIT_mov(BPF_REG_0, src_reg);
604 else
605 /* mov rax, imm32 */
606 EMIT3_off32(0x48, 0xC7, 0xC0, imm32);
607
608 if (BPF_CLASS(insn->code) == BPF_ALU64)
609 EMIT1(add_1mod(0x48, AUX_REG));
610 else if (is_ereg(AUX_REG))
611 EMIT1(add_1mod(0x40, AUX_REG));
612 /* mul(q) r11 */
613 EMIT2(0xF7, add_1reg(0xE0, AUX_REG));
614
615 /* mov r11, rax */
616 EMIT_mov(AUX_REG, BPF_REG_0);
617
618 EMIT1(0x5A); /* pop rdx */
619 EMIT1(0x58); /* pop rax */
620
621 /* mov dst_reg, r11 */
622 EMIT_mov(dst_reg, AUX_REG);
623 break;
624
625 /* shifts */
626 case BPF_ALU | BPF_LSH | BPF_K:
627 case BPF_ALU | BPF_RSH | BPF_K:
628 case BPF_ALU | BPF_ARSH | BPF_K:
629 case BPF_ALU64 | BPF_LSH | BPF_K:
630 case BPF_ALU64 | BPF_RSH | BPF_K:
631 case BPF_ALU64 | BPF_ARSH | BPF_K:
632 if (BPF_CLASS(insn->code) == BPF_ALU64)
633 EMIT1(add_1mod(0x48, dst_reg));
634 else if (is_ereg(dst_reg))
635 EMIT1(add_1mod(0x40, dst_reg));
636
637 switch (BPF_OP(insn->code)) {
638 case BPF_LSH: b3 = 0xE0; break;
639 case BPF_RSH: b3 = 0xE8; break;
640 case BPF_ARSH: b3 = 0xF8; break;
641 }
642 EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
643 break;
644
645 case BPF_ALU | BPF_LSH | BPF_X:
646 case BPF_ALU | BPF_RSH | BPF_X:
647 case BPF_ALU | BPF_ARSH | BPF_X:
648 case BPF_ALU64 | BPF_LSH | BPF_X:
649 case BPF_ALU64 | BPF_RSH | BPF_X:
650 case BPF_ALU64 | BPF_ARSH | BPF_X:
651
652 /* check for bad case when dst_reg == rcx */
653 if (dst_reg == BPF_REG_4) {
654 /* mov r11, dst_reg */
655 EMIT_mov(AUX_REG, dst_reg);
656 dst_reg = AUX_REG;
657 }
658
659 if (src_reg != BPF_REG_4) { /* common case */
660 EMIT1(0x51); /* push rcx */
661
662 /* mov rcx, src_reg */
663 EMIT_mov(BPF_REG_4, src_reg);
664 }
665
666 /* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
667 if (BPF_CLASS(insn->code) == BPF_ALU64)
668 EMIT1(add_1mod(0x48, dst_reg));
669 else if (is_ereg(dst_reg))
670 EMIT1(add_1mod(0x40, dst_reg));
671
672 switch (BPF_OP(insn->code)) {
673 case BPF_LSH: b3 = 0xE0; break;
674 case BPF_RSH: b3 = 0xE8; break;
675 case BPF_ARSH: b3 = 0xF8; break;
676 }
677 EMIT2(0xD3, add_1reg(b3, dst_reg));
678
679 if (src_reg != BPF_REG_4)
680 EMIT1(0x59); /* pop rcx */
681
682 if (insn->dst_reg == BPF_REG_4)
683 /* mov dst_reg, r11 */
684 EMIT_mov(insn->dst_reg, AUX_REG);
685 break;
686
687 case BPF_ALU | BPF_END | BPF_FROM_BE:
688 switch (imm32) {
689 case 16:
690 /* emit 'ror %ax, 8' to swap lower 2 bytes */
691 EMIT1(0x66);
692 if (is_ereg(dst_reg))
693 EMIT1(0x41);
694 EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
695
696 /* emit 'movzwl eax, ax' */
697 if (is_ereg(dst_reg))
698 EMIT3(0x45, 0x0F, 0xB7);
699 else
700 EMIT2(0x0F, 0xB7);
701 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
702 break;
703 case 32:
704 /* emit 'bswap eax' to swap lower 4 bytes */
705 if (is_ereg(dst_reg))
706 EMIT2(0x41, 0x0F);
707 else
708 EMIT1(0x0F);
709 EMIT1(add_1reg(0xC8, dst_reg));
710 break;
711 case 64:
712 /* emit 'bswap rax' to swap 8 bytes */
713 EMIT3(add_1mod(0x48, dst_reg), 0x0F,
714 add_1reg(0xC8, dst_reg));
715 break;
716 }
717 break;
718
719 case BPF_ALU | BPF_END | BPF_FROM_LE:
720 switch (imm32) {
721 case 16:
722 /* emit 'movzwl eax, ax' to zero extend 16-bit
723 * into 64 bit
724 */
725 if (is_ereg(dst_reg))
726 EMIT3(0x45, 0x0F, 0xB7);
727 else
728 EMIT2(0x0F, 0xB7);
729 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
730 break;
731 case 32:
732 /* emit 'mov eax, eax' to clear upper 32-bits */
733 if (is_ereg(dst_reg))
734 EMIT1(0x45);
735 EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
736 break;
737 case 64:
738 /* nop */
739 break;
740 }
741 break;
742
743 /* ST: *(u8*)(dst_reg + off) = imm */
744 case BPF_ST | BPF_MEM | BPF_B:
745 if (is_ereg(dst_reg))
746 EMIT2(0x41, 0xC6);
747 else
748 EMIT1(0xC6);
749 goto st;
750 case BPF_ST | BPF_MEM | BPF_H:
751 if (is_ereg(dst_reg))
752 EMIT3(0x66, 0x41, 0xC7);
753 else
754 EMIT2(0x66, 0xC7);
755 goto st;
756 case BPF_ST | BPF_MEM | BPF_W:
757 if (is_ereg(dst_reg))
758 EMIT2(0x41, 0xC7);
759 else
760 EMIT1(0xC7);
761 goto st;
762 case BPF_ST | BPF_MEM | BPF_DW:
763 EMIT2(add_1mod(0x48, dst_reg), 0xC7);
764
765 st: if (is_imm8(insn->off))
766 EMIT2(add_1reg(0x40, dst_reg), insn->off);
767 else
768 EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
769
770 EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
771 break;
772
773 /* STX: *(u8*)(dst_reg + off) = src_reg */
774 case BPF_STX | BPF_MEM | BPF_B:
775 /* emit 'mov byte ptr [rax + off], al' */
776 if (is_ereg(dst_reg) || is_ereg(src_reg) ||
777 /* have to add extra byte for x86 SIL, DIL regs */
778 src_reg == BPF_REG_1 || src_reg == BPF_REG_2)
779 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
780 else
781 EMIT1(0x88);
782 goto stx;
783 case BPF_STX | BPF_MEM | BPF_H:
784 if (is_ereg(dst_reg) || is_ereg(src_reg))
785 EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
786 else
787 EMIT2(0x66, 0x89);
788 goto stx;
789 case BPF_STX | BPF_MEM | BPF_W:
790 if (is_ereg(dst_reg) || is_ereg(src_reg))
791 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
792 else
793 EMIT1(0x89);
794 goto stx;
795 case BPF_STX | BPF_MEM | BPF_DW:
796 EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
797 stx: if (is_imm8(insn->off))
798 EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
799 else
800 EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
801 insn->off);
802 break;
803
804 /* LDX: dst_reg = *(u8*)(src_reg + off) */
805 case BPF_LDX | BPF_MEM | BPF_B:
806 /* emit 'movzx rax, byte ptr [rax + off]' */
807 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
808 goto ldx;
809 case BPF_LDX | BPF_MEM | BPF_H:
810 /* emit 'movzx rax, word ptr [rax + off]' */
811 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
812 goto ldx;
813 case BPF_LDX | BPF_MEM | BPF_W:
814 /* emit 'mov eax, dword ptr [rax+0x14]' */
815 if (is_ereg(dst_reg) || is_ereg(src_reg))
816 EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
817 else
818 EMIT1(0x8B);
819 goto ldx;
820 case BPF_LDX | BPF_MEM | BPF_DW:
821 /* emit 'mov rax, qword ptr [rax+0x14]' */
822 EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
823 ldx: /* if insn->off == 0 we can save one extra byte, but
824 * special case of x86 r13 which always needs an offset
825 * is not worth the hassle
826 */
827 if (is_imm8(insn->off))
828 EMIT2(add_2reg(0x40, src_reg, dst_reg), insn->off);
829 else
830 EMIT1_off32(add_2reg(0x80, src_reg, dst_reg),
831 insn->off);
832 break;
833
834 /* STX XADD: lock *(u32*)(dst_reg + off) += src_reg */
835 case BPF_STX | BPF_XADD | BPF_W:
836 /* emit 'lock add dword ptr [rax + off], eax' */
837 if (is_ereg(dst_reg) || is_ereg(src_reg))
838 EMIT3(0xF0, add_2mod(0x40, dst_reg, src_reg), 0x01);
839 else
840 EMIT2(0xF0, 0x01);
841 goto xadd;
842 case BPF_STX | BPF_XADD | BPF_DW:
843 EMIT3(0xF0, add_2mod(0x48, dst_reg, src_reg), 0x01);
844 xadd: if (is_imm8(insn->off))
845 EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
846 else
847 EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
848 insn->off);
849 break;
850
851 /* call */
852 case BPF_JMP | BPF_CALL:
853 func = (u8 *) __bpf_call_base + imm32;
854 jmp_offset = func - (image + addrs[i]);
855 if (seen_ld_abs) {
856 reload_skb_data = bpf_helper_changes_pkt_data(func);
857 if (reload_skb_data) {
858 EMIT1(0x57); /* push %rdi */
859 jmp_offset += 22; /* pop, mov, sub, mov */
860 } else {
861 EMIT2(0x41, 0x52); /* push %r10 */
862 EMIT2(0x41, 0x51); /* push %r9 */
863 /* need to adjust jmp offset, since
864 * pop %r9, pop %r10 take 4 bytes after call insn
865 */
866 jmp_offset += 4;
867 }
868 }
869 if (!imm32 || !is_simm32(jmp_offset)) {
870 pr_err("unsupported bpf func %d addr %p image %p\n",
871 imm32, func, image);
872 return -EINVAL;
873 }
874 EMIT1_off32(0xE8, jmp_offset);
875 if (seen_ld_abs) {
876 if (reload_skb_data) {
877 EMIT1(0x5F); /* pop %rdi */
878 emit_load_skb_data_hlen(&prog);
879 } else {
880 EMIT2(0x41, 0x59); /* pop %r9 */
881 EMIT2(0x41, 0x5A); /* pop %r10 */
882 }
883 }
884 break;
885
886 case BPF_JMP | BPF_CALL | BPF_X:
887 emit_bpf_tail_call(&prog);
888 break;
889
890 /* cond jump */
891 case BPF_JMP | BPF_JEQ | BPF_X:
892 case BPF_JMP | BPF_JNE | BPF_X:
893 case BPF_JMP | BPF_JGT | BPF_X:
894 case BPF_JMP | BPF_JGE | BPF_X:
895 case BPF_JMP | BPF_JSGT | BPF_X:
896 case BPF_JMP | BPF_JSGE | BPF_X:
897 /* cmp dst_reg, src_reg */
898 EMIT3(add_2mod(0x48, dst_reg, src_reg), 0x39,
899 add_2reg(0xC0, dst_reg, src_reg));
900 goto emit_cond_jmp;
901
902 case BPF_JMP | BPF_JSET | BPF_X:
903 /* test dst_reg, src_reg */
904 EMIT3(add_2mod(0x48, dst_reg, src_reg), 0x85,
905 add_2reg(0xC0, dst_reg, src_reg));
906 goto emit_cond_jmp;
907
908 case BPF_JMP | BPF_JSET | BPF_K:
909 /* test dst_reg, imm32 */
910 EMIT1(add_1mod(0x48, dst_reg));
911 EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
912 goto emit_cond_jmp;
913
914 case BPF_JMP | BPF_JEQ | BPF_K:
915 case BPF_JMP | BPF_JNE | BPF_K:
916 case BPF_JMP | BPF_JGT | BPF_K:
917 case BPF_JMP | BPF_JGE | BPF_K:
918 case BPF_JMP | BPF_JSGT | BPF_K:
919 case BPF_JMP | BPF_JSGE | BPF_K:
920 /* cmp dst_reg, imm8/32 */
921 EMIT1(add_1mod(0x48, dst_reg));
922
923 if (is_imm8(imm32))
924 EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
925 else
926 EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
927
928 emit_cond_jmp: /* convert BPF opcode to x86 */
929 switch (BPF_OP(insn->code)) {
930 case BPF_JEQ:
931 jmp_cond = X86_JE;
932 break;
933 case BPF_JSET:
934 case BPF_JNE:
935 jmp_cond = X86_JNE;
936 break;
937 case BPF_JGT:
938 /* GT is unsigned '>', JA in x86 */
939 jmp_cond = X86_JA;
940 break;
941 case BPF_JGE:
942 /* GE is unsigned '>=', JAE in x86 */
943 jmp_cond = X86_JAE;
944 break;
945 case BPF_JSGT:
946 /* signed '>', GT in x86 */
947 jmp_cond = X86_JG;
948 break;
949 case BPF_JSGE:
950 /* signed '>=', GE in x86 */
951 jmp_cond = X86_JGE;
952 break;
953 default: /* to silence gcc warning */
954 return -EFAULT;
955 }
956 jmp_offset = addrs[i + insn->off] - addrs[i];
957 if (is_imm8(jmp_offset)) {
958 EMIT2(jmp_cond, jmp_offset);
959 } else if (is_simm32(jmp_offset)) {
960 EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
961 } else {
962 pr_err("cond_jmp gen bug %llx\n", jmp_offset);
963 return -EFAULT;
964 }
965
966 break;
967
968 case BPF_JMP | BPF_JA:
969 jmp_offset = addrs[i + insn->off] - addrs[i];
970 if (!jmp_offset)
971 /* optimize out nop jumps */
972 break;
973 emit_jmp:
974 if (is_imm8(jmp_offset)) {
975 EMIT2(0xEB, jmp_offset);
976 } else if (is_simm32(jmp_offset)) {
977 EMIT1_off32(0xE9, jmp_offset);
978 } else {
979 pr_err("jmp gen bug %llx\n", jmp_offset);
980 return -EFAULT;
981 }
982 break;
983
984 case BPF_LD | BPF_IND | BPF_W:
985 func = sk_load_word;
986 goto common_load;
987 case BPF_LD | BPF_ABS | BPF_W:
988 func = CHOOSE_LOAD_FUNC(imm32, sk_load_word);
989 common_load:
990 ctx->seen_ld_abs = seen_ld_abs = true;
991 jmp_offset = func - (image + addrs[i]);
992 if (!func || !is_simm32(jmp_offset)) {
993 pr_err("unsupported bpf func %d addr %p image %p\n",
994 imm32, func, image);
995 return -EINVAL;
996 }
997 if (BPF_MODE(insn->code) == BPF_ABS) {
998 /* mov %esi, imm32 */
999 EMIT1_off32(0xBE, imm32);
1000 } else {
1001 /* mov %rsi, src_reg */
1002 EMIT_mov(BPF_REG_2, src_reg);
1003 if (imm32) {
1004 if (is_imm8(imm32))
1005 /* add %esi, imm8 */
1006 EMIT3(0x83, 0xC6, imm32);
1007 else
1008 /* add %esi, imm32 */
1009 EMIT2_off32(0x81, 0xC6, imm32);
1010 }
1011 }
1012 /* skb pointer is in R6 (%rbx), it will be copied into
1013 * %rdi if skb_copy_bits() call is necessary.
1014 * sk_load_* helpers also use %r10 and %r9d.
1015 * See bpf_jit.S
1016 */
1017 if (seen_ax_reg)
1018 /* r10 = skb->data, mov %r10, off32(%rbx) */
1019 EMIT3_off32(0x4c, 0x8b, 0x93,
1020 offsetof(struct sk_buff, data));
1021 EMIT1_off32(0xE8, jmp_offset); /* call */
1022 break;
1023
1024 case BPF_LD | BPF_IND | BPF_H:
1025 func = sk_load_half;
1026 goto common_load;
1027 case BPF_LD | BPF_ABS | BPF_H:
1028 func = CHOOSE_LOAD_FUNC(imm32, sk_load_half);
1029 goto common_load;
1030 case BPF_LD | BPF_IND | BPF_B:
1031 func = sk_load_byte;
1032 goto common_load;
1033 case BPF_LD | BPF_ABS | BPF_B:
1034 func = CHOOSE_LOAD_FUNC(imm32, sk_load_byte);
1035 goto common_load;
1036
1037 case BPF_JMP | BPF_EXIT:
1038 if (seen_exit) {
1039 jmp_offset = ctx->cleanup_addr - addrs[i];
1040 goto emit_jmp;
1041 }
1042 seen_exit = true;
1043 /* update cleanup_addr */
1044 ctx->cleanup_addr = proglen;
1045 /* mov rbx, qword ptr [rbp-X] */
1046 EMIT3_off32(0x48, 0x8B, 0x9D, -STACKSIZE);
1047 /* mov r13, qword ptr [rbp-X] */
1048 EMIT3_off32(0x4C, 0x8B, 0xAD, -STACKSIZE + 8);
1049 /* mov r14, qword ptr [rbp-X] */
1050 EMIT3_off32(0x4C, 0x8B, 0xB5, -STACKSIZE + 16);
1051 /* mov r15, qword ptr [rbp-X] */
1052 EMIT3_off32(0x4C, 0x8B, 0xBD, -STACKSIZE + 24);
1053
1054 EMIT1(0xC9); /* leave */
1055 EMIT1(0xC3); /* ret */
1056 break;
1057
1058 default:
1059 /* By design x64 JIT should support all BPF instructions
1060 * This error will be seen if new instruction was added
1061 * to interpreter, but not to JIT
1062 * or if there is junk in bpf_prog
1063 */
1064 pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
1065 return -EINVAL;
1066 }
1067
1068 ilen = prog - temp;
1069 if (ilen > BPF_MAX_INSN_SIZE) {
1070 pr_err("bpf_jit_compile fatal insn size error\n");
1071 return -EFAULT;
1072 }
1073
1074 if (image) {
1075 if (unlikely(proglen + ilen > oldproglen)) {
1076 pr_err("bpf_jit_compile fatal error\n");
1077 return -EFAULT;
1078 }
1079 memcpy(image + proglen, temp, ilen);
1080 }
1081 proglen += ilen;
1082 addrs[i] = proglen;
1083 prog = temp;
1084 }
1085 return proglen;
1086 }
1087
1088 void bpf_jit_compile(struct bpf_prog *prog)
1089 {
1090 }
1091
1092 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1093 {
1094 struct bpf_binary_header *header = NULL;
1095 struct bpf_prog *tmp, *orig_prog = prog;
1096 int proglen, oldproglen = 0;
1097 struct jit_context ctx = {};
1098 bool tmp_blinded = false;
1099 u8 *image = NULL;
1100 int *addrs;
1101 int pass;
1102 int i;
1103
1104 if (!bpf_jit_enable)
1105 return orig_prog;
1106
1107 tmp = bpf_jit_blind_constants(prog);
1108 /* If blinding was requested and we failed during blinding,
1109 * we must fall back to the interpreter.
1110 */
1111 if (IS_ERR(tmp))
1112 return orig_prog;
1113 if (tmp != prog) {
1114 tmp_blinded = true;
1115 prog = tmp;
1116 }
1117
1118 addrs = kmalloc(prog->len * sizeof(*addrs), GFP_KERNEL);
1119 if (!addrs) {
1120 prog = orig_prog;
1121 goto out;
1122 }
1123
1124 /* Before first pass, make a rough estimation of addrs[]
1125 * each bpf instruction is translated to less than 64 bytes
1126 */
1127 for (proglen = 0, i = 0; i < prog->len; i++) {
1128 proglen += 64;
1129 addrs[i] = proglen;
1130 }
1131 ctx.cleanup_addr = proglen;
1132
1133 /* JITed image shrinks with every pass and the loop iterates
1134 * until the image stops shrinking. Very large bpf programs
1135 * may converge on the last pass. In such case do one more
1136 * pass to emit the final image
1137 */
1138 for (pass = 0; pass < 10 || image; pass++) {
1139 proglen = do_jit(prog, addrs, image, oldproglen, &ctx);
1140 if (proglen <= 0) {
1141 image = NULL;
1142 if (header)
1143 bpf_jit_binary_free(header);
1144 prog = orig_prog;
1145 goto out_addrs;
1146 }
1147 if (image) {
1148 if (proglen != oldproglen) {
1149 pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
1150 proglen, oldproglen);
1151 prog = orig_prog;
1152 goto out_addrs;
1153 }
1154 break;
1155 }
1156 if (proglen == oldproglen) {
1157 header = bpf_jit_binary_alloc(proglen, &image,
1158 1, jit_fill_hole);
1159 if (!header) {
1160 prog = orig_prog;
1161 goto out_addrs;
1162 }
1163 }
1164 oldproglen = proglen;
1165 }
1166
1167 if (bpf_jit_enable > 1)
1168 bpf_jit_dump(prog->len, proglen, pass + 1, image);
1169
1170 if (image) {
1171 bpf_flush_icache(header, image + proglen);
1172 set_memory_ro((unsigned long)header, header->pages);
1173 prog->bpf_func = (void *)image;
1174 prog->jited = 1;
1175 } else {
1176 prog = orig_prog;
1177 }
1178
1179 out_addrs:
1180 kfree(addrs);
1181 out:
1182 if (tmp_blinded)
1183 bpf_jit_prog_release_other(prog, prog == orig_prog ?
1184 tmp : orig_prog);
1185 return prog;
1186 }
1187
1188 void bpf_jit_free(struct bpf_prog *fp)
1189 {
1190 unsigned long addr = (unsigned long)fp->bpf_func & PAGE_MASK;
1191 struct bpf_binary_header *header = (void *)addr;
1192
1193 if (!fp->jited)
1194 goto free_filter;
1195
1196 set_memory_rw(addr, header->pages);
1197 bpf_jit_binary_free(header);
1198
1199 free_filter:
1200 bpf_prog_unlock_free(fp);
1201 }